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ABSTRACT
This paper presents a quality enhancement of the selected features
by a hybrid filter-based jointly on feature ranking and feature subset
selection (FR-FSS) using a consistency-based measure via merging
new features which are obtained applying other FR-FSS evaluated
with a correlation metric. The goal is to overcome the accuracy of a
neural network classifier containing product units as hidden nodes
combined with a feature selection pre-processing step by means of
a single consistency-based FR-FSS filter. Neural models are trained
with a refined evolutionary programming approach called two-stage
evolutionary algorithm. The experimentation has been carried out in
eight complex classification problems, seven out of them from UCI
(University of California at Irvine) repository and one real-world prob-
lem, with high test error rates (around 20%) with powerful classifiers
such as 1-nearest neighbour or C4.5. Non-parametric statistical tests
revealed that the new proposal significantly improves the accuracy
of the neural models.
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1. Introduction

A good number of approaches has been proposed to tackle supervised machine learning
problems (Dougherty, 2012). Classifiers can be grouped in different categories such as deci-
sion trees, classifiers basedonnearest neighbours, artificial neural networks, rule-based and
Bayes classifiers.

It is straightforward that feature selection (FS) is becoming an important and common
activity in most of the current classification problems. Its motivation is treble: simplifying
the classifier, improving the accuracy of the classifier; and reducing the dimensionality for
the classifier. The last issue is particularly relevant in the context of classifiers based on
artificial neural networks.

Our goal is to improve the accuracy of the classification models obtained with product
unit neural networks (PUNN) trained with a two-stage evolutionary algorithm. Recently,
we have experimented with this classifier by means of a prior pre-processing step with FS
(Tallón-Ballesteros, Hervás-Martínez, Riquelme, & Ruiz, 2013) reaching satisfactory results.
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From this starting point we deepen into new possibilities to be applied to our neural
classifier.

This paper is organised as follows: Section 2 describes the methodology including FS
andevolutionaryproduct unit neural networks; Section3 introduces theproposal; Section4
details the experimental process; Section 5 shows and analyses the results obtained; finally,
Section 6 states the concluding remarks.

2. Methodology

2.1. Feature selection

Pattern recognition is inherently tied to an information reduction in order to extract the
present knowledge inside data. Features can be useful, redundant or irrelevant. An irrel-
evant feature does not influence on the underlying structure of the data in any way. A
redundant feature does not provide anything new in explaining that structure (Guyon &
Elisseeff, 2003). FS can be defined as the problem of choosing a small subset of features
that is ideally necessary and sufficient to describe the target concept. It can be formulated
as a task of searching for an optimal subset of features from all available features (Dash
& Liu, 1997). An optimal subset is relative to a certain evaluation function. Typically, an
evaluation function tries to measure the discriminating ability of a feature or a subset to
distinguish the different class labels.

FSmethods canbedivided into twobroadgroups (filter Liu & Setiono, 1996 andwrapper
models) based on their use of an inductive algorithm in FS or not (Blum & Langley, 1997).
More recently, Liu and Yu (2005) provides a common taxonomy where a large list of
FS methods are categorised. Evaluation functions can be grouped into five categories:
distance, information (or uncertainty), dependence, consistency and classifier error rate.

Depending on the generation procedure, FS can be divided into individual feature rank-
ing (FR) and feature subset selection (FSS) (Blum & Langley, 1997; Guyon & Elisseeff, 2003).
FR measures the feature-class relevance, then rank features by their scores and select the
top-ranked ones. Thesemethods are widely used due to its simplicity, scalability, and good
empirical success (Golub et al., 1999; Guyon & Elisseeff, 2003). However, FR is criticised
because they can only capture the relevance of features to the target concept, but redun-
dancy and basic interactions between features are not discovered, besides, the number of
retained features is difficult to determine, a threshold is required. In contrast, FSS attempts
to find a set of features with good performance. They integrate the metric to measure the
feature-class relevance and the feature–feature interactions. Different algorithms address
these issues distinctively. We found different search strategies, namely exhaustive, heuristic
and random search, combined with several types of measures to form different algorithms
(Dash, Liu, &Motoda, 2000). The time complexity is exponential in terms of data dimension-
ality for exhaustive search and quadratic for heuristic search. The complexity can be linear
to the number of iterations in a random search, but experiments show that in order to find
the best feature subset, the number of iterations required is usually at least quadratic to the
number of features (Liu & Setiono, 1998).

As well as the categorisation of the previous paragraph, a hybrid model was proposed
to handle large data sets to take advantage of the above two approaches (FR, FSS). These
methods (Ruiz, Riquelme, & Aguilar-Ruiz, 2006; Yu & Liu, 2004) decouple relevance analysis
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and redundancy analysis, and they have been proved to be more effective than ranking
methods and more efficient than subset evaluation methods on many traditional high-
dimensional data sets. In the context of hybrid FS, BIRS (Best Incremental Ranked Subset)
(Ruiz et al., 2006) was the proposed method to obtain relevant features and to remove
redundancy. Figure 1 overviews BIRS in the context of the FS taxonomy.

On the one hand, the purpose of a feature subset algorithm is to identify relevant fea-
tures according to a definition of relevance. However, the notion of relevance in machine
learning has not yet been rigorously defined in common agreement (Bell & Wang, 2000).
Kohavi and John (1997) include three disjointed categories of feature relevance: strong rel-
evance, weak relevance and irrelevance. Bell and Wang (2000) make use of Information
Theory concepts to define the entropic or variable relevance of a feature with respect to
the class. Blum and Langley (1997) collect several relevance definitions.

On the other hand, notions of feature redundancy are usually defined in terms of feature
correlation. It iswidely accepted that two features are redundant toeachother if their values
are completely correlated. There are two widely used types of measures for the correla-
tion between two variables: linear and nonlinear. In the linear case, the Pearson correlation
coefficient is used, and in the nonlinear case, many measures are based on the concept
of entropy, or measure of the uncertainty of a random variable. However, it may not be as
straightforward in determining feature redundancywhenone is correlatedwith a set of fea-
tures. Koller and Sahami (1996) apply a technique based on cross-entropy, named Markov
blanket filtering, to eliminate redundant features. This ideawas formalised using the notion
of conditionally independent attribute, which can be defined by several approaches (Xing,
Jordan, & Karp, 2001; Yu & Liu, 2004). Theminimal-redundancy-maximal-relevance (mRMR)
(Peng, Long, & Ding, 2005)metric, which is based onmutual information (Yao, 2003), is also
another interesting strategy that is very widespread.

Between filter and wrapper model, there is an intermediate type of methods that are
called embedded FS methods (Lal, Chapelle, Weston, & Elisseeff, 2006). It is particularly fre-
quent in the context of support vectormachine (SVM) classifier (Vapnik, 2013); a remarkable
approach among them is the recursive feature elimination (RFE) (Guyon, Weston, Barnhill,
& Vapnik, 2002) selection method that uses SVM classifier to evaluate the goodness of the
obtained subset removing at every step a single feature.

Feature selection

Measure of
attribute evaluation

Generation
procedure

Filter Wrapper
Feature ranking

(FR)
Feature Subset
Selection (FSS)

+

BIRS
(Best Incremental
Ranking Subset)

Figure 1. BIRS within FS taxonomy.
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The selection process in BIRS is composed of two stages. In stage one, features are
evaluated individually, providing a ranking based on a criterion. In stage two, a feature
subset evaluator is applied to a certain number of features in the previous ranking fol-
lowing a search strategy. BIRS can include any kind of evaluator in the two phases. In
the current work, BIRS utilises as a subset evaluator consistency and correlation concepts,
CNS (consistency-basedmeasure (Liu & Setiono, 1996)) and CFS (Correlation-based Feature
Selection (Hall, 2000)), respectively, at the second phase, and SOAP (Selecion Of Attributes
by Projection (Ruiz, Riquelme, & Aguilar-Ruiz, 2002))measure and the own subset evaluator
at the first phase as a ranking evaluator in the case of CFS.

To guide the search, CFS evaluates the quality of a feature subset taking into account
the hypothesis that good feature subsets contain features highly correlated to the class.
CNS is based on the consistency measure, which estimates, for a given subset of fea-
tures, the number of sources that match all but their class labels. The inconsistency rate
is then used to assess its quality. SOAP is a deterministic attribute selection criterion
based on this basic principle: to count the label changes of examples projected onto
each feature. If the attributes are in ascending order according to the number of label
changes we will have a list that defines the priority of selection, from greater to smaller
importance. The main advantages are its speed and simplicity in the evaluation of the
attributes.

BIRS considers that the relevance and the redundancy concepts are included in the fol-
lowing “incremental usefulness” (Caruana & Freitag, 1994) definition: Given a sample of
data, an evaluation measure L, a feature space F and a feature subset S (S ⊆ F), the fea-
ture Fi is incrementally useful to Lwith respect to S if the evaluation of the hypothesis that
L produces using the group of features {Fi} ∪ S is better than the evaluation achieved using
just the subset of features S. That is, if Fi is not incrementally useful to L with respect to S,
then the evaluation value given the subset S is equal or better than the subset evaluation
result known {Fi} ∪ S. It suggests that Fi gives no information beyond what is already in
S, therefore, Fi could be removed safely, or in this case, Fi would not be added to S. How-
ever, since the computational complexity to determine all possible interactions between
features is very high (mainly in high-dimensional domains), BIRS operates using a guided
search over an ordered list of attributes.

BIRS deals with the incremental ranked usefulness in order to devise an approach to
explicitly identify relevant features and do not bear in mind redundant features. The idea
is to choose the feature Fi from a ranked list one by one in the following way: firstly, the
features are ranked according to some evaluationmeasure (SOAP, CFS, CNS); and secondly,
BIRS deals with the list of features once, crossing the ranking from the beginning to the last
ranked feature. It is obtained the evaluation result using CFS or CNS with the first feature in
the list and it ismarked as selected. Again, it is obtained the result, but nowwith the first and
second features. The second feature will be marked as selected depending on whether the
evaluation obtained is statistically significant better. The process is repeated until the last
feature on the ranked list is reached. Finally, the algorithm returns the best subset found,
and it can be stated that it will not contain irrelevant or redundant features. Therefore, in
the experiments, spBIRS indicates that SOAP will be used as an individual measure in the
first part of BIRS and the indicated subset selection as a subset evaluator in the second part.
In the same way, cnBIRS denotes that CNS evaluator will be used in both part of the BIRS
algorithm.
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2.2. Evolutionary product unit neural networks

We have considered a single-hidden-layer feed-forward network architecture, that is, a
neural structure with one input layer, one hidden layer and one output layer. We focus
on feed-forward neural networks (Bishop, 1995) containing in the hidden layer product
units that are neurons with their output is based in the multiplication of terms instead
of the sum. Particularly, these terms are expressed in the form of a value pow to a real
number. The training of the aforementioned networks has been carried out by a refined
evolutionary programming approach (Yao & Liu, 1997) which was named two-stage evolu-
tionary algorithm and introduced in Tallón-Ballesteros and Hervás-Martínez (2011) . Such
as an evolutionary programming model, the population is only subjected to replication
and mutation operators (Moriarty & Miikkulainen, 1995). Parametric and structural muta-
tions have been used and follow the expressions and details given in the aforementioned
paper. The main characteristic of this algorithm is to be based on the use of two popula-
tions that are evolved at the beginning of the evolution shortly. Then, the best half of both
populations is merged into a new population. On the new intermediate population a full
evolutionary cycle is carried out. Table 1 summarises the main TSEA parameters.

In a recent work the TSEAFS (TSEA with FS) framework was proposed (Tallón-Ballesteros
et al., 2013). In summary, at the beginning there is a pre-processing step on the training
set to obtain a list of selected features. The training of the neural network is performedwith
the reduced training set via TSEA. Then, the list of selected features is projected into the test
set and the performance of the neural models is evaluated in the resulting reduced test set.
TSEA does not carry out any kind of FS. Now, we briefly summarise the different configu-
rations and properties of TSEA and TSEAFS. There are two different configurations in TSEA,
named 1∗ and 2∗. The TSEAFS features are the following: a) PUNN have been employed,
with a number of neurons in the input layer equal to the number of variables in the prob-
lem after FS; a hidden layer with a number of nodes that depends on the data set to be
classified and the number of selected features; and the number of nodes in the output layer
equal to the number of classes minus one because a softmax-type probabilistic approach
has been used; b) two experiments have been performed for each problem with two dif-
ferent values for α2, that is associated with the residual of the updating expression of the
output-layer coefficients; this parameter controls the diversity of the individuals and has a
great impact over the performance (Tallón-Ballesteros & Hervás-Martínez, 2011); c) two dif-
ferent configurations (1 ∗ � and 2 ∗ �) are applied to subsets obtained with each one of the
selectors, for each data set. The parameters of each configuration are neu�, gen� and α2.
The first two ones take specific values depending on the data set and the last one depends

Table 1. TSEA general parameters.

Parameter Value

Population size (N) 1000
Gen-without-improving 20
Interval for the exponentswji/coefficientsβ l

j [−5, 5]
Initial value of α1 0.5
Initial value of α2 1
Normalisation of the input data [1, 2]
Number of nodes in node addition and node deletion operators [1, 2]
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Table 2. Description of the TSEA/TSEAFS configurations.

Methodology Config. Num. of neurons in each pop. Size of each pop. Num. Gener. in each pop. α2

TSEA 1∗ neu and neu + 1 1000 0.1 ∗ gen 1
TSEA 2∗ neu and neu + 1 1000 0.1 ∗ gen 1.5
TSEAFS 1 ∗ � neu� and neu� + 1 1000 0.1 ∗ gen� 1
TSEAFS 2 ∗ � neu� and neu� + 1 1000 0.1 ∗ gen� 1.5

on the configuration number (1 ∗ �, . . .). Table 2 shows the main aspects of TSEA/TSEAFS
configurations.

3. Proposal

On real-world problems, the attributes may have any kind of main relationship but it is not
a fact that this is the single option. So far, the consistency and correlation measures have
been considered in an isolatedway. The cooperationbetweendifferent groupsof attributes
is the key idea of the current paper. According to the literature, themost commonmeasure
in the context of FS is the correlation analysis (Hair, 2010). On the other hand, consistency
is not so frequent nowadays, basically because in the majority of applications the data are
correlated and the detection of inconsistencies (Aggarwal, 2015) is not always the easiest
and promising path to classify new patterns in the future.

Now, we describe a motivating example. Lymphography problem (Kononenko, Bratko,
& Roskar, 1984) contains data that were obtained from the Institute of Oncology of the Uni-
versity Medical Center in Ljubljana, Yugoslavia about lymph nodes and lymphatic vessels
labelled in four classes: normal find,metastases,malign lymph and fibrosis (Bramer, 1999). At
first sight it seems an interesting data set because there are four classes. The problem was
prepared using a hold-out cross validation in two sets: one to train and another to test the
classifier performance. We applied a filter based on consistency and the results improved
only around a 1% compared to the case without data pre-processing. After that, we used a
filter based on correlation and the results were even worse than with all the feature set. In
that point, we felt that the analysis of the selected features was necessary. We detected
that five attributes were selected by both methods. We taught that the union operator
may be a good action because the number of selected attributes would be increased a bit,
but the number of selected attributes will be below 15 and it would be worth evaluating
our classifier based on product unit neural networks. Surprisingly, the combination suc-
ceeded and the performance was a trade-off between increasing the number of features
and classifying better.

It has been shown that TSEAperformance canbe improvedbymeans of FS. Two relevant
measures to assess the quality of the features in terms of redundancy and relevance are
correlation and consistency. Particularly, the hybrid filter BIRS has an exceptional behaviour
in conjunction with TSEA.

This paper proposes to extend the list of selected features by BIRS based on CNS. Among
the good number of approaches that can be considered we have chosen CFS using SOAP
measure (Tallón-Ballesteros, Hervás-Martínez, Riquelme, & Ruiz, 2011) in order to put in a
small number of features. It is extremely important to take into account that the base list of
features is obtained by the FR-FSS BIRS using a consistency-basedmeasure. After that some
new features may be added if different characteristics are selected with the correlation



248 A. J. TALLÓN-BALLESTEROS ET AL.

Evaluation of features
(cnBI)

Feature subset selection
(CNS)

Evaluation of features
(spBI)

Feature subset selection
(CFS)

List of selected attributes

Union

Figure 2. BIRS(CNS+) framework.

measure. In other words, the proposal is the combination of two FR-FSS methods with a
good performance in order to get an extended list of attributes. Concretely, we add more
attributes to the obtained list by CNS-based FR-FSS BIRS (henceforth, BIRS(CNS)). We have
entitled the new proposal BIRS(CNS+) which means that the features selected are those
obtainedbyBIRSusingCNSwith extra features. Figure 2depicts theBIRS(CNS+) framework.

Generally speaking, the increase of the number of features would be very small due to
the small size of the list obtained by CFS. The new methodology could be applied to any
kind of classification problem with any number of features and classes, however the single
constraint is that there would not be total overlapping between the lists obtained by each
one of the two FR-RSS methods to be combined. In order to meet this condition we rec-
ommend that the number of features would be in the original problem at least more than
one or two tens. The justification of the proposal is based on the fact that once we choose
a evaluation function for a FS method a possible lost of information may happen due the
focus is related with the own criterion of the function. Thus, the idea is try to save at least
a few more attributes and let the classifier to decide which attributes from this extended
subset are included in the classification model.

To the best of our knowledge, there are not contributions that just mix several FR-FSS
methods or simply broaden the list of characteristics provided by a FR-FSS filter in any way.
A related work belonging to a wrapper model was proposed by Somol, Grim, Novovičová,
and Pudil (2011) ; concretely, a k-Nearest Neighbour (k-NN) classifier with four values for
k was used to determine the inclusion or a removal of single features with a stride value
of one in relation with the current feature set. The authors of the aforementioned paper
concluded that the actual gain is problemdependent and can not be guaranteed, although
the improvement on some data sets is substantial.

4. Experimentation

Table 3 describes the data sets employed together with the parameter values for the base
configuration of TSEA and TSEAFS (last two columns). Most of them are publicly available at
theUCI repository (Bache& Lichman, 2013) from theUniversity of California. They belong to
different domains of application such as Finances, Molecular Biology, Social Sciences, Envi-
ronment, Oncology, HandMovement Recognition and Analysis of Olive Oils. The following
eight havebeenused: Statlog (German credit), Labor Relations, LibrasMovement, Lymphog-
raphy, Olive Oil (Olitos), Molecular Biology (Promoter Gene Sequences), Statlog (Satellite)
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Table 3. Summary of the data sets used and parameter values for TSEA and TSEAFS methodologies.

Data set Size Features Inputs Classes Neu; Gen Neu�;Gen�

German 1000 22 61 2 6; 500 6; 500
Labor 57 16 29 2 6; 300 5; 300
Libras 360 90 90 15 8; 1000 8; 1000
Lymphography 148 18 38 4 6; 500 6; 100
Olitos 120 25 25 4 6; 300 6; 300
Promoter 106 58 114 2 11; 500 6; 300
Satellite 6435 36 36 6 8; 1000 8; 1000
Water 527 37 37 3 7; 300 7; 300

andWater Treatment Plant. Olitos data set is related with olive oil processing and is a com-
plex real-world problem representing different kind of olive oils whose properties can be
read in Armanino, Leardi, Lanteri, and Modi (1989) . The size of the data sets ranges from
over fifty-five tomore than six thousands. The number of features depends on the problem
and varies between 16 and 90, while the number of classes is between 2 (for only 3 cases)
and 15.

As account of we are using neural networks, all nominal variables have been converted
to binary ones; due to this, often the number of inputs is greater than the number of fea-
tures. Regards the number of inputs it ranges between 26 and 114. Also, themissing values
have been replaced in the case of nominal variables by the mode or, when concerning
continuous variables, by the mean, taking into account the full data set. These data sets
have in common that present important error rates in test phase around 20%or abovewith
reference and robust classifiers such as 1NN or C4.5.

The values of the parameters were chosen with a previous experimental design via a
five-fold cross validation with five repetitions using the training set for each data set. For
the number of generations, four kind of values were defined (100, 300, 500 and 1000) and
in regard to the maximum number of neurons in the hidden layer the range [4–12] were
considered.

In relation to the experimental design we have followed a three-fold stratified cross val-
idation (Hjorth, 1993), whereby data set is divided into three parts and subsequently a
partition is the test set and the two remaining ones are pooled as the training data. For
stochastic algorithms, for each cross validation fold we perform 30 iterations and since we
have three folds the results are averaged from 90 runs in order to get a good reliability
level. On the other hand, to evaluate the classification models we have chosen the accu-
racy measure (Kohavi 1995) that can be defined as the probability of correctly classifying
a randomly select pattern. Sometimes, it is called as the number of successful hits (Witten,
Frank, & Mark, 2011).

Table 4 depicts the FR-FSS methods utilised in the experimentation. There are two ones
with and one without FS that belong respectively to TSEAFS and TSEA methodologies. As

Table 4. List of methods employed in the experimentation with and without FS based on FR-FSS.

FR-FSS filter Ranking method Subset evaluation Methodology Abb.name

– None None TSEA F0
BIRS(CNS) cnBIRS CNS TSEAFS F1
BIRS(CNS+) cnBIRS+spBIRS CNS+CFS TSEAFS F2

Note: cn and sp stand for consistency and SOAP measures, respectively
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stated before, feature selectors are FR-FSS filters. Last column defines an abbreviated name
for each of them that is employed in next sections.

5. Results

This section details the results obtained, measured in Accuracy or Correct Classification
Ratio in the test set or in the test subset depending on that FS has been considered or not.
First of all, we present the results obtained, including also the average number of inputs
for the three train folds of cross validation, with TSEA and TSEAFS by means of F1 and F2.
After that, a statistical analysis compares them to determine whether there are significant
differences between applying a combination of two FR-FSS methods and a single FR-FSS.
Lastly, we present the results with other additional classifiers together with a global plot of
them.

5.1. Results applying TSEA and TSEAFSwith F1 and F2

The results obtainedby applying the initial TSEAmethodology (Tallón-Ballesteros&Hervás-
Martínez, 2011), including none FS, are presented, along with those obtained with TSEAFS
for the methods F1 and F2. Table 5 shows the average number of inputs, the mean and
standarddeviation (SD) of the test accuracies for eachdata set for a total of 90 runs. Thebest
results without andwith FS appear in boldface for each data set. It is important to highlight
that every data fold has the same number of inputs without any kind of pre-processing via

Table 5. Results obtained in eight data sets applying TSEA and TSEAFS with F1 and F2.

Mean± SD

Data set Method Inputs Config 1 ∗ /1 ∗ � Config 2 ∗ /2 ∗ �

German F0 61.00 72.24 ± 2.29 71.30 ± 2.44
F1 16.00 72.29 ± 1.59 72.57 ± 1.30
F2 17.33 73.41 ± 1.61 72.47 ± 1.36

Labor F0 29.00 79.77 ± 8.71 81.58 ± 8.54
F1 3.00 90.58 ± 3.39 88.83 ± 5.40
F2 4.67 91.40 ± 4.35 90.47 ± 3.94

Libras F0 90.00 36.67± 10.41 40.25 ± 10.95
F1 29.33 45.68 ± 7.06 44.98 ± 7.52
F2 40.00 47.32 ± 8.53 47.03 ± 8.83

Lymphography F0 38.00 77.09 ± 6.13 77.02 ± 5.98
F1 9.33 76.61 ± 7.46 75.51 ± 4.70
F2 11.33 80.91 ± 7.35 78.11 ± 5.47

Olitos F0 25.00 67.81 ± 6.21 67.75 ± 7.26
F1 10.67 68.81 ± 5.36 68.67 ± 6.98
F2 13.00 69.47 ± 6.78 69.86 ± 4.82

Promoter F0 114.00 57.49 ± 8.99 63.74 ± 9.17
F1 7.33 77.69 ± 5.86 77.11 ± 3.94
F2 9.00 76.77 ± 5.32 77.23 ± 5.02

Satellite F0 36.00 83.48 ± 2.50 82.08 ± 4.49
F1 14.67 83.53 ± 2.62 83.42 ± 2.40
F2 25.00 83.14 ± 1.80 83.74 ± 1.88

Water F0 37.00 83.90 ± 3.53 83.37 ± 3.15
F1 12.33 84.26 ± 3.54 83.31 ± 2.42
F2 14.33 83.85 ± 3.10 84.76 ± 3.80
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Figure 3. Plot with best average results for TSEA and TSEAFS with F1 and F2.

FS ; nevertheless with F1 and F2 the FS process is conducted for each fold and hence the
number of inputs may be different among folds.

Fromtheanalysis of thedata, it canbe concluded, fromapurelydescriptivepoint of view,
that the TSEAFS methodology with F2 obtains best results for almost all data sets. In most
of cases, the SD reduction with F2 versus F1 is clear and it expresses more homogeneous
results. We complete the results with a graphical representation of the mean best average
results for TSEA and TSEAFS with F1 and F2. As can be seen in Figure 3 F2 improves the
performanceof F1.Moreover, statistical tests are conducted in thenext subsection todetect
whether there are significant differences.

5.2. Statistical analysis

We follow the guidelines pointed out by Demsar (2006) to perform non-parametric statis-
tical tests. To determine the statistical significance of the differences in rank observed for
two methods with several data sets, a non-parametric test might be used. We apply the
Wilcoxon signed-ranks test (1945) which ranks the differences in performances of two clas-
sifiers for each data set, ignoring the signs, and compares the ranks for the positive and the
negative differences. It is based in the computations of the sum of ranks for positive and
negative differences. The difference between two classifiers is significant if the smaller of
the sums is equal or less than the critical value (Hollander, Wolfe, & Chicken, 2013).

The test results between F2 (the current proposal) and F1 are summarised in Table 6. R+
and R− are found with the sum of all positive ranks and all negative ranks under the rank
column, respectively. The minimum of R+ and R− is the T value that in our case is 2. Since
there are 8data sets, the T value atα = 0.05 shouldbe less or equal than4 (the critical value)
to reject the null hypothesis. That is, F2 is significantly better than F1.
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Table 6. Statistical test results between F1 and F2.

Data set F2 F1 Difference Rank

German 73.41 72.57 0.84 5
Labor 91.40 90.58 0.82 4
Libras 47.32 45.68 1.65 7
Lymphography 80.91 76.61 4.31 8
Olitos 69.86 68.81 1.06 6
Promoter 77.23 77.69 −0.46 2
Satellite 83.74 83.53 0.20 1
Water 84.76 84.26 0.50 3

T = min{34, 2} = 2

5.3. Complexity analysis of the neural models

Once the accuracy results havebeen comparedbymeansof non-parametric statistical tests,
wemove on to the complexity analysis in terms of the number of connections that are con-
tained in the neural network models. The best accuracy results for each data set and FS
method (F0, F1 and F2) are now extracted from Table 5 and analysed via the number of
links. Table 7 represents the average number of connections along with the average test
accuracy and the average number of inputs to the neural network classifier for each faced
problem. According to the provided information, the number of inputswith F2 has suffered
an average increase of around a 30% in contrast to F1. On the other hand, the number of

Table 7. Complexity analysis of the neural models obtained in eight data sets utilising TSEA and TSEAFS
with F0, F1 and F2.

Data set FR-FSS method Inputs Av. Accuracy± SD Av. no. connections± SD

German F0 61.00 72.24 ± 2.29 89.81 ± 18.75
F1 16.00 72.57 ± 1.30 45.20 ± 9.55
F2 17.33 73.41 ± 1.61 43.61 ± 10.90

Labor F0 29.00 81.58 ± 8.54 45.86 ± 10.79
F1 3.00 90.58 ± 3.39 16.77 ± 1.82
F2 4.67 91.40 ± 4.35 17.37 ± 2.47

Libras F0 90.00 40.25 ± 10.95 279.37 ± 63.29
F1 29.33 45.68 ± 7.06 148.57 ± 16.14
F2 40.00 47.32 ± 8.53 188.53 ± 17.72

Lymphography F0 38.00 77.09 ± 6.13 76.36 ± 13.85
F1 9.33 76.61 ± 7.46 42.51 ± 4.14
F2 11.33 80.91 ± 7.35 42.46 ± 4.25

Olitos F0 25.00 67.81 ± 6.21 63.89 ± 11.37
F1 10.67 68.81 ± 5.36 48.78 ± 6.70
F2 13.00 69.86 ± 4.82 49.48 ± 8.73

Promoter F0 114.00 63.74 ± 9.17 502.80 ± 54.35
F1 7.33 77.69 ± 5.86 27.83 ± 3.65
F2 9.00 77.23 ± 5.02 26.67 ± 3.95

Satellite F0 36.00 83.48 ± 2.50 118.78 ± 16.94
F1 14.67 83.53 ± 2.62 79.92 ± 7.90
F2 25.00 83.74 ± 1.88 91.52 ± 9.38

Water F0 37.00 83.90 ± 3.53 68.89 ± 11.15
F1 12.33 84.26 ± 3.54 50.97 ± 6.47
F2 14.33 84.76 ± 3.80 41.62 ± 7.37

Average F0 53.75 71.26 ± 6.17 155.72 ± 25.06
F1 12.83 74.97 ± 4.57 57.57 ± 7.04
F2 16.83 76.08 ± 4.67 62.66 ± 8.10
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connections have been only raised in a 10%. The number of connections after the appli-
cation of the FS via F2 is almost a 60% lower than the number of links without any kind of
filtering.Wehave to bear inmind that the input size of the initial situation has been reduced
in a very outstanding way, about a 75% with F2 filter.

5.4. Results obtainedwith a variety of filters and classifiers

Now, a comparison, applying the current proposal (F2), the baseline FR-FSS (F1), mRMR
and SVM-RFE, is performed between TSEAFS and othermachine learning algorithms. These
methods are C4.5, k-NN, -where k is 1-, PART (Frank & Witten, 1998) and SVM. Since these
methods are implemented inWeka tool (Frank et al., 2010), we have conducted the experi-
ments andused the same cross-validation, thus the same instances in eachof the partitions,
that in the reported results in previous sections.

Regarding the parameters, the algorithms have been run with the Weka default values
because those are the recommended ones by the own authors of the algorithms.

mRMR and SVM-RFE require to prompt a threshold or the number of attributes to be
selected. Our choice has been to consider a common relative value of attributes for all the
data sets, that is to select the 70% of the initial number of inputs. In addition, for SVM-RFE
the parameter associated with the complexity (C) has been set to 0.

We have outlined in Table 8 the average results with F1, F2, mRMR and SVM-RFE for each
data set and algorithm. Due to we have used FR-FSS for the FS, the same reduced features
set is applied to all classifiers. Concerning TSEAFS, on the one hand for F1 and F2 is reported
the best mean value of the two configurations shown in Table 5; for mRMR and SVM-RFE
we have tested two configurations with the same parameters that have been used without
FS and we have only depicted the results of the best configuration. Really, the number of
inputs in the case ofmRMRand SVM-RFE is just closer to the starting situation and a training
of the neural models with a number of neurons similar to those related F1 and F2 could not
learn enough to be able to generalise in an appropriate way.

From an analysis of the results, we can assert the following. Generally speaking, F2 has
a higher performance than F1; with the exceptions of TSEAFS and C4.5, the improvements
are not very strong. mRMR works very fine with SVM and PART. SVM-RFE is a good option
to be combined with C4.5. Next, we analyse every classifier one by one. C4.5 gets the best
average results with SVM-RFE followed by F2; according to punctual results SVM-RFE wins
in three problems followed by two times for F2. Classifier 1NN achieves, in average, the best
results with F2 and after that F1; individually, F2 and F1 achieves the best performance in
one data set. PART algorithm sheds light on the best average results with mRMR, followed
by F2; mRMR gets the best results for three problems and F2 for two out of eight data set
included in the test-bed. SVM operates excellently with mRMR and good with SVM-RFE; in
contrast, the individual performance is in the other way round because SVM-RFE wins four
times by the three times ofmRMR. From thepoint of viewof the average feature subset size,
the lower number of attributes is caught by F1 and F2; on the contrary, SVM-RFE andmRMR
select the highest number of features but alternatively the input parameter is customisable
to have a greater or lower number of attributes.

Now, we move on to the global perspective of the top best individual results for each
data set. The pair (SVM-RFE, SVM) achieves the global best results forGerman and Lymphog-
raphy problems. The combination ofmRMRwith SVMget the best behaviours forOlitos and
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Table 8. Global test accuracy results for several classifiers with the FR-FSSs F1 and F2, mRMR and SVM-
RFE.

Data set
Filter

method

Av.
feature
subset
size C4.5 1NN PART SVM TSEAFS

German F1 16.00 71.30 ± 2.24 69.50 ± 1.30 69.40 ± 0.90 73.50 ± 0.79 72.57 ± 1.30
F2 17.33 70.60 ± 3.12 68.90 ± 2.25 71.70 ± 1.91 73.00 ± 0.64 73.41 ± 1.61

mRMR 43.00 71.97 ± 3.24 68.57 ± 0.46 71.17 ± 2.57 74.98 ± 0.87 72.38 ± 1.71
SVM-RFE 43.00 71.17 ± 4.20 69.67 ± 2.35 69.37 ± 1.20 75.18 ± 0.69 72.08 ± 1.62

Labor F1 3.00 85.96 ± 6.08 89.47 ± 5.26 85.96 ± 6.08 92.98 ± 3.04 90.58 ± 3.39
F2 4.67 85.96 ± 6.08 94.74 ± 5.26 85.96 ± 6.08 92.98 ± 3.04 91.40 ± 4.35

mRMR 20.00 85.96 ± 6.08 91.23 ± 6.08 85.96 ± 6.08 91.23 ± 8.04 89.70 ± 5.40
SVM-RFE 20.00 87.72 ± 3.04 92.98 ± 3.04 85.96 ± 3.04 92.98 ± 3.04 90.05 ± 6.98

Libras F1 29.33 37.78 ± 9.73 64.72 ± 4.35 44.17 ± 10.93 53.06 ± 10.29 45.68 ± 7.06
F2 40.00 46.11 ± 10.88 66.67 ± 15.43 41.39 ± 11.38 58.89 ± 10.62 47.32 ± 8.53

mRMR 63.00 46.67 ± 12.01 67.22 ± 14.82 45.00 ± 12.83 56.94 ± 12.14 33.41 ± 9.67
SVM-RFE 63.00 51.67 ± 14.17 67.50 ± 16.73 42.50 ± 8.21 60.56 ± 14.49 34.50 ± 10.23

Lymphography F1 9.33 71.59 ± 9.01 77.69 ± 2.25 76.98 ± 6.08 81.05 ± 6.67 76.61 ± 7.46
F2 11.33 72.95 ± 6.67 75.65 ± 3.77 75.62 ± 7.54 81.05 ± 4.41 80.91 ± 7.35

mRMR 27.00 72.11 ± 7.17 79.59 ± 5.40 77.55 ± 8.90 82.99 ± 5.14 76.46 ± 6.87
SVM-RFE 27.00 75.51 ± 9.35 80.95 ± 6.56 76.87 ± 6.56 83.67 ± 7.36 75.94 ± 6.33

Olitos F1 10.67 55.83 ± 3.82 72.50 ± 2.50 60.83 ± 1.44 71.67 ± 3.82 68.81 ± 5.36
F2 13.00 55.00 ± 4.33 70.83 ± 1.44 61.67 ± 1.44 75.83 ± 3.82 69.86 ± 4.82

mRMR 18.00 58.33 ± 1.44 75.83 ± 7.64 63.33 ± 8.04 85.00 ± 4.33 65.33 ± 7.54
SVM-RFE 18.00 54.17 ± 3.82 65.83 ± 7.22 62.50 ± 12.99 79.17 ± 5.20 67.30 ± 7.50

Promoter F1 7.33 76.43 ± 1.24 82.14 ± 8.42 78.33 ± 2.89 77.43 ± 7.06 77.69 ± 5.86
F2 9.00 78.33 ± 4.06 79.29 ± 3.98 77.41 ± 4.49 79.26 ± 1.28 77.23 ± 5.02

mRMR 80.00 71.43 ± 10.30 69.52 ± 3.30 74.29 ± 2.86 87.62 ± 3.30 74.31 ± 6.08
SVM-RFE 80.00 73.33 ± 5.95 74.29 ± 4.95 70.48 ± 10.03 81.91 ± 5.95 75.34 ± 5.91

Satellite F1 14.67 83.67 ± 2.52 86.28 ± 1.06 83.64 ± 2.15 69.40 ± 0.90 83.53 ± 2.62
F2 25.00 84.13 ± 2.70 87.60 ± 0.81 84.17 ± 1.93 71.70 ± 1.91 83.74 ± 1.88

mRMR 25.00 83.96 ± 2.30 87.42 ± 1.12 84.59 ± 2.10 84.14 ± 1.20 82.09 ± 2.33
SVM-RFE 25.00 84.11 ± 3.03 87.88 ± 1.05 84.64 ± 2.19 84.53 ± 1.83 82.49 ± 2.14

Water F1 12.33 81.39 ± 2.55 81.38 ± 0.31 80.42 ± 1.73 82.35 ± 2.90 84.26 ± 3.54
F2 14.33 81.00 ± 3.16 81.77 ± 2.85 82.15 ± 2.25 82.93 ± 4.61 84.76 ± 3.80

mRMR 26.00 77.78 ± 1.76 81.99 ± 1.45 80.84 ± 3.32 83.91 ± 4.70 82.40 ± 1.59
SVM-RFE 26.00 80.65 ± 2.02 82.18 ± 3.20 78.35 ± 1.33 83.53 ± 4.24 82.17 ± 1.61

Average F1 12.83 70.49 ± 4.65 77.96 ± 3.18 72.47 ± 4.03 75.18 ± 4.43 74.97 ± 4.57
F2 16.83 71.76 ± 5.13 78.18 ± 4.47 72.51 ± 4.63 76.96 ± 3.79 76.08 ± 4.67

mRMR 37.75 71.03 ± 5.54 77.67 ± 5.03 72.84 ± 5.83 80.85 ± 4.97 72.01 ± 5.15
SVM-RFE 37.75 72.29 ± 5.70 77.66 ± 5.64 71.33 ± 5.69 80.19 ± 5.35 72.48 ± 5.29

Promoter data sets. SVM-RFE together with 1NN reaches the best results with Libras and
Satellite problems. The couple F2 and 1NN is the best approach for Labor data set. Lastly, F2
and TSEA is the most suitable tandem forWater problem.

SVM-RFE with SVM gets the best results in the half of the test-bed which indicates that
is a very interesting approach but we have to take into account that the setting is not
fully automatic and the best or worst performance may be influenced by the input value;
although SVM-RFE is an embedded method the behaviour is not remarkably better than
other general purpose filters like mRMR. F2 with TSEA achieves the best results in seven
out of eight problems which is a very outstanding fact. The remaining classifiers may have
good punctual performances with mRMR, SVM-RFE, F2 or F1 but the trend is neither clear
nor homogeneous.
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Figure 4. Plot with global average results for a good number of classifiers with F2.

It has been shown that F2 is not very appropriate for SVM. For this reason, it will be
excluded in thenext summarisingplot about F2. Figure 4 shows abox-plotwith the average
results for C4.5, 1NN, PART and TSEAFS with F2 grouping by data set. As can be seen 1NN
and TSEAFS obtain the most relevant results. PART in some cases has a better behaviour
than C4.5.

6. Conclusions

This paper introduced an approach based on broadening the subset of attributes obtained
with a FR-FSS filter based on consistency via adding some few more attributes that are
determined with other FR-FSS using a correlation measure. The experimental results and
the statistical test shown that the accuracy improvement is significant in relation with
the base approach in the context of product unit neural networks trained with an evo-
lutionary programming algorithm. The proposed FS algorithm has been compared with
mRMR and SVM-RFE. The new contribution exhibits a better performance than the last
two aforementioned methods with product unit networks. Also other kinds of classifiers,
such as C4.5, 1NN, PART and SVM were tested. A relevant conclusion is that the new
approachmay sometimesbehelpful forC4.5 andPARTclassifiers. According to the reported
results, consistency and correlation measures might be considered to a certain extent as
complementary metrics that could operate in cooperation.

Authors believe that the presented approach will be challenging to data mining practi-
tioners in order to try to evaluate similar approaches to their own classifiers. As future work,
it may be interesting to apply the current proposal, and then other kind of pre-processing
technique taking into account that a more limited lost of information than usual is caused
by the FSmethod itself. The empirical studywere conductedoneight binary andmulti-class
classification problems on real-world applications with test error rates around a 20% in the
best cases without any kind of pre-processing via FS.
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