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Abstract
Data processing in sports is a phenomenon increasingly present at all levels, from professionals in search of tools to improve
their performance to beginners motivated by the quantification of their physical activity. In this work, a comparison between
some of the main machine learning and deep learning algorithms is carried out in order to classify padel tennis strokes. Up to
13 representative padel tennis strokes are classified. Before a classification of padel tennis strokes is performed, a sufficiently
representative data set is needed that collects numerous examples of the performance of these strokes. Since there was no
similar data set in the literature, we proceeded to the creation of such a data set, for which we developed a data collection
system based on an electronic device with an inertial measurement unit. Using the developed data set, the machine learning
and deep learning algorithms were hyperparameterized to compare their performance under the best possible configurations.
The algorithms were fed with both the temporal series of the acceleration and speed of the six degrees of freedom and
also with feature engineering input, consisting in calculating the mean, maximum, and minimum values for each axis. The
algorithms evaluated are: fully connected or dense neural networks, 1D convolutional neural networks, decision tree, K nearest
neighbors, support vector machines, and eigenvalue classification. According to the results achieved, the best algorithm is
the 1D convolutional neural network with temporal series input that achieves an accuracy higher than 93%. However, other
simpler algorithms such as dense networks and support vector machines achieve similar results.
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1 Introduction

Over the last few years, the use of microelectromechanical
systems (MEMS) has experienced great expansion in many
sectors. It originatedwith the silicon revolution, thanks to two
important inventions in the late 1950s: (i) the integrated cir-
cuit chip and (ii) the metal oxide semiconductor field effect
transistor (MOSFET), which led to the miniaturization of
electronics, as predicted by Moore’s law. The mass produc-
tion of these systems, together with the popularity of their
use in a multitude of smart devices, has led to a drastic drop
in their price, thus facilitating their expansion in almost all
areas, among which wearables play a relevant role (Kos and
Kramberger 2017). These are small devices that are placed
on the human body, such as bracelets, watches, or rings,
and interact with it and other devices for different purposes.
To put the popularity of these systems into magnitude, the
MEMS market garnered a market value of US$14.32 bil-
lion in 2021. The MEMS market is expected to register a
compound annual growth rate (CAGR) of 18.01% by accu-
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mulating amarket value of US$ 75 billion during the forecast
period 2022–2032 (FACTMR, 2021).

Given the huge amount of data that these devices can
easily provide, wearables are becoming popular for sports
practice at all levels, from fans at home to professional ath-
letes (Seshadri et al. 2019; Yang et al. 2021), drawing the
attention of coaching staff, doctors, and clubs. This technol-
ogy makes it possible to perform a variety of actions such as
evaluating player performance or compiling and comparing
match statistics. It is here where big data has paved the road
for the development of artificial intelligence (AI), since the
appropriate management of large amounts of data allows an
effective learning from it, enabling machines to make deci-
sions that can be qualified as intelligent.

Any data generated on the playing field of play can be
analyzed and studied. For example, in a tennis match last-
ing an hour and a half, around 70.000 records are generated,
while in a soccer match, this number may be increase up
to eight million pieces of captured data. It is clear that this
enormous amount of information can only be analyzed using
data-based technologies. Although the pioneer in the use of
big data was baseball in the 1970s, when historical records of
baseball players in the major American leagues began to be
used (Ladany and Machol 1977), there are numerous appli-
cations that have subsequently arisen through adaptations to
different contexts. In the case of basketball, for example,
NBA data have shown that shorter and more versatile play-
ers are more efficient than taller players who defend the rim,
as it is more productive to score three-pointers than two-
point baskets, even assuming worse defense on the rim itself
(Ladany and Machol 1977). In soccer, big data brings great
value to all clubs in the world, as they use this technology
to improve their game strategies, sign new players, etc. Data
processing in sport can also be applied for other purposes, for
instance, the prevention of injuries. A recent study estimated
that clubs lose between 10% and 30% of their squads due
to injuries (Päivitetty, 2015). With the use of the appropri-
ate technology, any deficiencies in an athlete’s fitness can be
early identified and certain injuries can be prevented.

Despite its recent creation (Martínez 2013), padel tennis
is a sport that is booming worldwide. For instance, in Spain,
padel tennis has doubled the number of federated players in
less than 9 years, surpassing tennis in 2020, and becoming
one of the most practiced sports at national level.1 Therefore,
this study aims to bring together two growing disciplines:
artificial intelligence and tennis padel. This paper presents
a comparison of deep learning and machine learning algo-
rithms for the classification of padel strokes. A stroke is given
when a player hits the ball with the racket. Then, the target

1 Data of sport practitioners in Spain are available in https://www.
csd.gob.es/es/federaciones-y-asociaciones/federaciones-deportivas-
espanolas/licencias.

Fig. 1 Electronic wearable device placed at the wrist of the player. It is
based on Raspberry pi 4 with Sense HAT module that incorporates an
IMU sensor

problem consists of identifying the type of hit given by a
player. For this purpose, temporal data collected by an elec-
tronic wearable was used. This wearable was placed on the
wrist of the player (see Fig. 1). The data gathered came from
an inertial measurement unit (IMU) and included both angu-
lar acceleration and velocity. Since the variety of strokes
in the padel is high (even higher than in tennis), including
smash, tray, lob, etc.2, it leads to a complex multiclass clas-
sification problem. The data input consisted of temporal data
of the angular acceleration and speed during a temporal win-
dow that includes the preparation of the stroke, the stroke
itself, and the continuation of the stroke. Notice that these
three aspects are important to identify the type of stroke given
by a player.

For the target classification problem, we propose to evalu-
ate the performance of data-based algorithms to take advan-
tage of the data generated during a stroke. The algorithms
evaluated range from classical machine learning algorithms,
such as decision trees (DT) and support vector machines
(SVM) Zhou and Gan (2021), to neural networks approaches
(Voulodimos et al. 2018) like dense networks and 1D convo-
lutional neural networks (CNN) (Ragab et al. 2020;Gutiérrez
and Toral 2019), including distance or dissimilarity-based
algorithms such as K-means and Eigenvalue algorithm
(Erkan 2021). To train the algorithms considered, data related
to padel strokes are required. However, no structured data
related to the padel strokes is available in the literature. There-
fore, a specific data set was created for the purpose of training
the algorithms. Thus, and to the best authors’ knowledge, this
is the first data set about padel in the literature. It includes
mixed-gender players of several levels and more than 2000
strokes of up to 13 different types.

In summary, the main contributions of this study are as
follows:

• Elaboration of the first data set of padel tennis strokes.
Data of more than 2000 strokes have been recorded and
structured, including players of different levels andgenre.

• A comparison of deep learning and machine learning
algorithms for stroke classification. Up to 13 different

2 https://sportsclubtour.com/the-top-10-padel-shots/.
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types of strokes are classified by the algorithms. For the
sake of an unbiased comparison, a thorough hyperparam-
eter analysis has been conducted for each algorithm.

• A comparison between temporal series input versus, con-
sisting of 40 timestamps for 6 features (acceleration and
speed for each axis, x, y, and z); versus feature engi-
neering, consisting of an array of 18 components (mean,
maximum, and minimum for each degree of freedom).

The rest of the paper continues as follows, Sect. 2 presents
some similar works proposed for racket sports. Section3
describes the creation of the data set. Section4 presents the
machine and deep learning algorithms used for the compar-
ison, detailing the main hyperparameters that affect their
performance. Performance evaluation comparison can be
found in Sect. 5 that includes: the hyperparameterization of
the algorithms and their comparison under the best possible
configuration. The paper ends with Sect. 6 which contains
the conclusions of this work and future research directions.

2 Related work

Stroke classification has been extensively used for other
racket sports, such as tennis and table tennis (McGrath et al.
2021). For example, the authors inKos et al. (2016) presented
a study on tennis stroke detection and classification. This was
conductedwith a sensorwith 6degrees of freedom(DOF) and
a sampling rate of 1000 Hz that was placed on the wrist of the
tennis player. Data collection was performed with 3 different
people with playing skills, providing a total of 147 strokes of
three types: serve, forehand, and backhand. For stroke detec-
tion, they used an experimentally established threshold on the
gyroscope derivative: When this threshold was exceeded, a
stroke was considered to have occurred. Regarding classifi-
cation, they used a simple algorithm, built on the basis of
previous observations of the differences between the three
strokes studied. This algorithm provided a 98.1% accuracy.
In Whiteside et al. (2017), the authors addressed the same
problem but employed a machine learning approach. They
used data from 19 different athletes (8 women and 11 men)
to classify 9 types of stroke. They collected 28.582 strokes
using an IMU placed on the athlete’s wrist, sampling at a rate
of 500 Hz. They studied the behavior of six machine learning
models, achieving an accuracy of 93.2%. A similar approach
is proposed in (Benages Pardo et al. 2019), where the authors
conducted a study on activity detection with two sensors, one
placed on the wrist and the other on the waist of the athlete,
providing a total of 12DOF (6+6).As for the strokes, four dif-
ferent stroke typeswere considered: forehand, backhand, lob,
and volley. Data were collected from 8 persons, 4 men and
4 women, of whom 7 were right-handed and 1 left-handed.
The results of the stroke classification were 99.25% correct

for training and 96.51% correct for test. In Wu et al. (2022),
data from both the accelerometer and the gyroscope are used
to classify five strokes in tennis. The authors used a data set
composed of 36 participants ranging fromdifferent levels (12
elite, 12 subelite, and 12 amateur). The wearable device was
placed on the wrist of the players, and the sample frequency
was 50 Hz. The authors used the SVM algorithm for the
classification task and compared the results with the KNN
algorithm. Although tennis constitutes the most extended
application of stroke analysis in the literature, table tennis
has also been extensively studied using similar approaches.
For example, the work in Tabrizi et al. (2020) presents a
comparative study of table tennis strokes using deep learn-
ing. They collected data from16 participants divided into two
groups: beginners and professionals. A total of 1080 strokes
were taken from the first group, while 648 strokes were taken
from the latter, without any additional considerations, such
as gender, age, or height. In Sha et al. (2021), the authors use
several machine learning algorithms to identify table tennis
players using data collected from players’ wrist during shots.
They propose to use temporal and frequency features, which
are obtained from the raw data. In addition, they use Lapla-
cian scores to select themost suitable features for training the
machine learning models. The developed models achieved a
99%of accuracy in terms of player identification, being SVM
model the one that obtains the best performance.

Padel tennis still has a shorter track record in the literature,
especially with respect to data analysis, but some studies are
worth mentioning: An analysis of the distance traveled in
padel tennis is carried out as a function of the level of play
and the number of points per match. For its development, two
overhead video cameras were employed. These were placed
on topof the roof of the court, 9mshigh from the ground, each
focusing on a part of the court. Samples were collected from
108 federated players during 27 matches, for a total of 4.406
points. The results showed that a player travels an average of
11ms per point and 2.900ms per match, divided into 51% in
the active phase (playing time) and 49% in the passive phase
(rest time). Players were classified into 3 levels, and it was
concluded that midlevel players covered almost 400msmore
in the active phase than high-level players and almost 900ms
more than low-level players. In Ramón-Llín et al. (2021) an
analysis of the final strokes of the point is presented in padel
tennis using a decision tree. A total of 2.110 game actions are
collected and analyzed: stroke, area of the court, efficiency,
direction, result, and side of play. In this case, a video cam-
era was used placed 1.5ms high and 3ms behind the court.
A total of 1,055 points were collected from 9 top-level padel
tennis matches, with 36 different players. The results showed
that holding positions close to the net increases the probabil-
ity of winning, with the most frequent finishing sequences
being backhand-volley and lob-rebound. Furthermore, using
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crossed trajectories on the penultimate shot increase the
chances of a subsequent error by the opponents.

The present work fills several gaps in the current liter-
ature. First, it presents the first data set available on padel
tennis strokes. It will allow other researchers in the area to
develop new approaches based on the collected data. Sec-
ond, none of the previous works based on racket sports has
addressed a classification problem with up to 13 different
classes. Previous work related to stroke classification in ten-
nis (Whiteside et al. 2017; Kos et al. 2016; Wu et al. 2022)
only considered up to 9 different shots. In addition, in padel
tennis, some shots have little differences in terms of execu-
tion and hand movement, since the main difference is that
the wall is used before hitting the ball. Therefore, this work
presents a complex classification that has not been solved
to date. Third, the 1D convolutional neural architecture used
in this work has not been proposed in any of the previous
works. Since this approach achieves the best results, these
results can be transferred to other racket sports.

3 Data set creation

The first challenge with regard to the classification of padel
tennis strokes lies in the generation of a representative data set
from experimental data. As the data set is to be used for train-
ing and testing supervised learning algorithms, the different
shots are required to be properly labeled.A set of experiments
were carefully designed aiming at an efficient generation,
labeling, and trimming of the experimental data series, in
accordance with the different strokes performed. The proce-
dure has been divided into four different stages, covering (i)
the organization of the players and features involved, (ii) the
acquisition of the raw data series, (iii) the shot detection and
segmentation, and (iv) target labeling.

3.1 Organization of the data set

A wide range of different racket strokes can be identified in
padel tennis, especially those in which spin is applied to the
ball or in which the hit is performed after the ball bounces
off the wall. For this work, the advice of two professional
coaches was taking into account to select the most common
strokes in the sport resulting in the set of 13 different shots
which were finally analyzed. These included the distinction
between strokes performed before and after the wall bounce
(labeled as ground/wall strokes). Thus, the strokes proposed
were: forehand ground, backhand ground, forehand wall,
backhand wall, forehand lob, backhand lob, forehand lob
wall, backhand lob wall, forehand volley, backhand volley,
tray, smash, and Serve (see Sect. 3.4 for more details).

With respect to the participants responsible for the exe-
cution of the different strokes, a total of 12 different people

were involved in the data set creation. These people were
a representative sample of padel tennis players in terms of
gender, level, and age, among other aspects. A summary of
the different characteristics of the participants is shown in
Table 1. Some of these characteristics, such as age, sex, or
height, do not require further explanation. The rest of them
are explained below:

• The player’s ID is a unique identifier for each subject.
• The level refers to the skill of the player. Given the com-
plexity of its evaluation, the expert criteria of two profes-
sional coacheswere considered. The coaches’ advicewas
especially relevant to distinguish intermediate-level and
high-level players. The following classification system
was proposed:

1. Beginner-novice (level 1): Casual player with less
than a year of experience.

2. Amateur (level 2): Casual player with more than one
year of nonprofessional experience.

3. Intermediate-level experience (level 3): Semi-profes-
sional player with experience in local or regional
competitions, considered intermediate player at least
by two national trainers.

4. High-level experience (level 4): Semi-professional
player with experience in local or regional compe-
titions, considered an advanced player at least by two
national trainers.

5. Professional (level 5): Professional player with expe-
rience in the World Padel Tour (the most important
international padel tennis competition).

• The backhand indicates whether the player performs the
backhand using a single hand (1) or a two-hand (2) grip. It
is relevant to note that, in padel tennis, backhand strokes
are commonly performed with a single hand grip. How-
ever, the two-hand grip typically used by former tennis
players.
Regarding the limitations of the collected data:

– The data does not include any left-handed players.
– Different effects of the strokes were not considered
in the classification. However, when collecting data,
specific instructions were given to the participants to
hit the ball as flat as possible.

– The final data set was not revised to guarantee
that participants were performing the strokes they
had been instructed to do. This limitation could
have mainly affected the data collected from novice
players, which might have had some issues in dis-
tinguishing similar strokes (for instance, a tray and a
smash). Note that it can affect the performance of the
classification of some similar strokes.
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Table 1 Summary of players
characteristics

ID Sex Level Hand Backhand Height (cm) Age Strokes performed

1 M 1 R 1 178 37 109

2 F 2 R 1 157 34 157

3 M 2 R 1 187 23 136

4 M 3 R 1 175 47 313

5 M 4 R 1 176 38 269

6 F 5 R 1 170 28 231

7 M 2 R 1 173 50 183

8 F 1 R 1 164 23 131

9 M 3 R 1 185 30 181

10 F 3 R 2 167 25 236

11 M 4 R 1 184 32 163

12 F 5 R 1 164 22 219

Total 2328

3.2 Raw data acquisition

To generate the data, an IMU was used, responsible for mea-
suring 3 linear accelerations and 3 angular velocities at a
20 Hz rate. In particular, the IMU was an LSM9DS1, which
is incorporated into the Sense Hat of the Raspberry Pi. Both
the Raspberry Pi and the Sense Hat were fixed to the wrist
using a 3D printed ergonomic platform, which in turn was
firmly attached to the wrist with a Velcro-fixed band.

During capture routines, theRaspberryPiwas poweredvia
USB using a portable external battery that was attached to
the athlete’s waist. Finally, the Raspberry Pi was connected,
thanks to VNC Viewer, to a laptop wirelessly via a Wi-Fi
network provided by a smartphone.

To facilitate the process, the data capture routines have
been carefully designed to simplify the postlabeling labor.
To this end, the process was divided into 13 different tests,
one for each type of stroke considered. During each test, the
subject performed multiple executions of a single type of
stroke, for which counted on a second player, responsible for
throwing the ball. After each of these tests were performed, a
total of 13 sets of temporal series (each set consisting of data
from the 6 DOF) were generated. With this structure (see
Fig. 2), each set of temporal series corresponds to a compila-
tion of numerous executions of a single type of stroke, which
strongly simplifies the labeling.

3.3 Shot detection and segmentation

Once the temporal series had been created, individual strokes
were required to be properly identified, trimmed, and labeled.
To this end, a first visual inspection of the data showed that the
different strokes exhibited a distinctive pattern at themoment
of the ball hitting, with sudden and significant variations in
almost all DOFs, reaching extreme local values in both angu-

lar and linear accelerations. On the basis of this evidence,
a threshold value was defined for each DOF (ua for linear
accelerations and uv for angular velocities), so that, if this
threshold is reached simultaneously by any of the acceler-
ations and any of the velocities, it can be assumed that a
stroke has occurred. It is relevant to note that these thresh-
olds were observed to be exceeded multiple times during
a single stroke, and therefore the detection criteria had to
be carefully designed to avoid repeated detection of strokes.
This issuewas addressed by fixing a timewindow (composed
of 2n samples, centered in the stroke detection) in which the
stroke can be considered to have been completely executed.
Once the stroke has been detected and trimmed, its stored as a
set of 6×2n samples. The scheme of the detection algorithm
is shown in Fig. 3. Notice that k represents the last sample of
a detected stroke.

A conservative approach based on a 2s (n=20 samples)
interval was considered, with the following values for the
thresholds:

ua = 3 G

uv = 5 rad/s

According to padel experts, and based on the visualization
of the videos recorded during the data collection, it has been
considered that 2 s is enough time to prepare and execute the
stroke in padel tennis. This detection algorithmwas tested on
a total of 362 strokes, of which 354 were correctly detected.
The accuracy results 97.79%, with a 100% precision, mean-
ing that no false positives are introduced into the data set.
For the sake of illustration, in Fig. 4 a comparison between
two different types of strokes (forehand and backhand shot)
is shown. It is relevant to note the qualitative differences
between both types of stroke in the different registered DOF.
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Fig. 2 Scheme of the data capture routine performed for each subject. Note that this structure generates temporal series with strokes of a single
type, thus improving the data labeling process

Fig. 3 Stroke detection and trimming from raw data samples

3.4 Target labeling

Once the data related to the shots have been segmented, they
should be labeled appropriately to train themachine and deep
learning algorithms. The types of shots considered are listed
below. For each shot, a brief description has been included to
indicate the main goal of the shot. Additionally, in parenthe-
ses, the nickname used in the performance evaluation and the

label used in the classification task can be found (see Sect. 5).
The considered strokes are as follows:

• Forehand ground stroke (F, label 0): The ball is hit
on the same side as the skill arm of the player, after the
ball bounces off the ground, usually slightly behind the
service line.

• Backhand ground stroke (B, label 1): It is the opposite
stroke to the forehand, as the ball is hit on the opposite
side of the skillful arm of the player. It is also performed
after bouncing the ball, usually slightly behind the service
line.

• Forehandafter the ball bounces off thewall (FW, label
2): It is a stroke made forward after the ball has contacted
the back wall of the court, hitting the ball on the same
side of the skilled arm of the player.

• Backhand after the ball bounces off the wall (BW,
label 3): It is a stroke made forward after the ball has
contacted the backwall of the court, hitting the ball on the
side opposite the skilled arm of the player. As previously
mentioned, this stroke can be performed using a single-
hand or a two-hand grip.

• Forehand Lob (FL, label 4): It is a defensive stroke that
seeks to throw the ball high enough so that the opposing
player near the net cannot return the ball to his position
and is forced to retreat. The ball is hit on the same side
of the player’s skilled arm.

• BackhandLob (BL, label 5): It is a defensive stroke that
seeks to throw the ball high enough so that the opposing
player near the net cannot return the ball fromhis position
and is forced to retreat. The ball is hit on the side opposite
to the player’s skilled arm.

• Forehand Lob after the ball bounces off the wall
(FLW, label 6): It is a defensive stroke that seeks to raise
the ball so that the opposing player backs up, hitting the
ball on the same side of the player’s skilled arm. Unlike
the forehand lob, in this case the ball is hit after it has
contacted the back wall of the court.

• Backhand Lob after the ball bounces off the wall
(BLW, label 7): It is a defensive stroke that seeks to ele-

123



A comparative study of machine...

Fig. 4 Comparison between forehand shots (blue) and backhand shots (red)

vate the ball so that the opposing player backs up, hitting
the ball on the side opposite to the player’s skilled arm.
Unlike the back-hand lob, in this case the ball is hit after
it has contacted the back wall of the court.

• Forehand Volley (FV, label 8): It is an attacking shot
that is played close to the net and without letting the ball
bounce. It seeks to keep the opponent at the back of the
court and win the point. The ball is hit on the same side
of the player’s skilled arm.

• Backhand Volley (BV, label 9): It is an attacking shot
that is hit close to the net and without letting the ball
bounce. It aims to keep the opponent at the back of the
court and win the point. The ball is hit from the side
opposite to the player’s skilled arm.

• Tray (T, label 10): It is a shot halfway between a vol-
ley and a smash that is performed in the middle of the
court and seeks not to lose the initiative at the net. It is
performed on the side of the player’s skilled arm.

• Smash (S, label 11): A stroke that is performed by
extending the arm upward and hitting the ball at the high-
est point. It is performed on the side of the player’s skilled
arm with the intention of finishing the point.

• Service (SE, label 12): It is the stroke that starts the
game and is the only one in which the player places the
ball himself. Contact with the ball must be at waist level
or below and always after bouncing the ball. Unlike ten-

Fig. 5 Number of shots for each category

nis, the aim is not to win the direct point, but to put the
opponent in difficulty to gain the attacking position at the
net. It is performed on the side of the player’s skilled arm.

Although there are other padel tennis strokes such as off-
the-wall smash, chiquita or smash for three, it is considered
that the previous strokes are the most representative and
common in a padel tennis match. The proposed work could
easily be extended to consider other padel tennis strokes.
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A video recorded during the data collection can be seen
in https://www.youtube.com/watch?v=UO_WZ40g1Io. Fig-
ure5 shows the number of shots for each category. It can
be observed that the samples are well balanced between the
different categories, which is important for a classification
problem like the one presented in this work. The minor dif-
ferences are related to the duration of each shot. For example,
in the case of SE, the player should take the ball, prepare, and
execute the shot. On the contrary, the F shot is faster since
the player hits the ball as it is received from the opponent.

4 Machine and deep learning algorithms

For a first attempt on the classification of padel tennis strokes,
in this work six different approaches have been considered,
taking into account their different capabilities and perfor-
mances. Four of these approaches are based on models (both
dense and convolutional neural networks, decision tree, sup-
port vector machine), while two other are based on instances
(K-nearest neighbors and EigenClass). These algorithms
were trained using two different types of input: (i) the com-
plete temporal series of strokes and (ii) feature engineering,
in which the maximum, minimum, and mean values of each
DOF of the strokes were considered. In the former case, the
data input consists of 40 timestamps for 6 features (accelera-
tion and speed for each axis, x , y, and z). In the case of feature
engineering, the input consists of an array of 18 components
(mean, maximum, and minimum for each DOF).

A brief description of each algorithm and the main hyper-
parameters3 that affect their performance are described in the
following subsections.

4.1 Fully connected neural network

Neural networks (NN) represent probably the most popular
deep learning algorithms (Voulodimos et al. 2018; Young
et al. 2018). NNs are computational models formed by con-
necting artificial neurons to each other. Each of these is a
logic unit that computes a weighted sum of its inputs and
then applies a certain activation function, whose result is
processed as an output (see Fig. 6-a). Artificial neurons are
organized in layers, so that the artificial neurons of a layer
receive as input the outputs computed by the previous one,
as shown in Fig. 6-b. The softmax layer is responsible for
receiving the score of the different classes and computing
their probabilities in such a way that they add up to 1.0.

The first deep learning approach proposed in this work is
based on a fully connected neural network (FCNN or FC)
that receives as input either a temporal series of strokes or

3 The hyperparameters described are the ones used in the hyperparam-
eterization analysis conducted in Sect. 5.

Fig. 6 Example of an artificial neuron with three inputs and a step
activation function (top) and a neural network with two dense layers
and three output classes (bottom)

the feature engineering data. The last layer has 13 neurons
(as many as the classes to be classified).

4.2 1D convolutional neural network

The fully connected neural networks described above have
been improved by including 1D-convolutional layers (Ragab
et al. 2020; Gutiérrez and Toral 2019). These layers are
formed by a reduced set of neurons forming a receptive field
that is successively evaluated along the input temporal series.
During the learning process, the weights of these neurons
are adjusted, forming filters or kernels capable of detect-
ing features along the temporal series, with independence
of their position. The resulting 1D convolutional neural net-
work (1DCNN) is based on considering the input data to be a
temporal series and therefore is expected to constitute a bet-
ter classifier for strokes.4 Fig. 7 illustrates the performance
of a filter through the temporal series in 1DCNN. Each fil-
ter passes through the data (simultaneously for each feature)
from left to right to generate the output for the next layer.

4.3 Decision tree

A decision tree is a classical machine learning algorithm that
builds a tree during training to make predictions (Quinlan
1996; Kumari et al. 2022). This tree contains nested if-else
binary conditionals that allow one to approximate the target
value. Once the tree is built, it is possible to know the class of

4 This algorithm is not suitable for feature engineering input.
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Fig. 7 Illustration of the performance of a filter in a 1DCNN

a new object by passing it through the tree and answering the
questions successively. A decision tree is composed of a root
node: i) the main node that represents the entire population
or data set, ii) the decision or internal nodes, which are used
to split the data (make decisions), and iii) the terminal or
leaf nodes, nodes where the flow ends and represents the
prediction.

4.4 K-nearest neighbors

This algorithm classifies all new data in the corresponding
target using the distance between it and the other samples
in the training set. The algorithm uses a hyperparameter k
to configure the number of neighbors used to predict new
data (Cunningham and Delany 2021). Thus, the distance to
all neighbors in the training stage is calculated and the most
common class among the k nearest neighbors of the new
data will be the class assigned to it. Therefore, K-nearest
neighbor, KNN, is a simple instance-based algorithm whose
performance is given by the value of the parameter k.

4.5 Support vector machine

Support vector machines (SVM) are a set of machine learn-
ing algorithms that attempt to find a hyperplane of separation
between classes (Burges 1998). The fundamental character-
istic of SVMs is the search for an optimal classification that is
performed by maximizing the margin of separation between
classes, i.e., the hyperplane of separation between classes is
equidistant from the closest example of each class.

4.6 Eigenvalue classification

The EigenClass classifier (EC) Erkan (2021) is based on
the eigenvalue-based proximity evaluation of the data. This
a novel similarity-based algorithm that has achieved the
promising results in a number of benchmark classification
problem. Further extensions of this algorithm can be found
in (Memiş et al. 2022;MEMİŞ et al. 2022;Memiş et al. 2021).
The algorithm uses a hyperparameter k, which refers to the

number of eigenvalues employed in the proximity determi-
nation.

5 Performance evaluation

This section presents the evaluation of the machine and
deep learning algorithms used for the padel stroke tar-
get classification problem. First, a hyperparameter tun-
ing must be performed to compare the algorithms with
the best possible configuration for the target classifica-
tion problem. Second, the algorithms are compared under
the best configuration. Algorithms have been developed
in Python using the Keras5 and Scikit-learn6 libraries.
The data set and the codes used in the work are pub-
licly available at https://github.com/guillecartes/Padel-Shot-
Classification-and-Dataset, with the exception of the Eigen-
Class algorithm, which is available at the algorithm author’s
repository https://www.mathworks.com/matlabcentral/file
exchange/78462-eigenvalue-classification-for-machine-lea.
rning.

5.1 hyperparameters setting

Hyperparameter tuning is essential for unbiased comparison
of algorithms. Therefore, a grid analysis for each algorithm
has been developed considering the most important parame-
ters. The data set has been divided into three parts for training
(64%), validation (16%), and test (20%). The performance
metric used to evaluate the approaches is accuracy, as it
reflects the percentage of shots classified appropriately. The
accuracy can be calculated as follows:

Accuracy = T P + T N

T P + FP + T N + FN
(1)

where:

• TP (True Positive): The algorithm predicts that an obser-
vation belongs to a class and that it does belong to that
class.

• TN(TrueNegative): The algorithmpredicts that an obser-
vation does not belong to a class and that it does not
belong to that class.

• FP (False Positive): The algorithm predicts that an obser-
vation belongs to a class and it does not belong to that
class.

• FN (False Negative): The algorithm predicts that an
observation does not belong to a class and that it does
belong to that class.

5 https://keras.io/.
6 https://scikit-learn.org/stable/.
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The accuracy metric is suitable for the proposed classifi-
cation since we assign the same importance for classifying
each shot. Therefore, we are interested in knowing the gen-
eral capacity ofmachine and deep learning algorithms for the
classification task. In the following subsections, the accuracy
of each algorithm will be evaluated for different hyperpa-
rameter values. For each configuration, 15 runs have been
conducted and boxplots are employed to show the distribu-
tion of the obtained results. In addition, in some cases, the
confusion matrix will be shown for further explanation of the
results. The data used correspond to the training and valida-
tion sets.

5.1.1 Fully connected neural networks

The number of layers and neurons for each layer have been
the hyperparameters considered for this case. In addition,
training parameters such as the number of epochs and batch
size were also considered in the analysis carried out. Hyper-
parameterization was performed using a grid search, with the
values summarized in Table 2. Notice that only the number
of neurons in the first layer is indicated, and the following
layers (in case of more than one layer) use half the number
of neurons in each case.

The results obtained for each configuration are shown in
Fig. 8. According to the results, the best configuration cor-
responds to an architecture with three dense layers (TS3L in
Fig. 8). It is observed thatwhen the input is the temporal series
(TS in Fig. 8) the classifier response is considerably better
than when the input is with the feature engineering technique
(FE in Fig. 8). In fact, the feature engineering classifier has
about 80% accuracy, while the temporal series classifier is
close to 90%. Therefore, the temporal series input represents
a 10% improvement in accuracy over the feature-engineered
classifier. For the dense neural network, the best hyperpa-
rameterization is one with three layers, a first layer with 1000
neurons, followed by a second with 500 and a third with 13
(one per class), with 70 epochs and 30 batch size, which
achieves a maximum accuracy of 92.06%. The average is
90.44% (± 0.57%).

Figure 15a shows the confusion matrix obtained for the
FC architecture with three dense layers with input from the
temporal series. It can be seen that the performance of the
algorithm is suitable for each stroke. However, some errors
can be found in some forehand strokes (with/without using
the wall) and also between the tray and the smash (T and S
in Fig. 15a). Note that some novice players may have dif-
ficulties executing the tray; therefore, it can be expected
in the data set that some players executed those strokes
inappropriately.

Fig. 8 FC algorithm hyperparameter results (Temporal Series TS, Fea-
ture Engineering FE, Layer L)

5.1.2 1D convolutional neural networks

In this algorithm, the hyperparameters that are evaluated are
the number of filters and the filter size. As in the fully con-
nected case, the number of epochs and batch size were also
considered. For obvious reasons, this classifier has not been
tested with the feature engineering technique. Hyperparam-
eterization was carried out by means of a grid search, with
the parameters summarized in Table 3. The proposed config-
urations included one and two convolutional layers attached
to one and two dense layers. For 1DCNN with two convo-
lutional layers, the number of filters on the second was set
to half the number for filters of the first one. Also, after the
convolutional layer/s, a dropout and amaxpooling layer were
included.

Figure 9 shows the distribution of the results obtained for
the 1DCNN classifiers. The configuration that achieves the
highest accuracy is the one with one convolutional layer and
two dense layers (1C+2D in Fig. 9), achieving 93.35% for
its highest accuracy, with a mean of 91.28%. However, the
dispersion of this model is high (± 2.41%). The first layer is
a convolutional layer of 256 filters, with a kernel of 8. It is
followed by a dropout layer and a maxpooling layer. Then it
has a flatten layer prior to the densely connected layer with
1000 filters and with ReLU activation function, and another
dense layer of 13 filters andwith softmax activation function.

On the other hand, the 2C+1D configuration gathers a high
accuracywith a lower dispersion, with 91.08% (± 1.01%). In
this case, the first convolutional layer has 256 filters, while
the second has 128, both with a kernel of 8. It should be
noted that the four options represented are very close to each
other, around 90% in all cases, which implies a considerably
correct response of these models.

Figure 15b shows the confusion matrix for the best con-
figuration of the 1D convolutional network. The results are
satisfactory for all the considered strokes. Only some mis-
takes can be found in forehand strokes. For example, FW
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Table 2 Hyperparameterization
of fully connected neural
networks tested

Input type Temporal series Feature engineering

Layers [2,3] [2,3]

Neurons on first layer [10,100,200,1000] [100,500,1000,1500,2000]

Epochs [10,40,70] [40,70,100,200]

Batch size [30,50,70] [30,50,70]

Table 3 Hyperparameterization of convolutional neural networks tested

Configuration 1C+1D 1C+2D 2C+1D 2C+2D

Filters on 1st conv. layer [32,64,128,256] [32,64,128,256] [32,64,128,256] [32,64,128,256]

Kernel size [3,5,8] [3,5,8] [3,5,8] [3,5,8]

Filters on 1st dense layer – [100,1000] – [100,1000]

Epochs [40,70] [40,70] [40,70] [40,70]

Batch size [10,30,50,70] [10,30,50,70] [10,30,50,70] [10,30,50,70]

Fig. 9 Convolutional 1D algorithm hyperparameter results (Convolu-
tional layer C, Dense layer D)

and FWL are confused. Notice that these are similar strokes
that are executed after the ball bounces off the wall. Thus,
depending on the high of the ball, the player can have
some difficulties for executing the lob in a suitable position.
Also, as in FCNN there are some problems in distinguishing
between T and S.

5.1.3 Decision tree

The parameters used in the grid search for the decision tree
are summarized in Table 4. The same parameters were con-
sidered for both temporal series and feature engineering input
data.

Regarding the hyperparameter for the temporal series
input, the best hyperparameter configuration is the one with
a tree depth of 40 (max_depth), at least 4 samples to split
a node (min_samples_spli t), at least one sample per leaf
(min_samples_ lea f ) and entropy impurity function. The
classifier obtains an accuracy of 60.59% (±1.06%). In terms

Table 4 Hyperparameterization of the decision tree

Max depth [1,10,20,30,40]

Min samples split [2,4,8,10,20,100]

Min samples leaf [1,2,3,4,5,6,10]

Criterion [Entropy, Gini]

of feature engineering, the best hyperparameter configura-
tion is the one with a tree depth of 10 (max_depth), at least
2 samples to split a node (min_samples_spli t), at least one
sample per leaf (min_samples_ lea f ) and entropy impu-
rity function. The classifier obtains an accuracy of 60.76%
(±0.90%).

Figure 10 shows a summary of the results obtained for
the decision tree classifiers. The temporal series classifier
achieves a mean accuracy of 60.59%, compared to 60.76%
for the feature engineering classifier. Both mean values are
very close, however, the classifier with feature engineering
has a lower dispersion. Regarding the maximum value, the
temporal series input achieves a higher accuracy, reaching
62.09%.

Figure 15c shows the confusion matrix for the best deci-
sion tree configuration using feature engineering. It can be
seen that the algorithm fails to classify some strokes. It is
noticeable that the algorithms struggle to discern between
the strokes using or not using the wall for both cases fore-
hand (F and FW in Fig. 15c) and (B and BW in Fig. 15c)
backhand. Also, there are problems in classifying the back-
hand stroke and the backhand volley. Regarding the tray T
and the smash S, the errors have increased significantly with
respect to the neuronal networks (from 3 to 13).
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Fig. 10 Decision tree algorithm hyperparameter results (Temporal
Series TS, Feature Engineering FE)

Table 5 Hyperparameterization of K values inKNNfor temporal series
input

k 1 2 3 4 5

84.12 79.97 80.97 79.26 78.83

Table 6 Hyperparameterization of K values in KNN for feature engi-
neering input

k 1 2 3 4 5

68.24 64.95 65.38 64.66 64.38

5.1.4 K-nearest neighbors

In this algorithm, the number of neighbors k used to make
the predictions is the hyperparameter considered. Table 5
contains the accuracy obtained for different values of k for
temporal series input. It can be seen that, in general, as the
value k increases, the performance of the algorithm worsens
(Tables 5 and 6).

Table 6 includes the results when feature engineering is
used. Again, the best performance is obtained with k = 1.

Figure 11 shows the best configuration of the KNN algo-
rithm (k = 1) for both feature engineering and temporal
series inputs. It can be observed that the KNN algorithm
presents significantly better results when the input is a tem-
poral series. In fact, the accuracy achieved is higher than80%,
which is a good performance for a classification problem of
13 categories like the one targeted in this work.

Figure 15d shows the confusion matrix for the KNN algo-
rithm using temporal series. It can be observed that, as in the
previous algorithm, there are some problems between the
same strokes using or not the wall (for instance, between the
backhand lob and the backhand lob after the ball bounces off
the wall.

Fig. 11 KNN algorithm hyperparameter results (Temporal Series TS,
Feature Engineering FE)

Fig. 12 SVM algorithm hyperparameter results with temporal series
input

5.1.5 Support vector machines

The hyperparameterization of the algorithm was based on
the type of kernel and the regularization C , attending to the
accuracy. The values considered are summarized in Table 7

Table 8 contains the accuracy achieved by the SVM
according to the hyperparameters used for the input of the
temporal series. According to the results, the best combina-
tions are C = 10 or C = 100 with a kernel of type RBF.

Table 9 includes the hyperparameter analysis for the fea-
ture engineering method. In this case, the best configuration
is c = 100 with a kernel of type RBF. Notice that the results
are significantly worse when feature engineering is used.

Figure 12 shows the distribution of the results for the best
configuration of c for each kernel when the algorithm input is
a temporal series. In the case of theRBFkernel, the results are
satisfactory, achieving an accuracy of more than 90%; there-
fore, the SVM algorithm is only outperformed by 1DCNN.
Similarly, Fig. 13 shows the results for the case of feature
engineering. It general, the results get worse when feature
engineering input is used in the SVM algorithm.
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Table 7 Hyperparameterization of the support vector machine

Input Temporal series Feature engineering

Kernel filter [Linear, Polynomial, Radial, Sigmoid] [Linear, Polynomial, Radial, Sigmoid]

Regularization (C) [0.01, 0.1,0.5,1,2,10,12,20,100] [0.01, 0.1,1,10,100,200,300,500,1000]

Table 8 SVM accuracy (%)
with temporal series, in terms of
kernel and regularization C

Regularization (C)

0.01 0.1 0.5 1 2 10 12 20 100

Kernel Linear 81.40 79.83 80.40 80.40 80.40 80.40 80.40 80.40 80.40

Polynomial 17.45 56.22 76.39 82.69 85.69 88.27 88.13 88.13 88.13

Radial 17.17 55.94 79.40 85.84 86.98 90.41 90.27 89.99 90.41

Sigmoid 18.60 41.63 62.80 65.09 62.66 55.22 53.79 54.51 52.22

Table 9 SVM accuracy (%)
with feature engineering, in
terms of kernel and
regularization C

Regularization (C)

0.01 0.1 1 10 100 200 300 500 1000

Kernel Linear 62.66 68.81 70.82 69.96 69.67 70.10 70.10 69.38 69.53

Polynomial 23.46 44.64 61.52 68.96 73.82 72.82 73.24 72.53 71.39

Radial 9.73 40.77 61.37 68.53 74.25 73.96 72.82 72.96 71.24

Sigmoid 9.73 18.45 31.62 29.47 23.46 23.75 22.89 22.75 24.18

Fig. 13 SVM algorithm hyperparameter results with feature engineer-
ing input

Figure 15e shows the confusionmatrix for the best config-
uration of SVM with input from the temporal series. In this
case, the most significant errors are found between BLW and
BL. Therefore, again some problems are presented to discern
between shots that use the wall with those that do not use it.

5.1.6 Eigenvalue classification

For this algorithm, the hyperparameter k has been considered
for the algorithm tuning. Table 10 contains the accuracy
obtained for different values of k for temporal series input.

Table 10 Hyperparameterization of k values in EC for feature engi-
neering input

k 1 2 3 4 5

65.04 67.91 67.77 66.48 65.76

Table 11 Hyperparameterization of k values in EC for temporal series
input

k 1 2 3 4 5

64.47 65.62 64.04 62.61 60.60

It can be seen that, in general, as the value k increases, the
performance of the algorithm worsens.

Table 11 includes the results when feature engineering is
used. Again, the best performance is obtained with k = 1.

Figure 14 shows the best configuration of the EC algo-
rithm (k = 2) for both feature engineering and temporal
series inputs. It can be observed that this algorithm presents
significantly better when the input is feature engineering,
with an achieved accuracy close to 70%, which is a good
performance for a classification problem of 13 categories
like the one targeted in this work, and noticeably higher than
the decision tree. The confusion matrix for the EC algorithm
using feature engineering is shown in Fig. 15f.
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Fig. 14 EC algorithm hyperparameter results (Temporal Series TS,
Feature Engineering FE)

5.2 Performance comparison

The results obtained are summarized inTable 12,where it can
be seen that the 1D CNN can achieve up to 93.35% accuracy.
Precision, recall, and f1-scoremacro- average are also shown
for the sake of completeness in the comparison. It is also
relevant to highlight that only the results for temporal series
input are shown, since they achieved far better performances
than the feature engineering cases. The accuracy of the best
hyperparameterization of each algorithm is shown in Fig. 16

The most immediate result is the poor performance of
the feature engineering technique, which does not provide
any improvement for any of the algorithms studied, with
an average accuracy loss of 16% compared to the tempo-
ral series classifier. This could be explained by the fact that
the characteristics extracted from the temporal series to apply
feature engineering (maximum, minimum, and average val-
ues) are not the most representative for the classification of
the strokes, or simply because the algorithm has a better
response to the temporal series, as it inputsmore information.

However, it is interesting that the 1DCNN is not clearly
superior to the rest, despite being a classifier specifically
designed to receive temporal series as input. In fact, the neu-
ral network without convolution is only 1% below, and thus
CNN did not provide such a significant improvement. This
may be because all the hits are tightly framed within the time
window in which they are collected, so that all the algorithms
already receive the hits fairly well aligned, that is, each hit
always has its maximum or minimum values at the center of
the hit, and the detection algorithm is actually responsible
for the task at which the CNNs perform best.

Table 12 also shows the average training and predic-
tion time for each algorithm evaluated. The computer used
for the simulations is an Intel(R) Core(TM) i7-4510U
CPU@2.00GHz, 16GBRAM, andNVIDIAGeForce 840M.
According to the results, the 1DCNN algorithm requires
more computational time for both training and prediction.

However, the prediction time is very low (much less than
one second) for all the algorithms evaluated. Therefore, the
evaluated algorithms can be implemented in real-time sce-
narios.

5.3 Discussion of the results

The aim of this study was to compare some of the main
machine learning and deep learning algorithms in the detec-
tion and classification of padel tennis strokes. In general, the
temporal series input is more suitable than the feature engi-
neering input for the machine learning and deep learning
algorithms evaluated. Only the decision tree works better
with feature engineering. Therefore, it is demonstrated the
classification of padel strokes cannot be properly done with
simple statistic of the temporal series, such as the mean, vari-
ance, and maximum and minimum values. Therefore, more
sophisticated metrics should be use like the ones used for
machine and deep learning algorithm. It is also important
to note that the feature engineering used is simple, so more
sophisticated approaches can be considered in the future. As
shown by Table 12, the best algorithm is 1DCNN with tem-
poral series, which achieves an accuracy of 93.35 % with a
neural network architecture of 1 convolutional layer followed
by two dense layers. Fully connected networks also exhibit
very good performance on the target task with input from the
temporal series.Webelieve that such high performance is due
to the fact that the segmentation procedure executed during
the data set creationmakes possible a suitable data alignment
for a fully connected architecture. In case such an alignment
is not as good as the one presented in this work, higher dif-
ferences could be expected between the convolutional and
fully connected networks. KNN with temporal series input
is a simple algorithm that presents moderate results. SVM
algorithm with input of temporal series and an RBF config-
uration and C = 10 or C = 100 achieves significant results
that are only outperformed by 1DCNN. In addition, the SVM
presents lower time complexity for training and prediction.
Therefore, KNN and SVM can be good candidates in sce-
narios with low computational resources.

As shown in Fig. 15a, 15b, 15c, 15d, and 15e, some algo-
rithms have problems to classify certain strokes. For instance,
forehand ground stroke and forehand after the ball bounces
off the wall seem to be likely to be misclassified, and some
errors are also present to discern between the tray stroke and
the smash. Previous works in racket sports have also found
difficult to separate similar shots due to the similar shape of
the signals from the sensors’ data (Tabrizi et al. 2020; Ebner
et al. 2019; Whiteside et al. 2017). There are two factors
that might explain this. First, the variety of stroke-execution
possibilities might have created some crossover in the iden-
tification of signals. Most research carried out in this line has
developed algorithms to classify between three and four types
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Fig. 15 Summary of confusion
matrices for the methods
evaluated

of stroke (Benages Pardo et al. 2019; Kos and Kramberger
2017; Tabrizi et al. 2020), and to the best of our knowledge,
few studies have attempted to discriminate shots with a sim-
ilar level of detail (Whiteside et al. 2017). It must be pointed
out that in our study we aimed to classify up to 13 different
strokes. This fact required the algorithm to distinguish and
classify strokes that differ only in a few nuances, which is

actually the second potential explanation for the misclassi-
fication problems encountered in the study. Despite this, it
should be noted that the majority of the algorithms which
have been evaluated achieved a good performance.

Overall, this study provides promising findings for an
interesting research avenue: the use of bio-sensing technol-
ogy to improve skills training in sports. A recent study has
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Fig. 16 Accuracy for the best hyperparameterization of each algorithm

compared traditional teaching and teaching throughwearable
devices in badminton (Lin et al. 2021). The results obtained in
this quasiexperimental study have shown how such technol-
ogy can benefit practitioners training through to the provision
of instant and adaptive feedback in motor skill learning.

6 Conclusion and further works

The work presented in this paper involves the creation of
the first padel tennis stroke data set and contributes to the
existing literature with the first classification of padel tennis
strokes. The findings of algorithms comparison, summarized
in Table 12, shed some light on the functioning of different
algorithms in the detection and identification of racket sports
strokes. For this purpose, a first data set has been created
by gathering data from 12 different players, with skill levels
ranging from amateur to professional, with more than 2300
different strokes of 13 different types. The raw data con-

sisted of temporal series of 6 DOFs (3 linear accelerations
and 3 angular rotations) measured at the player’s wrist during
the execution of the strokes. The data set was built from the
raw data by means of an algorithm designed to identify and
trim out the strokes from the time data series, on the basis
of acceleration and angular velocity thresholds. The data set
was used to train a total of 6 different machine and deep
learning algorithms (FCNN, 1DCNN, DT, KNN, EC and
SVM),whose performanceswere later compared.Among the
6 approaches, the 1DCNN exhibited the best performance,
reaching an accuracy of 93% with one convolutional layer
and two dense layers. In sight of the goodness of the pro-
posed approaches, this work is proposed to continue along
several lines of improvement. Firstly, in the present study, and
in line with most research in the field (Blank et al. 2015; Kos
andKramberger 2017; Kos et al. 2016; Srivastava et al. 2015;
Whiteside et al. 2017), the sensor was strapped on the wrist
of the dominant arm. In light of relatively recent evidence
(Ebner et al. 2019), itmight beworth exploringwhether using
the racket as the sensor placement could improve the clas-
sification system. The second line of improvement consists
of increasing the size of the database, including left-handed
players. Moreover, and given the cost and extensive labor
involved in the data capture routines, data augmentation is
proposed to generate new data. The third improvement pro-
posed is thus to extend the database features to differentiate
between the different effects that the different strokes provide
to the ball, for which it will be necessary to collect new data
in which only one type of effect is performed in each test.
Another research direction is to consider the frequency of
the acceleration and speed signals to perform the target clas-
sification in the frequency domain. Finally, the performance
comparison can be extended with other machine learning
algorithms (Memiş et al. 2022; MEMİŞ et al. 2022; Memiş
et al. 2021).

Table 12 Summary of parameters used for machine learning algorithms, achieved test results and average training and prediction times

Classifier FCNN 1D-CNN DT SVM K-NN EigenClass

Hyperparameters 3 layers 1 conv. layer 40 max depth Kernel RBF k=1 k=3

(1000, 500, 13 n.) (256 filt.) Min samples split 4 C=10

70 epochs 2 dense layers Min samples leaf 1

30 batch size (1000, 13 filt.) Entropy criterion

70 epochs

70 batch size

Accuracy 92.6 93.35 62.09 91.85 84.84 67.91

Precision 92.19 92.30 62.57 91.72 85.46 69.35

Recall 91.54 91.63 62.22 91.14 84.73 67.26

F1-score 91.79 91.82 62.18 91.26 84.75 67.18

Training time (s) 26.05 98.66 5.87 0.22 0.003 15.51

Prediction time (ms) 42.84 49.11 0.21 0.65 2.11 0.003
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A Hyperparameters of machine learning and
deep learning algorithms

This appendix describes the hyperparameters used in each
algorithm in the performance comparison.

A.1 Fully connected network

The main parameters that must be configured in an FC are7:

• Number of layers: This is the number of layers used in the
neuronal network. It determines the depth and complexity
of the network.

• The number of neurons: Indicates the number of neurons
used in each layer. Normally, the number of neurons used
is reduced as the data go through the input layer onward.

7 Notice that training parameters are not considered in this brief descrip-
tion such as activation function, optimizers, batch size, and number of
epochs, among others.

A.2 1D convolutional neural networks

Three main hyperparameters determine the performance of
1DCNNs:

• Number of layers: Number of layers used in the neural
network.

• Number of filters: Determine the number of filters used
in each layer. The higher the number of filters, the higher
the complexity of the neuronal network.

• Filter size: Indicates the number of time steps of the input
in each layer that are used to pass through the filters.

A.3 Decision tree

The main parameters considered that determine the perfor-
mance of decision trees are as follows:

• max_depth: Indicates how deep the tree can be. The
deeper the tree, the more splits it has, and it captures the
more information about the data. Care should be taken
since high depth tends to lead to overfitting.

• min_samples_spli t : It represents the minimum num-
ber of samples required to split an internal node. This
can vary between considering at least one sample at each
node and considering all samples at each node. When
this parameter is increased, the tree becomes more con-
strained because it has to consider more samples at each
node.

• min_samples_lea f : The minimum number of samples
required to be in a leaf node. This parameter is similar to
min_samples_spli ts; however, this describes the mini-
mum number of samples at the leaf base, the base of the
tree.

• cri terion: The function to measure the quality of a split.
In this work, two criteria will be evaluated, Gini impurity
and entropy.

A.4 Support vector machines

The main parameters that determine the performance of the
SVM algorithm are:

• kernel: It is a function that is used to transform (tricky
kernel) the date to a new hyperplane that helps with the
classification of the samples. The most common kernels
are: lineal, polynomial, Radial Basic Function (RBF),
and sigmoid.

• Regularization C : It controls the regularization on the
hyperparameter C . The regularization consists of gen-
eralizing the model for most of the cases, even if some
training cases are not perfectly classified. The value of
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C is inversely proportional to the strength of the regular-
ization.

A.5 K-nearest neighbors

The main parameter that determines the performance of the
KNN algorithm is:

• K : It is the number of nearest neighbors that are consid-
ered to perform the classification.

A.6 Eigenvalue classification

The main parameter that determines the performance of the
EC algorithm is:

• k: It is the number of eigenvalues that are considered in
the determination of the distance metric.
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