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Abstract: This paper extends two fuzzy ranking data envelopment analysis (DEA) approaches to
the case of general networks of processes. The first approach provides an efficiency score for each
possibility level which requires solving one linear program for each possibility level. The second
approach is even simpler and provides an overall efficiency score solving just one linear program.
The proposed approaches are tested on two datasets from the literature and compared with other fuzzy
network DEA approaches. The results show that the two methods provide very highly correlated
efficiency estimates which are also consistent with those of other fuzzy network DEA approaches.
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1. Introduction

Data envelopment analysis (DEA) is a well-known non-parametric technique, generally used to
assess the relative efficiency of a group decision making units (DMUs). Conventional DEA considers
that each DMU consists of just a single process. This process consumes certain amounts of inputs and
produces certain amount of outputs. The aim of DEA is to detect inefficiencies, i.e., to check if the
same outputs can be obtained with less inputs the so-called input orientation) or the same inputs can
produce more outputs (output orientation). Detecting all kinds of inefficiencies is important for both
competitiveness and sustainability.

There are different DEA models, depending on the orientation, the metric, and the returns to scale
(RTS) assumptions considered. Considering certain axioms (like convexity or scalability, for example)
and applying the minimum extrapolation principle, DEA can infer from the observed data a so-called
production possibility set (PPS), which corresponds to the set of operation points that are considered
feasible. The PPS is formed using all linear combinations of the observed DMUs. When variable
returns to scale (VRS) are assumed then only convex linear combinations are used. The non-dominated
subset of the PPS defines the efficient frontier. The DMUs that fall on the Efficient Frontier (EF) are
labelled efficient while those that do not are termed inefficient and are projected onto the EF. The
distance of a DMU to the EF is used to compute an efficiency score so that the further from the EF
a DMU is (i.e., the larger the input and output improvements that can be achieved) the lower its
efficiency score. Accordingly, efficient DMUs have an efficiency score of one since for them no input or
output improvements are possible.

Different to conventional DEA, network DEA looks at the internal structure of the DMUs,
considering the DMU as a network of interrelated processes which consume inputs and produce
outputs but also produce and consume intermediate products. As with conventional DEA, many
different network DEA approaches have also been proposed (e.g., Kao [1]; Tone and Tsutsui [2,3]; Cook
et al. [4]; Lozano [5]). The range of applications of network DEA has also grown accordingly, spanning
banking (Lozano [6]), transportation (e.g., Lozano et al. [7]), sports (Moreno and Lozano [8]), supply
chain (e.g., Lozano and Adenso-Díaz [9]), etc.
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All the above references have dealt with crisp data, i.e., they assume that there is no uncertainty
in the data. This does not mean that DEA cannot work when the data are fuzzy. On the contrary,
there are many different fuzzy DEA approaches (e.g., Kao and Liu [10], Arana-Jimenez et al. [11],
Saati et al. [12], León et al. [13], Lertworasirikul et al. [14], Wang et al. [15], Soleimani-damaneh
et al. [16], Arana-Jimenez et al. [17], etc.). The reader is referred to Hatami-Marbini et al. [18] and
Emrouznejad et al. [19] for a taxonomy and review of fuzzy DEA approaches.

Of special relevance are those fuzzy DEA approaches that consider networks of processes. Thus,
Kao and Liu [20] extend Kao and Liu [10] approach to two-stage systems with fuzzy data. Liu [21]
proposes a methodology to rank fuzzy two-stage efficiencies, while Liu [22] adds weight restrictions
to Kao and Liu [20] fuzzy two-stage model. Tavana and Khalili-Damghani [23] also work with Kao
and Liu [20] approach but implementing a leader-follower game theory approach to decompose the
two-stage efficiency into single-stage efficiencies. Another variant is presented in Hemmati et al. [24].
Wang et al. [25] adopt a bootstrapped truncated-regression model to study the relationship between
fuzzy two-stage efficiencies and an exogenous variable.

Concerning non-radial network DEA approaches, Shermeh et al. [26] adapt the Network
Slack-Based Measure (SBM) model by Tone and Tsutsui [2] to be able to deal with fuzzy numbers. Olfat
et al. [27] propose a fuzzy extension of the dynamic Network SBM approach by Tone and Tsutsui [3].

Khalili-Damghani and Taghavi-Fard [28] also study fuzzy two-stage DEA systems. Kao and
Lin [29] consider parallel processes and fuzzy data. Lozano [30,31] compute process efficiencies in
parallel and two-stage process DEA systems, respectively. Kao [32] proposes two approaches, namely
the membership grade and the α-cut, for network DEA with fuzzy data. Lozano and Moreno [33]
extend the approaches in Saati et al. [12], Wang et al. [15], and Kao and Liu [20] to general networks of
processes. Finally, Mirhedayatian et al. [34] present a fuzzy network DEA approach with dual-role
factors and undesirable outputs to evaluate green supply chains.

However, to the best of our knowledge, ranking methods needs further development for network
DEA when dealing with fuzzy data and general network of processes. In fact, our work allows any
configuration of the stages that form the internal structure of the DMU, which implies an improvement
over other models. It could also be argued that previous models seem to be complex enough to prevent
some researchers from working with fuzzy data. Therefore, our aim is to develop a general fuzzy
network DEA approach without adding unnecessary complexity.

The structure of the paper is the following. In Section 2 the network DEA is introduced, and a
crisp model is formulated. In Section 3, the proposed methods are presented. In Section 4 the results of
the application of the proposed methods to two datasets from the literature are presented. Finally,
Section 5 summarizes and concludes.

2. Preliminaries

In order to facilitate a better understanding of the proposed fuzzy ranking network DEA
approaches, this section presents a brief overview of network DEA models and fuzzy numbers.

2.1. Crisp Network DEA Model

It is convenient to formulate first the crisp network DEA model, i.e., the network DEA model
without fuzzy data. We will use the same notation that Lozano [5] and Lozano and Moreno [33].
This notation helps to formulate the models in a very compact form.

Assume the DMUs to assess are all structurally homogeneous, i.e., all of them have the same
number and type of processes. Each process may consume a different subset of inputs and may
produce a different subset of outputs. Let I(p) be the set of exogenous inputs consumed by process
p and, for each i ∈ I(p), let xp

ij denote the observed amount of exogenous input i used by process p

of DMU j. Similarly, let O(p) the set of outputs produced by process p and, for each k ∈ O(p), let yp
kj

denote the amount of output k produced by process p of DMU j. Let PI(i) be the set of processes that
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consume the input i and xi j =
∑

p∈PI(i)
xp

ij the total amount of input i consumed by DMU j. Let PO(k)

be the set of processes that produce the output k and ykj =
∑

p∈PO(k)
yp

kj the total amount of output k

produced by DMU j.
A key feature of network DEA is that, in addition to exogenous inputs and outputs, there generally

exist intermediate products that are produced by some processes and consumed by others. Let Pout(r)
be the set of processes that produce the intermediate product r and, for each p ∈ Pout(r), let zp

rj the

amount of intermediate product r produced by process p of DMU j. Analogously, let Pin(r) be the set
of processes that consume the intermediate product r and, for each p ∈ Pin(r), let zp

rj the amount of

intermediate product r used by process p of DMU j. Finally, let us define the sets Rout(p) and Rin(p)
that correspond to the intermediate products produced and consumed, respectively, by process p.

Once the notation for required data has been introduced let us consider the variables. For the
radial, input-oriented model the variables needed are

θ Uniform reduction factor of the input consumption of DMU J
λ

p
j Intensity variable of process p of DMU j

EJ = Min θ (1)

subject to

∑
p∈PI(i)

∑
j

λ
p
j x

p
ij ≤ θ

∑
p∈PI(i)

xp
iJ ∀i (2)

∑
p∈PO(k)

∑
j

λ
p
j yp

kj ≥
∑

p∈PO(k)

yp
kJ ∀k (3)

∑
p∈Pout(r)

∑
j

λ
p
j z

p
rj −

∑
p∈Pin(r)

∑
j

λ
p
j z

p
rj ≥ 0 ∀r (4)

∑
j

λ
p
j = 1 ∀p (5)

λ
p
j ≥ 0 ∀ j∀p θ f ree (6)

This crisp network DEA model (see Lozano [5], Lozano and Moreno [33]) computes the maximum
radial reduction of the inputs consumed by a given DMU J. Note that this model has to be solved
as many times as DMUs are in the dataset. The idea is to compute a feasible operating point (i.e.,
within the inferred PPS) that maintains the output level of DMU J but reduces all its inputs as much as
possible. The optimal value of the θ variable corresponds to the efficiency score of DMU J. The λp

j
multipliers, note that there is a specific set of them for each process p, determine the inputs, outputs
and intermediate products of each process. Thus, the linear combinations of the observed data define
a target feasible operating point that produces at least the same amount of output, as required by
Constraint (3), while consuming a fraction θ of the observed inputs, as indicated by Constraints (2).
Constraints (4) impose that enough intermediate products are generated internally within the system
to satisfy the internal demand of those intermediate products. Therefore, the constraints guarantee
that the total amount of outputs produced by DMU J is not reduced and that the intermediate products
produced are enough to supply those processes that consume them.

Note that although, in the above model, it has been assumed that all processes exhibit variable
returns to scale (VRS), other RTS assumptions can be considered in which case Constraints (5) should
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be modified accordingly (see Lozano [5]). Moreover, the above formulation corresponds to the input
orientation. The corresponding model for the output orientation is shown in Appendix A.

2.2. Fuzzy Numbers

For the sake of clarity, an introduction to fuzzy numbers is provided in this section. More detailed
information can be found at Dubois and Prade [35]. A fuzzy number T̃ is a subset of the real line R
with membership function µT̃ : R→ [0, 1] satisfying the following properties:

(i) There exists t0 ∈ R such that µT̃(t0) = 1;

(ii) T̃ is fuzzy convex. In other words, µT̃(γt1 + (1− γ)t2) ≥ min
{
µT̃(t1),µT̃(t2)

}
, for any t1, t2 ∈ R

and γ ∈ [0, 1] ;
(iii) T̃ is upper semicontinuous on R, which means that µ−1

T̃
([∝, 1]) is closed for all ∝ ∈ [0, 1] ;

(iv) The support of is µT̃ bounded, i.e., the closure of
{
x ∈ R

∣∣∣µT̃(t) >0
}

is bounded.

In this paper, we deal with LR fuzzy numbers (LRFN) as in León et al. [13]. A fuzzy number
T̃ =

[
(t)L, (t)R, (β)L, (β)R

]
L,R

is a LRFN if its membership function has the following structure:

µT̃(t) =



1 i f (t)L
≤ t ≤ (t)R

L
(
(t)L
−t

(β)L

)
i f (t)L

− (β)L
≤ t ≤ (t)L

R
(

t−(t)R

(β)R

)
i f (t)R

≤ t ≤ (t)R + (β)R

0 otherwise

(7)

where L, R : [0, 1]→ [0, 1] are non-increasing, continuous shape functions with L(0) = R(0) = 1 and
L(1) = R(1) = 0. Furthermore,

[
(t)L, (t)R

]
consists of the real numbers with the highest chance of

realization, while (β)L and (β)R are the left and right spread, respectively.
Note that LRFN includes as special cases the commonly used trapezoidal fuzzy numbers

(TrFN) and triangular fuzzy numbers (TFN). Thus, TrFN use linear left and right shape functions
L(α) = R(α) = 1− α. TFN use linear shape functions and, in addition, the left and right α = 1 values
coincide, i.e., (t)L = (t)R.

Finally, the α-cuts of a LRFN T̃ are the intervals:(
T̃
)
α
=

[(
T̃
)L

α
,
(
T̃
)U

α

]
(
T̃
)L

α
= (t)L

− L∗(α) · (β)L(
T̃
)U

α
= (t)R + R∗(α) · (β)R

(8)

where the inverse shape functions are defined as L∗(α) = sup
{
h : L(h) ≥ α

}
and R∗(α) =

sup
{
h : R(h) ≥ α

}
. In the case of TrFN and TFN these inverse shape functions are simply L∗(α) =

R∗(α) = 1− α.

3. Proposed Fuzzy Ranking Network DEA Approaches

In this section, two different fuzzy ranking methods are presented. Both consider that the input,
output and intermediate products are LRFN:

X̃p
ij =

{(
xp

ij

)L
,
(
xp

ij

)R
,
(
β

p
ij

)L
,
(
β

p
ij

)R
}

Li,Ri

Ỹp
kj =

{(
yp

kj

)L
,
(
yp

kj

)R
,
(
β̂

p
kj

)L
,
(
β̂

p
kj

)R
}

L̂k,R̂k

Z̃p
rj =

{(
zp

rj

)L
,
(
zp

rj

)R
,
(

ˆ̂β
p
rj

)L
,
(

ˆ̂β
p
rj

)R
}

ˆ̂Lr, ˆ̂Rr

(9)
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According to Definition (8), the α-cuts of these LRFN X̃p
ij, Ỹp

kj and Z̃p
rj are the intervals:

(
X̃p

ij

)
α
=

[(
X̃p

ij

)L

α
,
(
X̃p

ij

)U

α

]
(
X̃p

ij

)L

α
=

(
xp

ij

)L
− L∗i (α) ·

(
β

p
ij

)L

(
X̃p

ij

)U

α
=

(
xp

ij

)R
+ R∗i (α) ·

(
β

p
ij

)R

(10)

(
Ỹp

kj

)
α
=

[(
Ỹp

kj

)L

α
,
(
Ỹp

kj

)U

α

]
(
Ỹp

kj

)L

α
=

(
yp

kj

)L
− L̂∗k(α) ·

(
β̂

p
kj

)L

(
Ỹp

kj

)U

α
=

(
yp

kj

)R
+ R̂∗k(α) ·

(
β̂

p
kj

)R

(11)

(
Z̃p

rj

)
α
=

[(
Z̃p

rj

)L

α
,
(
Z̃p

rj

)U

α

]
(
Z̃p

rj

)L

α
=

(
zp

rj

)L
−

ˆ̂L
∗

r(α) ·
(

ˆ̂β
p
rj

)L

(
Z̃p

rj

)U

α
=

(
zp

rj

)R
+ ˆ̂R

∗

r(α) ·
(

ˆ̂β
p
rj

)R

(12)

Note also that it has been assumed that for a given input, output or intermediate product the
left shape function is the same for all DMUs and processes and the same occurs with the right shape
function. This assumption is commonly made (e.g., León et al. [13] or Soleimani-damaneh et al. [16])
and it is not too restrictive since it only assumes that the data for a certain factor (input, output or
intermediate product) are described through LRFN of the same type. This assumption is important
because it means that the linear combination of these LRFN, using scalar multipliers, is also a LRFN
with the same left and right shape functions. Mathematically,

∑
p

∑
j
λ

p
j X̃

p
ij =

∑p ∑
j
λ

p
j

(
xp

ij

)L
,
∑
p

∑
j
λ

p
j

(
xp

ij

)R
,
∑
p

∑
j
λ

p
j

(
β

p
ij

)L
,
∑
p

∑
j
λ

p
j

(
β

p
ij

)R


Li,Ri∑
p

∑
j
λ

p
j Ỹ

p
kj =

∑p ∑
j
λ

p
j

(
yp

kj

)L
,
∑
p

∑
j
λ

p
j

(
yp

kj

)R
,
∑
p

∑
j
λ

p
j

(
β̂

p
kj

)L
,
∑
p

∑
j
λ

p
j

(
β̂

p
kj

)R


L̂k,R̂k∑
p

∑
j
λ

p
j Z̃

p
rj =

∑p ∑
j
λ

p
j

(
zp

rj

)L
,
∑
p

∑
j
λ

p
j

(
zp

rj

)R
,
∑
p

∑
j
λ

p
j

(
ˆ̂β
p
rj

)L
,
∑
p

∑
j
λ

p
j

(
ˆ̂β
p
rj

)R
 ˆ̂Lr, ˆ̂Rr

(13)

The α-cuts of these LRFN
∑
p

∑
j
λ

p
j X̃

p
ij,

∑
p

∑
j
λ

p
j Ỹ

p
kj and

∑
p

∑
j
λ

p
j Ỹ

p
kj are thus the intervals:

∑
p

∑
j
λ

p
j X̃

p
ij


α

=

∑
p

∑
j
λ

p
j

{(
xp

ij

)L
− L∗i (α)

(
β

p
ij

)L
}

,
∑
p

∑
j
λ

p
j

{(
xp

ij

)R
+ R∗i (α)

(
β

p
ij

)R
}∑

p

∑
j
λ

p
j Ỹ

p
kj


α

=

∑
p

∑
j
λ

p
j

{(
yp

kj

)L
− L̂∗k(α)

(
β̂

p
kj

)L
}

,
∑
p

∑
j
λ

p
j

{(
yp

kj

)R
+ R̂∗k(α)

(
β̂

p
kj

)R
}∑

p

∑
j
λ

p
j Z̃

p
rj


α

=

∑
p

∑
j
λ

p
j

{(
zp

rj

)L
−

ˆ̂L
∗

r(α)
(

ˆ̂β
p
rj

)L
}

,
∑
p

∑
j
λ

p
j

{(
zp

rj

)R
+ ˆ̂R

∗

r(α)
(

ˆ̂β
p
rj

)R
}

(14)

3.1. Fuzzy Ranking Method 1 (FRM1)

FRM1 uses the ranking method in Tanaka et al. [36]. This method was proposed in León et al. [13]
for conventional (i.e., single-process DEA). The starting point is the formulation of the problem using
the fuzzy data. The objective is to reduce all inputs as much as possible with respect to the observed
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values. This corresponds to Equations (15) and (16). Note that the right-hand side of (16) corresponds
to the observed input consumption of DMU J (summed for all the processes that consume that input)
while the left-hand side is the input consumption of the target operating point (computed as a linear
combination of the input consumption of all the DMUs). Similarly, in Constraints (17), the right-hand
side represents the observed outputs of DMU J and the left-hand side is the corresponding amounts
produced by the target operating computed using a convex linear combination of all the DMUs. Thus,
Constraints (17) impose that the observed outputs are not reduced. Finally, Constraints (18) impose
that the target operating point must satisfy the intermediate products constraints that guarantee that
the internal production of intermediate products is enough to satisfy its internal demand.

Min θ (15)

subject to∑
p∈PI(i)

∑
j

λ
p
j X̃

p
ij ≤ θ

∑
p∈PI(i)

X̃p
iJ ∀i (16)

∑
p∈PO(k)

∑
j

λ
p
j Ỹ

p
kj ≥

∑
p∈PO(k)

Ỹp
kJ ∀k (17)

∑
p∈Pout(r)

∑
j

λ
p
j Z̃

p
rj −

∑
p∈Pin(r)

∑
j

λ
p
j Z̃

p
rj ≥ 0 ∀r (18)

constraints (5) and (6)

The Constraints (16)–(18) compare two fuzzy quantities. The key idea in this method is how to
interpret the inequality, i.e., when to consider that one fuzzy quantity is larger than or equal to another.
Based on Tanaka et al. [36], León et al. [13] proposed the use of the following ranking criterion for two
fuzzy numbers M̃ and Ñ at possibility level α:

M̃ ≥α Ñ⇔ ∀h ∈ [α, 1]


(
M̃

)L

h
≥

(
Ñ

)L

h(
M̃

)R

h
≥

(
Ñ

)R

h

(19)

Following this criterion, for each possibility level α ∈ [0, 1] an input-oriented efficiency score EJ(α)

can be computed for each DMU J using the following model:

EJ(α) = Min θ (20)

subject to∑
p∈PI(i)

∑
j

λ
p
j ·

(
xp

ij

)L
≤ θ ·

∑
p∈PI(i)

(
xp

iJ

)L
∀i (21)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
xp

ij

)R
≤ θ ·

∑
p∈PI(i)

(
xp

iJ

)R
∀i (22)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
X̃p

ij

)L

α
≤ θ ·

∑
p∈PI(i)

(
X̃p

iJ

)L

α
∀i (23)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
X̃p

ij

)U

α
≤ θ ·

∑
p∈PI(i)

(
X̃p

iJ

)U

α
∀i (24)

∑
p∈PO(k)

∑
j

λ
p
j ·

(
yp

kj

)L
≥

∑
p∈PO(k)

(
yp

kJ

)L
∀k (25)



Mathematics 2020, 8, 2222 7 of 18

∑
p∈PO(k)

∑
j

λ
p
j ·

(
yp

kj

)R
≥

∑
p∈PO(k)

(
yp

kJ

)R
∀k (26)

∑
p∈PO(k)

∑
j

λ
p
j ·

(
Ỹp

kj

)L

α
≥

∑
p∈PO(k)

(
ỸkJ

)L

α
∀k (27)

∑
p∈PO(k)

∑
j

λ
p
j ·

(
Ỹp

kj

)U

α
≥

∑
p∈PO(k)

(
ỸkJ

)U

α
∀k (28)

∑
p∈Pout(r)

∑
j

λ
p
j ·

(
zp

rj

)L
−

∑
p∈Pin(r)

∑
j

λ
p
j ·

(
zp

rj

)L
≥ 0 ∀r (29)

∑
p∈Pout(r)

∑
j

λ
p
j ·

(
zp

rj

)R
−

∑
p∈Pin(r)

∑
j

λ
p
j ·

(
zp

rj

)R
≥ 0 ∀r (30)

∑
p∈Pout(r)

∑
j

λ
p
j ·

(
Z̃p

rj

)L

α
−

∑
p∈Pin(r)

∑
j

λ
p
j ·

(
Z̃p

rj

)L

α
≥ 0 ∀r (31)

∑
p∈Pout(r)

∑
j

λ
p
j ·

(
Z̃p

rj

)U

α
−

∑
p∈Pin(r)

∑
j

λ
p
j ·

(
Z̃p

rj

)U

α
≥ 0 ∀r (32)

constraints (5) and (6)

This fuzzy ranking approach has the drawback, as Soleimani-damaneh et al. [16] indicates for
conventional fuzzy DEA, of having many constraints, more so in the case of fuzzy network DEA (due
to the existence of intermediate products). However, the number of constraints can be reduced to
almost half (because of many constraints being redundant) in the case of symmetric TFN, in which
case the appropriate model to use is the following:

EJ(α) = Min θ (33)

subject toconstraints (23), (24), (27), (28), (31), (32), (5) and (6)

Same as in León et al. [13], the following holds for the efficiency scores computed by FRM1:

EJ(α1) ≥ EJ(α2) ∀α1 < α2

EJ(α2) = 1⇒ EJ(α1) = 1 ∀α1 < α2
(34)

Thus, the efficiency scores EJ(α) represent a monotonous non-increasing function of the possibility
level α. In order to rank the efficiency of the different DMUs the following area criterion is proposed.
A DMU J ranks above another DMU J’ in terms of efficiency if the area below EJ(α) is greater than that

the area below EJ′(α). The area below EJ(α) is Area
(
EJ

)
=

∫ 1
0 EJ(α)dα which in the common case that

EJ(α) is computed for several discrete possibility levels αq reduces to

Area
(
EJ

)
=

∑
αq EJ

(
αq

)∑
αq 1

.

Finally, let us mention that, same as in León et al. [13], the efficiency of DMU J can also be expressed
as a fuzzy set whose membership function is µEJ (θ) = sup

{
α : EJ(α) = θ

}
.
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3.2. Fuzzy Ranking Method 2 (FRM2)

FRM2 uses the ranking method in Yao and Wu [37]. This method was proposed in
Soleimani-damaneh et al. [16] for conventional (i.e., single-process DEA). As before, the key is
how to interpret the Inequalities (16)–(18), i.e., when to consider that one fuzzy quantity is larger than
or equal to another. Yao and Wu [37] defined the signed distance between two fuzzy numbers M̃ and
Ñ as

d
(
M̃, Ñ

)
=

1
2

∫ 1

0

[(
M̃

)L

α
+

(
M̃

)U

α
−

(
Ñ
)L

α
−

(
Ñ
)R

α

]
dα (35)

and proposed the following ranking criterion:

M̃ ≥ Ñ⇔ d
(
M̃, Ñ

)
≥ 0

M̃ ≤ Ñ⇔ d
(
M̃, Ñ

)
≤ 0

(36)

Moreover, Soleimani-damaneh et al. [16] showed the signed distance between two LRFN M̃ ={
(m)L, (m)R, (β)L, (β)R

}
L,R

and Ñ =
{
(n)L, (n)R, (γ)L, (γ)R

}
L,R

can be expressed as

d
(
M̃, Ñ

)
= (m)L + (m)R

− (n)L
− (n)R +

[
(γ)L

− (β)L
] ∫ 1

0
L∗(α)dα+

[
(β)R

− (γ)R
] ∫ 1

0
R∗(α)dα (37)

and that the resulting model is equivalent to the corresponding crisp DEA model using appropriately
defuzzified factor values.

Thus, from the LRFN of each input, output and intermediate product a defuzzified value is
computed as

xp
ij =

1
2 ·

{(
xp

ij

)L
+

(
xp

ij

)R
+

(
β

p
ij

)R ∫ 1
0 R∗i (α)dα−

(
β

p
ij

)L ∫ 1
0 L∗i (α)dα

}
yp

kj =
1
2 ·

{(
yp

kj

)L
+

(
yp

kj

)R
+

(
β̂

p
kj

)R ∫ 1
0 R∗k(α)dα−

(
β̂

p
kj

)L ∫ 1
0 L∗k(α)dα

}
zp

rj =
1
2 ·

{(
zp

rj

)L
+

(
zp

rj

)R
+

(
ˆ̂β
p
rj

)R ∫ 1
0 R∗r(α)dα−

(
β̂

p
rj

)L ∫ 1
0 L∗r(α)dα

} (38)

where L∗i (α), L∗k(α), L∗r(α) and R∗i (α), R∗k(α), R∗r(α) are all inverse shape functions. In the case of TrFN
and TFN L∗(α) = R∗(α) = 1− α which means that:∫ 1

0 L∗i (α)dα =
∫ 1

0 L∗k(α)dα =
∫ 1

0 L∗r(α)dα = 1
2 ∀i∀k∀r∫ 1

0 R∗i (α)dα =
∫ 1

0 R∗k(α)dα =
∫ 1

0 R∗r(α)dα = 1
2 ∀i∀k∀r

(39)

and therefore

xp
ij =

1
2 ·


(
xp

ij

)L
+

(
xp

ij

)R
+

(
β

p
ij

)R
−

(
β

p
ij

)L

2


yp

kj =
1
2 ·


(
yp

kj

)L
+

(
yp

kj

)R
+

(
β̂

p
kj

)R
−

(
β̂

p
kj

)L

2


zp

rj =
1
2 ·


(
zp

rj

)L
+

(
zp

rj

)R
+

(
ˆ̂β
p
rj

)R
−

(
ˆ̂β
p
rj

)L

2


(40)
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Moreover, in the case of symmetric TrFN and TFN, the above expressions reduce to

xp
ij =

(
xp

ij

)L
+

(
xp

ij

)R

2

yp
kj =

(
yp

kj

)L
+

(
yp

kj

)R

2

zp
rj =

(
zp

rj

)L
+

(
zp

rj

)R

2

(41)

In any case, once the defuzzified values of the input, output and intermediate products have been
computed, the following LP is solved:

EJ = Min θ (42)

subject to∑
p∈PI(i)

∑
j

λ
p
j x

p
ij ≤ θ ·

∑
p∈PI(i)

xp
iJ ∀i (43)

∑
p∈PO(k)

∑
j

λ
p
j yp

kj ≥
∑

p∈PO(k)

yp
kJ ∀k (44)

∑
p∈Pout(r)

∑
j

λ
p
j z

p
rj −

∑
p∈Pin(r)

∑
j

λ
p
j z

p
rj ≥ 0 ∀r (45)

constraints (5) and (6)

yielding, for each DMU J, a single efficiency score EJ.
Note that the, in the end, above model is just Models (1)–(6) applied to the defuzzified values

of the inputs, outputs and intermediate products. Its interpretation is similar, i.e., the model aims at
minimizing the amount of inputs consumed by a target feasible operating point that is computed as
linear convex combination of all the DMUs. The target operating point must maintain the output level
of DMU J and it is also required that the intermediate products produced must be greater than the
amount consumed. As mentioned above, the difference between this model and Models (1)–(6) is
that in the latter the observed data were crisp while in the above model the crisp input, output, and
intermediate product values used for all DMUs (including DMU J) are obtained from the observed
fuzzy data through a defuzzification process. As with the previous approach the corresponding
output-oriented model is formulated in Appendix A.

4. Illustration of Proposed Approaches

In order to illustrate the proposed approach two datasets from the literature will be used. The
first one corresponds to a simple two-stage system and was used in Kao and Liu [20]. This dataset
involves 24 DMUs (which represent Taiwanese non-life insurance companies) and considers two inputs
(Operating expenses and Insurance expenses), two intermediate products (Direct written premiums
and Reinsurance premiums) and two outputs (Underwriting profit and Investment profit). The upper
and lower efficiency limits computed by Kao and Liu [20], which correspond to the upper and lower
efficiency estimates for α = 0, respectively, are shown in Table 1. In addition, Table 1 shows the
estimates for α = 1. Because in this dataset we are dealing with TFN, the upper and lower efficiencies
for α = 1 coincide.

The efficiency estimates and the corresponding ranking index computed by the proposed FRM1
approach are also shown in Table 1. To compare with the results in Kao and Liu [20], constant returns
to scale (CRS) in all processes and input orientation are considered. Although for FRM1 only three
possibility levels are shown in Table 1, calculations were made for eleven levels, i.e., α ranges from 0 to
1 with 0.1 increments. Note that for FRM1 the estimated efficiency score for each possibility level is
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within the lower and upper limits computed by Kao and Liu [20]. Moreover, for the α = 1 value they
are very similar.

Table 1. Efficiency estimates of proposed approaches for dataset 1.

Kao and Liu [20] FRM1 FRM2

DMU EL
J (0) EU

J (0) EJ(1) EJ(0) EJ(0.5) EJ(1) Area(EJ) EJ

1 0.493 0.906 0.699 0.709 0.706 0.700 0.705 0.701
2 0.439 0.798 0.625 0.631 0.629 0.626 0.629 0.627
3 0.487 0.762 0.690 0.699 0.696 0.690 0.696 0.691
4 0.213 0.426 0.304 0.307 0.306 0.304 0.306 0.305
5 0.562 0.957 0.792 0.807 0.801 0.792 0.801 0.794
6 0.279 0.514 0.390 0.399 0.394 0.389 0.394 0.390
7 0.202 0.377 0.277 0.280 0.279 0.277 0.279 0.278
8 0.202 0.374 0.275 0.279 0.277 0.275 0.277 0.276
9 0.162 0.296 0.223 0.225 0.225 0.224 0.225 0.224

10 0.335 0.638 0.466 0.472 0.470 0.468 0.470 0.468
11 0.122 0.221 0.164 0.162 0.161 0.159 0.161 0.160
12 0.553 0.945 0.760 0.772 0.766 0.760 0.766 0.760
13 0.153 0.280 0.208 0.211 0.209 0.207 0.209 0.208
14 0.211 0.394 0.289 0.292 0.291 0.289 0.291 0.290
15 0.449 0.797 0.614 0.617 0.615 0.612 0.615 0.613
16 0.233 0.436 0.320 0.321 0.320 0.319 0.320 0.319
17 0.263 0.488 0.360 0.366 0.363 0.361 0.363 0.362
18 0.189 0.352 0.259 0.261 0.260 0.259 0.260 0.259
19 0.300 0.513 0.411 0.416 0.415 0.413 0.415 0.414
20 0.405 0.735 0.547 0.551 0.545 0.539 0.545 0.540
21 0.148 0.273 0.201 0.198 0.194 0.191 0.194 0.191
22 0.438 0.651 0.590 0.643 0.624 0.606 0.624 0.614
23 0.302 0.578 0.420 0.414 0.409 0.404 0.409 0.406
24 0.097 0.183 0.135 0.133 0.132 0.131 0.132 0.131

Note also that the efficiency score of FRM2 is also rather similar to the Kao and Liu [20] α = 1
efficiency score and the α = 1 FRM1 efficiency estimate. In this dataset the differences cannot be
large because the defuzzified values for the inputs, intermediate products and outputs are close to
the corresponding α = 1 values (i.e., the vertex) of the TFN of the inputs, outputs and intermediate
products. Note, finally, that none of the DMUs is found efficient. This is normally the case in network
DEA, as opposed to conventional DEA, since for a DMU to be efficient in network DEA all its processes
must be efficient, which seldom occurs.

Table 2 shows the ranking of the DMUs derived from the results of the different approaches. For
the proposed methods, the ranking is computed as indicated in Section 3. For ranking the results of
the Kao and Liu [20] approach the area measurement ranking index proposed in Chen and Klein [38]
has been used, as suggested by Cadenas et al. [39] for that approach. Note that the proposed methods
give the same ranking, which is very similar to that of Kao and Liu [20]. The Spearman rank order
correlation coefficient is 0.997 (p-level 0.01).

The second dataset used to illustrate the proposed approach is the one in Khalili-Damghani and
Tavana [40]. It is a much more complex network configuration, with 40 DMUs, each one consisting
of seven interconnected processes. In this case, TrFN are for the inputs, outputs and intermediate
products. To compare with the results in Khalili-Damghani and Tavana [40], constant returns to scale
(CRS) in all processes and input orientation are considered. Table 3 shows the lower and upper system
efficiency estimates computed by Khalili-Damghani and Tavana [40] as well as the efficiency score
computed by FRM2. The derived rankings are also shown.



Mathematics 2020, 8, 2222 11 of 18

Table 2. Ranking of Kao and Liu [20] and proposed methods for dataset 1.

DMU Kao and Liu [20] FRM1/FRM2 DMU Kao and Liu [20] FRM1/FRM2

1 4 3 13 21 21
2 6 5 14 16 16
3 3 4 15 7 7
4 15 15 16 14 14
5 1 1 17 13 13
6 12 12 18 19 19
7 17 17 19 11 10
8 18 18 20 8 8
9 20 20 21 22 22

10 9 9 22 5 6
11 23 23 23 10 11
12 2 2 24 24 24

Table 3. Results of Khalili-Damghani and Tavana [40] and Fuzzy Ranking Method 2 (FRM2) for
dataset 2.

Khalili-Damghani and Tavana [40] FRM2

DMU EL
J EU

J Rank EJ Rank

1 0.319 0.878 8 0.490 29
2 0.220 0.671 33 0.600 21
3 0.119 0.489 40 0.646 14
4 0.202 0.719 29 0.473 30
5 0.397 0.711 17 0.492 28
6 0.294 0.830 14 0.438 33
7 0.265 0.646 31 0.749 5
8 0.427 0.528 26 0.516 25
9 0.228 0.684 30 0.412 38
10 0.258 0.776 22 0.568 23
11 0.208 0.590 38 0.632 18
12 0.300 0.884 9 0.423 35
13 0.318 0.591 32 0.536 24
14 0.323 0.854 11 0.640 15
15 0.348 0.776 16 0.721 7
16 0.333 0.812 12 0.499 26
17 0.240 0.635 35 0.689 11
18 0.332 0.620 27 0.452 31
19 0.420 0.825 2 0.767 4
20 0.216 0.615 37 0.639 16
21 0.310 0.867 10 0.430 34
22 0.252 0.742 23 0.907 1
23 0.264 0.797 20 0.413 37
24 0.282 0.843 13 0.595 22
25 0.506 0.722 5 0.721 6
26 0.282 0.796 19 0.613 19
27 0.415 0.916 1 0.704 8
28 0.415 0.528 28 0.688 12
29 0.417 0.814 4 0.695 10
30 0.176 0.658 36 0.899 2
31 0.299 0.742 21 0.679 13
32 0.318 0.888 6 0.601 20
33 0.374 0.604 24 0.445 32
34 0.307 0.817 15 0.498 27
35 0.448 0.793 3 0.418 36
36 0.365 0.838 7 0.412 39
37 0.269 0.619 34 0.633 17
38 0.195 0.563 39 0.843 3
39 0.293 0.789 18 0.704 9
40 0.224 0.737 25 0.397 40
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Although most of the times the efficiency score computed by FRM2 lies within the lower and
upper efficiency estimates of Khalili-Damghani and Tavana [40] that is not always the case. For ten
DMUs, namely 3, 7, 11, 17, 20, 22, 28, 37, and 38, it is above the upper efficiency estimate and in one case,
namely DMU 35, it is below the lower efficiency estimate. Since both approaches are rather different,
their results need not be very similar. We believe though that, in general, the results of both methods
are relatively consistent. Their rankings, however, do not seem to be correlated (p-value 0.397). Note
that, for Khalili-Damghani and Tavana [40], the ranking has been derived using the midpoint of the
interval of efficiency estimates.

Figure 1 displays the range of efficiency estimates computed by FRM1. Thus, the highest value of
each interval corresponds to EJ(0), whereas the lowest value corresponds to EJ(1). For each DMU,
the red point corresponds to the FRM1 ranking index, i.e., Area

(
EJ

)
. As it can be seen in the figure,

the DMUs have been arranged in decreasing order of that index.
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As occurred with FRM2, the efficiency scores computed by FRM1 are generally, but not always,
within the lower and upper efficiency estimates of Khalili-Damghani and Tavana [40]. Comparing
the FRM2 efficiency scores with those of FRM1 for α = 1, it can be proven that the latter are always
slightly larger. As for their rankings, although the rankings of FRM1 and FRM2 are not identical, they
are rather similar, with a Spearman correlation coefficient of 0.976 (p-value 0.01).

For the sake of completeness, Tables 4 and 5 show the results of the extension of the Kao and
Liu [20] approach (see Lozano and Moreno [33]) applied to this dataset. Table 5 only shows DMUs
whose upper efficiency estimates are different from one. In addition, the α-cuts of those DMUs from α

= 0 to α = 0.7 have also been omitted for the same reason. Therefore, in this case, the width of the
α-cuts of the estimated efficiency is very large, with most DMUs having an upper efficiency score equal
to or slightly less than unity. This makes these estimations less useful.

Table 4. Lower efficiency estimates and ranking of Kao and Liu [20] for dataset 2.

DMU α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0 Rank

1 0.030 0.042 0.052 0.065 0.078 0.093 0.111 0.134 0.155 0.186 0.212 27
2 0.033 0.043 0.052 0.065 0.079 0.094 0.115 0.137 0.163 0.193 0.235 24
3 0.052 0.062 0.073 0.090 0.108 0.121 0.146 0.177 0.203 0.236 0.287 7
4 0.035 0.047 0.053 0.071 0.087 0.106 0.115 0.154 0.158 0.191 0.229 23
5 0.038 0.050 0.061 0.076 0.090 0.094 0.129 0.156 0.176 0.202 0.233 26
6 0.029 0.037 0.046 0.057 0.068 0.082 0.097 0.118 0.135 0.164 0.194 35
7 0.040 0.053 0.066 0.082 0.101 0.121 0.149 0.180 0.208 0.251 0.309 6
8 0.027 0.035 0.043 0.053 0.063 0.074 0.096 0.111 0.133 0.161 0.189 33
9 0.030 0.037 0.044 0.058 0.070 0.080 0.097 0.118 0.151 0.172 0.215 38
10 0.042 0.053 0.063 0.077 0.091 0.105 0.126 0.150 0.173 0.205 0.242 19
11 0.037 0.049 0.060 0.074 0.089 0.105 0.130 0.157 0.184 0.221 0.268 15
12 0.033 0.042 0.051 0.062 0.074 0.086 0.102 0.120 0.141 0.165 0.195 34
13 0.025 0.035 0.044 0.055 0.065 0.080 0.099 0.118 0.139 0.169 0.207 30
14 0.046 0.053 0.068 0.085 0.100 0.128 0.146 0.176 0.200 0.242 0.302 8
15 0.035 0.050 0.063 0.076 0.091 0.109 0.141 0.166 0.200 0.242 0.284 11
16 0.034 0.043 0.053 0.065 0.078 0.092 0.112 0.133 0.152 0.183 0.222 25
17 0.040 0.055 0.069 0.085 0.102 0.122 0.148 0.175 0.205 0.244 0.295 9
18 0.033 0.043 0.052 0.063 0.075 0.089 0.107 0.128 0.148 0.175 0.210 31
19 0.041 0.056 0.068 0.087 0.101 0.116 0.143 0.172 0.201 0.242 0.293 10
20 0.045 0.057 0.068 0.083 0.099 0.114 0.139 0.165 0.191 0.225 0.264 12
21 0.028 0.040 0.049 0.062 0.072 0.091 0.104 0.131 0.149 0.179 0.198 32
22 0.044 0.060 0.076 0.095 0.118 0.137 0.175 0.212 0.246 0.298 0.361 1
23 0.019 0.028 0.035 0.045 0.054 0.058 0.080 0.090 0.115 0.138 0.169 40
24 0.038 0.050 0.062 0.076 0.094 0.109 0.137 0.166 0.190 0.227 0.266 14
25 0.030 0.039 0.050 0.063 0.076 0.095 0.119 0.144 0.176 0.216 0.249 21
26 0.036 0.048 0.056 0.071 0.086 0.104 0.127 0.154 0.180 0.217 0.266 17
27 0.047 0.057 0.073 0.089 0.109 0.134 0.157 0.192 0.219 0.260 0.309 3
28 0.037 0.047 0.059 0.075 0.087 0.101 0.124 0.149 0.175 0.211 0.256 20
29 0.045 0.060 0.075 0.092 0.112 0.128 0.158 0.188 0.217 0.258 0.293 4
30 0.048 0.060 0.073 0.090 0.110 0.131 0.158 0.188 0.232 0.276 0.333 2
31 0.036 0.046 0.057 0.071 0.087 0.104 0.128 0.155 0.188 0.227 0.267 16
32 0.039 0.048 0.060 0.074 0.089 0.106 0.127 0.153 0.177 0.211 0.253 18
33 0.031 0.040 0.049 0.061 0.072 0.086 0.102 0.123 0.139 0.168 0.201 29
34 0.032 0.041 0.050 0.062 0.074 0.087 0.106 0.127 0.150 0.180 0.216 28
35 0.021 0.029 0.036 0.046 0.053 0.062 0.082 0.095 0.116 0.138 0.165 39
36 0.027 0.034 0.043 0.054 0.063 0.073 0.091 0.106 0.125 0.149 0.178 36
37 0.037 0.048 0.058 0.075 0.083 0.095 0.116 0.139 0.165 0.197 0.237 22
38 0.042 0.053 0.067 0.081 0.099 0.124 0.148 0.184 0.216 0.262 0.325 5
39 0.041 0.053 0.066 0.080 0.096 0.109 0.138 0.166 0.192 0.231 0.275 13
40 0.023 0.032 0.039 0.049 0.056 0.066 0.084 0.099 0.113 0.137 0.169 37

The increase in the uncertainty in the efficiency estimations computed by the extension of the Kao
and Liu [20] approach in this dataset with respect to the first may be due to two reasons. One is that
dataset 2 uses TrFN, which may increase the uncertainty in the data with respect to the TFN used in
dataset 1. The other reason is that the dataset 2 corresponds to a more complex network structure and
it may happen that the increase in the number of processes may to contribute to an increase in the
uncertainty of the estimations.

Finally, note that although the efficiency estimations of Kao and Liu [20] for this problem have a
large uncertainty, the ranking that it provides, using as before the ranking index of Chen and Klein [38],
is similar to those computed by the proposed methods. Thus, the Spearman correlation coefficients
are 0.895 and 0.916 with FRM1 and FRM2, respectively (p-value = 0.01 in both cases). No correlation
seems to exist, however, between the ranking of [20] and that of Khalili-Damghani and Tavana [40]
(p-value = 0.309).
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Table 5. Upper efficiency estimates of Kao and Liu [20] for dataset 2 (The value is 1.000 for all DMUs
and all α values not shown in the table).

DMU α = 0.8 α = 0.9 α = 1.0

1 1.000 1.000 0.932
5 1.000 0.936 0.848
6 1.000 1.000 0.897
9 0.921 0.813 0.723

12 1.000 0.980 0.871
18 1.000 1.000 0.902
21 1.000 1.000 0.917
23 0.937 0.857 0.778
33 1.000 1.000 0.975
34 1.000 0.999 0.919
35 0.955 0.883 0.811
36 1.000 1.000 0.933
40 1.000 0.916 0.819

5. Conclusions

In this paper, two fuzzy ranking network DEA methods have been proposed. FRM1 is an extension
of León et al. [13] and leads to an efficiency estimate, computed solving a linear program, for each
possibility level. FRM2 is an extension of the Soleimani-damaneh et al. [16] and computes a single
efficiency score for each DMU, thus requiring just solving a single linear program with the same
structure as the corresponding crisp network DEA model. Although a radial metric has been used,
the proposed approaches can be used with other additive and non-radial metrics.

Since network DEA takes into account the internal structure of the DMUs, it usually entails a
more detailed level of analysis and discloses further sources of inefficiency. Therefore, the proposed
approaches will lead to more valid rankings when dealing with fuzzy data. Both methods also support
any kind of configuration when modelling the DMUs, which broadens the range of applications and
provides an advantage over previous fuzzy ranking methodologies. Moreover, the complexity of the
proposed approaches is similar to that of a conventional (i.e., crisp) network DEA model, which means
that incorporating the uncertainty of the data should no longer be an issue in network DEA.

The proposed methods have been tested on two different datasets from the literature and compared
with existing approaches. The results show that FRM1 provides, for each possibility level, an efficiency
estimate that is within the lower and upper efficiency scores provided by Kao and Liu [20]. They also
provide very similar rankings of the DMUs. The FRM1 efficiency scores do not always lie within the
lower and upper efficiency estimates of Khalili-Damghani and Tavana [40] giving higher efficiency
scores than Khalili-Damghani and Tavana [40] for some DMUs.

As regards FRM2, it tends to give similar results to the α = 1 efficiency score of Kao and Liu [20]
if the data LRFN are not very asymmetrical. Its efficiency score and ranking are also very highly
correlated with those of FRM1. However, same as it occurs with FRM1, FRM2 efficiency scores do
not always lie within the lower and upper efficiency estimates computed by Khalili-Damghani and
Tavana [40].

Finally, during the computational experiments, it has been found that applying the extension of
Kao and Liu [20] to more complex network DEA structures seems to lead to a loss on discriminate
power and an increase in the uncertainty in the efficiency estimations. These drawbacks should have
to be confirmed with additional experiments involving more datasets.
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Appendix A

In this appendix the output-oriented formulation of the models that have been presented above
are shown. The only new variable is the usual radial output expansion factor γ. The idea in this
case is to compute a target feasible operating point (i.e., within the PPS) so that, without increasing
the amount of inputs, as required by constraints (A2), the increase in all outputs is maximized, as
indicated by (A3) and (A1). Same as in the input-oriented case, the amounts of intermediate products
produced internally (by the process that produce them) must be larger than the amount demanded
(by the processes that consume them). The values of all the variables of the target operating point are
computed as linear combinations of the observed data. The convexity constraint (5) implies that VRS
are assumed. Note, finally, that, in the output-oriented case, the efficiency score is the inverse of the
optimal value of the γ variable.

• Crisp network DEA model (output orientation)(
EJ

)−1
= Max γ (A1)

subject to∑
p∈PI(i)

∑
j

λ
p
j x

p
ij ≤

∑
p∈PI(i)

xp
iJ ∀i (A2)

∑
p∈PO(k)

∑
j

λ
p
j yp

kj ≥ γ ·
∑

p∈PO(k)

yp
kJ ∀k (A3)

λ
p
j ≥ 0 ∀ j∀p γ f ree (A4)

constraints (4) and (5)

• FRM1 (output orientation) (
EJ(α)

)−1
= Max γ (A5)

subject to∑
p∈PI(i)

∑
j

λ
p
j ·

(
xp

ij

)L
≤

∑
p∈PI(i)

(
xp

iJ

)L
∀i (A6)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
xp

ij

)R
≤

∑
p∈PI(i)

(
xp

iJ

)R
∀i (A7)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
X̃p

ij

)L

α
≤

∑
p∈PI(i)

(
X̃p

iJ

)L

α
∀i (A8)

∑
p∈PI(i)

∑
j

λ
p
j ·

(
X̃p

ij

)U

α
≤

∑
p∈PI(i)

(
X̃p

iJ

)U

α
∀i (A9)

∑
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∑
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p
j ·

(
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kj
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(
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kJ
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∀k (A10)

∑
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j ·
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≥ γ ·
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p∈PO(k)

(
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)R
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∑
p∈PO(k)

∑
j

λ
p
j ·

(
Ỹp

kj

)L

α
≥ γ ·

∑
p∈PO(k)

(
ỸkJ

)L

α
∀k (A12)

∑
p∈PO(k)

∑
j

λ
p
j ·

(
Ỹp

kj

)U

α
≥ γ ·

∑
p∈PO(k)

(
ỸkJ

)U

α
∀k (A13)

constraints (5), (29), (30), (31), (32) and (A4)

• FRM2 (output orientation) (
EJ

)−1
= Max γ (A14)

subject to∑
p∈PI(i)

∑
j

λ
p
j x

p
ij ≤

∑
p∈PI(i)

xp
iJ ∀i (A15)

∑
p∈PO(k)

∑
j

λ
p
j yp

kj ≥ γ ·
∑

p∈PO(k)

yp
kJ ∀k (A16)

constraints (5), (45) and (A4)
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