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Abstract
Ni55Fe19Ga26 ribbons obtained by melt-spinning technique exhibit a martensitic transformation from L21 cubic austenite 
phase to 14 M martensite phase above room temperature. We have taken advantage of the existence of thermal hysteresis of 
the martensitic phase transition (~ 11 K) to analyze the effect of isothermal treatments on the reverse martensitic transforma-
tion, which has been analyzed by means of interrupted heating using differential scanning calorimetry. The experimental 
findings clearly indicate a time-depending effect in the martensitic transformation at temperatures between the austenite 
start and finish temperatures. Moreover, it has been observed that two successive martensitic transformations take place after 
the isothermal arrest was performed.

Keywords  Thermal arrest · Martensitic transformation · Calorimetry · Ni–Fe–Ga Heusler alloys · Rapid solidification 
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Introduction

Martensitic transformation (MT) is a first-order phase transi-
tion which occurs in the solid state from a high temperature 
(high symmetry) austenite phase to a low temperature (low 
symmetry) martensite phase. This kind of transformation, 
which has attracted considerable attention since the discov-
ery of the shape memory effect and superelastic behavior in 
Ti–Ni alloys in the early 1960s [1], has been traditionally 
classified into two groups, athermal and isothermal trans-
formations [2]. In the case of athermal transformations, the 
amount of the product phase only depends on temperature 
but not time. This is due to a diffusionless character of MT 
as the composition of the product is the same as that of the 
original phase. In fact, this transformation is characterized 
by a collective motion of a relatively large number of atoms 

with a velocity approaching that of sound waves [2]. How-
ever, debates about the time-dependence of these transfor-
mations arise because some experimental results indicate 
the occurrence of isothermal character in the MTs in differ-
ent Heusler [3–6] and TiNi-based alloys [7–9]. Although 
commercial TiNi-based alloys are the most preferred in dif-
ferent applications due to their unique properties of shape 
memory effect and superelasticity, these alloys have high 
costs and hard fabrication process disadvantages [10, 11]. As 
an alternative to these compounds, Cu-based shape memory 
alloys have been widely studied due to their low cost and 
relatively simple processing [10, 12–14]. Besides the tra-
ditional, thermally induced, shape memory effect found in 
TiNi-based alloys, in 1996, Ullako [15] presented a faster 
and precise control of the shape memory effect in ferromag-
netic materials, leading to the magnetic shape memory effect 
branch. The most representative family system corresponds 
to Ni–Mn–Ga alloys [16].

A large number of applications are based on the solid-
state martensitic transformation of this kind of materials. 
Therefore, it is of importance to understand the martensi-
tic transformation and its stability against thermal treat-
ments around the transition temperature range in the alloy 
of interest. The present work aims to provide experimental 
insight on the subtle effects of isothermal treatments dur-
ing MT occurring in a Ni–Fe–Ga Heusler alloy, which has 
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been proposed as an alternative to Ni–Mn–Ga for magnetic 
refrigeration due to its improved ductility [16]. In this sense, 
the presence of gamma phase precipitates (beneficial for 
mechanical properties but detrimental for magnetic ones) 
is found in conventionally produced samples, but rapidly 
quenched melt-spun ribbons present a monophasic character 
from X-ray studies [17–19]. Therefore, controlled thermal 
treatments would lead to optimize the amount of gamma 
phase and, as a consequence, melt-spun Heusler alloys are 
widely produced to study these systems. However, the meta-
stable character of the obtained samples leads to both revers-
ible and irreversible changes during the thermal treatments 
even at temperatures in the range of MT, which deserves a 
deeper analysis to which the present work is devoted.

Previous studies on the thermally induced MT in 
Ni–Fe-Ga system have shown that the austenite exhibits L21 
structure and transforms to martensite monoclinic modu-
lated 14 M structure [19]. However, the martensitic phase 
can undergo an inter-martensitic transformation (IMT) under 
applied stress from 14 M phase to the non-modulated L10 
structure [19, 20]. Although several observations have been 
made for Ni–Fe–Ga melt-spun ribbons [17–19, 21–23], the 
effect of isothermal treatments on the martensitic transfor-
mation of these compounds seems to be neglected in the 
literature. In this study, we have undertaken an extensive 
analysis of the MT in a Ni55Fe19Ga26 Heusler alloy prepared 
by melt-spinning. To do that, we have explored the thermal 
arrest of the development of L21 structure during reverse MT 
and its effect on this transformation.

Experimental

The material used in the present study is a Ni55Fe19Ga26 
(at. %) ribbon prepared by melt-spinning technique. The 
preparation procedure and a detailed microstructural char-
acterization (including Mössbauer spectroscopy) and sta-
bility of melt-spun ribbon (which are the same that have 
been employed in this study) can be found in [19]. Magnetic 
characterization of the ribbons can be found in [21].

MT of the ribbons was characterized by means of differ-
ential scanning calorimetry analysis using a Perkin-Elmer 
DSC7 (Perkin-Elmer, Norwalk, CT, USA) under Ar flow 
equipped with a cooling system. Different heating rates 
( � from 5 to 80 K min−1) and different times (from 0 to 
120 min) were used for non-isothermal and isothermal treat-
ments, respectively. Measured temperature was corrected at 
different heating rates using the melting temperature of In 
(429.75 K) standard (errors below 0.5 K). DSC calibrations 
at the different heating rates were performed.

The samples were firstly subjected to a heating of 473 K 
in order to eliminate the dependence of the MT on the strain 
fields present in the ribbons. In fact, it has been shown that 

for melt-spun ribbons, MT shifts to lower temperatures as 
the samples have been previously heated up to higher tem-
peratures (in the range 473 K to 623 K, below the tempera-
ture of the formation of the gamma phase) [19]. However, 
when the maximum temperature reached is the same, the 
transformation keeps constant. This phenomenon has been 
associated to the lattice relaxation by the attenuation of the 
quenched-in strains stored in ribbons during the processing. 
In fact, it is known that the production of Heusler alloys by 
rapid quenching techniques leads to a strong dispersion of 
the parameters characterizing the martensitic transformation 
[23]. This dispersion is attenuated after heat treatments lead-
ing to a relaxation of the stored stresses [23, 24]. Therefore, 
to avoid the dispersion in the characteristic parameters of the 
martensitic transformation due to inhomogeneities and the 
transformational changes caused by cycling [23], the same 
pieces of ribbon has been used in all DSC measurements. 
The mass of the analyzed pieces of the ribbons was around 
the same of the In standard employed to the calibration of 
the equipment ( ∼ 20 mg). Due to the small mass of one 
piece with the dimension of the crucible of the equipment, 
several pieces of the ribbon (5–6) were introduced for each 
experiment in order to obtain a similar mass of the employed 
standards.

The isothermal behavior of the MT was analyzed through 
DSC experiments. The experiments were conducted at a 
heating/cooling rate of 20 K min−1. The heating rate was 
chosen in order to optimize the signal–noise ratio of the 
DSC measurements. Typical values of heating rates in the 
calorimeter used are between 5 and 80 K min−1. As heat-
ing rate increases, heat flux signal increases accordingly but 
temperature gradients should also increase. For these meas-
urements, the isothermal process, between austenite start 
and austenite finish temperatures, was interrupted at differ-
ent stages of the transformation temperature range followed 
by cooling to room temperature (RT). Afterward, subsequent 
heating process up to 473 K and cooled down to RT was 
performed. In order to clarify the followed process, Fig. 1 
shows, as an example, the temperature–time curve of a com-
plete DSC experiment including the isothermal experiment 
performed at 388 K interrupted after 30 min.

Results and discussion

The characteristic transition temperatures consisting of the 
austenite start, As , and finish temperatures, Af  , upon heat-
ing are determined by DSC ( � = 10 K min−1) to be 380 
and 400 K, respectively, while the forward transformation 
upon cooling are 385 and 355 K, respectively [23]. MT tem-
peratures can vary in a certain range of temperature which 
depends on the temperature heating rate [23, 25, 26]. There-
fore, calorimetric measurements with heating rates from 5 to 
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80 K min−1 were made in order to identify the dependence of 
the MT temperature interval [13]. Figure 2 shows the fitted 
linear relationship between the values of As and Af as well 
as the peak temperature, Apeak , of the transformation and 
heating rate. Both As and Af were estimated as the intersec-
tion between the corresponding maximum slopes with the 
baseline. A shift to higher temperatures as � increases can be 
observed for both Apeak and Af , indicating the thermally acti-
vated character of the MT. However, it can be observed that 
� has a minor influence on As . Therefore, the transforma-
tion temperature interval ( ΔT=Af-As ) increases with � and 
shifts to higher temperatures. From the intersection of the 
fittings ( � → 0 K min−1), Af and As reaches 398.0 ± 0.5 and 
386.4 ± 0.5 K, respectively, and ΔT=11.6 K (its minimum 

value). The obtained results are in agreement with the find-
ings of Wang et al., indicating that the heating rates results 
in larger variation of Af than As in TiNiCu shape memory 
alloys [27]. Similar results can be also found in Ni–Fe–Ga 
Heusler alloys [28]. Due to the specific shape of the ribbons, 
it was necessary to introduce several pieces in each experi-
ment, leading to a worst thermal contact between the cruci-
ble and the sample. This could be, partially, the responsible 
of the widening of the range of the reverse transformation 
observed in Fig. 2.

The apparent activation energy, Ea , in the MT of Heusler 
alloys, is generally obtained by Kissinger method [25, 29]. 
However, when the dependence of activation energy on the 
heating rate is analyzed, it is possible to predict a tempera-
ture at which the MT would be athermal ( Ea ≈ 0). In the case 
of the studied sample, this temperature has been previously 
calculated, reaching 428 ± 8 K [23]. Therefore, an isother-
mal character of the MT would be expected at temperatures 
below 428 K.

Figure 3 shows the corresponding plots for Kissinger [30, 
31] and Augis-Bennett [32] models to estimate the effective 
activation energy. Despite the resulting values are roughly 
in agreement (500 ± 80 and 350 ± 70 kJ mol−1 for Kiss-
inger and Augis-Bennet methods, respectively), it is worth 
mentioning that both agree describing the deviation from 
linearity as heating rate increases. This trend can be inter-
preted as a complex character of the transition, which could 
include athermal (null activation energy) and isothermal 
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Fig. 4   Interrupted differential 
scanning calorimetry measure-
ments of the transformation 
behavior at 20 K min−1 at the 
indicated temperatures and 
times. Full subsequent heating/
cooling curves from stage 3 are 
shown only for 0 min annealing 
for convenience. First stage cor-
responds to the first treatment 
performed to relax the sample 
(see Fig. 1)
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phenomena. As heating rate increases, higher tempera-
tures are reached, and isothermal contributions are speeded 
up, whereas athermal contributions are completed at their 
respective temperatures. This different behavior may explain 
why Kissinger and Augis-Bennett plots do not lead to a good 
linearity and indicates that the effective activation energy 
must be taken with care in this process.

In order to determine the nature of the MT, in situ DSC 
interrupted experiments were conducted at temperatures 
between As and Af . Relaxed sample was heated up to the 
selected temperature (385, 388, 390 and 393 K) with a rate 
of 20 K min−1 and then holding at this temperature for differ-
ent dwelling times. DSC results of Fig. 4 show that a certain 
volume fraction of austenite phase has been formed during 
the dwelling time (evidenced from the enhancement of the 
exothermic peaks upon cooling). Insets of Fig. 4 show the 
corresponding isothermal DSC signal. The weakness of the 
signal prevents further analysis of them.

The transformed fraction, X , developed during dwelling 
could be approximated to relative enthalpy to the total one 
of the processes as X = ΔH(T)∕ΔHtotal , where ΔH(T) is the 
enthalpy developed up to temperature T  after the dwelling 
time and ΔH

total
 in the total enthalpy of the martensitic pro-

cess without thermal arrest. After all the isothermal experi-
ments were performed, the sample was heated up to 973 K to 
decrease the martensitic transformation temperature below 
room temperature. All the features found in the original 
curves vanish in the subsequent cycle, which was used as the 
corresponding baseline. The dependence of the transformed 
fraction with the dwelling time at different temperatures is 
shown in Fig. 5. The baseline could not be determined for 
the case of the isothermal treatments at 385 K, as the mar-
tensitic transformation process is incomplete in the studied 
temperature range. For that reason, results corresponding 
to this temperature has not been included. Although the 

obtained values can be only considered as a rough esti-
mation of the transformed fraction, a clear time effect is 
observed; an increase in the transformed fraction with the 
increase in dwelling time is achieved. Similar results have 
been previously reported for the martensitic transformation 
of Ni–Mn–In Heusler alloys at lower heating/cooling rates 
( �=10 K min−1) [26]. In this sense, the effect of the heat-
ing rate on the increase in the transformed fraction can be 
neglected. In any case, it is not possible to achieve the com-
plete martensitic transformation with the performed thermal 
treatments.

The occurrence of the apparent time effect does not 
necessarily confirm the isothermal nature of the MT. In 
fact, there exist different factors that may contribute to the 
observed time-dependence of a particular transformation. 
Most of them include relaxation processes that occur dur-
ing dwelling due to the interaction between the crystal lat-
tice defects and moving phase interfaces [8, 9, 33] and the 
development of strain nanodomains [34]. In fact, isothermal 
MT was observed in non-stoichiometric Ti–Ni alloys but 
not found in the equiatomic TiNi alloy [34]. This phenom-
enon was associated to the formation of strain nanodomains 
and the existence of substitutional atoms. In the Ni-rich 
Ni–Fe–Ga ribbons studied here, the accumulation of the 
elastic energy due to a large concentration of substitutional 
atoms and the typical disorder of these compounds prepared 
by melt-spinning [35] could be the reason for a partial devel-
opment of the reverse MT at constant temperature. In this 
sense, it has been shown that the substitution of Fe by Mn 
in Ni55Fe19Ga26 alloy leads to change in its microstructure 
and phase structure behaviors [36].

The effect of interrupting the heating during the reverse 
MT on the complete transformation have been investigated 
on DSC completing the MT after the interrupted scans. Fig-
ure 6 shows DSC measurements of the MT of the studied 
alloy after the interrupted scans at different temperatures and 
times. Again, remarkable effects on the MT can be observed. 
In this case, DSC curves show two overlapped endothermic 
peaks on heating, whose deconvolution can be obtained with 
the increase in the dwelling time for isothermal treatments 
performed at temperatures lower than 393 K. Moreover, it 
can be observed that the fraction ascribed to each transfor-
mation depends on the temperature at which the isother-
mal treatment was performed. From the viewpoint of the 
thermodynamics, the martensitic transformation required an 
overheating to AS or an undercooling to MS from the equi-
librium temperature, To , in order to initiate the transforma-
tion between austenite and martensite. To can be evaluated 
approximately as ( MS+Af)/2 [37], resulting 392.5 K for the 
studied alloy at � = 20 K min−1. In this sense, it has been 
proven that isothermal reverse martensitic transformations 
are possible between MS and To [38]. Our results would sug-
gest that isothermal reverse martensitic transformations are 
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Fig. 6   Transformation behavior 
of the Ni55Fe19Ga29 alloy meas-
ured after interrupted heating at 
the indicated temperatures and 
times
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only possible between AS and To . On the one hand, the effect 
of increase the dwelling time at this temperature is minimum 
(see Fig. 4). On the other hand, the deconvolution observed 
in the other cases, is not observed when the isothermal treat-
ments are performed at this temperature.

The obtained results are similar to those reported in 
works that study the effect of interruption of martensitic 
transformation, which confirmed that partial transformation 
cycles can affect transformation behavior in shape memory 
alloys significantly in the subsequent complete transforma-
tion cycle [39–41]. This phenomenon has been called tem-
perature memory effect (TME) [39], thermal arrest memory 
effect [40] or step-wise martensite to austenite reversible 
transformation [41]. In these studies, it has been shown that 
if the reverse transformation of a shape memory alloy is 
arrested at a temperature between AS and Af , a kinetic stop, 
closely related to the previous arrested temperature, appears 
in the next complete transformation, in agreement with the 
obtained results. Although the TME was firstly observed in 
Ti–Ni alloys [41], it has been also reported in Ni–Mn–Ga 
Heusler alloys [42]. This phenomenon has been explained 
as follows: if the MT is interrupted at a certain temperature, 
the martensite phase partly transforms to austenite phase 
but some martensite phase could remain, which we would 
called M1. Cooling the sample down to temperatures below 
Mf , new martensite phase is formed, M2, which could have 
different preferential orientation structure. Therefore, there 
would exist domains of both martensite phase variants. If the 
alloy, containing the two variants, is heated again, it would 
transform to austenite phase. However, both variants would 
transform at different temperatures due to M1 overcomes 
more work produced by the domain walls [42]. This effect is 
observed in Fig. 6, in which the DSC scans in the austenite 
formation range clearly depends on the dwelling time. In 
fact, the deconvolution of the MT leads to the broadening of 
the phase transformation temperature span. The increase in 
the domain walls between the different martensite variants 
with the increase in the dwelling time could be the respon-
sible of the observed broadening.

The occurrence of the multi-stage transformation of the 
reverse MT could be also attributed to the development of 
inter-martensitic transitions. However, in situ X-ray diffrac-
tion (XRD) experiments as a function of temperature did not 
show evidences for such IMT in these alloys, in the case of 
as-spun ribbons [13]. Nevertheless, martensitic phases can 
undergo inter-martensitic transitions under applied compres-
sive or tensile stress [19, 20]. In this sense, IMT between 
the modulated and the non-modulated martensite phases, 
caused by changes in composition, temperature and external 
stress, has been extensively investigated in Ni–Mn–Ga alloys 
[43–47]. Although in these alloys the IMT generally takes 
place at much lower temperatures than the MT, the IMT 
can be tuned to be close to the MT, and hence forming two 

successive magneto-structural transformations, as it has been 
found in Ni55.5Mn17.8Ga26.7 alloy [48]. In these systems, the 
coexistence of two successive magneto-structural transfor-
mations enhances the magnetocaloric properties compared 
with those observed in other Ni-Mn based alloys under simi-
lar conditions and without IMT [49, 50]. The phenomenon 
observed in our DSC measurements in the Ni–Fe–Ga alloy 
is different from the results described in previous investi-
gations, where the IMT occurs both cooling and heating 
processes [47, 48]. However, the occurrence of the two suc-
cessive transformations only in heating regimen has been 
previously reported in Ni45Ti51.8Fe3.2 shape memory alloy, 
which was attributed to the creation of local stress fields due 
to the formation of precipitates [51]. In the present case, a 
higher deconvolution of the MT is obtained with the increase 
in the dwelling time, but only at temperatures below 390 K. 
It is worth mentioning that the analysis of the dependence 
of the activation energy on temperature and the heating rate 
predicts a temperature at which the MT would be athermal, 
428 ± 8 K [23]. In any case, independently of the degree of 
deconvolution of the MT process, the total enthalpy devel-
oped during the complete reverse martensitic transformation 
is 6.5 ± 1.0 J g−1.

Conclusions

Isothermal arrests have been conducted within the tempera-
ture window of the reverse martensitic transformation in a 
melt-spun Ni55Fe19Ga26 Heusler alloy. Differential scan-
ning calorimetry results allow detecting a time effect on the 
martensitic transformation and provides a way to decouple 
two successive magneto-structural processes in the reverse 
transformation. Therefore, the isothermal experiments are 
not only an interesting way to determine the nature of the 
martensitic transformation but also broadening the phase 
transformation temperature span of the martensite to austen-
ite phase transformation. These experimental findings can 
help to develop more efficiently caloric materials with such 
a kind of Heusler alloy system.

In this work we could not overcome the problems con-
cerning in situ X-ray diffraction analysis. The time required 
for data acquisition, in the order of the dwelling times per-
formed here for isothermal treatments, prevent us from a 
comparative analysis between XRD and DSC data. Further 
studies on much faster microstructural techniques (e.g., syn-
chrotron based ones) could clarify the experimental findings 
reported in this study. In this study we have limited to ther-
mal treatment effects. However, the magnetically/mechani-
cally induced character of the MT would make interesting 
future studies on the effect of other external factors (pressure 
or magnetic field application).
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