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A B S T R A C T   

This paper uses continuous time computer simulation tools to analyze the maintenance scheduling problem of a 
fleet of assets that is subjected to a CBM (Condition-Based Maintenance) program for critical components under a 
maintenance 4.0 environment. Detection of component anomalies, their diagnosis and prognosis are considered 
as built-in capabilities of the organization. Once the remaining useful life (RUL) of a component at risk is known, 
the organization must react and determine when the component’s on-condition maintenance can be released. 
Maintenance on-condition activities are released controlling a variable named accumulated excess of anomalies 
over the CBM capacity constraint. When the existing CBM capacity is not enough to service all the components 
with their lowest possible RUL, components could be replaced with a higher RUL, as few times as possible, to 
ensure the largest component́s lifecycle. The paper explores the implications of different CBM capacity levels 
modelling a cost function. Cost function factors considered are cost of lost RUL, cost of CBM capacity, cost of 
overdue CBM and cost of asset unavailability due to overdue CBM. Empirically, the paper shows how capacity 
can be optimized to minimize this cost function. Once all different possibilities to schedule CBM activities are 
modeled, together with the cost of the selected CBM strategy, the paper compare results with those obtained for a 
base case where the organization could detect anomalies in components but not schedule CBM activities ac
cording to their RUL limitations and the maintenance organization capacity constraints. The paper demonstrates 
the different benefits of this opportunistic CBM task scheduling, according to assets stops for their predetermined 
PM activities. The tool that is developed has been tested in the railway sector, for a fleet of trains. Interesting 
results are obtained for different strategies, and they are discussed to understand possible implications of changes 
in the different factors and parameters of the problem.   

1. Introduction and research background 

As defined by (Zhao et al., 2022), a fleet is considered a set of mul
tiple homogeneous assets that fulfil the same function together for a 
larger service requirement and have the same intervention options. 
Therefore, the inspection and maintenance actions performed on them 
are considered the same for the assets in the fleet (Petchrompo and 
Parlikad, 2019). Furthermore, the fleet fulfills a certain demand of 
operation, balancing the workload between the assets of the fleet. This 
workload balance is critical in maintenance and service scheduling 
(Petchrompo et al., 2020; Petchrompo and Parlikad, 2019) and could be 
done by managing the health of multiple assets to balance based on 
condition and client demand. Finally, even assets are considered iden
tical, if there are identical assets but with different ages and 

characteristics associated with them, the asset prioritizing decision 
based on the criticality can be added to this list (Muller et al., 2008). 

The replacement of many predetermined maintenance tasks with 
CBM tasks represents a significant change in the scheduling on main
tenance interventions. Predetermined maintenance is preventive main
tenance that is performed according to set time intervals or with a 
defined number of operating units, but without prior analysis of the 
condition of the item. CBM, however, is preventive maintenance that 
includes a combination of physical condition assessment, analysis, and 
possible subsequent maintenance actions. Condition assessment can be 
performed by operator observation and/or inspection, and/or testing, 
and/or condition monitoring of system parameters, etc., performed ac
cording to a schedule, on request or on a continuous basis. (EN 
13306:2018 Maintenance Terminology). Asset’s condition inspections 
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are growing, frequently becoming on-line inspections, and the mainte
nance service is accomplished based on the status of the asset. The fact is 
that many maintenance interventions will be planned and scheduled 
dynamically. Thus, understanding how assets conditions deteriorate, in 
an accurate manner, will help importantly to define (dynamically) the 
best moment for intervention (Liu et al., 2017). 

Scheduling maintenance of a single asset based on its health is an 
assessed problem with many solutions, but when it scales to the fleet or 
multi-unit level, different aspects of the problem as operational (fleet 
scheduling) also condition the management of the assets. As the problem 
is scaled from the single asset, the precision in representing the asset’s 
condition, identifying what failure mode causes degradation, and how it 
evolves, loses level of detail. On the other hand, most models only 
consider fixed maintenance schedules when assigning assets to opera
tion. There is a need to scale the level of detail considered for dynamic 
maintenance scheduling as a critical constraint to schedule the alloca
tion of resources (Sanhueza et al., 2020; Zaccaria et al., 2018; Zhong 
et al., 2019). 

Another interesting point is presented by (Sanhueza et al., 2020) 
proposing a PHM (Prognostics and Health Management) framework for 
fleets of geographically distributed assets. The paper is focused on 
maintenance management, especially on the restriction that mainte
nance resources availability constitutes for managing the fleet more 
effectively. The other insight of the paper, is the fact that it evaluates the 
potential failure impact on fleet production/service loss, linking condi
tion prognosis with operation/service. On a similar line (Van Horenbeek 
et al., 2013) proposes a solution to keep decision makers updated with a 
relevant synthesis of information from both global health of the fleet and 
the status of maintenance efforts. This comes as a combination from 
monitoring and modelling of the fleet, as a knowledge scheme for PHM 
management and CBM in the PHM framework. The combination of both 
aspects is essential to solve scheduling of maintenance as a constraint for 
fleet operation scheduling. Although it is conceptualized, it cannot be 
found to be an end-to-end solution, from data from the field and main
tenance, for higher levels of fleet management. The complexity of this 
problem is also explored by (El Moudani and Mora-Camino, 2000). They 
add the importance of not only maintenance and assignation, but also 
the dependence on crew, operation demand, number of assets in the 
fleet, and the capabilities to carry out maintenance on an aircraft fleet. 

1.1. Dynamic fleet RUL base scheduling 

From the aforementioned papers it can be observed that existing 
approaches either focus on condition management of monitored assets 
or problems associated with capacity and scheduling restrictions, but 
not on the merge of both. The most advanced approaches to manage 
fleet maintenance introduce anomaly detection, and life prognosis, for 
the definition of maintenance activities and scheduling of operation 
(Atamuradov et al., 2017). A similar idea can be concluded from 
(Martínez-Galán Fernández et al., 2022) emphasizing on the difficulty of 
scheduling based on the RUL of different components of each asset 
combined with other operational factors. The authors highlight the 
importance of the RUL evolution about risk and precision, and the 
importance of defining a periodicity of dynamic solution recalculation 
(something not standardized). (Bougacha et al., 2020; Dersin, 2018; 
Mira et al., 2020) highlight the importance of dynamic recalculation of 
maintenance (and the planning horizon) focusing on the fact that fleets 
are managed with a RUL index for each asset defined by the most critical 
component, but assets could be broken down in subsystems with their 
components and RULs with different criticalities. (Herr et al., 2020) 
propose an optimization model to manage the fleet considering the 
remaining useful life of components monitored, and the operational 
requirements, that even providing an insightful application, does not 
consider predetermined maintenance capacity restrictions, studying 
predictive RULs isolated. On the same line, as CBM is not merged with 
predetermined preventive, there is not a clear definition of what 

resources are for preventive, and what capacity is left for performing 
condition-based interventions on practice. A similar approach using the 
RUL prognosis is presented by (de Pater and Mitici, 2021; Lee and Mitici, 
2021; Lee et al., 2022) adding the complexity of grouping maintenance 
in an opportunistic way to optimize usage and considering limitations of 
spare parts. (de Pater et al., 2022) present an integration of RUL prog
nostics into maintenance planning a dynamic predictive maintenance 
scheduling framework considering imperfect RUL prognostics. An 
integer linear program is used to schedule aircraft fleets for mainte
nance, with the same focus as the aforementioned works. (Hernández 
et al., 2022) propose an agent-based model to prioritize usage and 
maintenance, considering the dynamics of traffic and asset deterioration 
due to the operational usage, with the same lack of capacity constraints 
for maintenance. (Petchrompo et al., 2020) propose managing fleets by 
dynamically scheduling maintenance actions over the planning horizon 
with a similar optimization algorithm, and presenting significant results, 
however the genetic algorithm application simplifies maintenance re
strictions. These papers resume the most advanced solutions for man
aging fleets of assets based on their condition, and a gap can be found 
when integrating this new paradigm with the existing predetermined 
preventive plans, and the resources available to do so. 

1.2. Risk and cost considerations 

Some approaches present a risk and cost analysis, in order to find a 
trade-off between them, with comprehensive evaluations of equipment 
performance, operation, and maintenance (Alves da Silva et al., 2019; 
Ge et al., 2012; Zhao et al., 2022). These studies are not applied for fleets 
with predictive maintenance policies integrated but used to provide a 
way to manage risk of multiple assets and the associated possible costs. It 
must be said that there is not a uniform way of formulating costs for 
maintenance, and even the risk evaluation is detailed, the cost is het
erogeneously presented. (Rane, Potdar, and Rane, 2021) link the same 
argument with the importance of defining the levels of risk, or areas of 
acceptable risk, for evaluating the prognosis or other calculations to 
define security rules. 

Defining the uncertainty of the prognosis, the levels of risk associ
ated, and policies of acceptable areas depending on possible cost savings 
is essential to integrate data-driven models within classic optimization 
approaches. On this line (Jain et al., 2021) present a cost model 
considering both the preventive, predictive and possible corrective costs 
of maintenance in a more detailed way, considering the effect of un
certainty. The same view is supported by (Bougacha et al., 2020; 
Hernández et al., 2022). What can be concluded, is the fact that the 
evaluation in terms of cost is dependent on the type of maintenance, the 
system, the components, and specially the type of failure mode within 
the types of maintenance. This will be specific for each case and com
pany, so focusing on the analysis of risk will provide a universal un
derstanding and decision-making support, that can be then translated to 
costs depending on the company, resources, type of maintenance, and 
type of assets and subcomponents representing the case. 

1.3. State of the art challenges and findings 

Previous work exposed covers the application of CBM programs to 
fleet management domain, data-driven prognosis of failure, and the 
quantification of possible maintenance decisions in terms of cost for the 
organization. From the state-of-the-art analysis some conclusions arise: 

• CBM models that use RULs to manage fleets do not integrate pre
determined maintenance with the new predictive approach, hence, 
the limitations of capacity and resources that companies have at 
maintenance workshops are not considered.  

• Capacity and resources are considered for scheduling of operation or 
preventive maintenance but not the CBM capability. Apart from the 
forecasting capability, for most of the models that manage fleet based 
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on condition, only spare parts availability is considered in particular 
cases.  

• The approaches that consider a CBM cost evaluation in detail are not 
scaled to the fleet level, and most modern dynamic fleet maintenance 
models do not evaluate the costs of maintenance in detail. In the 
reviewed papers maintenance costs are generalized using constants 
related to global execution and not deeply defined by the capacity 
and depot resources involved.  

• The techniques applied to develop fleet maintenance approaches 
cover from genetic algorithms, system dynamics, or discrete event 
simulation, to Monte Carlo simulation. These approaches do not 
provide an optimal solution, but a recommendation of the areas and 
scenarios that present the widest benefit to the organization, as the 
dimensions of the problems under study make solver-based optimi
zation problems not manageable operationally, due to computation 
times. This makes simulation-based solutions one of the most rele
vant areas, also because they allow the decision maker to experiment 
with multiple decision scenarios and their impact. 

According to previous conclusions, in this work a continuous time 
system dynamics simulation modelling work is done to: 

• Integrate the scheduling of CBM activities together with the pre
determined maintenance activities using RUL.  

• Introduce the consideration of capacity for CBM activities, capacity 
to be added to the one designed for preventive predetermined 
activities.  

• Consider different levels of risk in components according to their 
RUL, circumstance that is used to allocate CBM capacity in a 
convenient way, according to the risk of the component.  

• Identify the different costs of operations that must be considered to 
optimize CBM capacity and the corresponding preventive mainte
nance work programs.  

• Estimate, in a practical way, the possibilities of such a model to 
evaluate the opportunity cost of using this type of techniques in in
dustry, assuming the model can be applied to components of assets in 
any industrial sector. 

• Apply findings to a case study in the railway sector, for which in
formation is available to the research team. 

In the sequel, the paper is organized as follows: Section 2 presents the 
problem describing the current scenario and boundaries. Section 3 in
troduces the reader to the methodology and software used in the study. 
In Section 4 a model for CBM activities scheduling based on RUL, and 
existing CBM capacity, is formulated. This model results, will be 
compared to results of a Base Case model that is presented in Section 5, 
assuming capacity for anomalies detection but no RUL considerations 
when scheduling CBM. Section 6 presents inputs considered in the case 
study and results obtained for different capacity & cost factors. Then 
these results are compared against the base case model to estimate op
portunity costs. This comparison is done using Montecarlo analysis. 
Conclusions of the case study are presented at the end of the Section, and 
Section 7 contains the conclusions of the paper. 

2. Introduction to the problem 

This case study is about the dynamic scheduling of maintenance 
activities for a fleet of assets’ critical components, within a maintenance 
4.0 scenario. 

Maintenance 4.0 scenario means that, for each component consid
ered, a set of algorithms will be in place, providing anomalies detection, 
diagnosis, and prognosis (Remaining Useful Life: RUL), for the existing 
components’ failure modes. 

In this paper, a statistical approach is followed to estimate the RUL 
(in this case of any bearing of a train), once a positive (or anomaly 
detected for a failure mode) appears in a train axle bearing. A positive 

(according to the Procedure for the Design and Implementation of CBM 
Plans in the company) is defined as the occurrence of an absolute error 
(AE) of prediction greater than 10ºC between the actual bearing tem
perature and the one predicted by the artificial neural network (ANN) 
designed for detection, when the train is running at more than 90 km/h 
(i.e., AE ≥ 10ºC, TS ≥ 90 km/h) and for more than one minute. RUL is 
defined as a random variable that, estimated from the appearance of the 
first positive, offers a good prediction of the life of the element until its 
replacement due to a classified failure model (for instance: over tem
perature or noise in the bearing). This replacement is nowadays per
formed after the activation of the safety alert in the train monitoring and 
control system (TCMS) and/or because of a certain inspection (probably 
during a weekly train inspection in the workshop). The safety alert is 
triggered when the temperature difference between the four bearings of 
the same axle is higher than 25 ◦C — (Tmin-Tmax) ≥ 25 ◦C — and this 
condition is maintained for more than 1 min. Company’s RUL analyses 
foresee the recommended time of bearing replacement, after its first 
positive, even without prior inspection, according to statistical esti
mates. The calculation is applicable to any bearing regardless of its 
position in the train. The data used comes from the record of bearing 
replacements that could be traced, and linked to the recorded equipment 
monitoring data, and the predictions of bearing failures made with 
artificial intelligence algorithm. 

Workshop capacity is assumed to be constrained, and the model will 
find out different possibilities to balance capacity utilization, through 
opportunistic maintenance based on current number of components at 
risk. 

This paper shows only a part of this problem’s complexity compared 
to the real world, offering tools and methodologies that can be used to 
identify opportunities of improvement for its resolution. 

In this case study the time horizon for the analysis will be set to P 
time periods, where a period t, is defined as the time between two 
consecutives asset predetermined preventive maintenance activities 
(PM), established according to existing certified maintenance programs 
meeting current asset’s requirements for O&M and safety. Many times, 
these predetermined activities may also be related to legal requirements 
and therefore are somehow fixed beforehand. 

When the asset arrives at the workshop for a predetermined PM, 
condition-based maintenance activities can also be carried out on 
selected components. These activities will consume specific workshop 
resources dedicated to these CBM programs and capacity constraints 
may sometimes appear. 

The problem is to determine what are the components, following a 
CBM program, that must be maintained in each period t and the most 
important thing: what is the capacity level of the workshop minimizing 
the cost associated to a component CBM policy. 

To accommodate the release of CBM activities to the existing CBM 
capacity and to the RUL of the component, a very innovative part of the 
model is the introduction of a variable named accumulated excess of 
anomalies over the CBM capacity constraint (later named AEx(j, k)t)). 
When the existing CBM capacity is not enough to service all the com
ponents with their lowest possible RUL, this variable helps to determine 
the components to be replaced with a higher RUL, as few times as 
possible, to ensure the largest component́s lifecycle. 

To determine CBM capacity optimizing cost, a cost function is 
defined considering the following cost factors: Cost of lost RUL, cost of 
CBM capacity, cost of CMB overdue and cost of asset unavailability due 
to CBM overdue. 

A constant CBM capacity is established in the workshop for a certain 
system and planning horizon. Anomalies in systemś component will 
appear, and the RUL of those failure modes will be known and inputs to 
the problem. Anomalies will be introduced in the model as random 
Boolean variables, that take value 1, when an anomaly is detected for a 
component during a certain period t, and 0 otherwise. To simplify 
formulation, it is assumed that there is a given schedule and only one 
asset of the fleet visit the workshop every period (day) for a pre
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determined PM and at that time CBM activities can be carried out to 
those systems of that asset with problems. 

In the case study that is developed for rolling stock assets, i.e., rail
way vehicles in the rail transport industry, the “useful life” considered 
for the RUL is the expected life of the component prior to the inter
vention of the existing vehicle safety system (named TCMS: Train Con
trol & Monitoring System in the paper), which provides a back-up for 
safety. The TCMS intervention implies, generally, penalties in asset 
operation contracts due to stops or speed reductions to control potential 
failures presence. 

3. The simulation methodology and the software 

In this paper a continuous time dynamic simulation approach is 
adopted, the modelling methodology followed has been System Dy
namics (SD) (see a complete list of approaches in (Alrabghi and Tiwari, 
2015), and the model will be written using difference equations (Mar
quez, 2010). It is assumed that the change in the system occurs at 
discrete points in time and that each variable at time t+1 will be a 
function of the current values: 

xt+1 = f (xt)

Notice that f(xt)may be either a linear or a nonlinear function, and 
that for the equation to be solved the initial value of the variable x0 

should be known. It is also assumed that the time of the simulation will 
be advanced in fixed time increments and that all system variables will 
be recalculated at each time increment. 

An important assumption for this paper is that the time increment of 
the simulation matches the time step for assets to undergo fix pre
determined preventive maintenance (PM) activities. The schedule of 
these activities is assumed to be known well in advance the CBM ac
tivities must be released. 

Some of the system dynamic tools such as the stock and flow dia
grams (SFDs) will provide a graphical representation of the model and 
variables typology immediately (Stearman, 2000) and the software 

package used for the implementation of the model equation is version 
9.3 of Vensim ®, a registered trademark of Ventana Systems Inc. The 
reader is addressed to (Tesfamariam and Lindberg, 2005) and (Orji and 
Wei, 2015) to see similar innovative uses of SD models even integrated 
with other modelling methodologies. 

4. Modelling cbm scheduling based on RUL and CBM capacity 

In System Dynamics models, two basic types of variables are used: 
stock or levels and flows or rates. Stock variables will remain constant 
unless flow variables modify them. To easy the formulation of the flow 
variables and to give the modeler higher flexibility, auxiliary variables 
are used. An auxiliary variable may appear in the equation of a flow 
variable, and can be a function of a stock, of a flow or/and of another 
auxiliary variable. 

In the following sub-Sections, the different parts of the model are 
introduced. This introduction of the model structure has been divided 
into three parts or sub-models: the assets condition, the workshop ca
pacity control and utilization, and the cost function. 

4.1. The assets condition 

Assets conditions will be modelled using stock variables, that are 
defined at a given time t and will remain constant unless flow variables 
modify them. Flow and auxiliary variables are defined for a period t. A 
period t is defined as the period between times t − 1 and t. As mentioned 
above, at time t an asset predetermined PM takes place. 

In this paper, for modelling purposes and without losing any gen
erality, it is assumed that a component is equivalent to a system, since 
the same capacity will be used to deal with all components of a system. 
Also, it is assumed that four different and possible system conditions 
exist, these conditions correspond to different levels of risk of a system: 
no-anomaly, low-risk, medium-risk, and high-risk. Low, medium, and 
high-risk levels consider that an anomaly has been detected in the sys
tem. To model systems under these circumstances (e.g., bearings) placed 

Fig. 1. Basic Stock and Flow component variables considered.  
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in assets (e.g., trains) the following notation for the stock variables is 
considered: 

x(j, k)t : Number of low-risk components in system j, asset k at time t. 
y(j, k)t : Number of medium-risk components in system j, asset k at 

time t. 
z(j, k)t : Number of high-risk components in system j, asset k at time t. 
O(j, k)t : Number of no-anomaly components in system j, asset k at 

time t. 
What is the reason for this notation and selection of variables? This 

comes out from previous works in models developed for axle bearings 
(Crespo Márquez et al., 2020). For many of these components, when an 
anomaly is detected, their RUL is set to 30.000 kms, while the train 
predetermined PM (named IS, taken from the Spanish inspección semanal 
or weekly inspection) are scheduled every 10.000 km (common in many 
situations where ISs are released on a weekly basis). This would mean 
that maintenance managers will have three opportunities to do the CBM 
activity during a train stop for a IS service, once the anomaly is detected, 
and before the component’s RUL expires (when the bearing is in yellow, 
in orange or in red in Fig. 1). 

The RUL estimates are applied to any train bearing, per bearing 
failure mode, and the adopted RUL is based on conservative statistics, i. 
e., 30.000 kms RUL implies that the train will reach that distance 
without bearing failure due to the failure mode studied, with a proba
bility higher than 99%. Moreover, the consequence of not reaching that 
distance, a circumstance that occurs with very low probability, would 
only imply the intervention of the TCMS (controlling the risk), as was 
the case prior to the application of 4.0 technologies to preventive 

Fig. 2. Accumulated excess capacity modelling and control.  

Fig. 3. Obtention of the workshop CBM capacity utilization.  

Fig. 4. Stock & flow diagram of the cost factors and total accumulated cost.  
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maintenance management and CBM. 
Fig. 1 shows a SFD of the assets condition model, boxes are repre

senting stocks and arrows linking the stocks represents the flows or 
transitions that take place in one time step. The rest of the variables are 
auxiliary variables. In the following paragraphs the formulation of these 
variables is explained. 

The balance equations of the variables defining the system j, at risk in 
asset k (stock variables), are as follows (see Fig. 1): 

x(j, k)t =

{
x(j, k)t− 1 + NA(j, k)t − mx(j, k)t − fxy(j, k)t, fort > 0

x0, fort = 0

}

(1)  

y(j, k)t =

{
y(j, k)t− 1 + fxy(j, k)t − my(j, k)t − fyz(j, k)t, fort > 0

y0, fort = 0

}

(2)  

z(j, k)t =

{
z(j, k)t− 1 + fyz(j, k)t − mz(j, k)t − fxy(j, k)t, fort > 0

z0, fort = 0

}

(3)  

O(j, k)t =

{
O(j, k)t− 1 − NA(j, k)t + mx(j, k)t+my(j, k)t + mz(j, k)t, fort > 0

O0, fort = 0

}

(4) 

Obviously: 

O(j, k)t + x(j, k)t + y(j, k)t+z(j, k)t = n, ∀t (5) 

Transition from no-risk or optimal condition level to low-risk levels 
are given by the number of positives (anomalies detected) found in a 
period t, see Eq. 1. This is considered input data to the model, and the 
flow variable NA(j, k)t will be randomly generated according to de 
average age of the fleet of components. 

NA(j, k)t =
∑i=n

i=1
a(i, j, k)t (6)  

Where a(i, j, k)t is an auxiliary variable representing the detected 
anomalies in component i, of system j, of an asset k at period t. This will 
be an input to the problem, that can be replicated for a certain series of 
random numbers. 

Transitions of components from a given risk level to the higher one 

are modelled with flow variables fxy(j, k)t & fyz(j, k)t. Transition of 
components at low, medium, and high-risk level, to the “no anomaly” 
level, because of their maintenance in period t, are modelled with var
iables mx(j, k)t, my(j, k)t and mz(j, k)t . 

Components not maintained (replaced in many cases), at a given 
risk, during one period, will move to the higher risk level in the subse
quent period, i.e.: 

fxy(j, k)t = x(j, k)t− 1 (7)  

fyz(j, k)t = y(j, k)t− 1 (8) 

The model assumes that all components reaching the highest risk 
admissible level in a period t will be serviced in that period, i.e.: 

mz(j, k)t = z(j, k)t− 1 + fyz(j, k)t⇒z(j, k)t = 0, ∀t (9) 

Then notice that the only way to lower this accumulated excess of 
anomalies would be to increase capacity, or to replace components with 
lower risk levels (my(j, k)t&mx(j, k)t). Therefore, to model these flow 
variables (my(j, k)t&mx(j, k)t) a certain capacity control must be estab
lished first. 

4.2. The CBM workshop capacity control and utilization 

In this paper we are concerned about the CBM capacity to service 
components of the system j of an asset k (named c(j,k)) when the asset 
visits the workshop every time step, to undergo a predetermined PM 
maintenance. We assume there is a certain CBM capacity per system in 
the workshop per visit of the asset, that can be used whenever the asset 
has a component in risk. For instance, a time step in the model can be a 
week, and a different asset k will visit the workshop a different day of the 
week. 

CBM capacity is a model parameter and must be balanced to service 
all components and have them running before their RUL expiration. c(j,
k) can be defined as the maximum number of components of system j 
that can be maintained during an asset k predetermined PM stop. 
Ideally, the intention is expressed in Eq. 10: 

Fig. 5. Complete stock & flow diagram of the status of components in the system.  
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mx(j, k)t +my(j, k)t +mz(j, k)t ≤ c(j, k), ∀t, j, k (10) 

Nevertheless, due to the stochastic nature of NA(j, k)t, – and also 
because many components could increase in risk level, with a higher 
probability, at certain number of running hours or kilometers – there 
must be a control of anomalies and capacity, since during a certain 
period it could happen that NA(j, k)t > c(j,k). 

To control maintenance activities over components of systems with 
different risk levels, the existing accumulated excess of anomalies, over 
the CBM capacity, registered (now denoted AEx(j, k)t) must be formu
lated and controlled (see Fig. 2). 

AEx(j, k)t =

{
AEx(j, k)t− 1 + Ex(j, k)t − LEx(j, k)t, fort > 0

AEx0, fort = 0

}

(11) 

Let Ex(j, k)t denote a flow variable representing the difference be
tween anomalies detected and existing CBM capacity in a period t. That 
is the excess of component experiencing anomalies compared to the ones 
that the maintenance depot could service, with the existing CBM ca
pacity, in one predetermined PM stop: 

Ex(j, k)t = Max(NA(j, k)t − c(j, k), 0) (12) 

Fig. 6. SFD of the cost factors and total accumulated cost for the base case.  

Fig. 7. Bearings running at risk under different depot capacity options.  
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In case that Ex(j, k)t > 0, this will force the maintenance organization 
to act, and to replace components before they reach their highest ad
missible risk level, corresponding to their lowest RUL or their longest 
useful lifecycle. Otherwise, capacity could not be enough to service all 
the components. At the same time, the idea is that lower risk 

components could be replaced as few times as possible to lengthen their 
useful lives. The number of possible maintenance interventions on 
components not reaching their highest risk level would be (see Fig. 2): 

LEx(j, k)t = my(j, k)t +mx(j, k)t (13) 

Fig. 8. High risk bearings maintained under different workshop CBM capacity options.  

Fig. 9. Medium risk bearings maintained under different workshop CBM capacity options.  

Fig. 10. Low risk bearings maintained under different workshop CBM capacity options.  

Fig. 11. Workshop capacity utilization with the three simulated scenarios.  
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The total components to maintain (to replace in the case of come 
components like bearings) with low or medium risk levels, during a 
given period t, can be determined as follows (see also Fig. 2): 

TR(j, k)t = AEx(j, k)t− 1 +Ex(j, k)t (14) 

Then, to complete the formulation of flow variables in Fig. 1, CBM 
activities for components with lower risk levels (or higher RUL com
ponents), can be calculated as presented in the following Equations: 

my(j, k)t = Min(fxj(j, k)t,MIN(Cmz(j, k)t,TR(j, k)t) (15) 

Withc(j, k) − mz(j, k)t ≥ 0   

Withc(j, k) − mz(j, k)t − my(j, k)t ≥ 0Where Cmz(j, k) and Cmy(j, k)
are auxiliary variables considered to model the remaining CBM capacity 
available to service components with higher RUL. 

Cmz(j, k)t = MAX(c(j, k) − mz(j, k)t, 0) (17)  

Cmy(j, k)t = Cmz(j, k)t − my(j, k)t (18) 

If, despite the redeployment of the CBM to higher RUL components, 
the capacity set to undertake this type of activities is insufficient to 
perform all the planned activities in a certain period for predetermined 
PM, it would be mandatory to stop the asset and then apply its main

Fig. 12. Workshop extra capacity needed for CBM activities.  

Fig. 13. Sample comparison of results (in €) obtained per cost factor and for just one simulation when CBM capacity level is set to 2, 4 and 6 bearings/period.  

mx(j, k)t = MIN(NA(j, k)+ x(j, k) − fxy(j, k),Min(TR(j, k)t − my(j, k)t,Cmy(j, k))) (16)   
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tenance to avoid unacceptable risk levels. This number of CBM overdue 
activities (CBMOv(j, k)) would cause an asset treatment very similar to a 
corrective activity, the costs of this work (later named CBMOv unit cost) 
would then be higher than normal CBM service, especially because of 
extra asset unavailability. 

CBMOv(j, k) = MAX(mz(j, k) − c(j, k), 0) (19) 

Finally, it is simple to calculate the CBM capacity utilization of the 
workshop as the fraction as in Eq. 20 (see Fig. 3). 

WSCapU(j, k) = Min((mx(j, k) +my(j, k)+mz(j, k))/c(j, k); 1) (20) 

Notice that the variable is cap to 1 in cases we may reach the capacity 
and there are CBM activities overdue. 

This model formulation is rather simple and does not take into 
consideration, so far, relationships among systems generating opportu
nistic maintenance options. Nor the fact that different workshops could 
have different capacity. It is just built to see how workshop capacity may 
impact the scheduling of maintenance operations when CBM programs 
are in place. 

4.3. The cost function 

Once the model can estimate the number of components to have a 
CBM, at different risk levels, in each period t, the next step is to model a 
function of cost of our CBM strategy, that will then help to determine a 
suitable capacity level to that purpose. 

In Section 3 is mentioned that the cost function factors considered in 
this work are: the cost of the CBM Capacity, the cost of lost RUL, the CBM 

overdue activities cost and the cost of unavailability due to. In the 
following paragraphs these factors are modelled as stock variables (see 
Fig. 5), accumulating cost over the planning horizon. 

The cost of CBM capacity (CBMct)is obtained accumulating the cost of 
the designed capacity level per period over the planning horizon. 

CBMct =

{
CBMct− 1 + CBMccpt, fort > 0

0, fort = 0

}

(21)  

CBMccpt = c(j, k)t • cuc (22)  

Where cuc is the capacity unit cost per period and CBMccpt is the CBM 
capacity cost per period. 

The cost of Lost RUL (CRULlt) is the cost of the amount of operating 
hours (or kms or another suitable unit of RUL measure) lost by the 
component because of an early forced CBM because of capacity con
straints. It is estimated accumulating the cost of the RUL per period 
(RULLcpt) over the planning horizon. 

CRULlt =

{
CRUCLlt− 1 + RULLcpt, fort > 0

0, fort = 0

}

(23) 

With 

RULLcpt = (mx(j, k)t • 2+my(j, k)t) • UcRUL(j, k) (24)  

con 

UcRUL(j, k) = Costof Component/Componentmeanlife (25) 

Notice that in Eq. 24, it is considered how the sooner the component 
is maintained the more RUL is lost, i.e., maintaining a component with 
lower risk in our example, causes doble RUL lost than maintaining a 
component with moderate risk. Eq. 25 shows how the higher the cost of 
the component and the lower its mean life, the greater the unit cost of 
RUL. 

The CBM overdue activities cost (CCBMOvt) is the cost service the train 
when an anomaly is active, no RUL is left, and there is no CBM capacity 
available during the next predetermined maintenance inspection. 

CCBMOvt =

{
CCBMOvt− 1 + CBMOvcpt, fort > 0

0, fort = 0

}

(26) 

With 

CBMOvcpt = CBMOv(j, k)t • Ovuc(j, k) (27) 

Finally, the Cost of Unavailability due to overdue CBM (CUCBMOvt)is 
one of the most important cost factors because is the cost of the services 
lost because of the train unavailability required to carry out CBM 
overdue activities. 

CUCBMOvt =

{
CUCBMOvt− 1 + UCBMOvcpt, fort > 0

0, fort = 0

}

(28) 

With CUppt representing the cost of unavailability due to overdue 

Fig. 14. Sample comparison of results obtained per the variable Total Accu
mulated Cost and for just one simulation when CBM capacity level changes 
from 1 to 6 units. 

Table 1 
Sensitivity results of total accumulated cost (€) for the RUL and the base case simulations after 200 simulation replications.  

Case Scenario Count Min Max Mean Median StDev 

RUL Information is available : CBM Capacity 1  200 1.787 M 4.536 M 2.997 M 2.958 M 523,177 
: CBM Capacity 2  200 876,56 2.302 M 1.458 M 1.437 M 260,275 
: CBM Capacity 3  200 830,94 1.595 M 1.159 M 1.137 M 149,623 
: CBM Capacity 4  200 1.04 M 1.498 M 1.203 M 1.193 M 97,212 
: CBM Capacity 5  200 1.3 M 1.504 M 1.353 M 1.351 M 52,848 
: CBM Capacity 6  200 1.56 M 1.662 M 1.571 M 1.56 M 22,859 

Base 
No RUL information available 

: CBM Capacity 1  200 2.400 M 4.946 M 3.608 M 3.571 M 485,138 
: CBM Capacity 2  200 1.234 M 3.271 M 2.281 M 2.304 M 379,344 
: CBM Capacity 3  200 934,44 2.208 M 1.573 M 1.546 M 256,635 
: CBM Capacity 4  200 1.042 M 1.806 M 1.339 M 1.322 M 155,504 
: CBM Capacity 5  200 1.302 M 1.659 M 1.385 M 1.353 M 77,211 
: CBM Capacity 6  200 1.562 M 1.715 M 1.578 M 1.562 M 29,106  
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CBM per period 

UCBMOvcpt = CBMOv(j, k)t • UOvuc(j, k) (29) 

The Total Accumulated cost (Tot Acc Costt) is modelled as an auxil
iary variable that just sums all four previously mentioned stock variables 
(see Fig. 4). 

5. Base case scenario modelling for results comparison 

In this work we are defining a base case scenario to be modelled, and 
to compare its results against the ones obtained for the RUL base 
scheduling model defined in Section 5. This base case scenario considers 
that the organization has the technology to identify anomalies in asset 
components, but no capabilities to schedule CBM according to their RUL 
exist. Therefore, the maintenance organization carries out the CBM ac
tivity in the next predetermined PM inspection, and if there is no ca
pacity available, the CBM activity will be considered overdue, and asset 
will be stopped and serviced. This often happens in early stages of CBM 

comprehensive strategy introduction for most of the components. In 
fact, at that moment the organization considers only two risk levels for 
assets’ components (see Fig. 5): with a detected anomaly or without it. in 
fact, this scenario is the first step taking place between the introduction 
of a CBM program and the achievement of a full predictive maintenance. 

The model assumes that all components where an anomaly is 
detected will be maintained in the next inspection stop, therefore: 

MA(j, k)t = DA(j, k)t− 1 +NA(j, k)t⇒DA(j, k)t = 0, ∀t (30) 

If the capacity set to undertake CBM in a predetermined inspection is 
exceeded, it would be mandatory to stop the asset and then apply its 
maintenance to avoid unacceptable risk levels (to have an anomaly is 
now considered a call for action of maintenance). The number of CBM 
overdue activities (in this case named CBMOv(j, k)0) would also cause an 
asset operational stop and a higher cost than normal is calculated in Eq. 
31: 

CBMOv(j, k)0 = MAX(MA(j, k)t − c(j, k), 0) (31) 

Fig. 15. Comparison of RUL and base case CBM scheduling using sensitivity analysis for Total Acc Cost and for two capacity scenarios (top: CBM capacity=4; down: 
CBM capacity = 3). Base case results (left) and RUL case results (right). The line represents mean value. 

A. Crespo Márquez et al.                                                                                                                                                                                                                      



Computers in Industry 148 (2023) 103914

12

The different cost flows for the base case total cost calculations are 
obtained in Eqs. 32–35. 

CBMccp0t = CBMccpt = c(j, k)t • cuc (32)  

RULLcp0t =
(
MA(j, z)t • 2

)
• UcRUL(j, k) (33)  

CBMOvApp0t = CBMOv(j, z)0t • Ovuc (34)  

CUpp0t = CBMOv(j, z)0t • UOvuc (35) 

The corresponding stock variables for this base scenario and the total 
accumulated cost of the base case is presented in Fig. 6, and they are 
obtained similarly to the ones in Fig. 4. 

6. Model simulation inputs and case study results 

For this paper, the simulation models are considering the following 
inputs: 

A ratio of fleet anomalies detection distributed as N(μ,σ,min,max ) =

N(2,2,0,8); A CBM analysis for only one system (or component: bearing 
in this case study) considered for a fleet of 14 assets (trains, in our case 
study); A time step defined as the interval between two weekly in
spections (named IS), representing 10.000 kms. of operation. A cost of 
the component (bearing) of 1000 Euro and an average mean life of the 
component of 1000,000 kms (100 periods).; A capacity for CBM ser
vices, once the train is stopped for a predetermined PM, which may vary 
between 1 and 6 systems to be serviced. 

In terms of cost, the cost of CBM Capacity per period and unit is cuc 
= 1000€ /period & unit, the cost of RUL lost is UcRUL= 10 €/period & 
unit, resulting from dividing the cost of the component (1000 €) by the 
component mean life (100 periods). The cost of CBMOv Overdue is Ovuc 
= 2000€ per activity, and the cost of CBMOv unavailability has been 
stablished in UOvuc = 10000€ per activity. Notice that these different 
cost factors can vary significantly for different case studies. 

The RUL of the components has been considered as 30.000 kms or 3 
predetermine PM inspections (3 ISs). 

6.1. Model results for cbm activities when changing capacity 

Graphical results provided by the tool, despite being a very simple 
model, help to understand implications in the number of bearings in risk 
when changing workshop CBM capacity. The lesser the capacity the 
higher number of bearings in risk (see Fig. 7). 

In Figs. 8–10, different results are obtained for different CBM 
workshop capacity options. The higher the capacity of the depot the 
lesser the number of bearings maintained with lower levels of risk. 

Fig. 11 shows depot’s capacity utilization under the two simulated 
scenarios. Notice that the scenarios for CBM Capacity equal to 2 and 4 
bearings/period, would not be technically feasible according to bearings 
maintenance demand assuming maximum capacity utilization set to 1. 

Therefore, in case of workshop CBM capacity = 2 and CBM capacity 
= 4, CBM activities would result overdue, and a train stop would be 
immediately required. The extra capacity demand per period in the 
workshop is presented in Fig. 12. 

6.2. Cost factors results for different capacity levels 

Different CBM capacity options will result in different costs in the 
different factors considered. Finding a proper balance understanding the 
implication of a single option is a must. Fig. 13 shows an example of the 
cost factors when setting a CBM capacity of 2,4 and 4 bearings/period in 
the workshop. 

In Fig. 14, the Total Accumulated Cost when varying workshop CBM 
capacity is presented. Notice that for this simulation replication, a 
workshop CBM capacity of 3 or 4 bearings/period provides the best 
results. In fact, Table 1 shows doing Montecarlo analysis for 52 weeks, 

that a capacity of 3 offer a better average cost in the 200 simulations but 
the capacity 4, similar in average cost, has a much smaller StDev. In fact, 
this is the same result that the analyst can get for the optimal capacity 
when selecting a larger planning horizon (to diminish the effect of 
randomness in anomalies generation) and minimizing the total accu
mulated cost of the simulation. To do this Vensim uses a direct search 
technique based on a Modified Powell Method (see other examples in 
(Marquez et al., 2003)). 

6.3. Comparing against base case scenario 

In this Section of results, a couple of scenarios to do Montecarlo 
simulation and analysis for cost results are selected. More precisely, a 
seed for the generation of components anomalies has been modified in 
200 replications of the experiment. Table 1 shows the results of total 
accumulated cost for the RUL case model (Section 5 of the paper) and 
the base case model (Section 6 of the paper) simulations, in the six 
different scenarios studied (workshop CBM capacity varying from 1 to 
six bearings/period). As the reader can see, results for the RUL case (in 
Section 5) are better that for the base case because (see Table 1):  

1. For the same capacity the RUL case always obtains a lower cost  
2. For the optimum capacity in each one of the cases (in green in 

Table 1), the RUL case model reaches the lowest result in the mean 
total accumulated cost and its StDev. 

For a better appreciation of the consequences of the introduction of 
the scheduling methodology according to the components RUL (Section 
5 model), Fig. 15 shows the sensitivity analysis for the variable Total Acc 
Cost 0 (base case model in Section 6) in the left hand side of the figure 
and the variable Total Acc Cost (RUL case model in Section 5) in the 
right hand side when the CBM capacity is 4 (top) and 3 (bottom). These 
where the two scenarios highlighted in Table 1, showing the best results 
for each case (CBM Capacity=3 for the RUL case and CBM Capacity =4 
for the base case). 

6.4. Conclusions of the case study 

This case study shows that practical simulation tools can be useful 
when dealing with the problem of scheduling CBM activities. The best 
options could be identified as well as the cost of opportunity of not using 
these tools for this purpose. Complexity can be added, when required, to 
the case study, and other different maintenance opportunistic options 
and rules can be identified, optimized, and implemented. However, and 
given the dynamic nature of the problem, the simpler the business rules 
the easier their implementation at the shop floor. 

7. Conclusions 

In this paper a system dynamic simulation model has been built to 
schedule CBM activities in an operational context in which it is known 
the RUL of components presenting anomalies for systems within a fleet 
of assets, and where there can be a capacity constraint to carry out CBM 
activities per system. The model also contains a financial part that cal
culates the different costs generated for each one of the simulated sce
narios. A Montecarlo analysis has been introduced to compare cost 
results for each CBM capacity scenario and assuming available, or not, 
the information about the RUL of the components presenting anomalies. 
When the information about the RUL is not available, the strategy fol
lowed has been to carry out the CBM activities in the next possible 
predetermined PM or to stop the asset if capacity is not available at that 
time. 

Most important conclusions of the work and presented results, are 
the following: 
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1. When considering the components RUL, a proper scheduling control 
requires modelling the accumulated excess of anomalies, over the 
CBM capacity. This makes possible the utilization of the CBM ca
pacity available to service components with higher RUL, in an 
opportunistic manner. 

2. The model helps the analyst to explore and select suitable CBM ca
pacity scenarios, among those feasible for a project, comparing their 
impact on each cost factor and on the total accumulated cost.  

3. It has been tested how the strategy of maintaining component with 
higher RUL (lower risk) offer good results in CBM capacity con
strained scenarios, compared to a CBM strategy that would release 
the CBM activity as soon as anomalies are identified.  

4. The modelling effort helps also to measure the level of improvement 
that can be reached with a given strategy for a certain scenario. For 
instance, in the paper case study, average improvements of 10% in 
the total accumulated cost were reached while important reductions 
in StdDev were appreciated. 

5. This modelling effort and the analysis of the RUL base CBM sched
uling strategies can be easily extended to fleets in any other sector in 
the industry where maintenance/industry 4.0 technologies apply. 
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