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Mixed Variational Inequality Interval-valued Problem: Theorems of

Existence of Solutions
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Abstract. In this article, our efforts focus on finding the conditions for the existence

of solutions of Mixed Stampacchia Variational Inequality Interval-valued Problem on

Hadamard manifolds with monotonicity assumption by using KKM mappings. Condi-

tions that allow us to prove the existence of equilibrium points in a market of perfect

competition. We will identify solutions of Stampacchia variational problem and op-

timization problem with the interval-valued convex objective function, improving on

previous results in the literature. We will illustrate the main results obtained with

some examples and numerical results.

1. Introduction

The best strategy for solving an optimization problem may involve solving other related

problems. The variational inequalities problems carry out this intermediate work.

Within the variational inequalities, in this article, we will study the mixed problems of

variational inequality that have applications in circuits in electronics and energy control

problems (see [1, 13]). Also, the general economic equilibrium problem and oligopolis-

tic equilibrium problem can be formulated as mixed variational inequality problem (see

Konnov and Volotskaya [24]).

Specifically, this article addresses these mixed problems of variational inequality in a

novel context, such as Hadamard’s manifolds with interval-valued functions.

The classical mixed variational inequality problem (MV) consists of finding a point

x ∈ K such that

〈G(x), x− x〉+ h(x)− h(x) ≥ 0, ∀x ∈ K,

where K is usually assumed to be a nonempty convex set in the real Euclidean space Rn,

G : K → Rn and h : K → R (see [20]).

(a) If h = 0 then the MV problem reduces the classical single-valued variational inequal-

ity.
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(b) If G = 0 then the MV problem is the usual optimization problem.

(c) If 〈G(x), x − x〉 = F (x, x), then we are in the presence of the mixed equilibrium

problem where F be a bifunction satisfying the property F (x, x) = 0 (see [20]).

The name is because they are a mixture of two problems, a variational one and an

optimization one. The problem is composed of an operator G and a function h such that

one can impose stronger conditions on the operator and weaken those of the function and

vice versa. In the formulation of an oligopolistic equilibrium model G represents demand

and h represents supply.

In this paper, we give new results of existence of solutions for mixed variational in-

equality problems under more general assumptions. We will use the Knaster–Kuratowski

and Mazurkiewicz theory and served Nash to prove the existence of his equilibrium points.

Taking measurements leads to inaccuracies. One way of catching inaccuracy is with

Interval Analysis. The Interval Analysis was introduced by Ramon Moore [28] in 1966 as

a tool for automatic error control. Intervals allow the manipulation of truncation errors.

For example, during the Gulf War, a US Patriot missile failed to intercept another

due to errors generated by inadequate numerical approximations implemented in the

Patriot software (http://www.gao.gov/products/IMTEC-92-26) and the same occurred

in the launch of the Ariane rocket, see the file http://esamultimedia.esa.int/docs/esa-x-

1819eng.pdf.

In this article we will move within the environment of Hadamard’s manifolds. In non-

linear spaces, such as the Hadamard manifolds, we extend concepts such as convex sets

where geodesic arcs connect two points instead of linear segments. Unsuspectedly, these

spaces present some advantage over the linear ones such as that sets that are not convex in

the usual sense are convex within these manifolds. We can transform non-convex problems

with Euclidean metrics into convex problems with related metrics with all the advantages

that this entails (see Colao et al. [9]) and non-monotone vector fields can be reduced into

monotone by choosing an appropriate Riemannian metric.

With applications in expected fields such as in optimization problems related to engi-

neering [26], stereo vision processing [27], machine learning and computer vision [31], and

in others not so expected, for example, in Economics, within Game Theory, specifically

in the achievement of Nash equilibrium points where strategy sets and payoff functions

are geodesically convex, see [25], or for Stackelberg’s equilibrium points on Hadamard

manifolds [36].

The state of the art is as follows. Firstly, in 1980, Giannessi [15] introduced the

vector variational inequalities of Stampacchia type, and secondly, in 1998, Giannessi [16]

proposed Minty-type inequalities. One fundamental problem for variational inequality
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problem is the existence issue of solutions. Németh [29] was the first to consider the

variational inequality on Hadamard manifolds, and he proved the existence of solutions in

this space.

Our article starts on an initial one from 2003 given by Ruiz-Garzón et al. [33], where

we established the existence of solutions for the Variational-like Inequality problem under

conditions of pseudomonotonicity in n-dimensional Euclidean spaces.

In 2010, Jiang, Pang and Shen [22] studied the existence of solutions of generalized

vector variational-type inequalities without the assumption of monotony in Banach spaces

by using Brouwer’s fixed point theorem.

In 2013, Zhou and Huang [41] introduced the KKM mapping on the Hadamard mani-

folds. They obtained an existence of weak minimum for a constrained vector optimization

problem via a vector variational inequality with real valued functions. New optimality con-

ditions for the mathematical programming problem were given on Hadamard manifolds

using generalized convexity in [2, 42].

In 2016, Jana and Nahak [20] proved the existence of solutions of mixed equilibrium

problems on Hadamard manifolds and algorithms that converge to the solution of such

problems but not with interval-valued functions.

In 2018, Ruiz-Garzón et al. [35] obtained optimality conditions and duality results for

constrained multiobjective programming in the Riemannian manifolds context.

In 2020, Wang et al. [40] related the mixed variational inequality with the Nash equi-

librium problem on Riemannian manifolds.

Recently, there are two important articles for this work that we present. These are

two articles from the year 2020 by S.-I. Chen [6, 7]. On one hand, in [6] Chen studies

single existence results for vector variational problems with f : M → Y assuming that

M is a finite dimensional Hadamard manifold and Y a Banach space. On the other

hand, in [7] Chen studies the KKT conditions of optimality for optimization problem with

interval-valued functions, but he does not study existence theorems.

In 2021, Grad and Lara [17] implement an algorithm for solving convex mixed varia-

tional inequalities on Euclidean spaces.

Our interest is to generalize all these results by studying the solubility of mixed vari-

ational problems with interval-valued functions assessed on Hadamard manifolds. This

study is new and non-existent in the current literature.

Contributions. We have organized the contents of this paper as follows. In Section 2,

we will recall those elements typical of manifolds, the arithmetic of intervals, and the dif-

ferentiability of interval-valued functions. We will introduce the Stampacchia and Minty

version of the Mixed Variational Inequality Interval-valued Problem. In Section 3, we will

prove the solution of the Mixed Stampacchia Variational Inequality Interval-valued Prob-
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lem (MSVIP) with monotonicity hypothesis via Fan’s lemma. In Section 4, we will relate

the Interval-valued Optimization Problem (IVOP) and Variational Inequality Interval-

valued problems of the Stampacchia and Minty type under convex environments and we

will finish by looking at the Walras’ economic equilibrium point existence conditions. Fi-

nally, Section 5 presents the conclusions to this study. Let us face our goal.

2. Tools

This section will review the concepts and techniques of manifolds, intervals, and interval-

valued functions that we will use.

2.1. Tools for manifolds

Let’s show some definitions related to manifolds. Let M be a Riemannian manifold en-

dowed with a Riemannian metric on a tangent space TxM .

With the metric, we can define the corresponding norm denoted by ‖ · ‖x. The length

of a piecewise C1 curve γ : [a, b]→M is defined by

L(γ) =

∫ b

a
‖γ′(t)‖γ(t) dt.

The distance d that induces the original topology on M , defined as

d(x, y) = inf{L(γ) | γ is a piecewise C1 curve joining x and y,∀x, y ∈M}.

This definition allows us to define the concept of minimal geodesic as any path γ joining

x and y in M such that L(γ) = d(x, y). If M is complete, then any points in M can be

joined by a minimal geodesic.

In this paper, we will work with Hadamard manifolds, a particular case of Riemannian

manifolds.

Definition 2.1. We will say that a Hadamard’s manifold is a simply connected complete

Riemannian manifold of nonpositive sectional curvature.

Example 2.2. (a) The Hyperbolic plane is defined as H2 = {(x, y) ∈ R2; y > 0} with

the Riemannian metric defined as

(ds)2 =
(dx)2 + (dy)2

y2
.

The Hyperbolic plane is a Hadamard manifold with sectional curvature κ = −1.

(b) The space of positive-definite matrices Sn++ is an example of Hadamard manifold

with the Riemannian metric 〈U, V 〉 = 〈X−1UX−1, V 〉.
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(c) The space M = R×H1 is a Hadamard manifold as they are a Cartesian product of

two Hadamard’s manifolds.

In the differentiable case, the derivatives of the curves at a point x on the manifold lie

in a vector space TxM . We denote by TxM the n-dimensional tangent space of M at x,

and denote by TM =
⋃
x∈M TxM the tangent bundle of M .

Just as TxM is a linear space, but the same is not true for M . Generally, properties on

manifolds are usually carried to the tangent plane and vice versa and that is carried out

by two functions: the Riemannian exponential function and its inverse, exp and exp−1,

respectively.

Let TM be an open neighborhood of M such that expx : TM → M is defined as

expx(tv) = γ(t) = xe(v/x)t for every v ∈ TM , where γ is the geodesic starting at x with

velocity v (i.e., γ(0) = x, γ′(0) = v).

Remark 2.3. (a) If M = Rp+ then exp−1
x y = y− x, where we denote by Rp+ the nonneg-

ative orthant of Rp, and R+ := R1
+.

(b) When M is a Hadamard manifold, then expx is a diffeomorphism, and for any two

points x, y ∈ M , there exists a unique minimal geodesic joining x to y. M is dif-

feomorphic to the Euclidean space Rn, thus is, Hadamard manifolds and Euclidean

spaces have similar differential structure and geometrical properties (see [9, Propo-

sition 2.1]).

As in n-dimensional spaces, we will use a concept similar to the convex set.

Definition 2.4. [41] A subset K of M is said to be a geodesic convex if, for any two

points x, y ∈ K, the geodesic γ of M has endpoints x and y are belonging to K; that is,

if γ : [0, 1]→M such that γ(0) = x and γ(1) = y, then γ(t) = expx(t exp−1
x y) ∈ K for all

t ∈ [0, 1].

Example 2.5. The set X = {(x1, x2) ∈ R2
+ : x2

1 + x2
2 ≤ 4 ≤ (x1 − 1)2 + x2

2} is not convex

in the usual sense with X ⊂ R2, but X is a geodesic convex on the Poincaré upper-plane

model (H2, gH), as it is the image of a geodesic segment.

Definition 2.6. [23] The geodesic convex hull of a set K ⊂ M is the smallest geodesic

convex subset of M containing K. It is denoted by co(K).

Definition 2.7. Let x1, x2 be any points in a Hadamard manifold M . The geodesic

convex combination of x1 and x2 is the geodesic joining x1 and x2, and it is denoted by

com(x1,x2)(t2) = γx2,x1(t2) = expx2(t2 exp−1
x2 x1), ∀ t2 ∈ [0, 1].

Zhou et al. [43] gave the following theorems that we will use in this article.
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Theorem 2.8. Let M be a Hadamard manifold. A set K ⊂ M is a geodesic convex if

and only if it contains all geodesic combinations of elements of K.

Theorem 2.9. Let K ⊂M be any set in a Hadamard manifold M . Then co(K) consists

of all the geodesic combinations of elements of K.

Theorem 2.10. For any two subsets K1, K2 of a Hadamard manifold M such that K1 ⊆
K2, then co(K1) ⊆ co(K2).

We will also extend the concept of convex function.

Definition 2.11. [38] Let M be a Hadamard manifold and let K ⊆ M be a geodesic

convex set. A function θ : K → R is said to be geodesic convex (GCX) if and only if for

any geodesic γ of K, the composition function θ ◦ γ : [0, 1]→ R is convex, i.e.,

(θ ◦ γ)(ta+ (1− t)b) ≤ t(θ ◦ γ)(a) + (1− t)(θ ◦ γ)(b)

for every a, b ∈ R, and t ∈ [0, 1].

In [10], the authors give an example of a nonconvex function that is nevertheless convex

on a Riemannian manifold endowed with an adequate metric.

Example 2.12. The function f : R2 → R defined by f(x1, x2) = ex1(cosh(x2) − 1) is

not convex but f is geodesic convex on Riemannian manifold Mg with the metric g(x) =

diag(1, e2x1).

2.2. Tools for intervals

In this section, we will show the arithmetic related to intervals. We denote by KC the

family of all bounded closed intervals in R, i.e.,

KC =
{

[a, a] | a, a ∈ R and a ≤ a
}
.

Let A = [a, a] = {a : a ≤ a ≤ a, a ∈ R} be a closed interval, where a and a mean lower

and upper bounds of A. If a = a, then A = [a, a] = a is a real number. We have

(a) A+B = [a+ b, a+ b] where B = [b, b].

(b) λA =

[λa, λa], λ ≥ 0,

[λa, λa], λ < 0
where λ is a real number.

The space KC is not a linear space since it does not posses an additive inverse and

therefore subtraction is not well defined (see Diamond and Kloeden [11]), i.e., if we define

A−B = A+ (−1)B
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then, in general, A−A 6= {0}. For example,

[1, 2]− [1, 2] = [1, 2] + [−2,−1] = [−1, 1] 6= [0, 0].

Hukuhara [19] made one of the first attempts. It is said that the Hukuhara difference

exists, A−H B, and it is equal to C (H-difference) if A = B + C.

TheH-difference of two intervals only exists if the widths are such that len(A) ≥ len(B)

where for A = [a, a], len(A) = a − a. For example, [1, 2] −H [4, 8] does not exist because

len([1, 2]) < len([4, 8]).

To overcome these drawbacks, Stefanini and Bede [37] introduced the concept of gen-

eralized Hukuhara difference of two intervals A,B ∈ KC (gH-difference for short), and it

is defined as follows:

A	gH B = C ⇐⇒ A = B + C or B = A+ (−1)C.

With this definition, this difference [1, 2] 	gH [4, 8] = [−6,−3] exists because [4, 8] =

[1, 2] + (−1)[−6,−3].

Thus, the gH-difference is a generalization of the H-difference. Chalco-Cano et al. [5]

have shown that A	gH B =
[

min{a− b, a− b},max{a− b, a− b}
]
.

We also need to establish an order to decide when one interval is greater than another.

As we knew, the usual ordering “≤” is a total ordering in R; that is, for any two real

numbers in R, we can determine their order without difficulty. However, for any two

closed intervals in R, there is no natural ordering among the set of all closed intervals in

R, and we have to define it (see [34, Definition 2.2]).

Definition 2.13. Let A = [a, a] and B = [b, b] be two closed intervals in R. We write

(a) A�B ⇐⇒ a ≤ b and a ≤ b.

(b) A � B ⇐⇒ A�B and A 6= B, i.e., a ≤ b and a ≤ b, with a strict inequality.

(c) A ≺ B ⇐⇒ a < b and a < b.

2.3. Tools for interval-valued functions on Hadamard manifolds

In this section, we deal with interval-valued functions on Hadamard manifolds. We will

establish the concepts of differentiability, and convexity that we need.

Let D be a subset of a Hadamard manifold M endowed with the Riemannian metric.

The function f : D → KC is called an interval-valued function, i.e., f(x) is a closed interval

in R for each x ∈ M . We will denote f(x) = [fL(x), fU (x)], where fL and fU are real-

valued functions and satisfy fL(x) ≤ fU (x) for every x ∈M . The functions fL, fU : D →
R are called endpoint functions of f . For interval-valued functions on Hadamard manifolds

we can define
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Definition 2.14. [7] Let M be a Hadamard manifold, let D ⊆ M be a nonempty open

geodesic convex set. An interval-valued function f : D → KC is called directionally gH-

differentiable map along the geodesic γ at x ∈ D, if and only if the limit

f ′gH(x; γ) = lim
t→0+

f(expx(t exp−1
x y))	gH f(x)

t

exists.

Remark 2.15. (a) The previous definition is an extension of the one given by Zhou and

Huang [41] for real valued functions.

(b) If f is differentiable map along the geodesic γ(t) = expx(t exp−1
x y) at x ∈M , then

f ′gH(x; exp−1
x y) = dfx(exp−1

x y) = 〈grad f, exp−1
x y〉.

Moreover, we can define the convexity of an interval-valued function that is so impor-

tant in the study of optimality conditions.

Definition 2.16. [7] LetD ⊆M be a nonempty open geodesic convex set and f : D → KC
be an interval-valued function. Then f is said to be interval-valued geodesic convex

(IGCX) at x ∈ D, if for each y ∈ D,

f(γ(t)) � tf(y) + (1− t)f(x), ∀ t ∈ [0, 1],

where γ(t) = expx(t exp−1
x y) for every t ∈ [0, 1].

We will use the concept of convex function given by Chen [7].

Lemma 2.17. Let M be a Hadamard manifold and let D ⊆M be a geodesic convex set. A

differential function f : K → KC along the geodesic γ is said to be interval-valued geodesic

convex (IGCX) on K if and only if for any x, y ∈ K,

f(x)	gH f(x) � dfx(exp−1
x x) = f ′gH(x; exp−1

x y).

Example 2.18. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian

metric defined by 〈 · , · 〉 = g(x)uv with g(x) = x−2, where g : R++ → (0,+∞). Let

K = {x | x = et, t ∈ [0, 1]} be a subset of M .

Let γ(t) = xe(v/x)t = expx(tv) be a geodesic and therefore exp−1
x y = x ln(y/x). We

have f(x) = [fL(x), fU (x)] = [x3, x3 + 1] and h(x) = [x, 2x]. In terms of g we obtain that

grad f(x) = g(x)−1f ′(x) = x2f ′(x),

where f ′ denotes the first derivatives of f in the Euclidean sense.
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We can calculate

dfx(exp−1
x y) = 〈grad f(x), exp−1

x y〉 = 〈[x2(3x2), x2(3x2)], x ln(y/x)〉

= x−2[3x4 · x ln(y/x), 3x4 · x ln(y/x)] = [3x3 ln(y/x), 3x3 ln(y/x)]

and

f(y)	gH f(x) � dfx(exp−1
x y), ∀x, y ∈ K.

Therefore, f is a differential interval-valued convex mapping.

We will continue by generalizing the Stampacchia and Minty versions of these vari-

ational problems on Hadamard manifold given by [8] to interval-valued functions. The

close relationship of the solutions of these problems means that they can be considered as

“dual” and “primal” problems. As a general rule, the Minty type formulation is easier to

solve. We can introduce

Definition 2.19. (a) Mixed Stampacchia Variational Inequality Interval-valued Prob-

lem (MSVIP): Find a point x ∈ K such that there exists no y ∈ K such that

dfx(exp−1
x y) + (h(y)	gH h(x)) ≺ [0, 0],

where f : K → KC is a gH-differentiable function along the geodesic γ and h : K →
KC is an interval-valued function.

(b) Mixed Minty Variational Inequality Interval-valued Problem (MMVIP): Find a point

x ∈ K such that there exists no y ∈ K such that

dfy(exp−1
y x) + (h(x)	gH h(y)) � [0, 0].

The following problems are the special cases of MSVIP:

(a) If M = Rp+ with K being a nonempty, closed, and convex subset of M and the

image set is Rn, then the MSVIP reduces to the problem considered by Facchinei

and Pang [12].

(b) If M = Rp+ with K being a nonempty, closed, and convex subset of M , the image

set is Rn and h = 0, ∀x, y ∈ K, then the MSVIP reduces to the following classical

variational problem (VIP): Find a point x ∈ K such that 〈∇f(x), y−x〉 ≥ 0, ∀ y ∈ K,

which has been considered by Hartman and Stampacchia [18].

Our goal in the next section is to prove the solubility of MSVIP.
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3. Existence results

The Knaster–Kuratowski and Mazurkiewicz (KKM) theory is born as a continuation of

the fixed point theorems and they have an essential role in the search for solutions of

variational problems with the monotonicity hypothesis, as we will see.

Definition 3.1 (KKM mapping). LetK be a nonempty closed convex subset of a Hadamard

manifold M and F : K → 2K be a multi-valued mapping. F is called a KKM mapping if

co{x1, x2, . . . , xn} ⊂
⋃n
i=1 F (xi) for any finite set {x1, x2, . . . , xn} of K.

Lemma 3.2 (Fan). Let K be a nonempty closed geodesic convex subset of a Hadamard

manifold M and F : K → 2K be a multi-valued mapping. Suppose that F is a KKM map-

ping. If F (x) is closed for each x ∈ K and compact for some x ∈ K, then
⋂
x∈K F (x) 6= ∅.

We need to extend the hemicontinuous concept or continuous over linear segments to

geodesics.

Definition 3.3. [20] A function grad f : K → KC is said to be geodesic hemicontinuous

if for every geodesic γ, whenever t→ 0,

grad f(γ(t))→ grad f(γ(0)).

The concept of monotonicity and its generalization has a primary role in investigating

existence results for variational inequalities [33]. We will extend the pseudomonotonicity

concept between Euclidean spaces given by Ruiz-Garzón et al. [33] to an interval-valued

function on Hadamard manifolds.

Definition 3.4. A mapping grad f : K → KC is said to be h-pseudomonotone (PM) if for

every x, y ∈ K, such that

dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0],

then

dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0],

where h : K → KC is an interval-valued function.

Example 3.5. As Example 2.18, we have f(x) = [fL(x), fU (x)] = [x3, x3 +1] and h(x) =

[x, 2x]. In terms of g we obtain that

grad f(x) = g(x)−1f ′(x) = x2f ′(x),

where f ′ denotes the first derivatives of f in the Euclidean sense. We can calculate

dfx(exp−1
x y) = 〈grad f(x), exp−1

x y〉 = 〈[x2(3x2), x2(3x2)], x ln(y/x)〉

= x−2[3x4 · x ln(y/x), 3x4 · x ln(y/x)] = [3x3 ln(y/x), 3x3 ln(y/x)].
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The mapping grad f is h-pseudo monotone (PM) because ∀x, y ∈ K, such that

dfx(exp−1
x y) + (h(y)	gH h(x)) = [3x3 ln(y/x), 3x3 ln(y/x)] + ([y, 2y]	gH [x, 2x])

6≺ [0, 0],

then

dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0].

In the following theorem, we will prove the equivalence of Stampacchia and Minty type

problems through h-pseudomonotonicity.

Lemma 3.6 (Minty). Let K be a nonempty, compact, and geodesic convex subset of a

Hadamard manifold M with constant sectional curvature κ ≤ 0. Let f : K → KC be a

differentiable function along the geodesic γ. Suppose that

(a) Let grad f : K → KC be a geodesic hemicontinuous and h-pseudomonotone (PM)

mapping.

(b) The function h : K → KC is interval-valued geodesic convex (IGCX) on K.

There exists x ∈ K, such that for all y ∈ K,

(3.1) dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0]

if and only if for all y ∈ K,

(3.2) dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0].

Proof. By the h-pseudomonotonicity of grad f if x satisfies (3.1), then (3.2) holds for

y ∈ K.

Conversely, let γ(t) = expx(t exp−1
x y) be a geodesic for each t ∈ [0, 1] from γ(t) to

γ(0) = x, hence by (3.2), t > 0. Since K is geodesic convex, then γ(t) ∈ K. Suppose

x ∈ K satisfies Minty type inequality (3.2), and we will prove that (3.1) holds, thus is, x

is a solution of MSVIP, then

dfγ(t)(exp−1
γ(t) x) + (h(x)	gH h(γ(t))) 6� [0, 0], ∀ t ∈ [0, 1].

As h is interval-valued convex, then

h(γ(t))	gH h(x) � t[h(y)	gH h(x)].

We have that

dfγ(t)(exp−1
γ(t) x) � h(γ(t))	gH h(x) � t(h(y)	gH h(x)),

dfγ(t)(− exp−1
γ(t) x) � −t(h(y)	gH h(x)),

dfexpx(t exp−1
x y)(exp−1

expx(t exp−1
x y)

x) � t(h(x)	gH h(y)), ∀ y ∈ K.
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Let Pt denote the parallel transport along the geodesic γ(t) = expx(t exp−1
x y). Since

the parallel transport is an isometry,

(3.3) tPtdfexpx(t exp−1
x y)(exp−1

x y) � t(h(x)	gH h(y)), ∀ y ∈ K.

By dividing t > 0, the geodesic hemicontinuity of grad f and tacking t → 0 in (3.3) one

has

dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0], ∀ y ∈ K.

Therefore, x is a solution of MSVIP. This proof is completed.

We will prove the solvability of the MSVIP problem.

Theorem 3.7. Let K be a nonempty, compact, and geodesic convex subset of a Hadamard

manifold M with constant sectional curvature κ ≤ 0. Let f : K → KC be a differentiable

function along the geodesic γ.

(a) Let grad f : K → KC be a geodesic hemicontinuous and h-pseudomonotone (PM)

mapping.

(b) The function h : K → KC is interval-valued convex (IGCX) on K.

(c) The function y 7→ dfx0(exp−1
x0 y) is interval-valued convex (IGCX), ∀ y ∈ K.

Then MSVIP is solvable.

Proof. Define mappings F,G : K → 2K by

F (y) = {x ∈ K : dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0]},

G(y) = {x ∈ K : dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0]}.

To show the existence solution of MSVIP is sufficient to show that⋂
y∈K

F (y) 6= ∅.

Let us see that we are in a position to apply Lemma 3.2.

Step 1: Firstly, we show that G is a KKM mapping by proving that F is a KKM

mapping. So we have to prove that for any choice x1, x2, . . . , xn ∈ K,

co{x1, x2, . . . , xn} ⊂
n⋃
i=1

F (xi).

Indeed, assume that F is not a KKM mapping, then there exist x0 ∈ K, such that

x0 ∈ co{x1, x2, . . . , xn} but x0 /∈
⋃n
i=1 F (xi). Thus is,

dfx0(exp−1
x0 xi) + (h(xi)	gH h(x0)) ≺ [0, 0], ∀ i ∈ {1, 2, . . . , n}.



Mixed Variational Inequality Interval-valued Problem: Theorems of Existence of Solutions 1269

Therefore

xi ∈ A = {y ∈ K : dfx0(exp−1
x0 y) + (h(y)	gH h(x0)) ≺ [0, 0]}.

By hypothesis, y 7→ dfx0(exp−1
x0 y) is interval-valued convex (IGCX) also h is interval-

valued convex (IGCX) function on K therefore y 7→ dfx0(exp−1
x0 y)+h(y) is interval-valued

convex (IGCX) function. Hence the set A is a geodesic convex set. Thus is,

x0 ∈ co{x1, x2, . . . , xn} ⊆ A.

On the other hand,

[0, 0] = dfx0(exp−1
x0 x0) + (h(x0)	gH h(x0)) ≺ [0, 0].

Contradiction. Therefore, F is KKM mapping and so is G.

Step 2: Secondly, we can show that F (y) ⊂ G(y). Since grad f is geodesic hemicontin-

uous and h-pseudomonotone, it follows from Lemma 3.6 that F (y) ⊂ G(y) for all y ∈ K.

F (y) is a KKM-function, then G(y) is a KKM-function and
⋂
y∈K F (y) =

⋂
y∈K G(y).

Step 3: Furthermore, since K is bounded, G(y) is bounded. Moreover, it is obvious

that G(y) is closed in K, and therefore G(y) is compact. It follows from Lemma 3.2 that⋂
y∈K F (y) =

⋂
y∈K G(y) 6= ∅, which implies that there exists x ∈ K such that ∀ y ∈ K,

dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0].

That is to say, MSVIP is solvable.

Remark 3.8. (a) Theorem 3.7 generalizes the Existence Theorem 3.1 given by Jiang

et al. [22] for solutions of variational inequality problem from Banach spaces and

Hadamard manifolds to interval-valued functions, Theorem 2.2 given by Jana and

Nahak [20], Theorem 3.2 given by Colao et al. [9], and Theorem 3.8 given by Jayswal

et al. [21].

(b) The geodesic convexity of the set A associated to the function y 7→ dfx0(exp−1
x0 y) is

ensured by being geodesic convex the end point functions following the proof that we

can find in Chen and Huang [8, Theorem 3.9], as well as in Chen [6, Theorem 3.1],

Zhou and Huang [41, Corollary 3.1], Wang et al. [39, Theorem 4.2], and Ferreira et

al. [14, Corollary 3.1].

Corollary 3.9. Let K be a nonempty, compact, and geodesic convex subset of a Hadamard

manifold M with constant sectional curvature κ ≤ 0. Let f : K → KC be a differentiable

function along the geodesic γ.
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(a) Let grad f : K → KC be a geodesic hemicontinuous and h-pseudomonotone (PM)

mapping.

(b) The function h : K → KC is interval-valued convex (IGCX) on K.

(c) For all x ∈ K, the set A = {y ∈ K : dfx(exp−1
x y) + (h(y) 	gH h(x)) ≺ [0, 0]} is

geodesic convex.

Then MSVIP is solvable.

Proof. In the same way as in Theorem 3.7, we obtain the result since F (y) is a KKM-

function as a consequence of assumption (c) and Lemma 3.6.

Remark 3.10. Hypothesis (c) extends to the case of interval-valued functions other similar

ones that can be found in Theorem 3.2 given by Colao et al. [9] and in Theorem 3.4 given

by Al-Homidan et al. [3].

We can also guarantee the uniqueness of the solution.

Definition 3.11. A mapping grad f : K → KC is said to be stricly h-pseudomonotone

(SPM) if for every x, y ∈ K, x 6= y, such that

dfx(exp−1
x y) + (h(y)	gH h(x)) 6≺ [0, 0],

then

dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0],

where h : K → KC is an interval-valued function.

Theorem 3.12. Let K be a nonempty, compact, and geodesic convex subset of a Hadamard

manifold M with constant sectional curvature κ ≤ 0. Let f : K → KC be a differentiable

function along the geodesic γ.

(a) Let grad f : K → KC be a strictly h-pseudomonotone (SPM) and geodesic hemicon-

tinuous mapping.

(b) The function h : K → KC is interval-valued convex (IGCX) on K.

(c) For all x ∈ K, the set A = {y ∈ K : dfx(exp−1
x y) + (h(y) 	gH h(x)) ≺ [0, 0]} is

geodesic convex.

Then MSVIP has a unique solution.
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Proof. Since the SPM implies the PM, by Theorem 3.7, we are guaranteed the existence

of a solution. Let’s see the uniqueness. Suppose that MSVIP has two distinct solutions,

say x1 and x2, then for every x1, x2 ∈ K, x1 6= x2, we have

(3.4) dfx1(exp−1
x1 x2) + (h(x2)	gH h(x1)) 6≺ [0, 0]

and

(3.5) dfx2(exp−1
x2 x1) + (h(x1)	gH h(x2)) 6≺ [0, 0].

From grad f is (SPM), it follows from (3.4) that

dfx2(exp−1
x2 x1) + (h(x1)	gH h(x2)) 6� [0, 0].

Contradiction with (3.5).

In Nguyen et al. [30] the authors established the existence a unique solution of VIP

under strong pseudomonotonicy assumptions. We demand in our work a more general

condition as the strictly pseudomonotonicity. Also this result is a generalization of Corol-

lary 5.1 given by Ruiz-Garzón et al. [33] in finite dimensional spaces.

Example 3.13. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian

metric defined by 〈 · , · 〉 = g(x)uv with g(x) = x−2, where g : R++ → (0,+∞). Let

K = {x | x = et, t ∈ [0, 1]} be a subset of M .

Let γ(t) = xe(v/x)t = expx(tv) be a geodesic and therefore exp−1
x y = x ln(y/x). We

have f(x) = [fL(x), fU (x)] = [ln2(x), ln2(x) + 1] and h(x) = [x, 2x]. As grad f(x) =

g(x)−1f ′(x) = x2f ′(x), where f ′ denotes the first derivatives of f in the Euclidean sense,

then we can calculate

dfx(exp−1
x y) = 〈grad f(x), exp−1

x y〉 =

〈[
x2 2

x
ln(x), x2 2

x
ln(x)

]
, x ln(y/x)

〉
= 〈[2x ln(x), 2x ln(x)], x ln(y/x)〉 = x−2[2x ln(x)x ln(y/x), 2x ln(x)x ln(y/x)]

= [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)].

The mapping grad f is strictly h-pseudomonotone (SPM) because for every x, y ∈ K,

such that

dfx(exp−1
x y) + (h(y)	gH h(x)) = [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)] + ([y, 2y]	gH [x, 2x])

6≺ [0, 0],

then

dfy(exp−1
y x) + (h(x)	gH h(y)) 6� [0, 0].
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All assumptions of Theorem 3.12 holds and the MSVIP problem has a unique solution

x = 1 ∈ K such that there exists no y ∈ K such that

[2 ln(x) ln(y/x), 2 ln(x) ln(y/x)] + ([y, 2y]	gH [x, 2x]) 6≺ [0, 0].

In the next section, we will show the relationships of the existence results already

achieved with economic problems and mathematical optimization problems.

4. Applications

Economists have always been interested in studying theorems on the existence of equi-

librium points in a market. Walrasian equilibrium points are those where the quantity

demanded is equal to the quantity supplied. We consider a market structure with perfect

competition. Perfect competition in a market means that none of the agents can influence

the good or service price, thus is, there are many producers of a very homogeneous good,

where the market (or equilibrium) price arises from the law of supply and demand.

We suppose n commodities and a price vector p ∈ Rn+ = M . And as a novelty,

we can define the value E(p) of the excess demand mapping as interval-valued function

E : Rn+ → KC .

In Konnov [24], we can see that a vector p ∈ M is said to be an equilibrium price

vector if we can solve the following variational inequality: find p ≥ 0 and q ∈ E(p) such

that there exists no p ∈ Rn+ such that

〈−q, exp−1
p p〉 = 〈−q, p− p〉 ≺ [0, 0].

If we suppose that each price of a commodity involved in the market structure has a

lower positive bound and may have an upper bound and we denote the excess of demand

mapping as E(p) = D(p) − S(p), where D and S are the demand and supply mappings

and set G = −D, each producer supplies a single commodity, then the problem of finding

an equilibrium price (EPP) consists of: find p ∈ K ⊆ M and si ∈ Si(p), i = 1, 2, . . . , n,

such that there exists no p ∈ K such that

〈G(p), p− p〉+

n∑
i=1

si(pi − pi) ≺ [0, 0].

This problem is nothing but MSVIP. By Theorem 3.7, we would have the conditions

under which there is an equilibrium price. These conditions include the pseudomonotonic-

ity of the demand and the convexity of si.

Also, we use variational inequalities problems to obtain solutions to optimization prob-

lems. Let’s see.
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We can consider the following Interval-valued Optimization Problem on Hadamard

manifolds (IVOP) defined as,

min f(x) = [fL(x), fU (x)] s.t. x ∈ K,

where f : K → KC and K is a subset of a Hadamard manifold M .

This section considers h = 0, and we identify solutions of SVIP and IVOP problems.

Theorem 4.1. Let K be a nonempty, compact, and geodesic convex subset of a Hadamard

manifold M with constant sectional curvature κ ≤ 0. Suppose f : K → KC is a differential

interval-valued convex mapping along the geodesic γ. The point x is SVIP solution if and

only if x is solution of IVOP.

Proof. By reductio ad absurdum. Suppose that x is not a solution of IVOP. Then, there

exists y ∈ K such that f(x) 	gH f(y) � [0, 0]. By the interval-valued convexity of f , we

have

[0, 0] � f(y)	gH f(x) � dfx(exp−1
x y).

Hence, we find a point x ∈ K such that there exists y ∈ K such that

dfx(exp−1
x y) ≺ [0, 0].

Contradiction with x is solution of SVIP.

Conversely, suppose that x is not a solution of SVIP. Then, we find a point x ∈ K

such that dfy(exp−1
y x) � [0, 0]. By the interval-valued convexity

f(x)	gH f(y) � dfy(exp−1
y x) � [0, 0].

Contradiction with x is a solution of IVOP.

As a consequence of Lemma 3.6 and Theorem 4.1, we have

Corollary 4.2. Let K be a nonempty, compact, and geodesic convex subset of a Hadamard

manifold M with constant sectional curvature κ ≤ 0. Suppose

(a) Let f : K → KC be a differential and interval-valued convex mapping.

(b) Let grad f : K → KC be a geodesic hemicontinuous and pseudomonotone mapping.

There exists x ∈ K, such that for all y ∈ K the following problems SVIP, MVIP, and

IVOP are equivalents.

To sum up,

MVIP ⇐⇒ SVIP ⇐⇒ IVOP.

Therefore, we can reach the Interval-valued Optimization Problem on Hadamard manifolds

IVOP through the solutions of SVIP Problem.
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Example 4.3. As Example 3.13, let M = R++ = {x ∈ R : x > 0} be endowed with the

Riemannian metric defined by 〈 · , · 〉 = g(x)uv with g(x) = x−2, where g : R++ → (0,+∞).

Let K = {x | x = et, t ∈ [0, 1]} be a subset of M .

Let γ(t) = xe(v/x)t = expx(tv) be a geodesic and therefore exp−1
x y = x ln(y/x). We

have f(x) = [fL(x), fU (x)] = [ln2(x), ln2(x) + 1]. As grad f(x) = g(x)−1f ′(x) = x2f ′(x),

where f ′ denotes the first derivatives of f in the Euclidean sense, then we can calculate

dfx(exp−1
x y) = 〈grad f(x), exp−1

x y〉 =

〈[
x2 2

x
ln(x), x2 2

x
ln(x)

]
, x ln(y/x)

〉
= 〈[2x ln(x), 2x ln(x)], x ln(y/x)〉 = x−2[2x ln(x)x ln(y/x), 2x ln(x)x ln(y/x)]

= [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)].

The mapping grad f is pseudomonotone (PM) because for every x, y ∈ K, such that

dfx(exp−1
x y) = [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)] 6≺ [0, 0],

then dfy(exp−1
y x) 6� [0, 0].

Also, the function f is interval-valued geodesic convex (IGCX) on K because ∀x, y ∈
K,

[ln2(y), ln2(y) + 1]	gH [ln2(x), ln2(x) + 1] � [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)].

All assumptions of Corollary 4.2 holds and the SVIP problem has a solution x = 1 ∈ K
such that there exists no y ∈ K such that

dfx(exp−1
x y) = 〈grad f(x), exp−1

x y〉 = [2 ln(x) ln(y/x), 2 ln(x) ln(y/x)] ≺ [0, 0].

The solution to this SVIP problem coincides with MVIP and IVOP problems.

Remark 4.4. In this example, as grad f(x) = grad f(x) and taking λn = 1/2− 1/(n+ 3),

then we can applied the Proximal Point Algorithm 3 given by Ansari and Babu [4] for

finding the solution of variational inequality problem, where the algorithm becomes

0 = 2xn ln(xn)− 1

λn
xn+1 ln

(
xn
xn+1

)
.

With the initial guess x0 = 2.5, the iterative points are given in Table 4.1 and Figure 4.1.
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n xn with initial guest x0 = 2.5 n xn with initial guest x0 = 2.5

0 2.5 17 1.00016182

1 2.08094536 18 1.00008899

2 1.65212955 19 1.00004873

3 1.37942868 20 1.00002658

4 1.22220021 21 1.00001444

5 1.13113516 22 1.00000782

6 1.07757916 23 1.00000423

7 1.04579493 24 1.00000228

8 1.0268919 25 1.00000122

9 1.01568265 26 1.00000065

10 1.00907571 27 1.00000035

11 1.0052112 28 1.00000019

12 1.00296952 29 1.0000001

13 1.00167999 30 1.00000005

14 1.00094411 31 1.00000003

15 1.00052731 32 1.00000001

16 1.00029286 33 1

Table 4.1: Finite convergence for Proximal Point Algorithm.

Figure 4.1: Converge plot of iterative process.
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5. Conclusions

This paper has introduced the Stampacchia and Minty version of the Mixed Variational

Inequality Interval-valued Problem on Hadamard manifolds and proved the existence of

solutions with monotonicity hypothesis of the gradient of the function. The results proved

in this article allow us to draw the following conclusions:

– We have used the gH-differentiability for interval-valued functions on Hadamard

manifolds and we extended the Stampacchia and Minty versions of these variational

problems on Hadamard manifold given by Chen and Huang [8] to interval-valued

functions.

– We generalized the Existence Theorems for solutions of vector variational inequality

problem from Borel and Euclidean spaces given by Jiang et al. [22], Jana and Nahak

[20], and Jayswal et al. [21] to Hadamard manifolds via Fan’s lemma. We have

illustrated the main results obtained with some examples and numerical results.

– We proved the existence of walrasian equilibrium points in a market of perfect com-

petition with interval-valued functions.

– We identified the solutions of Interval-valued Optimization Problem (IVOP) and

Variational Inequality Interval-valued problems of the Stampacchia and Minty type

under convex environments.

In our opinion, in the future, iterative methods should be proposed to effectively reach

solutions to these problems involving interval-valued functions in nonlinear spaces in a

similar way as proposed by Noor et al. [32], for example.
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[14] O. P. Ferreira, L. R. L. Pérez and S. Z. Németh, Singularities of monotone vector

fields and an extragradient-type algorithm, J. Glob. Optim. 31 (2005), no. 1, 133–151.



1278 Gabriel Ruiz-Garzón, Rafaela Osuna-Gómez and Jaime Ruiz-Zapatero
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