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Abstract: We study the distribution theory of some statistics related to records from a sequence of
geometrically distributed random variables. The main novelty in this study is the introduction of
q-calculus techniques. We obtain representations for the probability functions of some variables of
interest, such as, for instance, record times, number of records, inter-record times, record indicators,
etc., in terms of multiple q-integrals. It is remarkable to note that the expressions thus obtained are
q-analogues of the corresponding well-known results in the absolutely continuous case. We also
explore a duality between the results in the case of weak and ordinary records.

Keywords: weak and ordinary records; geometric distributions; Jackson integral; multiple q-integral;
q-Stirling numbers
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1. Introduction

The origins of q-calculus date back to the works of [1] in connection to infinite series
in his famous book Introductio in Analysin Infinitorum. In the last few decades, there has
been a considerable interest in the topic due to its numerous applications in different
areas of mathematics and physics, such as number theory, special functions, orthogonal
polynomials, operator theory, combinatorics, probability, quantum mechanics, relativity,
string theory, etc. An extensive treatment on q-calculus, its history and applications can be
found in [2].

In this paper, we explore a connection between q-calculus and the distribution theory
of records from sequences of random variables geometrically distributed.

Ref. [3] started the probabilistic study of record values and gave many of their basic
distributional properties. Let us recall some definitions and results. Let {Xn}n≥1 be
a sequence of independent and identically distributed (iid) random variables with the
common distribution function F. The sequence of (upper) ordinary record times, {Tm}m≥0,
is defined as Tm = min{j > Tm−1 : Xj > XTm−1}, m ≥ 1 with T0 = 1. The m-th (ordinary)
record of the sequence is the random variable Rm = XTm , m ≥ 0. For n ≥ 2, the record
indicators are the binary random variables

In =

{
1, if Xn > max{X1, . . . , Xn−1}
0, otherwise

and I1 = 1 with probability one. In the case in which F is continuous, the basic distribution
theory of the statistics above defined is very well-known; see, for instance, chapter 2 of [4].
In the continuous case, the distributions of the record indicators, the record times and the
inter-record times do not depend on the parent distribution, and we have results like the
following (for further references, see [5]):
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• The record indicators are independent Bernoulli random variables with P(In = 1) = 1/n,
n ≥ 1. Then

P(I1 = 1, I2 = 1, . . . , In = 1) =
1
n!

. (1)

• The joint probability mass function (pmf) of the first m (non-trivial) record times is

P(T1 = t1, T2 = t2, . . . , Tm = tm) =
1

(t1 − 1)(t2 − 1) · · · (tm − 1)tm
, (2)

for integers 1 < t1 < t2 < · · · < tm; also

P(Tm = n) =
|sn−1,m|

n!
, (3)

with sn,k being the Stirling numbers of the first kind defined by the equality

x(x− 1) · · · (x− n + 1) = ∑
k≥0

sn,kxk.

• The pmf of the inter-record times, Sm = Tm − Tm−1, m ≥ 1 satisfies (see [6])

P(Sm > s) =
1

(m− 1)!

∫ ∞

0
xm−1e−x(1− e−x)s dx, s ≥ 0,

so then, for s ≥ 1,

P(Sm = s) = P(Sm > s− 1)− P(Sm > s) =
1

(m− 1)!

∫ ∞

0
xm−1e−2x(1− e−x)s−1 dx

=
1

(m− 1)!

s−1

∑
`=0

(
s− 1
`

)
(−1)`

∫ ∞

0
xm−1e−(`+2)x dx =

s−1

∑
`=0

(
s− 1
`

)
(−1)`

(`+ 2)m . (4)

• The number of records in a sequence of length n, denoted Nn, has pmf

P(Nn = m) =
|sn,m|

n!
, m = 1, . . . , n,

and its expected value is ENn = ∑n
j=1

1
j .

If the parent distribution, F, is discrete, the previous results are no longer true, and in
general, the distribution of record times, inter-record times, record indicators and number
of records depend on F. Thus, the distribution theory for records from discrete parents
is more complicated than in the continuous case. In fact, there exist in the literature two
definitions of records, ordinary and weak records, which are equivalent in the case of
continuous parents, but not so in the discrete case. The weak record time sequence is defined
as T̃m = min{j > T̃m−1 : Xj ≥ XT̃m−1

}, m ≥ 1, and T̃0 = 1. Then, the mth weak record of the

sequence {Xn}n≥1 (or from the parent distribution F) is the random variable R̃m = XT̃m
,

m ≥ 0. Note that the difference with ordinary records is that ties with the previous
records are also considered as records. Obviously, for continuous distributions, weak
records coincide (almost surely) with ordinary records. In the case of discrete distributions,
ordinary and weak records lead to different definitions.

We say that a random variable, X, follows a geometric distribution with parameter
p ∈ (0, 1) if its pmf is P(X = x) = qx p for x = 0, 1, . . . and q = 1 − p. We denote
X ∼ Ge(p).

The number of records in geometrically distributed sequences has been studied in
connection with a data structure called skiplist; see [7,8] or [9]. Related studies can be found
in [10], which established the asymptotic normality of the number of records from geometric
parents and also studied large deviations, local limit theorems and approximations. Some
of these results have been extended to other discrete parents, so [11] established a CLT
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for the number of records from discrete distributions; rates of growth for the number of
records and laws of large numbers can be found in [12,13].

Most of the results above deal with limit properties, and not very much attention
has been paid to the exact distribution of statistics related to the number of records. Our
main contribution in this paper is the use of techniques of q-calculus for the study of the
distribution theory of records from geometric parents.

In Section 2, we present the Jackson integral or q-integral and the extension of this
concept to multiple q-integration in a convex polytope; see [14]. We also present in this
section some useful lemmas for the calculation of multiple q-integrals (proofs are deferred to
the Appendix A) and the non-central q-Stirling numbers; see [15]. No previous knowledge
of q-calculus is necessary to understand this section. In Section 3, we study some statistics
related to the sequence of weak records from a sequence of geometrically distributed
random variables. Theorem 1 is a central result in this section. It gives a multiple q-
integral representation of the joint probability function of the (weak) record times. As a
consequence of this result, we show that the distribution of record times and that of the
number of records in a sample of size n can be written in terms of the central and non-
central q-Stirling numbers. We also study the distribution of inter-(weak) record times and
we prove its asymptotic log-normal behavior. In Section 4, it becomes clear that the results
obtained for a geometric parent, Ge(p), are q-analogues of the corresponding results in the
case of an absolutely continuous distribution, so we can say that the absolutely continuous
case is the limit case of geometric parents when q = 1− p → 1. Finally, in Section 5, we
consider the case of ordinary records. We show that there is the following duality: the
formulas in the case of ordinary records can be obtained from the corresponding ones in
the case of weak records by replacing q = 1− p with Q := 1/q.

Throughout this paper, we will use the usual conventions with sums and products:
for a > b, ∑b

a · = 0 and ∏b
a · = 1, and more generally, the summation (product) over an

empty set of indexes is equal to zero (one). Additionally, 00 = 1.

2. The Jackson Integral and q-Analogues

In the following, we present some basic concepts of q-calculus. The interested reader
can find more details in [16], or, for a deeper treatment of the subject, see [2]. Regardless,
this section contains all the results of q-calculus that we need in this paper.

The most basic concept in q-calculus is perhaps that of the q-number. Let q ∈ R− {0}.
The q-numbers are defined as

{x}q :=
{

(1− qx)/(1− q), q 6= 1
x, q = 1

for x ∈ R. For a positive integer, m, its q-factorial is {m}q! = ∏m
j=1{j}q and {0}q! = 1.

Throughout this paper, Q := 1/q. Thus, for instance, for x ∈ R, we have {x}Q = {x}q/qx−1.
Given a function f defined on the non-negative semi-axis of the real line, a, b > 0 and

q ∈ (0, 1), the Jackson integral or q-integral of f in the interval (a, b) is defined as

∫ b

a
f (y)dqy := (1− q)

∞

∑
`=0

(
f (q`b)bq` − f (q`a)aq`

)
(5)

provided that the series in the right hand side (rhs) of (5) is absolutely convergent.
The Jackson integral has some resemblances to the Riemann integral; for instance, for

α > −1, ∫ x

0
yαdqy =

xα+1

{α + 1}q
. (6)
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Among the differences with respect to the ordinary Riemann integrals, we mention
that the formula of the change of variables is no longer valid, so, for natural α,

1
{α + 1}q

6=
∫ 1

0
(1− y)αdqy =

α

∑
j=0

(
α

j

)
(−1)j 1

{j + 1}q
.

The definition of a q-integral can be extended to a multiple q-integral in a con-
vex polytope; see [14]. Let us denote as Sm the set of permutations of {1, . . . , m}. Let
π = (π1 · · ·πm) ∈ Sm. For a function of m variables, f (y1, . . . , ym) and a convex polytope
C ⊂ Rm, the q-integral of f over C with respect to the order π of integration is defined as

∫
C

f (y1, . . . , ym)dqyπ1 · · · dqyπm =
∫ max(Cm)

min(Cm)

(
· · ·
(∫ max(C1)

min(C1)
f (y1, . . . , ym)dqyπ1

)
· · ·
)

dqyπm (7)

where Ci, i = 1, . . . , m− 1 is the set of real numbers depending on the values of yπi+1 , . . . , yπm with

Ci := Ci(yπi+1 , . . . , yπm ) = {xπi : (x1, . . . , xm) ∈ C, xπj = yπj , for j > i},

and Cm := {xπm : ∃(x1, . . . , xm) ∈ C} (implicitly, hereafter we assume the absolute convergence of
the involved series).

It follows from the definition that when the polytope C is a hyper-rectangle, i.e., C = [a1, b1]×
· · · × [am, bm], the ordering π is irrelevant; that is to say, we can change the order of integration, and
so, for any π ∈ Sm,∫

[0,1]m
f (y1, . . . , ym)dqyπ1 · · · dqyπm := (1− q)m ∑

`1,...,`m≥0
f (q`1 , . . . , q`m )q∑m

i=1 `i , (8)

for f , a function in m variables, such that the series in the rhs of (8) is absolutely convergent. Thus,
for example,

∫
[0,1]m

m

∏
j=1

y
αj

j dqyπ1 · · · dqyπm =
∫
[0,1]m

m

∏
j=1

y
αj

j dqy1 · · · dqym =
m

∏
j=1

1{
αj + 1

}
q

(9)

for any π ∈ Sm and αj > −1, j = 1, . . . , m.
The next Lemmas are useful in connection with iterated and multiple Jackson integrals.

Lemma 1. Let f be a real function of m variables such that the series appearing below are absolutely convergent.
Then, for any π ∈ Sm,

(a) (1− q)m ∑
0≤x1≤···≤xm<∞

f (qx1 , qx2 , . . . , qxm ) q

m
∑

i=1
xi

=
∫
[0,1]m

f (y1, y1y2, . . . , y1 · · · ym)
m

∏
j=1

ym−j
j dqyπ1 · · · dqyπm .

(b) (1− q)m ∑
0≤x1<···<xm<∞

f (qx1 , qx2 , . . . , qxm ) q

m
∑

i=1
xi

= q(
m
2)
∫
[0,1]m

f (y1, qy1y2, . . . , qm−1y1 · · · ym)
m

∏
j=1

ym−j
j dqyπ1 · · · dqyπm .

In general, when the polytope of integration is not a hyper-rectangle, the order of integration is
important. We illustrate this fact with the following example:∫

0≤y2≤y1≤1

dqy2 dqy1 =
∫ 1

0

(∫ y1

0
dqy2

)
dqy1 =

∫ 1

0
y1 dqy1 =

1
{2}q

,

but, ∫
0≤y2≤y1≤1

dqy1 dqy2 =
∫ 1

0

(∫ 1

y2

dqy1

)
dqy2 =

∫ 1

0
(1− y2) dqy2 = 1− 1

{2}q
.
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Throughout this paper we will use the reverse ordering, dqy(m) := dqymdqym−1 · · · dqy1. For
q ∈ (0, 1], we define the polytopes

Dm,q := {(y1, . . . , ym) ∈ Rn : 0 ≤ y1 ≤ 1; 0 ≤ yj ≤ qyj−1, j = 2, . . . , m},
Dm := Dm,1 = {(y1, . . . , ym) ∈ Rn : 0 ≤ ym ≤ ym−1 ≤ · · · ≤ y1 ≤ 1},

and from the definition of a multiple q-integral given in (7),∫
Dm

f (y1, . . . , ym) dqy(m) =
∫ 1

0

∫ y1

0
· · ·

∫ ym−1

0
f (y1, . . . , ym)dqy(m), (10)∫

Dm,q

f (y1, . . . , ym) dqy(m) =
∫ 1

0

∫ qy1

0
· · ·

∫ qym−1

0
f (y1, . . . , ym)dqy(m). (11)

Lemma 2. Let f be a real function of m variables such that the series appearing below are absolutely conver-
gent. Then,

(a) (1− q)m ∑
0≤x1≤···≤xm<∞

f (qx1 , . . . , qxm ) q∑m
j=1 xj =

∫
Dm

f (y1, . . . , ym) dqy(m).

(b) (1− q)m ∑
0≤x1<···<xm<∞

f (qx1 , . . . , qxm ) q∑m
j=1 xj =

∫
Dm,q

f (y1, . . . , ym) dqy(m).

Comparing the results in Lemmas 1 and 2, we obtain

∫
Dm

f (y1, . . . , ym) dqy(m) =
∫
[0,1]m

f (y1, y1y2, . . . , y1 · · · ym)
m

∏
j=1

ym−j
j dqy(m) (12)

∫
Dm,q

f (y1, . . . , ym) dqy(m) = q(
m
2)
∫
[0,1]m

f (y1, qy1y2, . . . , qm−1y1 · · · ym)
m

∏
j=1

ym−j
j dqy(m), (13)

and using these results in combination with (6), it can be confirmed that for m ≥ 1 and β1, . . . , βm,
real numbers such that β j + · · ·+ βm + m− j > −1, for j = 1, . . . , m,

∫
Dm

m

∏
j=1

y
β j

j dqy(m) =
m

∏
j=1

1{
β j + · · ·+ βm + m− j + 1

}
q

, (14)

∫
Dm,q

m

∏
j=1

y
β j

j dqy(m) = q(
m
2)

m

∏
j=1

q(j−1)β j{
β j + · · ·+ βm + m− j + 1

}
q

= Qβ1+···+βm
m

∏
j=1

1{
β j + · · ·+ βm + m− j + 1

}
Q

, (15)

and in particular, for β1 = · · · = βm = 0,

∫
Dm

dqy(m) =
1

{m}q!
, (16)

∫
Dm,q

dqy(m) =
1

{m}Q!
, (17)

and for β1 = · · · = βm−1 = −1 and βm = b > −1,

∫
Dm

yb
m

∏m−1
j=1 yj

dqy(m) =
1

{b + 1}m
q

, (18)

∫
Dm,q

yb
m

∏m−1
j=1 yj

dqy(m) =
Qb−m+1

{b + 1}m
Q

. (19)
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Given a (formal) power series A(z) = ∑k≥0 akzk, we denote [zk]A(z) = ak, k ≥ 0. For non-
negative integers, n and r, the non-central q-Stirling numbers of the first kind (see [15]) are defined as

sq(n, k; r) = [zk]
n+r−1

∏
`=r

(z− {`}q), k = 0, . . . , n,

and by convention sq(n, k; r) = 0 if k < 0 or k > n or n < 0. The case r = 0 corresponds to the
q-Stirling numbers of the first kind; see [2], Ch. 5. We denote sq(n, k) := sq(n, k; 0). The non-central
q-Stirling numbers satisfy the recurrence

sq(n + 1, k; r) = sq(n, k− 1; r)− {r + n}qsq(n, k; r), n ≥ 0; k = 0, . . . , n + 1,

sq(0, 0; r) = 1.

Some useful relationships for our purposes are the following:

|sq(n, k; r)| = (−1)n−ksq(n, k; r), (20)

sq(k, k; r) = 1, k ≥ 0, (21)

sq(n, k; 1) = sq(n− 1, k; 2)− sq(n− 1, k; 2), (22)

sq(n, k) = sq(n− 1, k− 1; 1). (23)

By equating coefficients of z` in both sides of(
1 +

z
{r}q

)
· · ·
(

1 +
z

{n + r− 1}q

)
=

{r− 1}q!

{n + r− 1}q!
(z + {r}q) · · · (z + {n + r− 1}q)

we obtain

∑
r≤c1<···<c`≤n+r−1

∏
1{

cj

}
q

=
(−1)n−`{r− 1}q! sq(n, `; r)

{n + r− 1}q!
. (24)

Lemma 3. For the integers m ≥ 1, k ≥ 0 and q ∈ (0, 1),

(a) ∑
α1,...,αm≥0
α1+···αm=k

∫
Dm

m

∏
j=1

y
αj

j dqy(m) =
(−1)ksq(m + k− 1, m− 1; 2)

{m + k + 1}q!
.

(b) ∑
α1,...,αm≥0
α1+···αm=k

∫
Dm,q

m

∏
j=1

y
αj

j dqy(m) =
(−1)ksQ(m + k− 1, m− 1; 2)

{m + k + 1}Q!
, where Q := 1/q.

Lemma 4. For m > 1 and f , a non-negative function defined in the non-negative real numbers,

(a) ∑
s1,...,sm−1≥1

∫
Dm

f (ym)
m−1

∏
j=1

(1− yj)
sj−1dqy(m) =

∫
Dm

f (ym)

y1 · · · ym−1
dqy(m).

(b) ∑
s1,...,sm−1≥1

∫
Dm,q

f (ym)
m−1

∏
j=1

(1− qyj)
sj−1dqy(m) =

1
qm−1

∫
Dm,q

f (ym)

y1 · · · ym−1
dqy(m).

Many variants of Lemma 4 (all of them with similar proofs) are possible; for instance, for a
non-negative function fi, i = 1, . . . , m,

∑
s≥1

∫
Dm

f1(y1) · · · fm(ym)(1− ym)
s−1dqy(m) =

∫
Dm

f1(y1) · · · fm(ym)

ym
dqy(m). (25)

Note that results like (25) or those in Lemma 4 justify the formal interchange of the summation and
integration symbols.

Suppose that A(q) is an expression involving the parameter q. Then, it is said that A(q) is a
q-analogue of A if A(q) → A when q → 1. q-analogues appear in different areas of mathematics
and physics, such as, for instance, in quantum groups, string theory, fractals, dynamical systems,
elliptic curves, etc. It is clear that q-numbers are q-analogues of the corresponding real numbers.
Expression (6) is a q-analogue of the well-known formula for Riemann integrals

∫ x
0 yα dy = xα+1/(α+

1), α > −1. Similarly, (9), (14)–(17) are q-analogues of the corresponding expressions obtained by
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substituting q-integrals for Riemann integrals and q-numbers for real numbers. Then, the following
lemma is immediate.

Lemma 5. If R(y1, . . . , ym) is a polynomial with real coefficients in the variables y1, . . . , ym, then the multiple
q-integral ∫

[0,1]m
R(y1, . . . , ym)dqy(m)

(
or
∫

Dm

R(y1, . . . , ym)dqy(m)
)

is a q-analogue of the multiple Riemann integral∫
[0,1]m

R(y1, . . . , ym)dym dym−1 . . . dy1

(
or
∫

Dm

R(y1, . . . , ym)dym dym−1 . . . dy1

)
.

Finally, we show a connection between multiple q-integrals and expected values involving
geometric samples. Let Xi ∼ Ge(p), i ≥ 1 be independent random variables with geometric
distributions of the parameter p ∈ (0, 1) (i.e., P(Xi = k) = (1− p)k p, k = 0, 1, . . .). Let q = 1− p. Let
f : Rm −→ R be a function such that E

∣∣ f (qX1 , . . . , qXm )
∣∣ < +∞, and thus, from (8) we get

E
(

f (qX1 , . . . , qXm )
)
=
∫
[0,1]m

f (y1, . . . , ym)dqy(m). (26)

3. Weak Records from Geometric Parent
Let X = {Xn}n≥1 be a sequence of iid random variables with a common distribution Ge(p)

with p ∈ (0, 1) and q = 1− p. The index n in the process X = {Xn}n≥1 can be regarded as discrete
time. A trajectory of the process X is a sequence of non-negative integers. A trajectory up to time
n is a finite sequence of length n of non-negative integers. We will denote a finite trajectory of
length n ≥ 1 by a sequence (k1, . . . , kn) where ki, i ≥ 1 are non-negative integers. Consecutive equal
integers in a trajectory are denoted with exponents; for instance, (k)t is the sequence (k, . . . , k) of
length t. A sequence of length 1 formed with a non-negative integer less than k is denoted by (<k).
Similar notations are used in the cases ≤, >, ≥, etc. As an example of these notations, consider the
trajectory (3, 1, 1, 5, 4, 2, 3, 1, 8). Whenever it is convenient, this trajectory could be denoted as:
(3)(1)2(≤5)5(8) or (≤3)3(≥3)2(≤8)4, or (3)(≥1)8,. . . etc.

Theorem 1. For m ≥ 1,

(a) For 1 = t0 < t1 < · · · < tm, the joint pmf of (T̃1, . . . , T̃m) from X admits the following q-
integral representation:

P
(

T̃1 = t1, . . . , T̃m = tm

)
=
∫

Dm

ym

m

∏
j=1

(1− yj)
tj−tj−1−1dqy(m). (27)

(b) The joint probability generating function of (T̃1, . . . , T̃m) is

G(z1, . . . , zm) =
∫

Dm

ym

m

∏
j=1

zj+1
j

1− (1− yj)zj · · · zm
dqy(m),

for |zj| ≤ 1, j = 1, . . . , m.

Proof. (a) For the integers 1 = t0 < t1 < · · · < tm, m ≥ 1, the event {T̃1 = t1, . . . , T̃m = tm}
corresponds to finite trajectories of length tm ≥ m + 1 of the process X, which are of the form:

(x1)(< x1)
t1−2(x2)(< x2)

t2−t1−1 · · · (xm)(< xm)
tm−tm−1−1(xm+1), (28)



Mathematics 2022, 10, 2313 8 of 17

with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm+1. The probability associated with the trajectory given in (28) is(
∏m

j=1 qxj p(1− qxj )tj−tj−1−1
)

qxm+1 p. Then, using Lemma 2(a),

P
(

T̃1 = t1, . . . , T̃m = tm

)
= ∑

0≤x1≤x2≤···≤xm+1<∞

 m

∏
j=1

qxj p(1− qxj )tj−tj−1−1

qxm+1 p

=
∫

Dm+1

m

∏
j=1

(1− yj)
tj−tj−1−1dqy(m+1) =

∫
Dm

m

∏
j=1

(1− yj)
tj−tj−1−1

(∫ ym

0
dqym+1

)
dqym

=
∫

Dm

ym

m

∏
j=1

(1− yj)
tj−tj−1−1dqy(m).

(b) Firstly, observe that for the integers s1, . . . , sm, and m ≥ 1,

m

∏
j=1

z
s1+···+sj+1
j = z2

1z3
2 · · · zm+1

m

m

∏
j=1

 m

∏
l=j

z`

sj−1

(29)

For |zj| ≤ 1 and sj = tj − tj−1, j = 1, . . . , m, (t0 = 1). Using Theorem 1(a) and (29), we have

G(z1, . . . , zm) = ∑
1=t0<t1<···<tm<+∞

P
(

T̃1 = t1, . . . , T̃m = tm

) m

∏
j=1

z
tj

j

= ∑
s1,...,sm≥0

P
(

T̃1 = s1 + 1, T̃2 = s1 + s2 + 1, . . . , T̃m = s1 + · · ·+ sm + 1
) m

∏
j=1

z
s1+···+sj+1
j

= z2
1z3

2 · · · zm+1
m ∑

s1,...,sm≥0

∫
Dm

ym

m

∏
j=1

(1− yj)
m

∏
`=j

z`

sj−1

dqy(m)

=

 m

∏
j=1

zj+1
j

 ∫
Dm

ym ∑
s1,...,sm≥0

m

∏
j=1

(
(1− yj)zj · · · zm

)sj−1
dqy(m)

=
∫

Dm

ym

m

∏
j=1

zj+1
j

1− (1− yj)zj · · · zm
dqy(m),

where the interchange of the summation and integral symbols can be justified with a similar argument
to the one in the proof of Lemma 4.

Theorem 2. For m ≥ 1 and n ≥ m + 1,

(a) P(T̃m = n) =
n−2

∑
`=m−1

(
n− 2
`

)
sq(`, m− 1; 2)
{`+ 2}q!

(b) P(T̃m ≤ n) =
n−2

∑
`=m−1

(
n− 1
`+ 1

)
sq(`, m− 1; 2)
{`+ 2}q!

Proof. (a) From Theorem 1(b), the probability-generating function of T̃m is

GT̃m
(z) = G(1, . . . , 1, z) = zm+1

∫
Dm

ym

m

∏
j=1

1
1− (1− yj)z

dqy(m), |z| ≤ 1. (30)

If |z| < 1/2, then |z/(1− z)| < 1. Therefore, if 0 < yj < 1, i = 1, . . . , m then we have that∣∣∣yj
z

1−z

∣∣∣ < 1, and the following expansion holds:
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m

∏
j=1

1
1− (1− yj)z

= (1− z)−m
m

∏
j=1

(
1 + yj

z
1− z

)−1

= (1− z)−m
m

∏
j=1

∑
αj≥0

(−1)αj

(
yj

z
1− z

)αj

=
∞

∑
k=0

(−1)k

 ∑
α1,...,αm≥0
α1+···αm=k

m

∏
j=1

y
αj

j

zk(1− z)−m−k. (31)

On the other hand, it is not difficult to check that

[zn−m−1]zk(1− z)−m−k =

(
n− 2

m + k− 1

)
, (32)

for n ≥ 2, m ≥ 1 and 0 ≤ k ≤ n−m− 1.
Thus, for n ≥ m + 1, using (30), (31), Lemma 3 and (32),

P(T̃m = n) = [zn]GT̃m
(z) = [zn−m−1]

∫
Dm

ym

m

∏
j=1

1
1− (1− yj)z

dqy(m)

=
∞

∑
k=0

(−1)k

 ∑
α1,...,αm≥0
α1+···αm=k

∫
Dm

ym

m

∏
j=1

y
αj

j dqy(m)

[zn−m−1]zk(1− z)−m−k

=
n−m−1

∑
k=0

(
n− 2

m + k− 1

)
sq(m + k− 1, m− 1; 2)
{m + k + 1}q!

=
n−2

∑
`=m−1

(
n− 2
`

)
sq(`, m− 1; 2)
{`+ 2}q!

.

(b) For n ≥ m + 1, using Theorem 2(a),

P(T̃m ≤ n) =
n

∑
k=m+1

P(T̃m = k) =
n

∑
k=m+1

k−2

∑
`=m−1

(
k− 2
`

)
sq(`, m− 1; 2)
{`+ 2}q!

=
n−2

∑
`=m−1

(
n

∑
k=`+2

(
k− 2
`

))
sq(`, m− 1; 2)
{`+ 2}q!

=
n−2

∑
`=m−1

(
n− 1
`+ 1

)
sq(`, m− 1; 2)
{`+ 2}q!

.

Some other statistics related to weak record indicators can be expressed in terms of q-integrals
and q-numbers as shown below.

Theorem 3. For n ≥ 2,

(a) P( Ĩn = 1) =
1
q

n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}q
.

(b) P( Ĩ2 = 1, . . . , Ĩn = 1) =
1
{n}q!

.

(c) P( Ĩ2 = 0, . . . , Ĩn = 0) =
n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}q
.

Proof. (a) For n ≥ 2, firstly observe that

0 = (1− 1)n−1 =
n−1

∑
`=0

(
n− 1
`

)
(−1)` =

1
1− q

n−1

∑
`=0

(
n− 1
`

)
(−1)`

1− q`+1

{`+ 1}q

Then,
n−1

∑
`=0

(
n− 1
`

)
(−1)`

1
{`+ 1}q

= q
n−1

∑
`=0

(
n− 1
`

)
(−1)`

q`

{`+ 1}q
. (33)



Mathematics 2022, 10, 2313 10 of 17

The event { Ĩn = 1} consists of all the trajectories of the process X with a weak record at position
n, i.e., trajectories of the form (≤ x)n−1x · · · ; then, using the definition of the Jackson integral (see (5)
and (33))

P( Ĩn = 1) = ∑
x≥0

(1− qx+1)n−1qx p =
∫ 1

0
(1− qy)n−1dqy = ∑

`=0

(
n− 1
`

)
(−1)`q`

∫ 1

0
y`dqy

=
n−1

∑
`=0

(
n− 1
`

)
(−1)`

q`

{`+ 1}q
=

1
q

n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}q
.

(b) The trajectories corresponding to the event { Ĩ1 = 1, Ĩ2 = 1, . . . , Ĩn = 1} are of the form
(x1)(x2) · · · (xn) · · · , with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < +∞. Then, using Lemma 2 and (16),

P( Ĩ1 = 1, Ĩ2 = 1, . . . , Ĩn = 1) = ∑
0≤x1≤x2≤···≤xn<+∞

n

∏
j=1

qxj p =
∫

Dn

dqy(n) =
1
{n}q!

.

(c) The trajectories corresponding to the event { Ĩ2 = 0, . . . , Ĩn = 0} are of the form (x)(< x)n−1 · · · ,
with 1 ≤ x < +∞. Then

P( Ĩ2 = 0, . . . , Ĩn = 0) = ∑
x≥1

qx p(1− qx)n−1 = q ∑
`≥0

q`p(1− q`+1)n−1

= q
∫ 1

0
(1− qy)n−1dqy =

n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}q
,

(see the proof of (a) for the last step).

The weak record indicators from geometric parents, as opposed to the continuous case, are not
independentl for instance,

P( Ĩ2 = 1, Ĩ3 = 1) =
1

(1 + q)(1 + q + q2)
6= 1

1 + q
× 1 + q2

(1 + q)(1 + q + q2)
= P( Ĩ2 = 1)× P( Ĩ3 = 1).

The number of weak records in a sample of size n is Ñn = ∑n
m=1 Ĩm (note that the 0-th record,

R0 = X1, is counted).

Theorem 4. For n ≥ 1,

(a) P(Ñn ≥ m) =
n−1

∑
`=m−1

(
n− 1
`

)
sq(`− 1, m− 2; 2)
{`+ 1}q!

, m = 2, . . . , n.

(b) P(Ñn = m) =
n

∑
`=m

(
n− 1
`− 1

)
sq(`, m)

{`}q!
, m = 1, . . . , n.

(c) EÑn =
n

∑
`=1

(
n
`

)
(−1)`−1q`−1

{`}q
.

Proof. (a) Observe that Ñn ≥ m if T̃m−1 ≤ n, m = 2, . . . , n. Then, the result is immediate using
Theorem 2(b).

(b) For m = 2, . . . , n, using (a) and the properties (22) and (23)

P(Ñn = m) = P(Ñn ≥ m)− P(Ñn ≥ m + 1)

=
n−1

∑
j=m−1

(
n− 1

j

)
sq(j− 1, m− 2; 2)
{j + 1}q!

−
n−1

∑
j=m

(
n− 1

j

)
sq(j− 1, m− 1; 2)
{j + 1}q!

=

(
n− 1
m− 1

)
sq(m− 2, m− 2; 2)

{m}q!
+

n−1

∑
j=m

(
n− 1

j

)
sq(j− 1, m− 2; 2)− sq(j− 1, m− 1; 2)

{j + 1}q!

=

(
n− 1
m− 1

)
sq(m− 1, m− 1; 1)

{m}q!
+

n−1

∑
j=m

(
n− 1

j

)
sq(j, m− 1; 1)
{j + 1}q!

=

=
n−1

∑
j=m−1

(
n− 1

j

)
sq(j, m− 1; 1)
{j + 1}q!

=
n

∑
`=m

(
n− 1
`− 1

)
sq(`, m)

{`}q!
.
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For m = 1, note that if in a sample of size n, there is only one weak record. Then, it is in the
first position, so, using Theorem 3(c),

P(Ñn = 1) = P( Ĩ2 = 0, . . . , Ĩn = 0) =
n−1

∑
j=0

(
n− 1

j

)
(−1)j

{j + 1}q
=

n

∑
`=1

(
n

`− 1

)
sq(`, 1)
{`}q!

,

where in the last equality we have used the property sq(`, 1) = (−1)`−1{`− 1}q!.
(c) In the proof of Theorem 3(a), we obtained the integral representation

P( Ĩm = 1) =
∫ 1

0
(1− qy)m−1dqy, m ≥ 2.

Clearly, this formula is also valid for m = 1. Therefore,

EÑn =
n

∑
m=1

E Ĩm =
n

∑
m=1

P( Ĩm = 1) =
∫ 1

0

n

∑
m=1

(1− qy)m−1dqy =
∫ 1

0

1− (1− qy)n

qy
dqy

=
∫ 1

0

n

∑
`=1

(
n
`

)
(−1)`−1(qy)`−1dqy =

n

∑
`=1

(
n
`

)
(−1)`−1q`−1

{`}q
.

The inter-(weak)-record times are defined as S̃m = T̃m − T̃m−1, m ≥ 1.

Theorem 5. For m ≥ 1,

(a) The joint pmf of the inter-record times from a Ge(p) parent is

P
(

S̃1 = s1, S̃2 = s2, . . . , S̃m = sm

)
=
∫

Dm

ym

m

∏
j=1

(1− yj)
sj−1dqy(m) (34)

for sj ≥ 1, j = 1, . . . , m.
(b) The pmf of the m-th inter-weak record is

P(S̃m = s) =
s−1

∑
`=0

(
s− 1
`

)
(−1)`

{`+ 2}m
q

, s ≥ 1. (35)

(c) P(S̃m > s) =
∫
[0,1]m

(1− y1 · · · ym)
s dqy(m), s ≥ 1

Proof. (a) It is straightforward from Theorem 1(a).
(b) For s ≥ 1 (integer), from (34), using Lemma 4(a),

P(S̃m = s) = ∑
s1,...,sm−1≥1

P
(

S̃1 = s1, S̃2 = s2, . . . , S̃m = s
)

= ∑
s1,...,sm−1≥1

∫
Dm

ym(1− ym)
s−1

m−1

∏
j=1

(1− yj)
sj−1dqy(m)

=
∫

Dm

ym(1− ym)s−1

y1 · · · ym−1
dqy(m) (36)

=
s−1

∑
`=0

(
s− 1
`

)
(−1)`

∫
Dm

y−1
1 · · · y

−1
m−1y`+1

m dqy(m) =
s−1

∑
`=0

(
s− 1
`

)
(−1)`

{`+ 2}m
q

,

where the last equality follows from (18).
(c) Using (36) and (12), for s ≥ 1,

P(S̃m > s) = ∑
t>s

P(S̃m = t) = ∑
t>s

∫
Dm

ym(1− ym)t−1

y1 · · · ym−1
dqy(m)

=
∫

Dm

(1− ym)s

y1 · · · ym−1
dqy(m) =

∫
[0,1]m

(1− y1 · · · ym)
s dqy(m).
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The next result proves the asymptotic log-normality of the inter-(weak) record times from
geometric parents.

Theorem 6. The inter-weak record times from a Ge(p) parent, p ∈ (0, 1), satisfy

log S̃m +
mq
p log q

−
√

mq
p log q

d−→ Z ∼ N(0, 1), as m→ ∞. (37)

Proof. Let Xi ∼ Ge(p), i ≥ 1, be independent random variables. The CLT yields,

Zm :=

m
∑

i=1
Xi −

mq
p

√
mq
p

d−→ Z ∼ N(0, 1), as m→ ∞.

For x ∈ R, let us define vm(x) := mq
p + x

√
mq
p . From Theorem 5(c) and (26),

P(S̃m > s) = E
(

1− q∑m
i=1 Xi

)s
= E

(
1− qv(Zm)

)s

for s = 0, 1, . . ..
Let us define the functions gm(z, t) := (1− qvm(z))1/qvm (t)

, z, t ∈ R, m ≥ 1. These functions
satisfy the following properties:

(a) lim
m→+∞

gm(z, t) =


0, if z < t
e−1, if z = t
1, if z > t

(b) For a fixed value of t > −√mq, the function z ∈ (−√mq,+∞) 7→ gm(z, t) is non-decreasing.

Then, for t ∈ R,

P

 log S̃m +
mq
p log q

−
√

mq
p log q

> t

 = P
(

S̃m > q−vm(t)
)
= E

(
1− qvm(Zm)

)q−vm (t)

= E(gm(Zm, t)) = ∑
k≥0

gm(zm,k, t)P(Zm = zm,k),

where zm,k = (k−mq/p)/
(√

mq/p
)
.

Let Φ be the cumulative distribution function of a standard normal random variable. If we
show that

lim
m→+∞

E|I(Zm > t)− gm(Zm, t)| = 0, t ∈ R (38)

then we can conclude

lim
m→+∞

E(gm(Zm, t)) = lim
m→+∞

P(Zm > t) = 1−Φ(t), t ∈ R,

and this proves (37).
In order to prove (38), for η > 0, we have

E|I(Zm > t)− gm(Zm, t)| = ∑
k≥0

∣∣I(zm,k > t)− gm(zm,k, t)
∣∣P(Zm = zm,k)

=

 ∑
k≥0

zm,k>t+η

+ ∑
k≥0

zm,k<t−η

+ ∑
k≥0

|zm,k−t|≤η

∣∣I(zm,k > t)− gm(zm,k, t)
∣∣P(Zm = zm,k)

= (I) + (I I) + (I I I),
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where

(I) = ∑
k≥0

zm,k>t+η

(
1− gm(zm,k, t)

)
P(Zm = zm,k) ≤ (1− gm(t + η, t))P(Zm > t + η)

≤ (1− gm(t + η, t)) −→ 0, as m→ +∞;

(I I) = ∑
k≥0

zm,k<t−η

gm(zm,k, t)P(Zm = zm,k) ≤ gm(t− η, t)P(Zm < t− η)

≤ gm(t− η, t) −→ 0, as m→ +∞;

(I I I) = ∑
k≥0

|zm,k−t|≤η

∣∣I(zm,k > t)− gm(zm,k, t)
∣∣P(Zm = zm,k)

≤ 2P(t− η ≤ Zm ≤ t + η)
m↑∞−→ 2(Φ(t + η)−Φ(t− η)),

and this quantity can be made arbitrarily small choosing an η > 0 yet small enough.

A by-product of Theorem 6 is the following weak law of large numbers:

S̃1/m
m

P−→ q−
q
p , m ↑ ∞. (39)

When q → 1, q−q/p → e, and this is the limit in probability for ∆1/m
m as m→ +∞, where ∆m

denotes the waiting-time between the (m− 1)-th and the m-th upper record in a sequence of iid
random variables with a continuous distribution; see [6]. Then, (39) can be seen as a q-analogue of
Theorem 1 in [6]. Similarly, our Theorem 6 is a q-analogue of Theorem 2 in [6].

4. Weak Records from Geometric Parents Are q-Analogues of Records from Absolutely
Continuous Parents

In this section, we show that the distributions and statistics related to weak records from a
geometric parent, Ge(p) are q-analogues (q = 1− p) of the corresponding distributions and statistics
related to ordinary records from absolutely continuous parents.

Theorem 7. The joint pmf of
(

T̃1, . . . , T̃m

)
from a Ge(p) parent given in (27) is a q-analogue of the joint pmf

of (T∗1 , . . . , T∗m) from an absolutely continuous parent given in (2).

Proof. Without loss of generality, suppose that (T∗1 , . . . , T∗m) are the record times of a sequence of iid
random variables uniformly distributed in the interval (0, 1). For integers t0 = 1 < t1 < · · · < tm,
the event {T∗1 = t1, . . . , T∗m = tm} corresponds to trajectories of length tm ≥ m + 1 of the form

(x1)(< x1)
t1−2(x2)(< x2)

t2−t1−1 · · · (xm)(< xm)
tm−tm−1−1(xm+1),

with 0 < x1 < x2 < · · · < xm+1 < 1. Then,

P(T∗1 = t1, . . . , T∗m = tm) =
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xm

m

∏
j=1

x
tj−tj−1−1
j dxm+1 · · · dx2 dx1

=
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xm−1

(1− xm)
m

∏
j=1

x
tj−tj−1−1
j dxm · · · dx2 dx1

=
∫ 1

0

∫ y1

0
· · ·

∫ ym−1

0
ym

m

∏
j=1

(1− yj)
tj−tj−1−1dym · · · dy2 dy1, (40)

where the last step is the result of the change in variables yj = 1− xj, j = 1, . . . , m.
Finally, the result follows by comparing (40) with the q-integral expression given in (27) and by

using Lemma 5.

The addition of q-analogues is a q-analogue of the corresponding sum. As an application of this
property, as a corollary of Theorem 7, we have that the pmf of T̃m (given in Theorem 2) is a q-analogue
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of (3). Clearly, the pmf of inter-weak-record times from geometric parents (see (35)) is a q-analogue of
(4). Similarly, as q→ 1, it can be checked that

P( Ĩn = 1) =
1
q

n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}q
−→ 1

n

P( Ĩ2 = 1, . . . , Ĩn = 1) =
1
{n}q!

−→ 1
n!

.

P(Ñn = m) =
n

∑
`=m

(
n− 1
`− 1

)
sq(`, m)

{`}q!
−→ |sn,m|

n!
.

EÑn =
n

∑
`=1

(
n
`

)
(−1)`−1q`−1

{`}q
−→

n

∑
j=1

1
j

,

so all of these quantities in the case of a geometric parent are q-analogues of the corresponding
quantities in the absolutely continuous case.

5. Ordinary Records from Geometric Parents
Following similar arguments as in the previous sections, it is possible to derive results for

ordinary records from a Ge(p) parent, p ∈ (0, 1). As before, let q = 1− p and Q = 1/q. We quote
without proof the following results.

Joint distribution of (ordinary) record times:

P(T1 = t1, T2 = t2, . . . , Tm = tm) =
∫

Dm,q

qym

m

∏
j=0

(1− qyj)
tj−tj−1−1dqy(m), (41)

for m ≥ 1 and 1 = t0 < t1 < . . . < tm. The random vector (T1, . . . , Tm) has a probability generat-
ing function

G(z1, . . . , zm) =
∫

Dm,q

qym

m

∏
j=1

zj+1
j

1− (1− qyj)zj · · · zm
dqy(m).

Probability function of Tm:

P(Tm = n) =
n−2

∑
`=m−1

(
n− 2
`

)
sQ(`, m− 1; 2)
{`+ 2}Q!

(42)

for m ≥ 1 and n ≥ m + 1.

Joint distribution of inter-record times:

P(S1 = s1, S2 = s2, . . . , Sm = sm) =
∫

Dm,q

m

∏
j=0

(1− qyj)
sj dqy(m), (43)

for sj ≥ 0, j = 1, . . . , m.

Probability function of inter-record times:

P(Sm = s) =
s−1

∑
`=0

(
s− 1
`

)
(−1)`

{`+ 2}m
Q

, s ≥ 1. (44)

for m ≥ 1, s ≥ 0.

Record indicators:
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P(In = 1) =
1
Q

n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}Q
. (45)

P(I2 = 1, . . . , In = 1) =
1

{n}Q!
. (46)

P(I2 = 0, . . . , In = 0) =
n−1

∑
`=0

(
n− 1
`

)
(−1)`

{`+ 1}Q
. (47)

Number of ordinary records:

P(Nn = m) =
n

∑
`=m

(
n− 1
`− 1

)
sQ(`, m)

{`}Q!
, m = 1, . . . , n,

P(Nn ≥ m) =
n−1

∑
`=m−1

(
n− 1
`

)
sQ(`− 1, m− 2; 2)
{`+ 1}Q!

m = 1, . . . , n.

ENn =
n

∑
`=1

(
n
`

)
(−1)`−1Q`−1

{`}Q
.

Comparing these results with those in Section 3, we observe that the formulas for ordinary
records are obtained by changing q by Q := 1/q in the formulas for weak records. Additionally, as
in the case of weak records, the above quantities are Q-analogues of the corresponding ones in the
absolutely continuous case.

6. Conclusions
In the case of a geometric parent, we have obtained representations of the joint distribution

of weak and ordinary record times and inter-record times in terms of Jackson integrals. These
representations are useful for obtaining the marginal distribution of record times, inter-record times,
record indicators, number of records, etc. In particular, the marginal distribution of record times
can be expressed in terms of non-central q-Stirling numbers. Additionally, we show that statistics
related to weak records from geometric parents, Ge(p), behave as q-analogues (q = 1− p) of the
corresponding statistics in the case of absolutely continuous parents. There is also a duality between
weak and ordinary records from geometric parents: it is possible to obtain results from ordinary
records by changing q by Q = 1/q in the corresponding formulas or results for weak records.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: Grant PID2020-114594GB-C21 funded by MCIN/AEI 10.13039/50110001033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Lemma 1. (a) By changing the summation variables, `1 = x1, `2 = x2 − x1, . . ., `m =
xm − xm−1, then

(1− q)m ∑
0≤x1≤···≤xm<∞

f (qx1 , qx2 , . . . , qxm ) q

m
∑

i=1
xi

= (1− q)m ∑
`1,...,`m≥0

f (q`1 , q`1+`2 , . . . , q`1+··· ,`m )
m

∏
j=1

(
q`j
)m−j m

∏
i=1

q`i

=
∫
[0,1]m

f (y1, y1y2, . . . , y1 · · · ym)
m

∏
j=1

ym−j
j dqyπ1 · · · dqyπm

where the last equality is justified by (8).
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(b) By using the change of variables `1 = x1, `2 = x2 − x1 − 1, . . ., `m = xm − xm−1 − 1, we obtain

(1− q)m ∑
0≤x1<···<xm<∞

f (qx1 , qx2 , . . . , qxm ) q

m
∑

i=1
xi

= q(
m
2)(1− q)m ∑

`1,...,`m≥0
f (q`1 , q`1+`2+1, . . . , q`1+··· ,`m+(m−1))

m

∏
j=1

(
q`j
)m−j m

∏
i=1

q`i

= q(
m
2)
∫
[0,1]m

f (y1, qy1y2, . . . , qm−1y1 · · · ym)
m

∏
j=1

ym−j
j dqyπ1 · · · dqyπm .

Proof of Lemma 2. (a) If m = 1, the result is immediate by using the definition of Jackson integral
given in (5). Thus, let us suppose in the following that m > 1. Let us define

Am(x1, . . . , xm−1) := (1− q)
∞

∑
xm=xm−1

f (qx1 , . . . , qxm )qxm ,

Aj(x1, . . . xj−1) := (1− q)
∞

∑
xj=xj−1

qxj Aj+1(x1, . . . , xj), j = m− 1, . . . , 2

A1 := (1− q)
∞

∑
x1=0

qx1 A2(x1). (A1)

First of all, observe that by construction, A1 coincides with the left-hand side of the statement in
Lemma 2(a). On the other hand, the definition of the Jackson integral yields

Am(x1, . . . , xm−1) = (1− q)qxm−1
∞

∑
`=0

f (qx1 , . . . , qxm−1 , qxm−1 q`)q`

=
∫ qxm−1

0
f (qx1 , . . . , qxm−1 , ym)dqym,

and by (back) recurrence, it is not difficult to show that

Aj(x1, . . . xj−1) =
∫ qxj−1

0

∫ yj

0
· · ·

∫ ym−1

0
f (qx1 , . . . , qxj−1 , yj, . . . , ym)dqym · · · dqyj, (A2)

for j = m, . . . , 2. Finally, from (A1) and (A2),

A1 = (1− q)
∞

∑
x1=0

qx1

∫ qx1

0

∫ yj

0
· · ·

∫ ym−1

0
f (qx1 , y2, . . . , ym)dqym · · · dqy2

=
∫ 1

0

∫ y1

0
· · ·

∫ ym−1

0
f (y1, . . . , ym)dqy(m)

and the result follows from (10).
(b) The proof is similar to the one in (a), so we omit it.

Proof of Lemma 3. We only prove (a). The proof of (b) is similar. For m ≥ 1 and k = 0, using (14),
the change of variables cj = αj + · · ·+ αm + m− j + 2, j = 1, . . . , m− 1 and (24), we obtain

∑
α1,...,αm≥0
α1+···αm=k

∫
Dm

ym

m

∏
j=1

y
αj

j dqy(m)

= ∑
α1,...,αm≥0
α1+···αm=k

m

∏
j=1

1{
αj + · · ·+ αm + m− j + 2

}
q

=
1

{m + k + 1}q
∑

2≤c1<···<cm−1≤m+k

m−1

∏
i=1

1{
cj

}
q

=
(−1)ksq(m + k− 1, m− 1; 2)

{m + k + 1}q!

where the last equality follows from (24).
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Proof of Lemma 4. For simplicity, we only give the proof in the case that m = 2; for larger values the
proof is similar but tedious. Thus, we have

∑
s1≥1

∫ 1

0

∫ y1

0
f (y2)(1− y1)

s1−1dqy2 dqy1 = ∑
s1≥1

∫ 1

0
(1− y1)

s1−1
(∫ y1

0
f (y2) dqy2

)
dqy1

= ∑
s1≥1

(1− q)

(
∞

∑
`=0

(1− q`)s1−1

(∫ q`

0
f (y2) dqy2

))
q`

= (1− q)
∞

∑
`=0

(∫ q`

0
f (y2) dqy2

)
q` ∑

s1≥1
(1− q`)s1−1

= (1− q)

(∫ 1

0
f (y2) dqy2 +

∞

∑
`=1

(∫ q`

0
f (y2) dqy2

)
q` ∑

s1≥1
(1− q`)s1−1

)

= (1− q)

(∫ 1

0
f (y2) dqy2 +

∞

∑
`=1

∫ q`

0
f (y2) dqy2

)
= (1− q)

∞

∑
`=0

∫ q`

0
f (y2) dqy2

= (1− q)
∞

∑
`=0

(
1
q`

∫ q`

0
f (y2)dq(y2)

)
q` =

∫ 1

0

(
1
y1

∫ y1

0
f (y2) dqy2

)
dqy1

=
∫ 1

0

∫ y1

0

f (y2)

y1
dqy2 dqy1.
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