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A B S T R A C T   

bioclim is a software package in R language for bioclimatic classification based on the Type of Bioclimatic Regime 
approach, which combines climatic and soil properties to classify a region according to its suitability for plant 
vegetative activity. We present the software’s operating modes, capabilities and limitations, including real-world 
usage examples. Using monthly temperature, precipitation, and field capacity as inputs, bioclim follows a 
straightforward workflow using three functions to compute: i) a comprehensive water balance describing water 
resource dynamics throughout the year; ii) a bioclimatic balance to estimate plant vegetative activity; and iii) a 
collection of bioclimatic intensities quantifying vegetative activity changes. The program uses the results of these 
functions to classify bioclimatic type at zonal, regional and local scales. The three functions’ outputs can be 
calculated independently, strengthening the software’s cross-disciplinary application potential, such as clima
tology and hydrology. bioclim uses numeric and raster formats as input data and contains highly flexible options 
for a wide range of purposes, from scientific research to end users’ representations. The water and bioclimatic 
balance results can be presented in numerical, graphical, or cartographic forms.   

1. Introduction 

Bioclimatic classifications help to model the spatial distribution of 
vegetation and animals worldwide through climate data, due to their 
ability to synthesise the main climatic characteristics that are important 
for the presence of different vegetation types. These models have been 
applied on global (e.g., Kottek et al., 2006; Metzger et al., 2012) and 
national scales (e.g., Amigo and Ramírez, 1998; Djamali et al., 2011; 
Pesaresi et al., 2014) for purposes such as modelling vegetation response 
to climate change (Andrade and Contente, 2020; Kirilenko and Solomon, 
1998) or defining climatic suitability for crops (Honorio et al., 2018; 
Serrano-Notivoli et al., 2020). 

Among the most popular classification methods, Köppen developed 
his first version in the 19th century (Köppen, 1884), which has since 
been extensively used with few modifications until recently. This 
method uses a basic summary of precipitation and temperature to 
categorise areas’ climates in terms of three parameters (i.e. climate zone, 
precipitation regime, and heat level). This approach has achieved good 
success In terms of biogeographical applications, however, it is too 
general for modelling vegetation habitats. In The second half of the 20th 

century, more specific classifications were developed based on vegeta
tion requirements, such as the Rivas-Martínez et al. (2002) model, which 
uses a combination of temperature and precipitation indices fitted to 
plant requirements, or the Holdridge (1967) model, based on the 
required temperatures for different plant development stages. While 
these studies establish major ecological classification units, they do not 
consider the influence of soil parameters as a basic condition of plant 
development in different climates – this factor is important since soil–
climate interactions can be monitored through water balance, an aspect 
that was not fully considered by the above references. These studies 
instead used temperature–precipitation indices, thereby simplifying the 
evaporative losses. Evapotranspiration is a basic parameter derived from 
water balance to monitor water availability for plants and, while it can 
be derived only from temperature and precipitation, modern methods 
can improve its estimation accuracy using a few additional variables 
such as wind speed or humidity (El-kenawy et al., 2022; Kisi et al., 
2022). The evapotranspiration calculation method should be chosen 
based on the type of climate (Vishwakarma et al., 2022) and using as 
many climatic variables as possible (Tomas-Burguera et al., 2019). 

The Type of Bioclimatic Regime (TBR) method proposed by Cámara 
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et al. (2020) combines climatic and edaphic properties through a 
comprehensive water balance that reflects the local behaviour of cli
mate–soil interactions throughout the year. The TBR workflow includes 
calculating intermediate variables such as: i) a water balance describing 
water resources throughout the year; ii) a bioclimatic balance to esti
mate the vegetative activity of plants; and iii) bioclimatic intensities as 
indicators of vegetative activity changes. These variables are of para
mount importance for studies on a broad range of topics including hy
drology, water resources, and ecosystem dynamics. Furthermore, 
vegetation growth is influenced by various climatic requirements that 
differ depending on the type of ecosystem and plant species. Thus, 
effectively Modelling the most suitable distribution areas for the growth 
of different plants requires the use of not only precipitation and tem
perature but also other derived variables that must be calculated. 

The aims of our study are as follows: 1) translate the TBR method 
into an open-access, user-friendly package to create bioclimatic classi
fications; 2) improve the spatial analysis of TBR results by integrating 
geospatial information; and 3) make the approach useful to a wide 
audience through flexible inputs in terms of water balance calculation 
and operating options. 

Some existing packages of functions are available to compute cli
matic or bioclimatic classifications, however, Most of them are devoted 
to calculating a wide variety of climatic, bioclimatic, or agroclimatic 
indicators derived from precipitation and temperature. Although useful, 
these packages do not perform bioclimatic classifications because they 
focus only on climatic aspects from the perspective of vegetation and not 
as part of an integrated approach, as described by Cámara et al. (2020). 
Other approaches include ANUCLIM (Xu and Hutchinson, 2013), which 
computes several climate-based indices, similar to ENVIREM (Title and 
Bemmels, 2018); ClimClass (Eccel et al., 2016) and kgc (Bryant et al., 
2017) can also accomplish Köppen classifications. Furthermore, WatBal 
(Srinivas et al., 2016) fits a water balance for bioclimatic classifications. 

In this paper, we describe for the first time the operation and pos
sibilities of the bioclim software, a collection of functions distributed as 
an R package that can classify data series or raster collections into a 
bioclimatic classification fitted to vegetation requirements through 
environmental parameters. This method requires only monthly tem
perature and precipitation data and a field capacity value representing 
the soil characteristics. The bioclim package is highly flexible and accepts 
input data in raster format; In this case, the output will be a multi-layer 
raster. The novelty of this package lies in the software’s capability to 
compute bioclimatic classifications in a geospatial format at any spatial 
resolution. One of the advantages of bioclim over conventional GIS 
software is the automatic computation of the classifications, without the 

need to use multiple layers. Furthermore, the results in both numerical 
or geospatial formats allow a comprehensive and fully adaptive water 
balance to be independently computed for additional analyses. 

The bioclim R package is free and open-source software available 
through the CRAN repository (https://cran.r-project.org/package=biocl 
im). The package was released under the General Public Licence v3.0 
(GPL-3.0) and runs on all the operating systems supported by R (>4.1). 
bioclim was written in R and the program files are <1 MB in size. This is 
the first release of the software, and its design and development has had 
no previous versions. Its open-access nature allows for continuous 
improvement and evolution based on user feedback and reports. The 
package’s functions are based on the theoretical work of Cámara et al. 
(2020) to address a gap in existing automatic bioclimatic classification 
methods. 

2. Software design and characteristics 

The package performs bioclimatic classification through the 
computation of: 1) a complete water balance to specify the theoretical 
monthly water resource dynamics and 2) a bioclimatic balance to relate 
climate and plant development through calculating vegetative activity 
(Fig. 1). Depending on the input type, which can be numeric or geo
spatial (i.e. raster) data, the functions can yield outputs in alphanumeric 
format (table or text) or as a collection of georeferenced layers with the 
same geographic characteristics (e.g. extent, resolution, projection sys
tem, etc.) as the input data. The bioclimatic balance, intensities, and 
classification are based on the water balance, which forms the core of 
this approach’s methodology. While most of the parameters (e.g. inputs, 
evapotranspiration method) are user-defined, the main limitations of 
bioclim are from the input data, which condition the final results 
depending on the data quality, spatial resolution, and 
representativeness. 

2.1. Input data 

The only three required inputs for bioclim are the temperature (T), 
precipitation (P), and field capacity (CC). The first two parameters can 
be numeric vectors of length 12 containing average monthly values of T 
and P at a single location; in this case, the latitude is also required for 
internal theoretical calculations of evapotranspiration. The other option 
is to provide 24 raster layers (i.e. one for each month and variable) with 
identical spatial domain, resolution, and coordinate system. When T and 
P are provided as raster inputs, the outputs are always in raster format. 

Field capacity is a theoretical calculation of the soil’s water retention 

Fig. 1. Workflow of bioclim package.  
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capacity. The depth of the soil where water loss occurs by evapotrans
piration is defined by the depth of the root system of the existing 
vegetation. The proportions of sand-, silt-, and clay-sized particles define 
the porosity of a soil and, therefore, its water retention capacity; How
ever, this capacity is influenced by the type of vegetation present above 
the soil which, depending on the depth of the roots, may decrease or 
favour water accumulation. On this premise, López Cadenas et al. (1986) 
mathematically established CC as: 

CC = RC • Rd  

where RC is the retention capacity of the water (in millimetres) in soil 
texture types, and Rd is the average root depth (in metres) of different 
types of vegetation and crops. The authors provided guiding values for 
both variables (see Table S1). CC can be provided as an input in all 
functions of bioclim, either as a single numerical value or as a raster 
layer. 

2.2. Water balance 

The Water balance calculation is the first step used in assessing 
monthly water availability; in bioclim, this calculation is based on the 
application of the Thornthwaite and Mather (1955) method. If provided, 
this function accepts a pre-computed potential evapotranspiration set of 
monthly layers (only in raster mode) as an input instead of using the 
Thornthwaite–Mather method. 

The function outputs 12 variables (Table 1) at a monthly scale that 
can be grouped into three categories, i.e. climatic (T, P, PET, TEAW), soil 
(PAWL, ST, i_ST, RET, MD, ME), and hydrological (r, rP) variables. When 
working with numerical inputs, the watbal() function must be used, with 
the results provided as a table, whereas raster inputs require the use of 
the watbalRaster() function, which produces 144 (.tif) files (i.e. 12 
monthly layers for each of the 12 variables). 

2.3. Bioclimatic balance 

The bioclimatic balance (BB) calculation in bioclim is adapted from 
Montero de Burgos and González (1974) and aims to calculate the 
production based on temperature and rainfall patterns. The BB calcu
lation estimates, throughout the year, periods of positive vegetative 
activity (i.e. with production of biomass) and periods of vegetative ac
tivity stagnation (i.e. without production of biomass), relating climate 
and plant development. The variables derived from the water balance 
step help to calculate the indicators of these changes, called bioclimatic 
intensities (BIs). These BIs provide insights into plant vegetative activity 
or stagnation and, therefore, their productivity (biomass productivity) 
in a specific climate. Four BIs are computed by the BB: potential (PBI), 
real (RBI), conditioned (CBI), and free (FBI), representing the vegetative 
activity based on the water balance provided as an input. 

The relevant bioclimatic balance function is biobal(); when using 
numerical inputs, this function yields eight variables (Table 2) at a 
monthly scale that are required to compute the four BIs (Table 3). In 
contrast, The raster mode requires the biobalRaster() function, which 
only yields the four BIs on a monthly scale. 

BIs are measured in bioclimatic units (bcu), which indicate the 
climate productivity assuming there are no deficiency factors. A single 
bcu is equivalent to the number of plant material cubic metres per 
hectare in one year, thus the BIs are a convenient indicator of biomass 
production. 

The BB output is a table containing monthly values; assuming the 
function input is numerical and not raster, the results can be plotted to 
create a graphical visualisation of the BIs. However, this graphic can be 
further improved with the calculation, through the bioint() function, of 
two variants of the original four BIs (i.e. PBI, RBI, CBI and FBI): warm 
(w) and cold (c). The warm BIs measure positive vegetative activity, 
whereas the cold BIs measure the degree of vegetative stagnation. In 

addition, the function calculates a fifth BI, the Dry Bioclimatic Intensity 
(DBI), which quantifies the drought intensity during the dry season (if it 
exists), thus measuring biomass productivity stagnation due to drought. 
In summary, the bioint() function yields 10 variables:  

- PBIw, RBIw, CBIw, FBIw, DBIw: Potential, Real, Conditioned, Free, 
and Dry bioclimatic intensities, respectively, during positive plant 
vegetative activity.  

- PBIc, RBIc, CBIc, FBIc, DBIc: Potential, Real, Conditioned, Free and 
Dry bioclimatic intensities, respectively during the absence of 
vegetative activity. 

The result of the bioint() function is required to run the plotBiobal() 
function, which produces a plot of the monthly values of the BIs to 
evaluate vegetative activity throughout the year, including showing the 
months in which hydric/thermal vegetative stagnation occur. 

Table 1 
Output variables from water balance calculation.  

Variable Description Mode of calculation 

T Monthly 
temperature 

Same values as input 

P 
Monthly 
precipitation Same values as input 

PET 

Potential 
evapotranspiration ( 
Thornthwaite, 
1948) 

Adapted from Beguería and Vicente-Serrano 
(2017). 

TEAW 
Theoretical 
exceedance of 
available water 

Difference between monthly precipitation and 
potential evapotranspiration (m) 
TEAWm = Pm − PETm 

PALW 

Potential 
accumulated losses 
of water in each 
month 

Represents the accumulated negative 
differences between precipitation and potential 
evapotranspiration. Calculated using a 
sequential process starting in the first month 
where TEAW <0. 

PALWm

{
0 TEAWm ≥ 0

PALWm− 1 + TEALWm TEAWm < 0 

ST 
Water (moisture) 
stored in soil 

Represents the accumulated water in the soil, 
with the field capacity as its upper limit. When 
TEAW is positive and greater than CC, then STm 

= CC. Otherwise, the monthly ST is calculated as 
follows: 

STm

{
STm− 1 + TEAWm TEAWm ≥ 0

CC • exp(PALWm/CC) TEAWm < 0 

i_ST 
Soil moisture 
change compared to 
previous month 

i_STm = STm – STm− 1 

RET Real 
evapotranspiration 

When P is greater than TEAW, then RET = PET; 
otherwise, RET depends on the monthly changes 
in soil moisture. 

RETm

{
PETm Pm ≥ PETm

Pm + |i_STm| Pm < PETm 

MD Moisture deficit 
Difference between RET and PET. 
MDm = RETm – PETm 

ME Moisture excess 

When TEAW is positive, the moisture excess is 
set as the difference between the precipitation 
and the sum of RET and the monthly change in 
soil moisture. 

MEm

{
Pm–(RETm + i_STm) TEAWm > 0

0 TEAWm ≤ 0 

r Surface runoff 

This variable is conditioned to the months in 
which TEAW is positive and ST is greater than 
CC. 

rm

{
0.5(MEm + rm− 1) TEAWm > 0 STm > CC

0 otherwise 

rP 
Percentage of 
precipitation 
occurring as runoff 

rPm = rm • 100/Pm 

All of the above variables can be plotted with the plotWatbal() function, which 
requires the result of the water balance function as an input. The resulting plots 
show the variables’ values on a monthly scale. 
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2.4. Bioclimatic classification 

Bioclimatic classification is performed through the function biotype() 
when working with numeric inputs and with function biotypeRaster() 
when the inputs are in raster format. Both functions accept multiple data 
types, from raw precipitation and temperature variables to pre- 
computed water and bioclimatic balances. 

Three classification types are performed depending on the spatial 
scale (Fig. 2): 1) zonal (macro-scale), based on large, latitude-based 
climatic groups; 2) regional (meso-scale), also called TBRs, based on 
thermal and humidity requirements of vegetation; and 3) local (micro- 
scale), where the TBRs are fine-tuned depending on their humidity 
character. 

Using climatic data (from stations or raster products), Zonal classi
fication defines the region in terms of major climatic units. The results 
from water and bioclimatic balances then provide the TBR regional 
classification, which is based on the limits of temperature and precipi
tation for plant development. Finally, the Thornthwaite index defines 
the local effect of climate on soil moisture (Thornthwaite, 1948). 

The TBR regional classification translates climatic data into biolog
ical restrictions. For instance, temperature limitations can determine 
five different scenarios for plant development: 

Table 2 
Output variables from bioclimatic balance calculation.  

Variable Description Mode of calculation 

AIP 
Available infiltrated 
precipitation 

The result of weighting monthly 
precipitation with that month’s surface 
runoff. rP from water balance is used to 
compute this parameter. 
AIPm = Cem • Pm, where Cem = 1 – (rPm/ 
100) 

T Monthly temperature Same values as T from the water balance. 

PET 
Potential 
evapotranspiration ( 
Thornthwaite, 1948) 

This parameter helps to identify the water 
requirements of vegetation. Same values 
as PET from water balance. 

RE Residual 
evapotranspiration 

When the available water is less than PET, 
vegetative activity progressively 
decreases and plants activate their 
defence mechanisms (closing of stomas, 
defoliation, etc.). At this point, plant 
evapotranspiration continues but at its 
minimum, considered to be 20% of PET 
by Montero de Burgos and González 
(1974). 
REm = PETm/5 

AW Available water 
The sum of monthly precipitation and the 
surplus (S) from the previous month. 
AWm = Pm • Sm− 1 

S Surplus 

Represents the excess water in the month, 
calculated as the difference between AW 
and PET. 
Sm = AWm • PETm 

If S is negative, it will take a value 
determined by the relationship between 
the available water (AW) and the residual 
evapotranspiration (RE): 

Sm

{
0 AWm > REm

REm–AWm otherwise 

CWA Coefficient of water 
availability 

CWA is expressed as a ratio between the 
difference in available water and residual 
evapotranspiration and the difference 
between PET and residual 
evapotranspiration. 
CWAm = (AWm − REm)/(PETm − REm) 

T75 Temperature minus 7.5 ◦C 

The result of subtracting 7.5 from each 
monthly temperature. Positive results are 
directly related to an increased plant 
growth velocity. The minimum 
temperature of 7.5 ◦C is the level at which 
plant vegetative activity begins, assuming 
no other soil or climatic limitations.  

Table 3 
Bioclimatic intensities calculated from bioclimatic balance output.  

Bioclimatic 
intensity 

Description Mode of calculation/Interpretation 

PBI Potential 
bioclimatic 
intensity 

The theoretical BI when there are no 
water restrictions, representing a measure 
of the maximum vegetative activity. PBI 
can be assumed as the vegetative activity 
of irrigated land. 

RBI Real bioclimatic 
intensity 

RBI is calculated through the water 
availability based on the observed 
climatic values. As vegetative activity 
depends on water availability throughout 
the year, this parameter can 
proportionally decrease depending on the 
relation between PET and AW. 

CBI Conditioned 
bioclimatic 
intensity 

CBI represents the period of water 
recovery after a drought until the water 
input compensates for the imbalance, i.e. 
until plants have sufficient water to 
recover their vegetative activity. Different 
species are variably adapted to CBI 
periods depending on their water 
requirements; for instance, herbaceous 
plants require shorter CBI periods to 
compensate for drought than larger 
species. 

FBI Free bioclimatic 
intensity 

FBI occurs in periods without drought, 
after CBI, and represents the capacity of 
the location (based on climatic data) to 
produce biomass, considering the 
limitations of drought and cold. It is 
equivalent to the RBI.  

Fig. 2. Bioclimatic types resulting from classification at different spatial scales.  
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- Termophyllia: absence of thermal restrictions and low annual thermal 
oscillation.  

- Euritermophyllia: significant temperature variation throughout the 
year but without vegetative activity stagnation due to thermal 
causes. 

- Cryophyllia: cold temperatures produce one to five months of vege
tative activity stagnation.  

- Mesocryophyllia: cold temperatures produce six to nine months of 
vegetative activity stagnation, conditioning the presence of broad- 
leaved trees.  

- Hypercryophyllia: cold temperatures produce six to nine months of 
vegetative activity stagnation, conditioning all woody plants. 

In parallel, water scarcity also determines various limitations 

Euritermo-Ombrophyllo

Euritermo-Mesophyllo

Euritermo-Tropophyllo

Euritermo-Xerophyllo

Euritermo-Hyperxerophyllo

Ombrophyllo

Mesophyllo

Tropophyllo

Xerophyllo

Hyperxerophyllo

Ombro-Tropophyllo

Ombro-Xerophyllo

Cryo-Ombrophyllo

Cryo-Mesophyllo

Cryo-Tropophyllo

Cryo-Xerophyllo

Cryo-Hyperxerophyllo

Mesocryo-Ombrophyllo

Mesocryo-Mesophyllo

Mesocryo-Tropophyllo

Mesocryo-Xerophyllo

Mesocryo-Hyperxerophyllo

Hypercryo-Ombrophyllo

Hypercryo-Mesophyllo

Hypercryo-Tropophyllo

Hypercryo-Xerophyllo

Hypercryo-Hyperxerophyllo

Fig. 3. Bioclimatic classification based on TBRs under (A) historical climatic conditions (1970–2000) and (B) a severe future climate change scenario 
(SSP585, 2061–2080). 
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depending on its intensity:  

- Ombrophyllia: absence of water restrictions (i.e. precipitation in all 
months exceeds 60 mm).  

- Mesophyllia: moderate water scarcity without vegetative activity 
stagnation. Some months with water deficit in soil.  

- Tropophyllia: water scarcity with vegetative activity stagnation from 
one to four months. 

- Xerophyllia: water scarcity with prolonged vegetative activity stag
nation from five to eight months.  

- Hyperxerophyllia: water scarcity with very long vegetative activity 
stagnation from nine to 12 months. 

Using this classification on worldwide climate data, Cámara et al. 
(2020) identified five macro-scale zonal categories, 27 meso-scale TBRs, 
and 157 micro-scale subtypes. 

3. Examples of potential applications 

To show the potential applications of the package, we present ex
amples at three spatial scales: 1) global, illustrating the bioclimatic 
classification of the entire world’s land area at both the present time and 
under a severe climate change scenario; 2) regional, showing a collec
tion of output variables derived from a water balance calculation of the 
Mediterranean basin; and 3) local, performing a complete bioclimatic 
classification of a mid-latitude city. 

We used present (1970–2000) and future (2061–2080) climatic data 
(temperature and precipitation) from WorldClim (version 2.1) (Fick and 
Hijmans, 2017) and a constant value of 400 as the field capacity. The 
Potential evapotranspiration was calculated using the default 
Thornthwaite’s method in bioclim. The complete code for reproducing 
the examples is included as supplementary material. 

3.1. Global scale: variations of bioclimates under climate change 
scenarios 

In this example, we compute the complete bioclimatic classification 
(Cámara et al., 2020) for the whole Earth’s land area both at present and 
under a severe climate change scenario (Fig. 3). While the calculation is 
relatively time-consuming due to the spatial resolution of the raster 
layers used, the coding is simple: 

waterbalance <− watbalRaster(temp, prec, CC = 400) 
biotypes <− biotypeRaster(bh = waterbalance) 

Several options can be easily specified, such as defining the number 
of CPU cores used to perform the computation or the output folder if files 
should be saved to disk. For this example, both functions were run twice 
in raster format, with temp and prec changed to the historical or future 
climate information as required. In both cases, the biotypeRaster() 
function yielded three layers with classifications at different spatial 
scales; here, We show only the meso-scale TBR classification. 

3.2. Regional scale: water balance of the Mediterranean Basin 

The bioclim package yields not only the bioclimatic classifications as 
a final product but also the results of intermediate functions. In this 
example at a regional scale, the watbalRaster() function is used to create 
a collection of maps of various water balance variables in the Mediter
ranean basin on a monthly scale. The results of PET and RET for May to 
August (Fig. 4) show a latitudinal gradient from humid to dry conditions 
from north to south in all months in both variables, except for in areas of 
mountain ranges. While PET ranges from <50 to >250 mm in this 
gradient, RET shows significantly lower values (maxima below 200 mm) 
with an inverted spatial pattern, i.e. lower RET in the south compared to 
the north. The RET reflects more realistic evapotranspiration due to the 

accumulated water loss in previous months, meaning that, although 
temperature conditions would favour high theoretical evapotranspira
tion rates in July and August, there is no remaining available water to 
evaporate and the incident precipitation is insufficient to increase the 
evapotranspiration rates. 

3.3. Local scale: complete bioclimatic classification of a single location 

The functions from the previous examples can be also applied to 
numerical values for a single location. In this example, a complete 
bioclimatic balance is demonstrated for the city of Seville (Spain). 

This analysis commences with the water balance step by manually 
introducing monthly temperature and precipitation values, which pro
duces a table containing all the variables on a monthly scale (Table 4). 

wb < − watbal(t = c(10,11.5,14,16.5,20,24.5,27.5,28,24.5,19.5, 
14.5,11), 
p = c(55,73,84,58,33,23,2,2,28,66,94,71), 
lat = 37.38, 
CC = 400) 

All the variables of the water balance are simplified in the resulting 
plot (Fig. 5) through four coloured categories (plus one transparent), 
representing the soil’s water management during every month of the 
year (Table 5). (See Table 6.) 

The bioclimatic balance, through the biobal() function, produces a 
monthly table with eight variables and four bioclimatic intensities 
(Table 2) that must be refined to compute warm and cold variants. These 
variants illustrate periods of vegetative activity stagnation and are 
calculated through the bioint() function; this function produces monthly 
values that are used in the plotBiobal() function to plot the complete 
bioclimatic balance throughout the year. For more details on the 
calculation of bioclimatic intensities, see Fidalgo and Cámara (2022). 

bb < − biobal(wb, CC = 400) 
intens <− bioint(bb) 
plotBiobal(intens) 

The single-location bioclimatic balance example (Seville, Fig. 6) 
shows a climatic regime with mild temperatures and low rainfall, 
leading to an absence of cold-induced vegetative activity stagnation. In 
this location, plant development is not temperature-limited as all 
months are above 7.5 ◦C, consequently, there are no cold bioclimatic 
intensities. The only pause in plant development is in August due to dry 
conditions, which is the result of four consecutive months of water 
deficit and intense water demand by the soil, as shown in the water 
balance (Fig. 5). 

The bioclimatic balance calculation provides the required informa
tion to classify the bioclimate at different spatial scales. The biotype() 
function assists in this process through the mode argument, which ac
cepts a value of ‘zonal’ for macro-scale classification, ‘TBR’ for meso- 
scale classification, and ‘sub’ for micro-scale classification. The last op
tion requires the water balance and field capacity because this approach 
is based on the calculation of Thornthwaite’s index. 

biotype(bb = bb, mode = ‘zonal’) 
biotype(bb = bb, mode = ‘TBR’) 
biotype(wb = wb, CC = 400, mode = ‘sub’) 

In the above example, the city of Seville is classified as a ‘Subtropical’ 
climate at a large scale, the ‘Euritermo-Mesophyllo’ with the TBR option, 
and ‘Semiarid Euritermo-Tropophyllo’ using the complete classification 
method. 
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Fig. 4. Potential (left column) and real (right column) evapotranspiration in the Mediterranean basin calculated for May, June, July, and August (rows).  
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4. Discussion and conclusions 

While some existing software programs already calculate climatic 
classifications (e.g. Bryant et al., 2017; Eccel et al., 2016), the bioclim 
package extends far beyond traditional approaches that use a few 
functions with the aim of performing a complete bioclimatic analysis of 
a single location or a region of any size using raster data as an input. The 

bioclim package provides three simple functions to compute water bal
ance, bioclimatic balance, and bioclimatic classification using only 
monthly temperature and precipitation as input data and a field capacity 
value. While these values can be long-term averages or theoretical es
timates, as shown in the examples in this paper, field observations could 
also be used as input to obtain a reliable representation of an area’s 
short-term water and bioclimatic balance. For example, bioclim has 

Table 4 
Water balance for Seville (Spain).  

Month T P PET TEAW PALW ST i_ST RET MD ME r rP 

J 10.0 55.0 16.5 38.5 0 218.1 38.5 16.5 0 0 0 0 
F 11.5 73.0 21.2 51.8 0 269.9 51.8 21.2 0 0 0 0 
M 14.0 84.0 38.4 45.6 0 315.5 45.6 38.4 0 0 0 0 
A 16.5 58.0 56.8 1.2 − 93.4 316.7 1.2 56.8 0 0 0 0 
M 20.0 33.0 92.6 − 59.6 − 153 272.9 − 43.8 76.8 − 15.7 0 0 0 
J 24.5 23.0 138.5 − 115.5 − 268.4 204.5 − 68.4 91.4 − 47.1 0 0 0 
J 27.5 2.0 177.5 − 175.5 − 443.9 131.8 − 72.6 74.6 − 102.9 0 0 0 
A 28.0 2.0 173.4 − 171.4 − 615.4 85.9 − 46.0 48.0 − 125.5 0 0 0 
S 24.5 28.0 117.6 − 89.6 − 704.9 68.7 − 17.2 45.2 − 72.3 0 0 0 
O 19.5 66.0 69.5 − 3.5 − 708.4 68.1 − 0.6 66.6 − 2.9 0 0 0 
N 14.5 94.0 34.1 59.9 0 128 59.9 34.1 0 0 0 0 
D 11.0 71.0 19.4 51.6 0 179.6 51.6 19.4 0 0 0 0 

The values of the table are used to produce the graphical representation that can be built with the plotWatbal() function. 
plotWatbal(wb) 
T: temperature (◦C), P: precipitation (mm), PET: potential evapotranspiration (mm), TEAW: theoretical exceedance of available water (mm), PALW: potential accumulated loss of water 
(mm), ST: soil moisture (mm), i_ST: change in soil moisture (mm), RET: real evapotranspiration (mm), MD: Moisture deficit (mm), ME: Moisture excess (mm), r: surface runoff (mm), and rP: 
percentage of runoff (%). 

0

50

100

150

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m
m

Water exceedance Soil water use Water deficit Soil water recharge

Water balance

Fig. 5. Water balance graphical representation of Seville (Spain).  

Table 5 
Variables calculated to build the water balance graph.  

Variable Description Mode of calculation 

BL Base level Transparent; represents the starting point of the available water in the month. Its value is the minimum of P and PET. 
BLm = min {Pm,PETm} 

WE Water exceedance Shown in dark blue; occurs when the real and potential evapotranspiration are equivalent in the same month and a moisture excess exists. 

WEm

{
Pm − BLm (RETm = PETm) MEm > 0

0 otherwise 
SWU Soil water use Shown in orange; represents the months in which PET is higher than P. 

SWUm

{
RETm − (BLm + WEm) TEAWm > 0

0 TEAWm ≤ 0 
WD Water deficit Shown in red; indicates the absence of available water in the months when the potential evapotranspiration is higher than the real 

evapotranspiration. 

WDm

{
PETm − (BLm + WEm + SWUm) PETm > RETm

0 PETm ≤ RETm 

SWR Soil water 
recharge 

Shown in light blue; quantifies the water excess based on the difference between precipitation and the sum of the previous factors. 

SWRm

{
Pm − (BLm + WEm + SWUm + WDm) TEAWm ≥ 0 ((RETm = PETm) MEm = 0 )

0 otherwise  
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significant potential for monitoring experimental areas with meteoro
logical and soil information but can also be applied to large regions 
using GIS-based data. In this regard, some efforts have previously been 
made to interpolate the results of bioclimatic classifications at point 
locations to ungauged areas using various techniques (e.g. Garzón- 
Machado et al., 2014; Mesquita and Sousa, 2009; Passarella et al., 2020). 
However, direct interpolation of bioclimatic classification results can 
introduce unknown uncertainties due to the underlying assumption that 
the spatial variation of all climatic variables participating in the classi
fication is the same without considering factors such as topography or 
distance from the coast. bioclim avoids this issue by using raster datasets 
of climatic variables as an input, instead relying on the quality of these 
inputs. Furthermore, many climatic gridded datasets also include un
certainty as a measure of reliability at a pixel level (Serrano-Notivoli and 
Tejedor, 2021), which can be useful to evaluate the results at any 
location in the study area. 

The potential applications of bioclim are diverse: from the simple and 
robust bioclimatic classification of vegetation communities to the 
detailed study of any of the components of the water balance at any 
spatial scale. The package is limited only by the information used to run 
the functions, as the final precision of the results is determined by the 
resolution and accuracy of the input data. Although the software’s po
tential uses are wide-ranging, the package in its current form also has 
certain limitations that can compromise the precision of its results, most 
of which are related to the input data. In this context, soil information is 

typically the most difficult data to obtain, especially for large regions. 
However, when field data are not available, models such as those 
developed by Batjes et al. (2020) can be used to provide detailed in
formation. At a methodological level, the calculation process in bioclim is 
robust, however, there is scope for improvement within the potential 
evapotranspiration (PET) method. Thornthwaite’s method has some 
limitations in terms of correctly reproducing the water balance in spe
cific scenarios due to using only the average temperature and precipi
tation, as demonstrated in various applications (e.g. Hashemi and 
Habibian, 1979; Navarro et al., 2022; van der Schrier et al., 2011). While 
a change of method is possible, this implies the inclusion of new climatic 
variables as input data. For example, the Penman–Monteith method 
(Allen et al., 1998) has been demonstrated as the most accurate 
approach for PET calculations (Tomas-Burguera et al., 2019), however, 
this technique requires further climatic information such as wind, solar 
radiation, etc. Although these data can be extracted from different 
modelled sources such as climatic reanalysis, the necessity for more data 
types implies greater uncertainty than using observations. At this time, 
bioclim is not able to compute PET using any method other than 
Thornthwaite’s, however, the package can accept an input dataset to 
replace the calculation (in raster mode). 

The bioclim package is primarily aimed at scientific use, mostly 
within the earth sciences; while biogeographers, climatologists, and 
hydrologists are likely to be the main users, this software can also be 
useful for specific purposes outside of the climatic contextualisation of 

Table 6 
Bioclimatic balance of Seville (Spain).  

Month AIP T PET RE AW S CWA T75 PBI RBI FBI CBI 

J 55.0 10.0 16.5 3.3 159.9 143.4 11.9 2.5 0.5 0.5 0.5 0 
F 73.0 11.5 21.2 4.2 216.4 195.2 12.5 4.0 0.8 0.8 0.8 0 
M 84.0 14.0 38.4 7.7 279.2 240.8 8.8 6.5 1.3 1.3 1.3 0 
A 58.0 16.5 56.8 11.4 298.8 242 6.3 9.0 1.8 1.8 1.8 0 
M 33.0 20.0 92.6 18.5 275.0 182.4 3.5 12.5 2.5 2.5 2.5 0 
J 23.0 24.5 138.5 27.7 205.4 66.9 1.6 17.0 3.4 3.4 3.4 0 
J 2.0 27.5 177.5 35.5 68.9 0 0.2 20.0 4 0.9 0.9 0 
A 2.0 28.0 173.4 34.7 2.0 0 − 0.2 20.5 4.1 − 1 0 0 
S 28.0 24.5 117.6 23.5 28.0 0 0 17.0 3.4 0.2 0 0.2 
O 66.0 19.5 69.5 13.9 66.0 0 0.9 12.0 2.4 2.2 1 1.2 
N 94.0 14.5 34.1 6.8 94.0 59.9 3.2 7.0 1.4 1.4 1.4 0 
D 71.0 11.0 19.4 3.9 130.9 111.5 8.2 3.5 0.7 0.7 0.7 0 

AIP: Available infiltrated precipitation (mm), T: temperature (◦C), PET: potential evapotranspiration (mm), RE: residual evapotranspiration (mm), AW: available water 
(mm), S: surplus (mm), T75: temperature excess over 7.5 ◦C (◦C), PBI: potential bioclimatic intensity, RBI: real bioclimatic intensity, FBI: free bioclimatic intensity, and 
CBI: conditioned bioclimatic intensity. 
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PBIc FBIc CBIc DBIc PBIw FBIw CBIw DBIw

Bioclimatic balance

Fig. 6. Bioclimatic balance graphical representation of the bioclimatic balance for Seville (Spain). PBIc: cold Potential BI, FBIc: cold Free BI, CBIc: cold Conditioned 
BI, DBIc: cold Dry BI, PBIw: warm Potential BI, FBIw: warm Free BI, CBIw: warm Conditioned BI, and DBIw: warm Dry BI. 
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the vegetative activity. For instance, bioclim can be applied to the 
modelling of habitats, first providing a general framework of the po
tential species distribution based on a climatic division of the study area 
and then using the individual variables that are yielded by the package’s 
functions. 

The open-access code of bioclim provides a high level of transparency 
for data analysis and allows for the possibility of adapting the code to 
meet users’ requirements as there are no limitations in terms of modi
fying the parameters and functions. bioclim addresses a previously un
solved need for a deterministic classification of the Earth based on 
rigorous climatic and biogeographical criteria. The result is a software 
package with the capability to generate bioclimatic classifications in a 
simple, automatic, and reliable way both for single locations and large 
regions. 
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España.  

Garzón-Machado, V., Otto, R., del Arco Aguilar, M.J., 2014. Bioclimatic and vegetation 
mapping of a topographically complex oceanic island applying different 
interpolation techniques. Int. J. Biometeorol. 58, 887–899. 

Hashemi, F., Habibian, M.T., 1979. Limitations of temperature-based methods in 
estimating crop evapotranspiration in arid-zone agricultural development projects. 
Agric. Meteorol. 20 (3), 237–247. https://doi.org/10.1016/0002-1571(79)90025-6. 

Holdridge, L.R., 1967. Life Zone Ecology. Tropical Science Center, San José, Costa Rica.  
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