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Abstract
This paper compares different exact approaches to solve the Discrete Ordered 
Median Problem (DOMP). In recent years, DOMP has been formulated using set 
packing constraints giving rise to one of its most promising formulations. The use of 
this family of constraints, known as strong order constraints (SOC), has been vali-
dated in the literature by its theoretical properties and because their linear relaxa-
tion provides very good lower bounds. Furthermore, embedded in branch-and-cut 
or branch-price-and-cut procedures as valid inequalities, they allow one to improve 
computational aspects of solution methods such as CPU time and use of memory. In 
spite of that, the above mentioned formulations require to include another family of 
order constraints, e.g., the weak order constraints (WOC), which leads to coefficient 
matrices with elements other than {0,1}. In this work, we develop a new approach 
that does not consider extra families of order constraints and furthermore relaxes 
SOC -in a branch-and-cut procedure that does not start with a complete formulation- 
to add them iteratively using row generation techniques to certify feasibility and 
optimality. Exhaustive computational experiments show that it is advisable to use 
row generation techniques in order to only consider {0,1}-coefficient matrices mod-
eling the DOMP. Moreover, we test how to exploit the problem structure. Imple-
menting an efficient separation of SOC using callbacks improves the solution perfor-
mance. This allows us to deal with bigger instances than using fixed cuts/constraints 
pools automatically added by the solver in the branch-and-cut for SOC, concerning 
both the formulation based on WOC and the row generation procedure.

Keywords  Discrete ordered median problem · Branch-and-cut · Constraint 
relaxation · Row generation

Mathematics Subject Classification  90-04 · 90-08 · 90B80 · 90C10 · 90C57

Luisa I. Martínez-Merino, Diego Ponce, and Justo Puerto  contributed equally to this work.

 *	 Diego Ponce 
	 dponce@us.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-022-00651-3&domain=pdf
http://orcid.org/0000-0003-3380-6601


	 L. I. Martínez‑Merino et al.

1 3

1  Introduction

At times, very hard combinatorial optimization problems contain easy combinato-
rial subproblems after relaxing some of their constraints. A paradigmatic example 
is the Traveling Salesman Problem: after the elimination of its subtour elimination 
constraints it turns into the Linear Assignment Problem which is polynomially solv-
able. This pattern calls for developing techniques that take advantage of this situa-
tion to solve some combinatorial problems based on their constraint relaxation. This 
approach is not new and the reader is referred to Focacci et al. (1999, 2002a, 2002b) 
and the references therein for further details.

This behavior is not only observed in problems where formulations include an 
exponential number of constraints. Actually, it also occurs in many polynomial size 
formulations. One of these cases is the Discrete Ordered Median Problem (DOMP) 
modeled with the strong order constraints formulation as introduced in Labbé et al. 
(2017). If one removes the family of strong order constraints, whose acronym is 
SOC, the resulting problem is the standard p-median problem that is known to be 
combinatorially friendly (Hakimi 1964; Marín and Pelegrín 2019; ReVelle and 
Swain 1970). The aim of this work is to develop solution techniques for DOMP 
based on constraint relaxations.

The DOMP is a discrete location model that allows to generalize several classi-
cal discrete location problems (see, e.g., Nickel and Puerto 2005). For instance, the 
discrete p-center and p-median are particular cases of DOMP. Assume that we are 
given a set of clients, a set of candidate locations for facilities, and the allocation 
costs from each candidate facility to each client. The objective of DOMP is to locate 
p facilities in such a way that a certain weighted function of the allocation costs 
is minimized. These weights are not assigned to specific costs but to their sorted 
values. Namely, the weighted average sorts the allocation costs in a nondecreasing 
order and then, it performs the scalar product of this so obtained sorted cost vector 
by the vector of weights.

In the literature, one can find different applications of the ordered median opera-
tor. For instance, it has been applied to facility location (Aouad and Segev 2019; 
Domínguez and Marín 2020; Espejo et  al. 2009; Kalcsics et  al. 2010; Martínez-
Merino et  al. 2017; Tamir 2001), multicast communication (Fourour and Lebbah 
2020), multiobjective Markov decision processes (Ogryczak et  al. 2011), voting 
problems (Ponce et al. 2018), supervised classification (Marín et al. 2022), tomog-
raphy reconstruction (Calvino et al. 2022), and network design (Puerto et al. 2013), 
among other situations.

DOMP was first introduced in Nickel (2001) as an integer nonlinear problem. 
Then, in Boland et al. (2006), this problem was modeled as a mixed integer linear 
program. Some works on this problem take advantage of some particular character-
istics. Specifically, Marín et  al. (2009) introduce an efficient covering formulation 
for DOMP considering free self-service, ties in the cost matrix and a non-negative 
weighted order vectors in the objective function. Futhermore, Marín et  al. (2010) 
present a covering reformulation for weighted order vectors containing zeros and an 
extended model for vectors even with negative elements.
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In Labbé et al. (2017), a new three-index formulation based on set packing con-
straints is proposed. These set packing constraints are known as strong order con-
straints or SOC, and the number of these constraints appearing in the formulation is 
O(n3) . In addition, another new formulation, solved by an efficient branch-and-cut 
procedure that provides good results in terms of time, is introduced.

This second formulation is based on the aggregation of the SOC corresponding 
to the same position. The resulting order constraints are the weak order constraints 
(from now on WOC). This formulation includes SOC as valid inequalities. Both for-
mulations present small integrality gaps.

Recently, in Deleplanque et  al. (2020), a novel branch-price-and-cut algorithm 
has been proposed. This procedure is based on a formulation with an exponential 
number of variables that corresponds to a set partitioning model. The proposed 
approach allows to handle larger instances since it requires less memory to run the 
model.

In this paper, we want to explore different exact approaches to solve DOMP. The 
first one uses branch-and-cut techniques based on one of the most promising for-
mulations, namely the formulation based on WOC proposed in Labbé et al. (2017), 
adding SOC as valid inequalities. Additionally, we compare the use of cut pools 
in the branch-and-cut with respect to the use of callbacks to implement an ad hoc 
separator proposed in Labbé et al. (2017). By setting up pools of cuts, all SOC are 
initially stored and then, solvers decide which cuts are included during the branch-
and-cut process. In contrast, applying the callbacks using the separation algorithm 
introduced in Labbé et al. (2017), SOC are not initially stored and the implementa-
tion of the SOC separation is based on a sequential update of the left-hand side of 
the corresponding order constraints. This separation can be performed in O(n3).

The second method is based on a constraint relaxation on the formulation using 
SOC to model the order. This procedure, to solve DOMP, starts with a relaxed for-
mulation where all SOC are removed and feasibility is enforced adding model con-
straints from the SOC family in the searching tree. Although the number of SOC is 
polynomial, O(n3) , this number of constraints becomes too large to be handled when 
n increases. Consequently, it is interesting to study this approach since we could 
improve the time and memory performance by only including the necessary con-
straints in the solution process. Again, in this case, we compare the branch-and-cut 
procedure through callbacks with respect to the branch-and-cut based on constraint 
pools.

The contributions of this paper can be summarized as follows: 

(1)	 Comparing a branch-and-cut approach to solve DOMP based on the so called 
WOC formulation with a constraint relaxation approach for DOMP based on 
removing SOC.

(2)	 Comparing the performance of the branch-and-cut and the constraint relaxation 
approach when using callbacks based on specific tailor made separation oracles 
with respect to the use of fixed pools of cuts/constraints.

(3)	 Reporting intensive computational tests which show the limits of the different 
considered solution methods.



	 L. I. Martínez‑Merino et al.

1 3

The remainder of this work is organized as follows. In Sect.  2, we introduce the 
notation and description of DOMP. Besides, we recall two formulations for DOMP 
that will be used along the paper ( DOMPWOC and DOMPSOC ). In Sect. 3, we present 
two solution methods for the problem. First, we describe the branch-and-cut pro-
cedure for DOMPWOC introduced in Labbé et al. (2017). Then, we propose a novel 
row generation procedure for DOMPSOC . Section 4 is devoted to the analysis of both 
solution methods. In addition, we present a comparison between the results of using 
pools of cuts/contraints and using callbacks for the branch-and-cut and the row 
generation techniques. Finally, in Sect. 5, we include some conclusions and future 
research lines.

2 � Problem definition and formulations

This section is devoted to recall the definition and some formulations of DOMP that 
will be instrumental in our discussion. We shall follow the following notation. We 
denote by I = {1,… , n} the set of n clients and, at the same time and without loss of 
generality, the set of n potential facility locations. Facilities are assumed to be unca-
pacitated, i.e., they can supply as many clients as desired. Besides, cij denotes the 
cost for serving client i from facility j, for i, j ∈ I.

Given a set J composed by p open facilities, ci(J) represents the cost of allocat-
ing client i to the facility set J, i.e., ci(J) = minj∈J cij . In addition, if the vector of 
costs ci(J)i=1,…,n for J ⊂ I is sorted in non-decreasing order, we denote by c(k)(J) 
the allocation cost in position k ∈ K = I of this sorted vector. Thus, it holds that 
c(1)(J) ≤ c(2)(J) ≤ … ≤ c(n)(J).

The aim of DOMP is to determine a subset of p facilities J ⊂ I to open, and to 
assign each client to an open facility in order to minimize the ordered median objec-
tive function. Given a vector � = (�k)k∈K such that �k ≥ 0 , k ∈ K , the objective 
function of DOMP can be expressed as 

∑
k∈K �kc(k)(J). Consequently, the definition 

of DOMP is

Observe that this formulation generalizes several standard discrete loca-
tion problems. For instance: if �1 = �2 = … = �n = 1 , this model is the 
p-median problem; if �1 = �2 = �n−1 = 0, �n = 1 , one gets the p-center; if 
�1 = �2 = … = �n−k = 0, �n−k+1 = … = �n = 1 , the resulting problem is the k-cen-
trum; etc.

DOMP is known to be NP-complete, see Nickel and Puerto (2005), and as men-
tioned in the introduction, different formulations have been proposed to deal with 
this problem. In this paper, we will elaborate on two of the most recent and promis-
ing formulations presented in Labbé et al. (2017). On the one hand, that paper intro-
duces a three-index formulation where order is modeled by a family of set packing 
constraints, SOC. On the other hand, it also presents an aggregated version of that 
formulation where the order is ensured by a different set of constraints called WOC. 

min
J⊂I∶|J|=p

∑
k∈K

𝜆
kc(k)(J) (DOMP).



1 3

Constraint relaxation for the discrete ordered median problem﻿	

We will build on those two formulations, thus in order to be self-contained, in the 
following subsection we provide full details of them.

2.1 � Strong order constraints formulation

For the formulation based on strong order constraints, the next families of variables 
are required:

Besides, we denote the rank of the allocation cost cij by rij , i.e., rij = � if cij is the 
�-th element in the list of the costs cij , for all i, j ∈ I , sorted in a non decreasing 
sequence and where ties are broken arbitrarily. Then, DOMPSOC formulation is the 
following.

Constraints (2) ensure that each client is served by just one facility in one position. 
Similarly, constraints (3) are necessary to guarantee that only one allocation cost is 

yj =

�
1, if facility j is open,

0, otherwise,
for j ∈ I,

xk
ij
=

⎧⎪⎨⎪⎩

1, if client i is allocated to facility j and the

associated cost is in position k of the

sorted sequence of allocation costs,

0, otherwise ,

for i, j ∈ I, k ∈ K.

(1)(DOMPSOC)min
∑
i∈I

∑
j∈I

∑
k∈K

�
kcijx

k
ij

(2)s.t.
∑
j∈I

∑
k∈K

xk
ij

= 1, i ∈ I,

(3)
∑
i∈I

∑
j∈I

xk
ij

= 1, k ∈ K,

(4)
∑
k∈K

xk
ij

≤ yj, i, j ∈ I,

(5)
∑
j∈I

yj = p,

∑
i�∈I

∑

j� ∈ I ∶

ri�j� ≤ rij

xk
i�j�

+
∑
i�∈I

∑

j� ∈ I ∶

ri�j� ≥ rij

xk−1
i�j�

≤ 1, i, j ∈ I, k ∈ K, k ≠ 1, (SOC)

(6)xk
ij
, yj ∈ {0, 1}, i, j ∈ I, k ∈ K.
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in each sorted position. Constraints (4) ensure that each client is allocated to an open 
facility and that the allocation cost of a client can only be in at most one position. 
Constraint (5) restricts that exactly p facilities must be open. Constraints (SOC) are 
the so-called strong order constraints which ensure the correct sorting of the alloca-
tion costs. These constraints are set packing constraints, i.e., at most one of the vari-
ables of the l. h. s. could take value one. The incompatibility of two or more varia-
bles taking value one is due to (4) and the fact that a variable xk

ij
 cannot take value 

one if xk−1
i�j�

= 1 when rij < ri′j′ , for i, j, i�, j� ∈ I, k ∈ K, k ≠ 1 . We refer the reader to 
Labbé et al. (2017) for a more detailed explanation. Finally, constraints (6) are the 
domain of definition of the variables. The reader may note that removing (SOC) the 
formulation results in the p-median.

2.2 � Weak order constraints formulation

Despite the good mathematical properties of DOMPSOC , as the lower bound given 
by its linear relaxation, the number of (SOC) is O(n3) . Consequently, when the num-
ber of clients increases, the number of (SOC) becomes too large to be handled by a 
solver. For this reason, Labbé et al. (2017) introduce an alternative family of con-
straints to ensure the order of costs. These new constraints are based on the aggrega-
tion of (SOC) corresponding to the same position. (The reader is referred to Labbé 
et al. (2017) for further details.) This alternative formulation results in the following.

Constraints labeled by (WOC) are known as weak order constraints. They ensure 
that if facility j serves client i and its cost cij is in position k of the sorted cost vector 
of the solution, then there must be a smaller or equal allocation cost in position k − 1 . 
This is due to the coefficients corresponding to each variable in the constraints. In 
each inequality, there are represented two positions ( k − 1 and k). By constraints (3), 
only two variables must take value 1, and the remaining ones take value 0. Assum-
ing that the variables with value one for position k and k − 1 correspond to positions 
s and t of the sorted costs, respectively, the inequality can be expressed as follows:

with is, js, it, jt ∈ I such that cisjs and citjt are the s-th and t-th smallest allocation costs 
in matrix (cij)n×n . This is valid if and only if t < s.

(DOMPWOC)min
�
i∈I

�
j∈I

�
k∈K

�
kcijx

k
ij

s.t. (2) − (6),

�
i∈I

�
j∈I

⎛⎜⎜⎜⎜⎜⎝

�
i�∈I

�
j� ∈ I ∶

ri�j� ≤ rij

xk
i�j�

+
�
i�∈I

�
j� ∈ I ∶

ri�j� ≥ rij

xk−1
i�j�

⎞⎟⎟⎟⎟⎟⎠

≤ n2, k ∈ K, k ≠ 1. (WOC)

(n2 − (s − 1))xk
isjs

+ txk−1
it jt

≤ n2,
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In Labbé et  al. (2017), it is shown that DOMPSOC formulation provides a rel-
evant improvement of the integrality gap with respect to DOMPWOC formulation. In 
other words, for most of the instances, fractional solutions satisfying (WOC) could 
be cut including (SOC). Thus, it is recommended to use (SOC) as valid inequalities 
of DOMPWOC.

3 � Solution methods

Both formulations, DOMPSOC and DOMPWOC , can be solved by using standard MIP 
solvers as CPLEX, Gurobi, Xpress, or SoPlex. However, the good performance of 
these formulations is rather limited for large sizes of the problem as we will see in 
Sect. 4. The reader should observe that already for n = 100 clients the number of 
(SOC) is almost 106.

To improve the performance of DOMPWOC , Labbé et  al. (2017) propose a 
branch-and-cut procedure which starts by solving the linear program relaxation of 
DOMPWOC , and then it includes (SOC) as valid inequalities whenever necessary. 
This procedure is described in Sect. 3.1.

In this paper, we propose an alternative solution method which exploits the good 
properties of DOMPSOC avoiding the use of the complete family of strong order con-
straints. This solution method consists in a row generation procedure which initially 
considers DOMPSOC without (SOC), and then it iteratively includes these order con-
straints. As far as we know, this row generation method has not been considered 
before for DOMP. Section 3.2 is devoted to the description of this procedure.

3.1 � Branch‑and‑cut for DOMP
WOC

The branch-and-cut procedure has become an efficient method for solving large 
instances of models where the number of constraints is intractable for solvers. For 
instance, it has been successfully applied to the matching problem with blossoms 
(Edmonds and Johnson 1973; Grötschel and Holland 1985; Letchford et al. 2004), 
problems related to trees (Fernández et al. 2017; Magnanti and Wolsey 1995), clus-
tering (Benati et al. 2017), and the orienteering arc routing problem (Archetti et al. 
2016), to name a few. In Labbé et al. (2017), a branch-and-cut method for (SOC) in 
DOMPWOC formulation is proposed.

This branch-and-cut procedure could be handled by two different perspectives. 
On the one hand, most of the current solvers have some options to define a fixed 
pool of cuts that are added automatically when necessary in the cut generation. This 
means that, changing some parameters in the solver, we can remove some families 
of constraints from the formulations (thus avoiding to include them initially), which 
are later added when necessary in the solution process. This automatic feature of 
solvers is interesting when the constraint separation must be done by enumeration 
due to the efficient implementation of the solvers in this case.

In our particular case, the use of cut pools in the branch-and-cut method for 
(SOC) in formulation DOMPWOC seems to require O(n6) operations, since there 
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are O(n3) (SOC) and O(n3) x-variables in the formulation. Actually, it is O(n5) 
since each constraint has only O(n2) variables to check. Nevertheless, based on the 
knowledge of the structure of the problem, an efficient separation method of (SOC) 
constraints can be developed. This ad hoc separation can be included by callbacks 
allowing a more efficient implementation of the branch-and-cut.

Focusing in DOMP, Labbé et al. (2017) propose an algorithm to separate (SOC) 
with complexity O(n3) . It is a remarkable quadratic improvement with respect to the 
pure enumerative approach. Algorithm 1 shows in detail this separation procedure, 
based on the calculation of left-hand sides of the possible cuts adding and subtract-
ing two values in each iteration.

In Sect.  4, we will develop a complete analysis of the branch-and-cut method 
using pools of cuts and the branch-and-cut method using callbacks. We will deter-
mine whether or not it is advisable to use a separation algorithm that takes advan-
tage of the knowledge of the problem through callbacks.

Remark 1  According to previous experiences (Labbé et al. 2017; Deleplanque et al. 
2020), when valid inequalities (SOC) are embedded in a branch-and-cut procedure 
over DOMPWOC formulation, they should be added at the root node, but not deeper, 
in order to find a compromise between the integrality gap and the size of the prob-
lem. Hence, for our computational study, we will use this cut-and-branch procedure 
to check the performance of the solution method proposed in this section.

3.2 � Row generation procedure for DOMP
SOC

Since DOMPWOC formulation presents coefficients that are not zero-one, in this 
work we explore the use of a (SOC) relaxation of DOMPSOC adding iteratively these 
constraints whenever they are necessary. Therefore, the solution method of this sec-
tion starts with a formulation which has a zero-one coefficient matrix to later add set 
packing constraints. Hence, we provide a well-behaved (from the solvers point of 
view) formulation of DOMP without using a huge number of constraints.

The initial formulation which is considered in this row generation procedure is 
the following.

Observe that this formulation corresponds to the DOMP model without imposing 
the order constraints. Therefore, we are dealing with a relaxation of DOMPSOC . In 
this case, the proposed relaxation results in the p-median problem.

For each obtained solution in the branch-and-bound of DOMPrelax , (SOC) 
are checked by using Algorithm 1 and added to the model when necessary. Con-
sequently, this row generation method ensures the order by only using a moderate 
number of (SOC). This allows to handle bigger instances to be solved in a reason-
able computing time as we will see in Sect. 4.

(DOMPrelax)min
∑
i∈I

∑
j∈I

∑
k∈K

�
kcijx

k
ij

s.t. (2) − (6).
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3.2.1 � Bounds in constraint relaxations

In constraint relaxations, any integer solution has to be checked to be valid accord-
ing to the problem definition. However, there are different alternatives for continu-
ing the branch-and-bound tree exploration when a fractional solution arises. One of 
them is checking all model constraints to improve the lower bound. Another one is 
to branch in a particular fractional variable.

One issue to be taken into account is the way in which a subset of (SOC), that 
a solution does not verify, is selected to be included in the formulation in order 
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to improve the lower bound without increasing too much the formulation size. To 
develop this idea, we introduce the following proposition.

Proposition 1  Given an integer solution (̂x, ŷ) for DOMPrelax , if x̂ verifies that

for b ∈ [1, 2) , then x̂ satisfies all (SOC).

Proof  If b = 1 , then (7) are equal to (SOC). Thus, the result follows trivially. 
Assume that b > 1 . In this case, since x̂ is integer and b < 2 , then the left hand side 
of (7) must be at most one. Consequently, x̂ satisfies (SOC). 	�  ◻

As a result of Proposition 1, when an integer solution is obtained in the branch-
and-bound tree of DOMPrelax , the lhs described in Algorithm 1 could be compared 
with b ∈ [1, 2) instead of comparing it with 1. Therefore, if lhs > b in Algorithm 1, 
then the corresponding (SOC) are included.

However, varying this b value could affect the number of added cuts when a frac-
tional solution is found and thus, the number of explored nodes in the branch-and 
bound tree. When b is close to 2, then the number of identified constraints (7) which 
are not verified by the solution is smaller and they are the most violated cuts. Con-
sequently, for big values of b, the number of added cuts will be reduced. Nonethe-
less, since the number of added cuts is smaller, the number of explored nodes in the 
branch-and-bound is expected to be bigger.

Remark 2  Following Remark 1, we separate fractional solutions only at root node. 
Hence, for deeper nodes, Algorithm  1 is called only when integer solutions are 
found obtaining upper bounds. Beyond these concerns, lower and upper bounds get 
closer within the branch-and-bound tree as usually.

In order to experimentally check how the value of b could impact in times, cuts, 
and nodes of the row generation proposed in this section, we present Table 1. We 
show the results for the instances of sizes n = 20 , 30, and 40 that will be detailed in 
Sect. 4. Particularly, in Table 1, first column shows the number of clients; the second 
column reports the number of open facilities; the third set of columns shows the 
computing time for each b value; the fourth set of columns represents the number of 
added cuts in the row generation procedure; and finally, the last group of columns 
reports the number of explored nodes in the branch-and-bound tree. In all cases, 
each row reports the average value of ten instances. We have tested the results for 
b = 1 , b = 1.1 , and b = 1.3.

In Table  1, we can observe that b = 1 reports better results than b = 1.1 and 
b = 1.3 when n = 40 . Note that for the largest instances, although the number of 
added cuts in the branch-and-bound process is bigger, the number of nodes and the 

(7)

∑
i�∈I

∑
j� ∈ I ∶

ri�j� ≤ rij

xk
i�j�

+
∑
i�∈I

∑
j� ∈ I ∶

ri�j� ≥ rij

xk−1
i�j�

≤ b, i, j ∈ I, k ∈ K, k ≠ 1,
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computing times are smaller since the gaps at the root node are smaller. Conse-
quently, for the computational results reported in Sect. 4, the choice of b = 1 is used 
in the row generation procedure.

4 � Computational experiments

This section is devoted to the analysis of the solution methods introduced in this 
paper. The goals of this computational study are the following: (1) checking the dif-
ferences among the results of formulations DOMPSOC and DOMPWOC and determin-
ing their limitations; (2) comparing two approaches to implement the branch-and-
cut and the row generation algorithms for DOMP. The difference between these two 
approaches relies on the fact that the first one uses a fixed constraint/cut pool han-
dled by the solver and the second one applies the separator described in Algorithm 1 
implementing a callback; (3) comparing the different results between the two solu-
tion methods defined in Sect. 3.

The instances used in this computational study were introduced for the first time 
in Deleplanque et al. (2020). These instances were created to test different weighted 
order vectors � beyond the classical ones, namely p-median, p-center, k-centrum 
problems, etc. The weighted vector � was randomly generated such that �k ∈

[
n

4
, n
]
 

for k ∈ K . Furthermore, in that data set, there are small- to large-sized instances to 
perform an exhaustive computational study. The reader can find the mentioned 
instances in (Deleplanque et al. 2022).

The models were coded in C and solved with SCIP v.6.0.2 (Achterberg 2009; 
Gleixner et al. 2018) using as optimization solver CPLEX 20.1.0 on a Mac OS Cat-
alina with a Core Intel Xeon W clocked at 3.2 GHz and 96 GB of RAM memory.

In the computational experience, for all the considered formulations and solu-
tions methods, we have included a preprocessing phase. In this stage, we are able 
to reduce the number of necessary variables to define the problem in terms of opti-
mality. We refer the reader to Labbé et al. (2017) for more details. Besides, we have 
given an incumbent solution provided by a GRASP heuristic (Deleplanque et  al. 
2020). This solution let us provide a good upper bound from the beginning of the 
corresponding solution method.

Table  2 contains the results within two hours of 90 instances up to 40 clients, 
namely ten instances of each configuration of n and p for two different formula-
tions: DOMPWOC and DOMPSOC . This table and the following ones show the aver-
age results for these ten instances: the average CPU time (Time), the number of 
instances not solved in the time limit (#Unsolved), the gap at the root node (GAP-
root(%)), the gap at termination (GAP(%)), the number of variables after pre-
processing (Vars), the number of constraints (OrigCons), the number of cuts/
constraints added in the procedure (Cuts), the number of nodes (Nodes), and the 
required memory (Memory (MB)). Observe that, for instances with n = 30 and 
n = 40 , DOMPSOC formulation provides better results than DOMPWOC . DOMPSOC 
presents a better linear relaxation value (see gap at the root node), and it needs less 
nodes at the branch-and-bound tree. Consequently, DOMPSOC requires less solution 
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time. In addition, we can conclude that the large number of constraints implies an 
increment of memory for DOMPSOC which makes this formulation too heavy for 
sizes of n greater than 40. Then, together with the fact that DOMPWOC cannot solve 
any of the instances for n = 40 , we study other alternatives which add (SOC) itera-
tively until certifying optimality. Thus, in the following tables, we report the results 
of the methods proposed in Sect. 3.

Nowadays, commercial solvers include options to code valid inequalities in a 
branch-and-cut procedure. In this context, these valid inequalites are usually known 
as user cuts, while in constraint relaxations, these model constraints are known as 
lazy constraints. The coding of the cuts/constraints can be done just giving them 
as input of the linear program. These automatic strategies need to encode all the 
cuts/constraints in advance within a fixed pool, with an ensuing waste of computer 
memory. Also, the management of these potential cuts/constraints follows a pre-
implemented strategy without taking advantage of the particularities of the formu-
lation beyond the solver pattern recognition based on developers’ experience. On 
the other hand, the use of an oracle (in our case, Algorithm 1) to add the cuts/con-
straints on the fly implementing callbacks could save memory on the whole process 
(see, e.g., Ackooij and de Oliveira 2014; Blado and Toriello 2021; de Oliveira and 
Sagastizábal 2014; Mazzi et al. 2021; Wolf et al. 2014, and the references therein). 
Besides, it allows to control when to check and to add those cuts/constraints that 
is an advantage by itself. For instance, in the row generation solution method, we 
check model constraints (SOC) at the root node (regardless the solution is fractional 
or integer) and in any node with integer solution. We refer the reader to (CPLEX 
2022; SCIP 2022a, b) for a detailed discussion.

Table  3 presents the results, in two hours of time limit, of the branch-and-cut 
introduced in Sect.  3.1, i.e., ( DOMPWOC ) with (SOC) as valid inequalities. Here, 
we follow two different strategies: we code (SOC) defining a fixed user cut pool in 
SCIP and the solver decides when to check and to add them (Pool); or we check the 
constraints using Algorithm 1 which adds them by an user callback when needed 
at the root node (Callback). The results exhibit that the method using Algorithm 1 
shows better solving times than the automatic approach. Besides, the method using 
the callback can solve nine more instances than the automatic one. Note that these 
better results are explained by the efficiency of our separation algorithm. Regarding 
the required memory, observe that memory used by the automatic method increases 
quickly with n. Therefore, the application of this method does not seem to be use-
ful for bigger instances since they could not be loaded: it requires around 50 GB of 
RAM memory already for n = 60.

Table 4 reports the results, in two hours of computing time, of the row genera-
tion method, i.e., DOMPrelax with (SOC) as model constraints not included from 
the beginning. Two approaches to carry out the row generation are considered: the 
automatic use of (SOC) defining a fixed lazy constraint pool (Pool) and the applica-
tion of Algorithm 1 to add (SOC) when necessary (Callback). In this table, we have 
included the same columns as in Table 3. Note that the callback approach provides 
the best computing time results and only 16 instances remain unsolved after the time 
limit. The automatic method requires less cuts and nodes than Callback. However, 
the required memory increases faster when using the automatic approach because it 
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needs to encode all the original (SOC) constraints which are O(n3) . Consequently, 
the performance of the row generation following the automatic separation shows, in 
general, worse results than using Algorithm 1.

From Tables  3 and 4, we can conclude that the performance of the automatic 
branch-and-cut and the automatic row generation are quite limited in comparison 
with the use of the separation presented in Algorithm 1. The reason of the better 
performance of the callback approach is that Algorithm 1 exploits the knowledge 
of the problem. Therefore, for the study of larger instances, we focus on the branch-
and-cut and row generation approaches using Algorithm 1.

Table  5 shows a comparison between the results provided by the callback ver-
sions of the branch-and-cut method (B&C) and the row generation technique (Row-
Gen). For these experiments, we establish a time limit of five hours. Overall, the 
row generation technique outperforms the branch-and-cut in terms of computational 
times. Moreover, the row generation is able to solve more instances than the branch-
and-cut in five hours.

Note that, for some huge instances, the problem does not get even the root node 
bounds. For those instances, �������(%) and ���(%) report the same value and 
thus, �������(%) cannot be analyzed as the gap at the root node, but as the gap at 
the root node at the time limit.

Regarding n = 60 instances, the branch-and-cut is able to solve 20 out of 30 
instances in five hours, whereas this solution method certifies optimality for only 13 
instances in two hours (see Table 3). These three extra hours also let the row gen-
eration algorithm to solve 24 instances, seven more than the same algorithm in two 
hours (see Table 4).

For most of the instances, the integrality gap at termination provided by the row 
generation procedure is smaller than the one obtained by the branch-and-cut, even 
with less cuts added. This gives us the idea that the added cuts are more accurate 
when (WOC) family is not included in the formulation. However, for n = 100 , the 
gap at termination is smaller for the branch-and-cut procedure since the added cuts 
cannot improve the lower bound given by the linear relaxation of the program in 
both solution methods within the time limit.

To analyze the differences between the branch-and-cut and the row generation, 
starting from DOMPWOC and DOMPrelax , respectively, we give the solver up to 24 
hours of time limit. Thereby, the influence of the linear relaxation bound is not so 
decisive. Furthermore, the branch-and-price-and-cut (B&P &C) described in Del-
eplanque et al. (2020) has been tested for those instances in the same computer and 
with the same time limit. The reader could see, in Table  6, how the gaps at ter-
mination are smaller on average for the row generation procedure. In fact, they are 
reduced by half and for the row generation are less than 2%. This approach needs 
less cuts to have a reasonable bound at the root node what let it branch faster to 
generate more nodes and improve the bounds. Thus, whereas the solution method 
detailed in Sect. 3.1 solves four instances out of 60 for these large-sized instances, 
the solution method proposed in Sect. 3.2 is able to solve eight instances to optimal-
ity and on top of that, the row generation procedure also reduces the gap at termi-
nation for those instances which are not solved. The B&P &C procedure uses less 
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variables but the gap at termination is worse because it is not able to solve even the 
root node. However, this approach would still be useful for bigger instances since it 
requires much less memory.

5 � Conclusions

In this work, we have introduced a row generation solution method which has 
improved the best known performances for DOMP regarding the medium-sized 
instances of the data set described in Deleplanque et  al. (2020). In adittion, we 
have improved the best known solution for an instance with n = 90 and p = 45 
(domp90p45v5.domp) that can be found in the mentioned dataset.

For large-sized instances, the lower bound provided by formulations which 
include (WOC) makes them also a good alternative. For these instances, the lower 
bound given by the linear relaxation can be barely improved within the time limit. 
Moreover, comparing with the integrality gap given by the branch-and-price algo-
rithm (Deleplanque et al. 2020), one should note that the column generation of its 
master problem gives theoretically better lower bounds.

Taking into account that the limits of our row generation algorithm come from 
the huge number of variables, a combination of row and column generation seems to 
be a promising approach to be considered as future research line.
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