A new Kernel to use with discretized Temporal Series

F.J. Cuberos?®,L. Gonzilez’, F. Velasco’, J.A. Ortega® and C. Angulo®
* Dept. Planificacion-Radio Television de Andalucia, Seville (Spain)
b Dept. Applied Economics I, University of Seville (Spain)
¢ Dept. Data Processing Languages and Systems, University of Seville (Spain)
¢ GREC Research Group, Technical University of Catalonia, Vilanova i G. (Spain)
{luisgon, velasco} @us.es, fijcuberos@rtva.es, ortega@lsi.us.es, cangul 0@ esaii.upc.es

Abstract

In this paper a new kernel, from statistical learning
theory, is proposed to work with symbols chains
(words) obtained from a discretization procedure of
a continuous feature. Meanwhile the exact defini-
tion of the discretization is not strictly necessary,
it must ever exist either, a distance or a similarity
measure between symbols in a certain alphabet (a
set of symbols).

The proposed kernel is a generalization of a dot
productin a vector space, not necessarily provided
of any mathematical structure, that will allows to
establish a similarity measure between objects of
the alphabet.

This kernel is applied on a set of television shares
obtained from the seven main television stations in
Andalusia (Spain). A comparative study for clas-
sification purposes is done, and the associated pa-
rameter selection is studied.

1 Motivation

Automated processing and knowledge extraction from data
is an important task to be performed by machine learning
algorithms. Hence, it is possible the generation of classifi-
cation rules from class-labelled examples. Instances can be
described by a set of numerical, nominal, or continuos fea-
tures. Several of these algorithms are expressly designed for
handling numerical or nominal data; other algorithms per-
forms better with discrete-values features, despite they can
also handle continuous features [Kurgan and Cios, 2004].
Meanwhile a certain number of algorithms developed in the
machine learning community focus on learning from nom-
inal feature spaces, real-world classification includes pat-
terns with continuous features where such algorithms can
not be applied, unless the continuous features are firstly dis-
cretized. Discretization is the process of transforming a con-
tinuous attribute into a finite number of intervals associated
with a discrete. numerical value —a number, symbol or letter.
It is the usual approach for learning tasks that use mixed-
mode —continuous and discrete)- data. Discretization pro-
cess is developed in two stages: given the range of values
for the continuous attribute, first it is found the number of
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discrete intervals: then, the width or boundaries for the in-
tervals [Gonzdlez and Gavildn, 2001; Dougherty er al., 1995:
Kurgan and Cios. 2004; Macskassy et al., 2003]. Discretiza-
tion should generate a little number of possible symbols for
the continuous attribute in order to avoid a slow and ineffec-
tive process of inductive machine learning [Catlett, 19911].

In [Macskassy et al., 2003] was shown than even on purely
numerical-valued data, results for text classification on the
derived text-like representation outperforms the more naive
numbers-as-tokens representation and, more importantly, is
competitive with mature numerical classification methods
such as C4.5, Ripper and SVM. The most straightforward
way is to treat each number that a feature may take on as a
distinct “word”. and proceed with the use of a text classifica-
tion method using the combination of true words and tokens-
for-numbers words. However, this makes the numbers 1 and
2 as dissimilar as the numbers 1 and 100 —all three values are
unrelated tokens to the classification methods. It would be
desirable an approach to applying text-classification methods
problems with numerical-valued features so that the distance
between such numerical values is able to be discerned by the
classification method. The approach considered in this paper
is to translate every number into a set of intervals such that
closer are two values, more similar will be the sets. This is
done by finding a set of landmarks or split-points within the
feature’s range of legitime values by analyzing the values that
the feature is observed to take on among the training exam-
ple. Most of the methods translating a continuous feature into
symbols —letters- in order to deal with texts —letters chains—
lose part of their efficient since they are not designed for this
end. The kernel proposed in this paper is specifically de-
signed to work with letters chains coming from a discretiza-
tion process of a continuous feature and it highlights the prop-
erties of these features. To cope the effectiveness of this ker-
nel, it will be used on words from a dictionary where a dis-
tance exists between letters of the alphabet. The kernel was
firstly proposed to compare among time series that had been
converted into symbol chains —~words— [Cuberos et al., 2003;
2004]. Thus, the similarity measure between words quanti-
fied a distance between original time series. Figure 1 shows
an example of a partial typified curve with theirderivative val-
ues and the assigned label to each transition between adjacent
values.

The rest of this paper is structured as follows: first, it is
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Figure 1: Sample of translation from a time serie to letters
chain.

defined both, a kernel and a distance between finite intervals.
Distance is used to define a real function measuring the simi-
larity between two words and if words have the same length,
this function is Kernel because it accomplish the Mercer con-
dition. Later, one example about classification rules is devel-
oped. Finally, the conclusions and ideas for future works are
enumerated.

To use traditional feature-vector-based learning methods,
one could treat the presence or absence of a word as a Boolean
feature and use these binary-values features. However, the
use of a text-classification system on this is a bit more prob-
lematic, in the most straight-forward approach each number
would be considered a distinct token and treated as a word.
This paper presents an alternative approach for the use of
text classification methods with numerical-valued features in
which the numerical features are converted into bag-of-words
features, thereby making them directly usable by text classi-
fication methods.

For many years the focus of the machine learning commu-
nity has been on numerical and discrete-valued classification
tasks, over the last decade there has also been considerable
attention to text-classification problems [Sebastiani, 2002].
Typically such methods are applied by treating the presence
or absence of each word as a separate Boolean feature. This is
a commonly performed either directly, by generating a large
number of such features, one for each word, or indirectly, by
the use of set-valued features, in which each text-valued field
of the examples is viewed as a single feature whose value for
an example is the set of words that are present in that field for
this example.

For many years the focus of the information retrieval com-
munity has been primarily on retrieval tasks, here, too, the last
decade has seen a significant increase in interest in the use of
such methods for text-classification tasks. The most common
techniques use the retrieval engine as the basis for a distance
metric between examples, for either direct use with nearest-
neighbor methods, or based on the closely relates Rocchio
relevance feedback technique, for use after creating a sum-
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mary “document” for each class and retrieving the nearest
one.

Many algorithms developed in the machine learning
community focus on learning to nominal feature spaces
[Dougherty er al., 1995]. However, many real-world clas-
sification tasks exist that involve continuous features where
such algorithms could not be applied unless the continuous
features are first discretized. Continuous variable discretiza-
tion has received significant attention in the machine learning
community only recently.

This drawbacks can be overcome by using a discretization
algorithms as a front-end for the learning algorithm.

2 Interval distance from a kernel

In essence, the goal in the construction of kernel functions is
to guarantee the existence of an application ¢, defined from
the working set, X’ to a vectorial space endowed with a dot
product, F. From this function ¢ the kernel function is de-
fined, denoted k(-, -), over pairs of elements of the working
set as the dot product of their transformations into the fea-
ture space, k(-,-) = (&(-), ¢(-))#, where (-,-) is denoted a
dot product. The kernel function k(-, -) let us establish simi-
larities between the original elements from their transformed
ones, so a distance between the points in the input space can
be defined. It must be considered, when elaborating a sim-
ilarity and distance measure, that the ¢ application must be
able to highlight the essential characteristics of the initial set
of elements.

Following the ideas presented in [Gonzdlez er al., 2004b],
letZ ={(c—r,c+r) CR:ceR,r € IR} be the fam-
ily of all the open intervals contained in the real line” of
finite dimension. A function ¢; : Z — IR? is defined as:
01(I) = P(ec,r)t and the kernel k and a distance d? between

intervals are:
Cc2
c T
(e m )S( i )

E(I,I,) = (Ac Ar )s( 2;;’)

k(Il ) IQ)

where I1 = (c1 —71,c14+11), L2 = (2 — T2, c2 +12), Ac =
cp—ci and Ar = ro—ry, and P must be a non singular matrix
(S = P!P). Thus, the discretization of a continuous feature
in symbols, usually letters, representing different intervals,
allows us to use as a distance between symbols, the distance
defined between intervals as it will be showed.

3 Kernel

From this point, we always consider that the symbols are let-
ters (A, B,---) because the ordinal scale is reflected in the
alphabetical order. Let A = {A4;, A4y, -+, A/} be an al-
phabet of ¢ letters and let P be a set of the words that can
be built from this alphabet. Let P1 = P1,Pl,---Pl,

n default, we are working with open intervals, but it is posible
to translate the study to closed intervals naturally.

and P2 = P2,P25--- P2, be words from P where P1;,
P2;€ Aandn > m. Amap K} is defined as:

m
K\(P1,P2) = max{z AP PL4kP2) =0 oo — m}

i=1
where 0 < A < 1 and d(-,-) is a distance between letters.
Nota 3.1 If words have the same length n, then:

n
K)(P1,P2) = Z)\d"’(Pl,,Pz,L)

i=1

Nota 3.2 The kernel Kx(-,-) is a radial basis function
(R.B.F) since it is defined like a function of a distance,
f(d(P1.P2)).

Propiedad 1: For all P1, P2 € P and 0 < A1 < A < 1
then: Ky, (P1, P2) < K,(P1, P2).

Propiedad 2: For all P1, P2 € Pand 0 < A <1 then:

K,(P1,P2) < m. This upper bound is atiained: If P2 =

P1,P1,---Pl,,, then Kx(P1,P2) =m.

Propiedad 3: Ler r = max;; d(A;, Aj), with A;, A 62 A.

Forall P1,P2 € Pand 0 < A < 1 then: mA\T <

K\(P1,P2). This lower bound is attained: Let A = A;

and B = A; be such that d(A,B) = r*. If P1 = AA--- A

and P2 = BB - -- B with size of P1, n, and size of P2, m,
2

then K5(P1,P2) = mA\".

Thereby, forall 0 < A < 1:

mA” < Ky(P1,P2) <m, ¥Pl1,P2€P

Propiedad 4: Let A be an alphabet obtained from a
discretization process of a continuous feature a(Ld P =
{P,Py---P,, P; € A} the set of all the words having length
n, then

n
Ka(P1,P2) =y AT (PP
i=1
is a Kernel.

The proof can be found in [Gonzélez et al., 2003]. discretiza-
tion process of a continuous feature into intervals. We con-
sider the distance between intervals previously defined and a
map ¢ from A to IR? is defined in the following way:

Each interval (¢ — 7, ¢ + r) from the discretization process
is denoted by a letter from alphabet A. Thus we conside? _the
map ¢; define from 7 to IR? and consider the composition
between this and the intervals distance. A new map is defined
¢ : A — IR? such that:

¢(A):P(ﬁ>, VAc A

where P is a 2 x 2 matrix. It is defined a map k; : A X
A — IR such that: ki (A,B) = (¢(A).o(B)). Itisa
kernel function by construction, because it is a dot prodgct.
Therefore: d2(A, B) = (#(4) — o(B),6(A) — ¢(B)) is a
pseudo-distance between words o
Applying Corollary 3.13 (page 43) in [Cnsnan'lm and
Shawe-Taylor, 20001, instead of the exponential function e~ *
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to the function (%)71 with 0 < A < 1, itis true that the
map ks : A x A — IR defined in the following way:
ko(A,B) = Ale(A)=e(B)II* = \d*(4.B) js 3 kernel function.
Now, if we consider the map Ky : P x P — IR such that

n
K\(P1,P2) = Z/\dz(Pl,.Pz,)

i=1

using the proposition 3.12 in [Cristianini and Shawe-Taylor,
20001, it is true that K »(-, -) is a kernel function. _ i}

Tthe A parameter measure the importance that A A, ) give
to matching symbols versus the comparison of different sym-
bols. For coincident symbols the value is always 1.
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Figure 2: Graph representation of function f (z) = A* for
several values of A.

In this language each word has a meaning since it repre-
sents a whole interval of values. For this reason, we should
ask ourselves which are the characteristics we want to take
into account in each word of the language to be able to ex-
tract meaning from them. The function K, (-, -) considers th_e
following ones: i) The order of the letters into each word, ii)
Comparison letter by letter, and iii) The size of the words

3.1 Example

We think that it is very interesting to study an easy example
before to see an implementation more complicated. Let be a
table that quantifies the difference between letters:

d.)JA B C D E
A [0 1 2 3 4
B |1 0 1 2 3
c |2 1 0 1 2
D |3 2 1 0 1
E |4 3 2 1 0

thus, the difference between letters is equal to the number of
necessary jumps to pass from a letter to another letter.

The number of neccesary jumps to pass from the word
ACDBEAE to the word EABEDC A (The letters are the




same in different orden. The representation is in figure 3) is
computed as follow.

A C D B E A FE
4 2 2 3 1 2 4

§ — 18 jumps
E A B E D C A

If the first word is retained and one unit is reduced to the
difference between every letter form both words, a new word
is obtained DBCDEBB:

h \\ ACDBEAE
14\
0 \

m\ T ) T
_1_1\2/{\/5 6A 7
-2 \\//‘\ \\

EABEDCA
-3 -
3 -
DBCDEBB
2 |

ACDBEAE F
14 l /

0 S M B ‘
41 1 ST 3 5

2 |

-3

Figure 3: Representation of two words containing the same
letters in a different orden. Every label represent the center of
the class intervals computed with the CUM method.

that is nearer to the first word, computing 11 jumps.

A C D B E A FE
31 1 2 0 1 3
D B C D E B B

— 11 jumps

But must be noted that the ordinal scale A < B < C <
D < E come from the labelling of class intervals, so the dif-
ference between labels can be obtained from the distance be-
tween intervals. The CUM method, applied over the data set
in [Gonzélez e1 al., 2003] from a continuos variable, produce
the intervals:

Lower | Upper | Label | Center | Radius
Bound | Bound
-3.1844 | -1.1911
-1.1911 | -0.4619
-0.4619 | 0.4982
0,4982 | 1.2639
1.2639 | 2.9047

-2.8770 | 0.9966
-0.8265 | 0.3646
0.0182 | 0.4801
0.8811 | 0.3828
2.0843 | 0.8204

moOQwy»
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Let be A = I (identity matrix) in the interval kernel previ-
ously proposed, then this scale is obtained®:

a0 A B T D
B~ | 15008

C | 22656 08525

D |3.129 17077 0.8684

E | 42757 29463 2.0940 1.2803

So the distance between the words ACDBEAE and
EABEDC A, previously 16 (jumps), as the sum of the dis-
tances between every pair of letters in the same position, is:

A C D B E A E

4.2757 2.2656 1.7077 2.9463 1.2803 2.2656 4.2757 — 19.017

E A B E D ® A

and between the words ACDBEAE y DBCDEBB:

A C D B E A E
3.1296 0.8525 0.8684 1.7077 0 1.5008 2.9463 — 11.005
D B G D E B B

that previously was 10.

3.2 Words of different size

Let be two words, EBCDACDE and ABAECD, of dif-
ferent size. We study the similarities fixing the longest word
and is compared with the shortest word :

A B B FE C D
4 0 1 1 2 1 — 9 jumps
E B C D A C D E
A B B E C D
1 1 2 4 0 O — 8 jumps
FE B C D A C D E
A B B E C D
2 2 1 2 1 1 — 9 jumps
E B C D A C D E

i.e., the distance between all the subwords from the longest
word and the shortest word, maintaining the order of the
words.

3.3 Generalized similarity

Let P1 and P2 be two words of the same length n from
the set P. In the definition of similarity between words,
K\(P1,P2) = Y0 A (PLuP2) )] the letters have the
same interest. It is possible to generalize this similarity by
weighting each letter in such a form that the sum of the
weights is equal to n.

Let wy,wa,--- ,w, € IR be scalar numbers accomplish-
ing w; > 0 and ZLI w; = n. The generalized similarity can
be defined in two different ways:

n
K3(P1,P2) = 3 xurdi(P1oP2)
=1

@d(P, P) = 0 for all letter P.
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Figure 4: Different weighting shapes to build generalized similarities.

n
K3(P1,P2) = 3wy AT (P12

=T

It is no difficult to proof that both are kernels®®, however the

second one have a more intuitive meaning for the weights.
Also, using to properties of the exponential function we have:

n n
KL(P1,P2) = Z Awi-d?(PLi,P2:) _ ng . \@*(P1i,P2;)

i=1 i=1
where w/ = (w1 @*(P1o.P2) - Although no necessary is
true that S, w! # n. For this we propose as generalize
similarity the function K2(-,-) .

In the figure 4, it can be observed several examples of
weighting. In the left upper figure the same weight (uni-
tary weight) is given to every letter in the word (the origi-
nal definition). In the upper right figure a major importance
is given to the last letters following a arithmetic progression,
this situation can be useful to understand if the values of two
stock shares can be similar. If we are analyzing a dynamic
system from the behavior of a motor, the sense of similar-
ity can be different given major importance to the transitory
state against the stationary, and that can be achieved with the
weights shown in the middle left figure. Analogously can be

®The sum and the product of kernels is a kernel [Cristianini and
Shawe-Taylor, 2000].

obtained the same or reverse situation with decreasing arith-
metic progression (middle right) or increasing (lower right).
Other possibility is shown in the lower right figure with the
weights following a discretized normal model, where major
importance is given to the letters in the middle of the word.

4 Implementation

An example about classification rule is developed. Data to be
considered is a set of television shares from the seven main
television stations in Andalusia, Spain. It has been provided
by Canal Sur Television and it has been collected from [TNS
Audiencia de Medios, 2003]. Time series represent the av-
erage share for 15 minutes blocks, so the daily series are 96
elements length.

We are going to use several discretization methods and
will see that the results are good in all them. A variety of
discretization methods can be found in the literature. From
the unsupervised algorithms: equal interval width, equal fre-
quency interval, k-means clustering or unsupervised MCC; to
supervised algorithms like Chi Merge, CADD,1RD, D—2
or maximum entropy. An extensive list can be found in [Kur-
gan and Cios, 2004].

The methods to be evaluated in this work
are: 1)  Equal Width Intervals or EWI, 2)
Equal Frequency Intervals or EF1, 3) CAIM (Class-
Attribute Interdependence Maximization) [Kurgan and Cios,
20041, 4) ChiSplit [Gonzdlez et al., 2004al, 5) CUM
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01lo02lo03l04]05]06]07[08]009

CAIM 0,89 0,88 0,88 0,87 0,86 0,85 0,84 0,83 0,81

DAC 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0.89 0,88

CUMO02 0,88 0,88 0,88 0,88 0,88 0,88 0,87 0,87 0,88

EFI03 0,92 0,92 092 092 0,92 0,92 0,92 0,92 0,91

EWI09 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,88 0,85

Figure 7: Percentage of correct identifications in Work Set for each method vs. value of A

Neigbours
1 3 5
Method Labels | Avg. StDev| Avg. StDev| Avg. StDev.
CAIM 7 90,6 43| 894 46| 89,1 4,7
DAC 3 91,7 27[ 894 28| 898 2.8
2 90,8 29| 884 2,9 89,1 3,0
3 859 40| 851 4,2 86,2 3,9
4 76,0 60 71,3 53| 71,0 5,6
5 732 54 71,0 54| 723 515
CUM 6 825 42| 809 4,0 808 5.0
7 83,2 36| 80,0 3,7 80,1 43
8 853 33| 828 3,0 821 34
9 86,5 32| 849 2,6/ 847 3;1
2 91,2 29| 909 2,7 908 29
3 955 2,1 954 2,0 95,2 20
4 889 31| 876 32 874 34
5 852 39| 852 4,1 854 3.9
EFI 6 80,3 41| 77,7 471 76,4 49
7 747 48| 718 53| 711 54
8 758 43| 71,2 49| 707 5.0
9 747 53| 704 53| 69,1 6,2
2 71,0 115] 653 13,2 66,6 130
3 46,0 81| 364 83| 351 8,9
4 719 120| 674 14,2 68,9 144
5 749 107| 71,0 13,0 72,0 119
EWI 6 724 110]| 684 13,7| 70,4 136
7 858 78| 848 8,2 86,0 8,3
8 75,3 93| 734 10,4 74,3 11,0
9 88,1 49| 875 58| 88,1 5.3
DTW - 80,3 37| 78,1 4,4 76,5 4.3

Figure 5: Identification Average (%) and Standard Deviation
in Test Subset (200 Draws) vs. Number of neighbours

[Gonzidlez and Gavildn, 2001], and 6) DTW [Sakoe and
Chiba, 1978].

In the following step severalrelated task are accomplished:
i) The discretization methods are applied over the learning
subset producing a set of landmarks, ii) The landmarks are
used as the limits of intervals and a symbol is assigned to
each one, and iii) the series are translated into symbol chains.

The series are labelled withthe name of the corresponding
television station. We have selected the first 32 Wednesdays
of year 2003 (32 - 7 = 224 series) as the input set of series.
Other 20 Wednesdays are used as work set (140 series) to be
predicted.

In the Equal Width, Equal Frequency and C'U M methods,
the user must specify the number of intervals to be computed.

86

Discretization Methods
EWIO7| EFI03 | CAIM | DAC |CUMO2
1 853 | 954 | 90,6 91,8 91,0
3 84,7 | 954 | 89,5 89,4 88,2
5 85,7 | 951 89,2 89,8 89,0
7
9

865 | 955 | 89,6 | 90,5 | 90,2
868 | 953 | 893 | 90,6 | 899
11 86,7 | 947 | 893 | 90,2 | 895
13 | 870 | 944 | 89,6 | 90,0 | 89,0
15 | 872 | 943 | 895 | 89,6 | 886
17 | 869 | 941 | 89,2 | 888 | 877
19 | 86,8 | 938 | 891 87,5 | 86,6

Number of neighbors

Figure 6: Identification Average (%) in Test Subset vs. Num-
ber of Neighbors

As no rule for a optimal value exist, all those methods will
be calculated from 2 to 9 intervals. All the methods are ap-
plied to the learning subset and a list of interval boundaries
are obtained. A letter in alphabetical order is assigned to each
interval.

The learning system evaluates® the number of successful
identifications on the test subset using the k-neighbors algo-
rithm for each discretization method. The application of the
presented methodology achieves a 95% correct identification
rate for the work set series, 133 over 140. The best dis-
cretization method for this data set was Equal Frequency
Interval with 3 labels. Figure 5 shows the average percent-
age and variance for all the methods in 200 draws for 1, 3 and
5 neighbors.

In Figure 5 can be observed that, although the dis-
cretizacién methods build the intervals following different ap-
proaches, except for some anomalous case, the results are
similar, that is, the kernel is very robust in front of the dis-
cretization methods.

Another question is about the influence of the number of
neighbors, in the k-neighbors algorithm, in the results. Figure
6 represents the average identification for all the discretiza-
tion methods with the odd values of & from 1 to 19. It shows
that results are not improved with higher values of & when
K is used.

With respect to the parameter A used in the kernel, it does
not affect significantly to the average of correct identification.

@A complete study can be found in [Cuberos et ai., 2004].
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Figure 7 shows that only the C' A1 A method is affected by
the variance of A.

5 Conclusions and future work

In this paper a new similarity function for symbol chains
has been defined, generating in some cases a kernel. This
function measures similarities between words of a dictionary
when a distance measure between symbols is defined.

In the near future, we will focus on the extension of this
methodology to time series with multiple attributes and an-
other kind of data. At the same time, we will use new data
sets to extend its validation.

Finally, it must be mentioned that this kernel have certain
implications in the type of considered similarity that will be
studied in future investigations. The low influence of the A
parameter in identification tasks must be argued too.
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