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A B S T R A C T   

Individual re-identification is critical to track population changes in order to assess status, being particularly 
relevant in species with conservation concerns and difficult access like marine organisms. For this, we propose 
photo-identification via deep learning as a non-invasive technique to discriminate between individuals of the 
undulate skate (Raja undulata). Nevertheless, accruing enough training samples might be difficult to achieve in 
the case of underwater fish images. We develop a novel methodology based on a siamese neural network that 
incorporates statistical fundamentals as motivation to overcome the few-shot context. Our work provides a 
hands-on experience and highlights on pitfalls when trying to apply photo-identification in a limited scenario, 
concerning both data quantity and quality, yet providing remarkable results over the test set including re-
captures, where the model is capable of correctly identifying the 70% of the individuals. The findings of this 
study can be of strong impact for the research teams becoming familiar with deep learning approaches, as it can 
be easily extended to re-identify individuals of other marine species of interest from a conservation or exploi-
tation point of view.   

1. Introduction 

In general, poorly understood exploited marine populations seem to 
be in considerably worse condition than the relatively well-studied ones 
(Costello et al., 2012). There is a huge potential benefit regarding con-
servation and sustainable concerns in improving assessment and man-
agement of understudied marine species (Hilborn et al., 2020). 
Therefore, sustainable exploitation and conservation of marine species 
require an appropriate estimation of population abundances and 
monitoring trends over time. A relevant example of a species under this 
situation is the undulate skate, Raja undulata Lacepède, 1802. During the 
last years, the populations of the undulate skate show a negative trend, 
and the species is globally classified as “endangered” by the Interna-
tional Union for Conservation of Nature (IUCN) Red List (Coelho et al., 
2009) and as “near threatened” in Europe (McCully et al., 2015). Be-
sides, this coastal elasmobranch is of high commercial interest for the 
Galician (NW Spain) artisanal fleet (Alonso-Fernández et al., 2019, 
2021). Despite its high vulnerability, knowledge about its biology and 
ecology remains deficient and, so, it is considered as data-limited pop-
ulation in terms of assessment and management (Alonso-Fernández 
et al., 2019, 2021). 

In such context, several approaches like capture-mark-recapture 
(CMR) techniques have been previously used in data-limited scenarios 
to assess and monitor stock status (Jessop, 2000) to properly define 
management and conservation actions. The development of photo- 
identification tools that discriminate between individuals by their 
external characters represents a significant alternative to traditional 
tagging methods (e.g., subcutaneous chemical markings, transmitters or 
external colorants), minimising the need for invasive techniques 
(Marshall and Pierce, 2012; Schneider et al., 2019). The task of photo- 
identification of fish individuals has been addressed by human ob-
servers through pair comparisons (Hirsch and Eckmann, 2015). How-
ever, even among experienced researchers, there remains an 
opportunity for human error and bias (Meek et al., 2013). Moreover, it is 
a highly time-consuming approach and could be expedited by using 
computer vision systems, which would also reduce the human biases 
inherent to the task of re-identifying animals (Schneider et al., 2020). 
Hence, the development of alternative re-identification processes and 
putting efforts into enhancing automated photo-identification based on 
each individual's distinctive natural and time-stable marks (such as skin 
colour patterns, scars, blotches, etc.) is of remarkably importance. 

There has been a breakthrough in computer vision problems due to 
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the growing computing capability of machines and availability of big 
data, making it possible to extract high levels of representation of image 
content (Hassaballah and Hosny, 2019). This field falls into artificial 
intelligence and, in particular, deep learning, which has recently 
received large attention from ecologists (Christin et al., 2019). Deep 
learning is a sub-field of artificial intelligence which focuses on a 
learning method based on logical structures that closely resemble the 
architectural characteristics of the brain (the so-called deep artificial 
neural networks). It consists of processing units within the global system 
that specialize in detecting certain hidden characteristics in the data. 
The first record of the application of computer vision in the field of 
fisheries dates from 1980s, which consisted in a method for sorting 
species based on shape descriptors derived from binary silhouettes 
(Tamaya et al., 1982). Later works focused on refining approaches for 
fish species classification using neural networks (Allken et al., 2019; 
Antelo et al., 2019; Siddiqui et al., 2018; Tseng et al., 2020). 

As cited above, there exist many examples regarding classifying fish 
species from images, so it could be thought that the problem has been 
broadly addressed to classify individuals too. However, the pair 
matching of images to identify fish individuals is generally addressed by 
the naked eye (Hirsch and Eckmann, 2015) or with the aid of software 
tools that compare patterns (Dala-Corte et al., 2016; Kristensen et al., 
2020). Recent years have witnessed the emergence of deep learning 
systems, which have demonstrated the accurate re-identification of 
humans based on image and video data with near perfect accuracy 
(Schneider et al., 2019). Despite this success, ecologists have yet to 
utilize these approaches for non-human animal and there are only a few 
examples in the literature (Bouma et al., 2018; Moskvyak et al., 2021; 
Nepovinnykh et al., 2020). 

Regardless of the development of such methods, data collection is 
usually a limited process. In real conditions, when working with marine 
wild populations we have to take under consideration the logistical 
capacity to gather sample images (underwater environment, under-
staffed research teams, lack of proper protocols to obtain photographs 
with the required quality, etc.), which inevitably leads to a data scarcity 
issue. That is the case of the few-shot context, where the problem is to 
design a supervised learning model to identify new categories from very 
few tagged samples (Xian, 2020). The focus on realistic scenarios, where 
perfect conditions cannot be met and small samples are a standard, is 
what brings out the strong impact on the real application of our model in 
the wild. We addressed the few-shot learning problem as an N-way K- 
shots classification, where N is the number of individuals (i.e., the 
number of classes to be identified) and the second term refers to the 
small amount of K labelled images in each category. To overcome the 
limitation in the dataset size, we exploit existing deep learning tech-
niques in combination with statistical fundamentals. 

Our model is based on a siamese network (Bromley et al., 1993; 
Chicco, 2021) as artificial neural architecture, which consists of two 
identical branches that are feed-forward perceptrons (also known as 
twin networks, this is, they share weights) that create the embeddings of 
a pair of images joined by an energy function which establishes the 
similarity between the two inputs. This type of network and its triplet- 
loss counterpart have gained popularity in the task of animal re- 
identification (Moskvyak et al., 2021; Nepovinnykh et al., 2020). 
Concretely, (Nepovinnykh et al., 2020) also chooses a siamese neural 
network to match pelage patterns of the ringed seals, achieving a 74.6% 
accuracy after a pattern extraction process and a candidate filtering 
process. 

A convolutional neural network (CNN) was used for the branches to 
deal with input images, but its training from scratch was infeasible due 
to our reduced dataset size. Instead, we relied on feature extraction with 
transfer learning techniques, whose basis is using the learned mapping 
of the inputs to characteristics (features) by a pre-trained model to 
extract new mappings from unseen data and solve another problem 
(Torrey and Shavlik, 2010). Also, we doubled our dataset size with data 
augmentation techniques (Shorten and Khoshgoftaar, 2019). As the last 

gear of our methodology, ensemble methods were used in this work as 
motivation to define the evaluation framework. The way to proceed in 
ensemble learning is to build a final model by combining the strengths of 
a collection of simpler base models (Hastie et al., 2009). 

Collectedly, we created a methodology that provides robustness, in 
addition to that is affordable given the small dataset size. Existing deep 
learning frames and models, such as picking a modern siamese neural 
network or leveraging feature extraction from pre-trained convolutional 
architectures, can generate predictors with low biases. But the vari-
ability of the real scenario of animal re-identification can affect the 
performance of these models by increasing the probability of making a 
poor decision. As a technical novelty, we consider the statistical fun-
damentals of Machine Learning to create a methodology that encourages 
the prediction capability and fully exploits our reduced dataset. More-
over, we kept it straightforward so as it can be easily extended to other 
species use cases within a quality and quantity limited scenario. We 
believe that this is what brings out the relevance of our study, as it is the 
standard for most research teams which are becoming familiar with 
deep learning approaches. 

2. Materials and methods 

2.1. Target species 

The most interesting case studies on which the proposed system 
could be applied are those corresponding to species with distinctive 
natural marks (such as skin colour patterns, scars, blotches, etc.) that 
remain stable through time. We chose as target species the undulate 
skate Raja undulata for both the aforementioned conservation concerns 
(Alonso-Fernández et al., 2019, 2021; Coelho et al., 2009; McCully et al., 
2015) and its photo-identification suitability: it has a recognizable col-
ouring and spot pattern in the back of its disc that is easy to record 
through photographs (Fig. 1), either in its natural environment or once 
captured. We focused on a local aggregation that occurs mainly during 
the summer months in the National Park of Illas Atlánticas de Galicia 
(Leeb et al., 2021). 

2.2. Collecting the database 

The images were collected in 2020 and 2021 during field work 

Fig. 1. Undulate skate's mosaic pattern.  
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surveys for acoustic telemetry and traditional external tagging to study 
the spatial ecology of Raja undulata. The images were recorded in var-
iable environments like on board (research or fishing boats) during the 
tagging sessions or using underwater cameras while diving. Besides, we 
promoted a citizen science action (see the online campaign, in Spanish, 
here http://www.iim.csic.es/wp-content/uploads/2021/02/REC_libro_ 
igentac_guiaparticipacion_csic_080221-1.pdf) to increase the number 
of images while promoting public engagement with marine science and 
ecosystem conservation. 

Given these different sources of images, we have worked with pho-
tographs and frames of recorded videos obtained from a variety of 
digital devices (compact and reflex cameras but also action video cam-
eras). This is a positive feature of the dataset, as it shows that the model 
is invariant to different data collection conditions. Most of the images 
were captured using a reflex camera (objective 15-55 mm) and an action 
camera GoPro Hero 7 (extracting frames from 4 K videos). 

Considering the morphology of the target species, the images were 
taken from a zenith perspective trying to capture the complete back of 
the disc of the skate (Fig. 1). We only included in the analysis those 
pictures with a good view of the back of the disc. Pictures from each 
individual were taken during the same day. However, the shots were 
separated in time so that we could provide ambiguity in the location 
and, hence, pictures of the same individual do not share shadows neither 
occluded body parts. This information is important to show that the 
model is not relying on superficial features (e.g., shadows) to identify 
individuals, and instead relies on their visual appearance. In Fig. 2 we 
included some pictures that exemplify this variability in the dataset. 

2.3. Data pre-processing 

The images were stored, and the sample was correctly labelled in a 
category per individual according to the traditional identification via T- 
bar anchor tags, which have a protective outer sheath around a coloured 
and individually numbered marking that facilitates the discrimination 
between known individuals. Available dataset is composed of 1138 
images of individuals in unbalanced —with a minimum of 1 picture, a 
maximum of 31 and, on average, 7 images per individual— categories. 
The whole database is divided by individual identities into train, vali-
dation and test sets. When a recapture is known for its T-bar tag, images 
of this resighting are kept for the test set; and for once-sighted in-
dividuals, we kept in the study those that had at least n_eval = 3 images 
for their test set so that an odd voting can be done. The rest of the images 
in each category are 75% − 25% split into train and validation sets, 
respectively. After discarding those individuals with insufficient data 
(n_eval images in the test set, at least two in the train set, and some in the 
validation set), we end up with a train set of 1213 images in 108 cate-
gories (i.e., identities). Regarding the test set, we evaluated 370 images, 
of which 38 belonged to the four known recaptures. 

Then, in order to exclude those non-informative elements, we pro-
ceeded with a manual preprocessing of the images consisting of image 
cropping and removal of background using the lasso tool of Adobe 
Photoshop®. Despite the background removal, the photo-identification 
procedure regarding marine species is more complex since angling and 
underwater photos provide an ambiguous scenario not only in the 
background but also in potential existing shadows over the animal 
pattern together with possible occluded parts of the body. An example 

Fig. 2. Variability in images regarding the environment, cameras, times of the day and shadows.  
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where pelvic fins and pterygopodes are not visible is shown in Supple-
mentary Fig. S1. 

2.4. Methodology 

In this section we provide sufficient details so the work can be 
replicated for re-identification of individuals based on natural markings. 
The code to reproduce the analysis and guidelines are available at https 
://github.com/nuriagomv/Application-of-Deep-Learning-techniques- 
for-the-photo-identification-of-fish-individuals. 

2.4.1. Data augmentation process 
The most common approach to deal with a dataset of insufficient size 

is implementing a data augmentation process. The data augmentation 
techniques must be carefully selected so as not to generate images that 
could never actually be found. For instance, mirror flipping would be a 
wrong selection for studying the pattern in the skin of individuals of the 
undulate skate since this technique would change it completely, inva-
lidating the generated image. Therefore, the selected data augmentation 
techniques were: i) affine transformations (scaling, translation, rotation, 
and shear); ii) pixel sum transformation; iii) hue, saturation, and 
contrast modifications; and iv) adding Gaussian noise to images. Fig. 3 
shows an original photo and an example of the resulting output of 
applying each selected data augmentation technique. The next step is to 
define a sequence of transformations where a new augmented photo will 
be the result of a combination of all the aforementioned child aug-
menters, each of them randomly applied with a probability p = 0.5. 

An interesting question that arises at this point is whether data 
augmentation should be done before or after splitting the sample into 
the training, validation, and test sets. It could be thought that if the data 
is increased before dividing the sample, there would be a high proba-
bility of passing practically the same image (just adding some noise) to 
the training and evaluation sets, thus falling into overfitting. However, 
even though the original pictures were provided with some diversity, by 
augmenting with such multiple combinations in the transformations 
before splitting, what we are doing is encouraging the variability of 
images of the same individual. Therefore, we are actually helping the 
model to learn and to fine-tune the parameters of the algorithm. 

2.4.2. Network architecture 
In this work, siamese neural networks were chosen among the metric 

learning methods because of their learning paradigm in two steps. 
Metric learning is an approach based directly on a metric that compares 
the relationship between images of the same or different classes. The 
first step consists in training a neural network that can distinguish be-
tween the equality/difference of classes of a pair of inputs. This so-called 
verification model is trained to give the probability that a particular pair 
belongs to the same class, by randomly sampling pairs of inputs 
belonging to the same and different categories. In a second stage 
—known as one-shot task—, we select the support set of categories in 
which an individual could be assigned, and the model is used to evaluate 
new test samples in a pairwise manner against one input per possible 
class, choosing the one with the highest score. Fig. 4 depicts these two 
steps for the case of individual identification. 

For the convolutional twin networks, the choice was to import a 
Keras image classification model, InceptionResNetV2 (Szegedy et al., 
2017), loaded with weights pre-trained on ImageNet (Deng et al., 2010). 
The weights of the network have been frozen and the fully connected top 
layer (in charge of the classification task) was not included. Instead, the 
units of the last of the convolutional layers (in charge of feature 
extraction) are flattened into a single vector, which is the embedding of 
the input image. This is, we rely on the embedding that the convolu-
tional base provides. 

What is done next is to define the comparison layer, choosing the 
elementwise L1-distance as the energy function that joins the pair of 
outputs. Finally, this layer is given to a single dense output unit, 
obtaining a weighted distance. In this way, we define a model that will 
train which parts of the embeddings are more relevant for the proposed 
problem. The final output unit uses as activation function the sigmoid 
function, which gives the same class probability prediction p = σ(

∑
iwi⋅| 

x1i − x2i| ), where wi are the parameters that are learned by the model 
during training, weighting the importance of the component-wise dis-
tance. The final architecture of the defined siamese network is depicted 
in Fig. 5. 

2.4.3. Ensemble-inspired evaluation framework 
When using ensemble learning techniques, the final decision for each 

Fig. 3. Considered data augmentation techniques. (a) Original image; (b) Contrast transformation; (c) Additive Gaussian noise transformation; (d) Pixel sum 
transformation; (e) Hue and saturation transformation; (f) Affine transformations. 
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new test sample instance is made based on a vote of the predictions 
obtained from a collection of base models by averaging them if the 
output is numerical or by considering majority voting if it is a classifi-
cation decision. In this work, we took advantage of the statistical 

motivation for ensemble methods, which get to minimize the prediction 
error by tackling the bias-variance trade-off in the expected prediction 
error. The goal of ensemble systems is to create several classifiers with 
relatively fixed (or similar) bias and then combining their outputs, say 

Fig. 4. Learning paradigm of siamese networks in two steps. (a) Verification model, which gives the probability that a particular pair belongs to the same class; (b) 
One-shot task, which evaluates a new test sample in a pairwise manner against one input per possible class, choosing the one with the highest score. 

Fig. 5. Siamese network defined for our model.  
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by averaging, to reduce the variance and smooth the model (Zhang and 
Ma, 2012). Our problem domain also makes it suitable to average and 
vote: it is well-known that a certain small set of new images belongs to a 
unique individual, either because they were taken at one time by the 
same person or because the individual was previously marked. 

In contrast to ensemble learning, we did not consider several base 
models. Instead, our single final model (hence, trained and with a fixed 
small bias) was used to evaluate all the images (where we know that 
there exists a high variability). If we consider our support set which 
consists of N individuals, each with Kn images, n = 1, …, N; and a new 
unknown individual in the query set with samples {imagei}i=1

neval. First, we 
defined the score that a single image belongs to one of the categories in 
the support set as the mean of the probabilities of being similar to each of 
the samples of that category, thus smoothing the prediction. This is, 

p(imagei, n) =
1

Kn

∑Kn

j=1
p
(
imagei, imagej

)
∀n = 1,…,N 

As is natural, the final prediction will be the identity with the highest 
score. 

di = arg max
n=1,…,N

p(imagei, n)∀i = 1,…, neval 

Then, we built the final decision by considering the prediction that 
our model gives for every image in that certain set of new samples and 
performed majority voting. In this way, the probability of making a poor 
decision is reduced and we give a more robust one. This is, 

n* = arg max
n=1,…,N

∑neval

i=1
1(di=n)

This proposed methodology is depicted in Supplementary Fig. S2. 

2.5. Training the model 

This system was built under Python 3.9.5 using TensorFlow 2.4.1 
and training was performed on an Intel(R) Core(TM) i9-9900K CPU @ 
3.60GHz processor and 32GB RAM memory. Learning was performed 
with Stochastic Gradient Descendent (SGD) method, optimizing its pa-
rameters (learning rate and momentum) and binary cross-entropy as a 
loss function. The algorithm was also asked to exceed a certain threshold 
of variability in its predictions, i.e., that the standard deviation of the 
predicted probabilities exceeds a certain threshold —to be tuned— so 
that the output of the classifier is not almost the same for all images that 
feed the model. Moreover, the input image size was optimized, since 
there is a trade-off between the information provided by large resolu-
tions and the number of weights of the network that need to be trained. 

The parameters were tuned with Bayesian optimization (Snoek et al., 
2012). This selection was made because it does not require to study 
every possible combination of the parameters in a grid search, it works 
by incorporating the information that was learned in previous function 
evaluations to choose an optimal set of coordinates of the search space 
for the next evaluation. This is made by calculating the posterior pre-
dictive distribution for the function's value at each point. Table 1 gathers 
the search space and the selected parameters at the end of the optimi-
zation process. 

Each optimization run consisted of 3000 train iterations with a batch 
size of 25 individuals to pick a pair of similar and a pair of dissimilar 
photos (i.e., a batch size of 100 images), and validating each 300 iter-
ations. TensorBoard —a set of visualization tools included in the open- 
source library for machine learning TensorFlow— was used to study 
the performance of the runs. The selected parameters correspond to the 
run shown in Supplementary Fig. S3. 

3. Results 

Our approach based on a siamese artificial neural architecture ob-
tained a best validation accuracy of 94.5% after 900 train iterations. The 
weights of the aforementioned best validation run were saved and made 
up the final model. When the model was used to finally predict the 
identity of the unseen individuals in the test set, the model correctly 
identified the 70% of the skates. As the test set included re-sightings of 
recaptures that happened about a year after the first shots, that loss of 20 
percentage points shows the generalization when the model is deployed 
to real life processing. 

By correctly identifying an individual, we mean that the individual is 
among the selection that the algorithm proposes by majority voting. For 
instance, for a single image, it may happen that the score of belonging to 
a category is the highest and the same for more than one category of the 
support set. Hence, an example of a difficult identification instance 
might be: if we have 3 pictures of an individual in the test set and the 
predicted identities are {[Ray 1, Ray 3, Ray 6], [Ray 1], [Ray 2, Ray 6]}, 
our model proposes as identity both Ray 1 and Ray 6. We emphasize 
that, unlike a softmax classifier, our model did not have to forcibly 
choose an individual from the support set. Despite the requested vari-
ability in the predictions, the majority vote procedure may select more 
than one individual. To depict this behavior, Fig. 6 illustrates a heatmap 
of a square matrix that represents the “intensity of assignment” in the 
prediction for each individual. This is, A = (aij)i, j=1, …, 108 with 

aij =

⎧
⎪⎨

⎪⎩

1
#{identitiespredictedfor individual i}

if individual jwaspredictedas i

0 otherwise 

We can appreciate a clearly marked diagonal with darker colours, 
corresponding to that high percentage of times that the prediction is 

Table 1 
Model training optimized parameters.  

Parameter Nomenclature Search interval Optimized 
value 

Learning 
rate 

μ [10− 5, 10− 2] 0.096 

Momentum β [0,1] 0.845 
SD threshold σ [0.05, 0.25] 0.05 
Input size s {(75, 125, 3), (100, 150, 3), 

(200, 250, 3)} 
(200, 250, 3)  

Fig. 6. Heatmap of individual assignments in the predictions. It shows coloured 
cells (i, j) if individual in column j was predicted as identity for individual in 
row i, and white otherwise. The strongest colour is for the case where only one 
individual was proposed as identity and becomes clearer when the number of 
identities proposed in the majority vote procedure is greater. 
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correct on the test set. 
We would have a one-to-one identification if the model predicted 

only one individual as its output, but it is not set to forcedly choose one 
as in a softmax classification. Even if the model may give more than one 
individual as prediction, the correctness of the identification does not 
depend on that. Fig. 7 is a bar chart that depicts how many individuals 
were proposed by the majority vote prediction and whether it was a 
correct/wrong prediction in that case. We can visualize a chart clearly 
shifted to the left with a median value of 6.5. Purple coloured bars, 
corresponding to the correct classification predictions, also predominate 
when only a few identities are predicted. 

Finally, the algorithm can be used to give not only the majority vote 
predictions but also to order a list of the top most voted identities in the 
prediction for each individual, understanding a “top detection” as an 
identity that has been voted a number of times that exceeds half of the 
number of photos that the individual has in the support set. We cannot 
speak in terms of a “top-k accuracy” as in (Nepovinnykh et al., 2020) 
because we do not follow any sort of k-nearest neighbours (where k is 
fixed) approach but have an ordered list of the top most voted in-
dividuals for each prediction that meet some criteria instead. In this 
sense, the decision is left to the discretion of the researcher in charge, 
considerably narrowing down the set of individuals for the pairwise 
comparison. With this procedure, the individuals in the test set are 
correctly detected the 89% of the times. In this case, the median is of 26 
individuals, which narrows down the possibilities by a quarter. Sup-
plementary Fig. S4 provides a similar bar chart as before but showing the 
frequency of the number of individuals proposed in the top detections. 

4. Discussion 

Deep learning is a rising tool for ecologists, covering a wide range of 
topics (Christin et al., 2019), such as the identification of animal species 
(Norouzzadeh et al., 2021) or the estimation of biodiversity in large data 
sets (James and Bradshaw, 2020). Among the current applications of 
deep learning techniques in ecology, identification and classification of 
individuals based on photographs have been proposed as a useful tool 

for monitoring wild populations (Goodwin et al., 2022; Schneider et al., 
2019). However, marine ecosystems still represent a challenge, partic-
ularly for data collection, and the examples in marine taxa are still 
scarce. The studied species, R. undulata, is considered as data limited 
population in terms of assessment and management (Alonso-Fernández 
et al., 2019, 2021). Therefore, our case of study falls into the field of few- 
shot learning, which has become a very important research problem in 
the field of deep learning in recent years since a data-limited scenario is 
the standard in the deployment of real applications. 

This study is one of the first attempts to apply deep learning tech-
niques to photo-identification within a fish monitoring program. 
Traditional monitoring systems rely on artificial markers to differentiate 
each individual, which may pose a threat to animal survival or cause 
behavioural alteration and stress due to the combined effect of capture, 
handling and tagging. But also tag loss could affect performance of 
mark-recapture designs (Sackett and Catalano, 2017). For this reason, 
the application of similarity comparison networks, such as a siamese 
network and its triplet-loss counterpart, has recently emerged for the re- 
identification of marine individuals (Moskvyak et al., 2021; Nepo-
vinnykh et al., 2020). 

In the experimental part of the work, the model achieved a high 
accuracy for a straightforward matching process. Our accuracy of 0.7 
means that the majority voting procedure proposed the correct indi-
vidual the 70% of the times. A methodology consisting not in providing a 
one-to-one identification but to the most similar individuals is the 
chosen option if a conventional classification, where the number of 
categories is fixed, is to be avoided. (Moskvyak et al., 2021; Nepo-
vinnykh et al., 2020) have strategies based on the k-nearest neighbours, 
and analogously in (Bouma et al., 2018) an algorithm is developed to 
match an individual to existing images in a catalogue of known in-
dividuals and return the top k identities, ranked by similarity. It must be 
mentioned that the achieved classification success is lower when 
compared with these works. However, we consider that our study is a 
straightforward methodology, and it is developed within a much more 
limited scenario, which is the standard for most research teams which 
are becoming familiar with deep learning approaches. 

Fig. 7. Bar chart of the quantity of individuals voted in the majority vote procedure. Purple and orange bars correspond to the count of correct and wrong pre-
dictions, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In (Nepovinnykh et al., 2020) we also find the choice of a siamese 
network. However, the first big difference that we come across is that 
their dataset was composed of nearly 100,000 images, compared to our 
few-shot learning approach. This allows them to also train the con-
volutional part of the network. They obtain a 74.6% accuracy after a 
feature engineering process that deleted all the noise —lighting condi-
tions, shadows, etc.— from the patterns. When using the original 
patches, their accuracy decreases in 10 percentage points. Lastly, they 
develop a candidate filtering and ranking sequence based on topology- 
preserving projections. Whilst our work has been a successful attempt 
of individual recognition —the algorithm was able to correctly classify 
images of recaptured individuals— in a straightaway procedure: using 
the statistical properties of the bias-variance trade-off allows us to pro-
pose the most similar identities in a robust way without the need for 
filtering. 

Similar works are (Bouma et al., 2018; Moskvyak et al., 2021). It is 
true that (Bouma et al., 2018) considers the data scarcity problem, but 
both have bigger datasets compared to ours. This allows them to train 
fine-tuned CNNs and develop a methodology based on extracting 
particular embeddings of the species in question, specializing in 
capturing their natural markings quite well. In contrast, considering a 
realistic limited scenario forced us to explore only feature extraction by 
defining an approach that specializes in how to weight the relevance in 
the comparison of the extracted embeddings for our problem. This 
supposes an advantage with respect to those previous works which 
cannot just use straightforward feature extraction but continue training 
the CNN to obtain particular embeddings for their models to correctly 
identify the individuals. 

The field of Machine Learning is where Artificial Intelligence and 
Statistics converge. Our study clearly highlights the potential of 
applying modern siamese neural networks in combination with tradi-
tional statistical results to individual photo-identification within this 
framework. The application of these deep networks is a promising way 
to revolutionize the way in which individuals are re-identified and 
managed owing to its multiple advantages: it solves the problem of few- 
shot categories, which is the most common scenario in the marine 
environment; and its architecture makes the solution easily extended to 
other species with a unique recognizable pattern. Moreover, siamese 
neural networks provides a flexible framework in two steps that adapts 
both to the problem of identifying the current individuals in the avail-
able database as well as to address the later arrival of new specimens 
(Goodwin et al., 2022). The first step is very useful in our problem 
domain because the verification task could be trained even with pairs of 
images of individuals of the same species but with databases from other 
spatial domains. The reason is that, at this first stage, this model only 
aims at learning which parts of the images are discriminating since the 
identification categories are not defined yet. In the following step, the 
flexibility in choosing which individuals are in the support would allow 
to broaden the existing set when new individuals are detected. 

As indicated previously, when a recapture was known, images of this 
re-sighting were kept for the test set. One of these recaptures was 
detected by our model with eight of ten votes with the maximum 
probability. Re-sightings occurred about a year after the first shots of 
these individuals, meaning that our model is able to attribute the same 
identity to two pictures of the same animal taken on different days. This 
long time period between the pictures shows the strong impact of this 
work, that indeed enables the re-identification of known/marked 
individuals. 

It is important to emphasize that our database was collected from 
several projects with a variety of objectives different than the individual 
recognition, resulting in a quite varied sample due to environmental and 
light conditions. We believe that our lesser success in terms of accuracy 
is related to this variation of the database. Nevertheless, when thinking 
about the application of these type of models in wildlife research, one 
should aim to train models that are invariant to ambient conditions. This 
is because most of the times researchers will not have the perfect 

standard conditions in the wild. Therefore, putting too much focus on 
obtaining high accuracies and not necessarily on the real application of 
these models in the wild is not always right. 

Collectedly, the findings of the proposed model suppose a strong 
impact and have several implications on the real applications of wildlife 
research, concerning that it means a feasible application for most of 
research teams: we face the problem of dealing with a small amount of 
photographs per individual to train the model, altogether with consid-
ering a model invariant to different data collection techniques, and a 
scenario with non-perfect conditions in the wild. Furthermore, our 
model is very low time-consuming and can even be trained on CPU since 
it has been oriented to train the fewest number of weights possible (al-
ways taking into account the trade-off with the information provided to 
the model). This implied that our architecture was already trained 
within about a day, allowing us to run many iterations of Bayesian 
optimization and hence explore multiple options for the tuning param-
eters in promising regions. 

Moreover, our deep learning-based method can be easily extended to 
identify individuals from other species due to the fact that photo iden-
tification has been proven to be a potential method for individual 
recognition when applied to fish individuals (Benjamins et al., 2018; 
Marshall and Pierce, 2012). We already identified species in the study 
area, within the same national park, that fit with the minimum re-
quirements to apply this photo-identification approach, like Labrus 
bergylta (Mucientes et al., 2019). For this reason, the defined procedure 
of photo-identification of fish individuals based on deep learning tech-
niques and applied in a data-limited scenario, represents a meaningful 
contribution to this neglected topic. Its implementation will improve the 
current monitoring program of the target species using non-invasive 
tracking techniques, and so, reducing the impact on the studied 
population. 

We came across certain limitations in this work, and further research 
lines are needed. Initially, we proceeded with a manual preprocessing of 
image (cropping and removal of background). We tested how would the 
algorithm perform with no preprocessing, as building an image set by 
manually delimiting the representative part of the pattern to study is 
highly time consuming —it took about a minute to delimitate each 
image in a dataset of size 1138—. The absence of pre-processing is a 
pitfall of the algorithm, as to obtain the same results we had to downsize 
the number of identities by more than a third. However, this limitation 
could be solved by developing and applying automatic object instance 
segmentation techniques, such as training a Mask R-CNN (He et al., 
2017) to extract the bodies from the background (Álvarez-Ellacuría 
et al., 2020; Tseng et al., 2020). Regardless of the way to differentiate 
the body of the individuals, the preprocessing step is of high importance 
as can reduce the number of images needed and, for instance, if we have 
ambiguity in the seabed this can confuse the algorithm and result in a 
bad classification. This is necessary to show that our model is not relying 
on superficial features (e.g., shadows) to identify animals, and instead 
rely on their visual appearance, being invariant to different data 
collection conditions. Also, explainability analysis —such the ones in 
(Angelov and Soares, 2020) using prototypes or by using gradient-based 
methods (Selvaraju et al., 2017)— could be subject of future exploration 
in order to know what patterns are learned by the deep learning system. 

On the other hand, we rely on the embedding that the pre-trained 
convolutional base provides. This is, we trust on that the CNN was 
exposed to a sufficiently large and varied original dataset that the 
learned weights for the feature extraction will be able to generalize well 
to our problem. This hypothesis can be assumed since ImageNet is much 
larger in scale and diversity and much more accurate than the current 
image datasets (Deng et al., 2010). InceptionResNetV2 (Szegedy et al., 
2017) is a variation of the earlier InceptionV3 model which borrows 
some ideas from Microsoft's ResNet papers (He et al., 2016b, 2016a). 
This CNN was chosen because it achieved a new state of the art in terms 
of accuracy on the ImageNet image classification benchmark (https://ai. 
googleblog.com/2016/08/improving-inception-and-image.html, access 
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date 07/04/2022). However, a comparison of architectures for transfer 
learning is not the goal of this paper, but to state that it is feasible to 
directly use feature extraction to make up a model that only trains which 
parts of the extracted embeddings are more relevant for the proposed 
problem. We do not deny that exploiting transfer learning to extract 
particular embeddings, instead of just freezing the series of convolu-
tional and pooling layers, would boost the final model and be of great 
improvement for our problem of individuals identification if we had a 
considerable number of images too. However, we could rely on a high 
number of photographs and our focus was on building a model that is 
sustainable in the few-shot context. 

Regarding the multi-class classification scheme, conventional ap-
proaches —such as a softmax top layer, where the number of predicted 
classes must match the number of known individuals— need to be 
upgraded for the task of photo-identification, as the appearance of new 
individuals (i.e., categories of the classification model) that are not 
known a priori is frequent and definitely an issue that needs to be 
addressed. This problem fits in the novelty detection domain, which can 
be defined as the task of recognising that test data differ somehow from 
the data that are available during training (Pimentel et al., 2014). As was 
disclosed, siamese networks provide a flexible framework in two steps 
that can be used to properly address this challenging issue and make up a 
system that could be applied not only to the re-identification of re-
captures in closed-set (pre-defined and fixed support set of individuals) 
problems but also to open-set identification, which considers new 
incoming individuals. However, there is still need of further research 
inquiring into the probability of similarity so as the model not always 
chooses an individual from the support set. 

As a last point in our methodology, the adaptation of ensemble 
learning encourages the prediction capability and fully exploits the 
reduced data set. Robust methods to assist in minimising errors and bias 
of animal identification need to be explored (Meek et al., 2013). They 
have been successfully applied before for handling complex problems in 
marine ecosystems (Kuhnert et al., 2012). However, to our knowledge, 
ensemble methods have not been previously included in few-shot 
problems nor in re-identification methodologies, and the theoretical 
reduction of the prediction error for regression problems (Hastie et al., 
2009) is definitely a knack that should be considered. In most cases, a 
person at one time can take a few photographs of a single individual by 
for the same cost as taking just one, but if it is not the case, we still can 
benefit of averaging over the probabilities of being similar to each 
sample in the support set, just not voting over the prediction for each 
new image. However, in circumstances where very similar looking in-
dividuals coexist, in addition to changing environmental scenarios, a 
reliance on a single image may lead to mistaken identity. 

5. Conclusion 

Our findings suppose an advance with respect to the state of art, 
where the application of similarity comparison networks such as a sia-
mese neural networks has recently emerged for the re-identification of 
marine individuals. We incorporated statistical results to existing deep 
learning techniques and we got to develop a novel methodology that 
proposes the most similar identities in a robust way without the need for 
filtering. Moreover, we stated that it is feasible to directly use feature 
extraction for a model to correctly identify the individuals. Our model 
indeed enables the re-identification of known/marked individuals, 
correctly identifying the 70% of the skates in the test set which included 
re-sightings of recaptures that happened about a year after the first 
shots. Hence, we overcame the few-shot learning problem and in a much 
more direct procedure. 

This new tool for individual recognition is a critical step forward to 
implement a long-term monitoring program based on low cost and non- 
invasive techniques for a marine species with conservation and exploi-
tation concerns, as it is the R. undulata. In addition, we kept it 
straightforward so as it can be easily extended to other species use cases 

within a quality and quantity limited scenario. We believe that this is 
what brings out the relevance of our study, as it is the standard for most 
research teams which are becoming familiar with deep learning ap-
proaches. We hope that our work will motivate other research studies 
and serve as a base to exploit deep learning for individual photo- 
identification. 
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