Hasse-Schmidt derivations versus classical derivations

Luis Narváez Macarro

Dedicated to Lê Dũng Tráng

Abstract

In this paper we survey the notion and basic results on multivariate Hasse-Schmidt derivations over arbitrary commutative algebras and we associate to such an object a family of classical derivations. We study the behavior of these derivations under the action of substitution maps and we prove that, in characteristic 0 , the original multivariate Hasse-Schmidt derivation can be recovered from the associated family of classical derivations. Our constructions generalize a previous one by M. Mirzavaziri in the case of a base field of characteristic 0 .

Introduction

Let k be a commutative ring and A a commutative k-algebra. A HasseSchmidt derivation of A over k of length $m \geq 0$ (or $m=\infty$), is a sequence $D=\left(D_{0}, D_{1}, \ldots, D_{m}\right)\left(\right.$ or $\left.D=\left(D_{0}, D_{1}, \ldots\right)\right)$ of k-linear endomorphisms of A such that D_{0} is the identity map and

$$
D_{\alpha}(x y)=\sum_{\beta+\gamma=\alpha} D_{\beta}(x) D_{\gamma}(y), \quad \forall \alpha, \forall x, y \in A
$$

A such D can be seen as a power series $D=\sum_{\alpha=0}^{m} D_{\alpha} t^{\alpha}$ in the quotient ring $R[[t]] /\left\langle t^{m+1}\right\rangle$, with $R=\operatorname{End}_{k}(A)$ (the ring of endomorphisms of A as k-module). For $i \geq 1$, the i th component D_{i} turns out to be a k-linear differential operator of order $\leq i$ vanishing on 1 , in particular D_{1} is a k-derivation of A.

The notion of Hasse-Schmidt derivation was introduced in [1] in the case where k is a field of characteristic $p>0$ and A a field of algebraic functions over k. This notion was used to understand, among others, Taylor expansions in this setting. But actually, Hasse-Schmidt derivations make sense in full generality.

If we are in characteristic $0(\mathbb{Q} \subset k)$, then it is easy to produce examples of Hasse-Schmidt derivations: starting with a k-linear derivation $\delta: A \rightarrow A$ we

[^0]consider its exponential:
$$
e^{t \delta}=\sum_{\alpha=0}^{\infty} \frac{\delta^{\alpha}}{\alpha!} t^{\alpha} \in R[[t]], \quad R=\operatorname{End}_{k}(A)
$$

It is clear that $e^{t \delta}$ is a Hasse-Schmidt derivation of A over k (of infinite length). This example also proves that, always under the characteristic 0 hypothesis, any k-linear derivation $\delta: A \rightarrow A$ appears as the 1-component of some Hasse-Schmidt derivation (of infinite length, and so, of any length $m \geq 1$) of A over k. This is what we call "to be ∞-integrable" (and so " m-integrable", for each $m \geq 1$) (see [5). But if we are no more in characteristic 0 , the situation becomes much more involved and integrable derivations deserve special attention (see [8, 4, 13] for several recent achievements in that direction).

As far as the author knows, two papers have been concerned with the description of Hasse-Schmidt derivations in terms of usual derivations, both in the case where k is a field of characteristic 0 . In [3] it is proven that 1 , if A is a (possibly non-commutative) k-algebra, then any Hasse-Schmidt derivation $D=\left(D_{0}=\right.$ Id, D_{1}, D_{2}, \ldots) of infinite length of A over k is determined by a unique sequence $\delta=\left(\delta_{1}, \delta_{2}, \ldots\right)$ of classical derivations $\delta_{i} \in \operatorname{Der}_{k}(A)$. Namely, the expressions relating D and δ are:

$$
\delta_{n}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\substack{n_{1}+\cdots+n_{r}=n \\ n_{i}>0}} D_{n_{1}} D_{n_{2}} \cdots D_{n_{r}}, D_{n}=\sum_{r=1}^{n} \frac{1}{r!} \sum_{\substack{n_{1}+\cdots+n_{r}=n \\ n_{i}>0}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}},
$$

or in other words:

$$
\sum_{n=0}^{\infty} D_{n} t^{n}=\exp \left(\sum_{n=1}^{\infty} \delta_{n} t^{n}\right)
$$

A similar result is proven in [7] any Hasse-Schmidt derivation $D=\left(D_{0}=\right.$ Id, D_{1}, D_{2}, \ldots) of infinite length of A over k determines, and is determined by a sequence $\delta=\left(\delta_{1}, \delta_{2}, \ldots\right)$ of classical derivations given by the following recursive formula:

$$
(n+1) D_{n+1}=\sum_{r=0}^{n} \delta_{r+1} D_{n-r}, \quad n \geq 0
$$

An interesting reinterpretation of both results can be found in [2].
The goal of this paper is twofold: to give a survey of multivariate Hasse-Schmidt derivations over a general commutative base ring k and a general commutative k algebra A, as defined in $\mathbf{9}$; and to generalize the construction in $[\mathbf{7}$ to this setting.

One of our motivations is to understand the relationship between HS-modules, as defined in 10, and classical integrable connections. The paper $\mathbf{1 1}$ is devoted to prove that both notions are equivalent in characteristic 0 , and the proof strongly depends on the constructions and results of the present paper.

[^1]A (p, Δ)-variate Hasse-Schmidt derivation of A over k is a family $D=\left(D_{\alpha}\right)_{\alpha \in \Delta}$ of k-linear endomorphisms of A such that D_{0} is the identity map and:

$$
D_{\alpha}(x y)=\sum_{\beta+\gamma=\alpha} D_{\beta}(x) D_{\gamma}(y), \quad \forall \alpha \in \Delta, \forall x, y \in A
$$

where $\Delta \subset \mathbb{N}^{p}$ is a non-empty co-ideal, i.e. a subset of \mathbb{N}^{p} such that everytime $\alpha \in \Delta$ and $\alpha^{\prime} \leq \alpha$ (i.e. $\alpha-\alpha^{\prime} \in \mathbb{N}^{p}$) we have $\alpha^{\prime} \in \Delta$. A simple but important idea is to think on Hasse-Schmidt derivations as series $D=\sum_{\alpha \in \Delta} D_{\alpha} \mathbf{s}^{\alpha}$ in the quotient $\operatorname{ring} R[[\mathbf{s}]]_{\Delta}$ of the power series ring $R[[\mathbf{s}]]=R\left[\left[s_{1}, \ldots, s_{p}\right]\right]$, $R=\operatorname{End}_{k}(A)$, by the two-sided monomial ideal generated by all \mathbf{s}^{α} with $\alpha \in \mathbb{N}^{p} \backslash \Delta$.

The set $\operatorname{HS}_{k}^{p}(A ; \Delta)$ of (p, Δ)-variate Hasse-Schmidt derivations is a subgroup of the group of units $\left(R[[\mathbf{s}]]_{\Delta}\right)^{\times}$, and it also carries the action of substitution maps: given a substitution map $\varphi: A\left[\left[s_{1}, \ldots, s_{p}\right]\right]_{\Delta} \rightarrow A\left[\left[t_{1}, \ldots, t_{q}\right]\right]_{\nabla}$ and a (p, Δ)-variate Hasse-Schmidt derivation $D=\sum_{\alpha \in \Delta} D_{\alpha} \mathbf{s}^{\alpha}$ we obtain a new (q, ∇)-variate HasseSchmidt derivation given by:

$$
\varphi \bullet D:=\sum_{\alpha \in \Delta} \varphi\left(\mathbf{s}^{\alpha}\right) D_{\alpha}
$$

This new structure is a key point in [10].
To generalize the construction in [7], we reinterpret the aforementioned recursive formula by means of the "logarithmic derivative type" maps:

$$
\varepsilon^{i}: D \in \operatorname{HS}_{k}^{p}(A ; \Delta) \longmapsto \varepsilon^{i}(D):=D^{*}\left(s_{i} \frac{\partial D}{\partial s_{i}}\right) \in R[[\mathbf{s}]]_{\Delta}, \quad i=1, \ldots, p
$$

where D^{*} denotes the inverse of D. The starting point is to check that the coefficients of $\varepsilon(D)$ are always classical derivations, i.e. $\varepsilon(D) \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$.

Let us comment on the content of the paper.
In section 1 we have gathered some notations and constructions on power series modules, powers series rings and substitution maps, most of them taken from [9, and we study the maps ε^{i}, and their conjugate $\bar{\varepsilon}^{i}$.

In section 2 we recall the notion and the basic properties of multivariate HasseSchmidt derivations and of the action of substitution maps on these objects.

Section 3 contains the main original results of this paper. First, we see how the ε^{i} or $\bar{\varepsilon}^{i}$ maps of section 1 allow us to associate to any multivariate HasseSchmidt derivation a power series whose coefficients are classical derivations, as explained before. When $\mathbb{Q} \subset k$ we obtain a characterization of multivariate HasseSchmidt derivations in terms of the ε^{i} (or $\bar{\varepsilon}^{i}$) maps, and we prove that any multivariate Hasse-Schmidt derivation can be constructed from a power series of classical derivations. To finish, we study the behavior of the ε^{i} maps of a multivariate Hasse-Schmidt derivation under the action of substitution maps.

1. Notations and preliminaries

1.1. Notations. Throughout the paper we will use the following notations:
-) k is a commutative ring and A a commutative k-algebra.
-) $\mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}, \mathbf{t}=\left\{t_{1}, \ldots, t_{q}\right\}, \ldots$ are sets of variables.
-) $\mathscr{U}^{p}(R ; \Delta)$: see Notation 1.2.4
-) $\mathbf{C}_{e}(\varphi, \alpha):$ see (1.11).
-) $\varphi \bullet r, r \bullet \varphi:$ see 1.3 .5
-) $\varphi^{D}: \operatorname{see} 2.2 .3$.
1.2. Some constructions on power series rings and modules. Throughout this section, k will be a commutative ring, A a commutative k-algebra and R a ring, not-necessarily commutative.

Let $p \geq 0$ be an integer and let us call $\mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}$ a set of p variables. The support of each $\alpha \in \mathbb{N}^{p}$ is defined as $\operatorname{supp} \alpha:=\left\{i \mid \alpha_{i} \neq 0\right\}$. The monoid \mathbb{N}^{p} is endowed with a natural partial ordering. Namely, for $\alpha, \beta \in \mathbb{N}^{p}$, we define:

$$
\alpha \leq \beta \quad \stackrel{\text { def }}{\Longleftrightarrow} \exists \gamma \in \mathbb{N}^{p} \text { such that } \beta=\alpha+\gamma \quad \Longleftrightarrow \quad \alpha_{i} \leq \beta_{i} \quad \forall i=1 \ldots, p .
$$

We denote $|\alpha|:=\alpha_{1}+\cdots+\alpha_{p}$.
Let $p \geq 1$ be an integer and $\mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}$ a set of variables. If M is an abelian group and $M[[\mathbf{s}]]$ is the abelian group of power series with coefficients in M, the support of a series $m=\sum_{\alpha} m_{\alpha} \mathbf{s}^{\alpha} \in M[[\mathbf{s}]]$ is $\operatorname{supp}(m):=\left\{\alpha \in \mathbb{N}^{p} \mid m_{\alpha} \neq 0\right\} \subset \mathbb{N}^{p}$. We have $m=0 \Leftrightarrow \operatorname{supp}(m)=\emptyset$.

The abelian group $M[[\mathbf{s}]]$ is clearly a $\mathbb{Z}[[\mathbf{s}]]$-module, which will be always endowed with the $\langle\mathbf{s}\rangle$-adic topology.

Definition 1.2.1. We say that a subset $\Delta \subset \mathbb{N}^{p}$ is an ideal (resp. a co-ideal) of \mathbb{N}^{p} if everytime $\alpha \in \Delta$ and $\alpha \leq \alpha^{\prime}$ (resp. $\alpha^{\prime} \leq \alpha$), then $\alpha^{\prime} \in \Delta$.

It is clear that $\Delta \subset \mathbb{N}^{p}$ is an ideal if and only if its complement Δ^{c} is a co-ideal, and that the union and the intersection of any family of ideals (resp. of co-ideals) of \mathbb{N}^{p} is again an ideal (resp. a co-ideal) of \mathbb{N}^{p}. Examples of ideals (resp. of coideals) of \mathbb{N}^{p} are the $\beta+\mathbb{N}^{p}$ (resp. the $\left\{\alpha \in \mathbb{N}^{p} \mid \alpha \leq \beta\right\}$) with $\beta \in \mathbb{N}^{p}$. The $\left\{\alpha \in \mathbb{N}^{p}| | \alpha \mid \leq m\right\}$ with $m \geq 0$ are also co-ideals. Notice that a co-ideal $\Delta \subset \mathbb{N}^{p}$ is non-empty if and only if $\{0\} \subset \Delta$.
1.2.2 Let M be an abelian group. For each co-ideal $\Delta \subset \mathbb{N}^{p}$, we denote by Δ_{M} the closed sub- $\mathbb{Z}[[\mathbf{s}]$-bimodule of $M[[\mathbf{s}]]$ whose elements are the formal power series $\sum_{\alpha \in \mathbb{N}^{p}} m_{\alpha} \mathbf{s}^{\alpha}$ such that $m_{\alpha}=0$ whenever $\alpha \in \Delta$, and $M[[\mathbf{s}]]_{\Delta}:=M[[\mathbf{s}]] / \Delta_{M}$. The elements in $M[[\mathbf{s}]]_{\Delta}$ are power series of the form $\sum_{\alpha \in \Delta} m_{\alpha} \mathbf{s}^{\alpha}, m_{\alpha} \in M$. If $f: M \rightarrow$ M^{\prime} is a homomorphism of abelian groups, we will denote by $\bar{f}: M[[\mathbf{s}]]_{\Delta} \rightarrow M^{\prime}[[\mathbf{s}]]_{\Delta}$ the $\mathbb{Z}[[\mathbf{s}]]_{\Delta}$-linear map defined as $\bar{f}\left(\sum_{\alpha \in \Delta} m_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha \in \Delta} f\left(m_{\alpha}\right) \mathbf{s}^{\alpha}$.

If R is a ring, then Δ_{R} is a closed two-sided ideal of $R[[\mathbf{s}]]$ and so $R[[\mathbf{s}]]_{\Delta}$ is a topological ring, which we always consider endowed with the $\langle\mathbf{s}\rangle$-adic topology ($=$ to the quotient topology). Similarly, if M is an $(A ; A)$-bimodule (central over k), then $M[[\mathbf{s}]]_{\Delta}$ is an $\left(A\left[[\mathbf{s}]_{\Delta} ; A[[\mathbf{s}]]_{\Delta}\right)\right.$-bimodule (central over $k\left[[\mathbf{s}]_{\Delta}\right)$.

For $\Delta^{\prime} \subset \Delta$ non-empty co-ideals of \mathbb{N}^{p}, we have natural $\mathbb{Z}[[\mathbf{s}]]$-linear projections $\tau_{\Delta \Delta^{\prime}}: M[[\mathbf{s}]]_{\Delta} \longrightarrow M[[\mathbf{s}]]_{\Delta^{\prime}}$, that we call truncations:

$$
\tau_{\Delta \Delta^{\prime}}: \sum_{\alpha \in \Delta} m_{\alpha} \mathbf{s}^{\alpha} \in M[[\mathbf{s}]]_{\Delta^{\prime}} \longmapsto \sum_{\alpha \in \Delta^{\prime}} m_{\alpha} \mathbf{s}^{\alpha} \in M[[\mathbf{s}]]_{\Delta} .
$$

If M is a ring (resp. an $(A ; A)$-bimodule), then the truncations $\tau_{\Delta \Delta^{\prime}}$ are ring homomorphisms (resp. $\left(A[[\mathbf{s}]]_{\Delta} ; A[[\mathbf{s}]]_{\Delta}\right)$-linear maps). For $\Delta^{\prime}=\{0\}$ we have
$M[[\mathbf{s}]]_{\Delta^{\prime}}=M$ and the kernel of $\tau_{\Delta\{0\}}$ will be denoted by $M[[\mathbf{s}]]_{\Delta,+}$. We have a bicontinuous isomorphism:

$$
M[[\mathbf{s}]]_{\Delta}=\lim _{\longleftarrow} M[[\mathbf{s}]]_{\Delta^{\prime}}
$$

where Δ^{\prime} runs over all finite co-ideals contained in Δ.
Definition 1.2.3. A k-algebra over A is a (not-necessarily commutative) k algebra R endowed with a map of k-algebras $\iota: A \rightarrow R$. A map between two k-algebras $\iota: A \rightarrow R$ and $\iota^{\prime}: A \rightarrow R^{\prime}$ over A is a map $g: R \rightarrow R^{\prime}$ of k-algebras such that $\iota^{\prime}=g \circ \iota$.

It is clear that if R is a k-algebra over A, then $R[[\mathbf{s}]]_{\Delta}$ is a $k\left[[\mathbf{s}]_{\Delta}\right.$-algebra over $A[[\mathbf{s}]]_{\Delta}$.

Notation 1.2.4. Let R be a ring, $p \geq 1$ and $\Delta \subset \mathbb{N}^{p}$ a non-empty co-ideal. We denote by $\mathscr{U}^{p}(R ; \Delta)$ the multiplicative sub-group of the units of $R[[\mathbf{s}]]_{\Delta}$ whose 0 -degree coefficient is 1 . The multiplicative inverse of a unit $r \in R[[\mathbf{s}]]_{\Delta}$ will be denoted by r^{*}. Clearly, $\mathscr{U}^{p}(R ; \Delta)^{\text {opp }}=\mathscr{U}^{p}\left(R^{\text {opp }} ; \Delta\right)$. For $\Delta \subset \Delta^{\prime}$ co-ideals we have $\tau_{\Delta^{\prime} \Delta}\left(\mathscr{U}^{p}\left(R ; \Delta^{\prime}\right)\right) \subset \mathscr{U}^{p}(R ; \Delta)$ and the truncation map $\tau_{\Delta^{\prime} \Delta}: \mathscr{U}^{p}\left(R ; \Delta^{\prime}\right) \rightarrow$ $\mathscr{U}^{p}(R ; \Delta)$ is a group homomorphisms. Clearly, we have:

$$
\begin{equation*}
\mathcal{U}^{p}(R ; \Delta)=\lim _{\substack{\Delta^{\prime} \\ \sharp \Delta^{\prime}<\infty}} \mathscr{U}^{p}\left(R ; \Delta^{\prime}\right) . \tag{1.1}
\end{equation*}
$$

If $p=1$ and $\Delta=\{i \in \mathbb{N} \mid i \leq m\}$ we will simply denote $\mathscr{U}(R ; m):=\mathscr{U}^{1}(R ; \Delta)$.
For any ring homomorphism $f: R \rightarrow R^{\prime}$, the induced ring homomorphism $\bar{f}: R[[\mathbf{s}]]_{\Delta} \rightarrow R^{\prime}[[\mathbf{s}]]_{\Delta}$ sends $\mathscr{U}^{p}(R ; \Delta)$ into $\mathscr{U}^{p}\left(R^{\prime} ; \Delta\right)$ and so it induces natural group homomorphisms $\mathscr{U}^{p}(R ; \Delta) \rightarrow \mathscr{U}^{p}\left(R^{\prime} ; \Delta\right)$.

We recall the following easy result (cf. Lemma 2 in [9]).
Lemma 1.2.5. Let R be a ring and $\Delta \subset \mathbb{N}^{p}$ a non-empty co-ideal. The units in $R[[\mathbf{s}]]_{\Delta}$ are those power series $r=\sum r_{\alpha} \mathbf{s}^{\alpha}$ such that r_{0} is a unit in R. Moreover, in the special case where $r_{0}=1$, the inverse $r^{*}=\sum r_{\alpha}^{*} \mathbf{s}^{\alpha}$ of r is given by $r_{0}^{*}=1$ and

$$
r_{\alpha}^{*}=\sum_{d=1}^{|\alpha|}(-1)^{d} \sum_{\alpha \bullet \in \mathscr{P}(\alpha, d)} r_{\alpha^{1}} \cdots r_{\alpha^{d}} \quad \text { for } \quad \alpha \neq 0
$$

where $\mathscr{P}(\alpha, d)$ is the set of d-uples $\alpha^{\bullet}=\left(\alpha^{1}, \ldots, \alpha^{d}\right)$ with $\alpha^{i} \in \mathbb{N}^{(\mathbf{s})}, \alpha^{i} \neq 0$, and $\alpha^{1}+\cdots+\alpha^{d}=\alpha$.
1.2.6 Let E, F be A-modules. For each $r=\sum_{\beta} r_{\beta} \mathbf{s}^{\beta} \in \operatorname{Hom}_{k}(E, F)[[\mathbf{s}]]_{\Delta}$ we denote by $\widetilde{r}: E[[\mathbf{s}]]_{\Delta} \rightarrow F[[\mathbf{s}]]_{\Delta}$ the map defined by:

$$
\widetilde{r}\left(\sum_{\alpha \in \Delta} e_{\alpha} \mathbf{s}^{\alpha}\right):=\sum_{\alpha \in \Delta}\left(\sum_{\beta+\gamma=\alpha} r_{\beta}\left(e_{\gamma}\right)\right) \mathbf{s}^{\alpha},
$$

which is obviously a $k[[\mathbf{s}]]_{\Delta}$-linear map. It is clear that the map:

$$
\begin{equation*}
r \in \operatorname{Hom}_{k}(E, F)[[\mathbf{s}]]_{\Delta} \longmapsto \widetilde{r} \in \operatorname{Hom}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(E[[\mathbf{s}]]_{\Delta}, F[[\mathbf{s}]]_{\Delta}\right) \tag{1.2}
\end{equation*}
$$

is $\left(A[[\mathbf{s}]]_{\Delta} ; A[[\mathbf{s}]]_{\Delta}\right)$-linear.

If $f: E[[\mathbf{s}]]_{\Delta} \rightarrow F[[\mathbf{s}]]_{\Delta}$ is a $k[[\mathbf{s}]]_{\Delta}$-linear map, let us denote by $f_{\alpha}: E \rightarrow F$, $\alpha \in \Delta$, the k-linear maps defined by:

$$
f(e)=\sum_{\alpha \in \Delta} f_{\alpha}(e) \mathbf{s}^{\alpha}, \quad \forall e \in E
$$

If $g: E \rightarrow F[[\mathbf{s}]]_{\Delta}$ is a k-linear map, we denote by $g^{e}: E[[\mathbf{s}]]_{\Delta} \rightarrow F[[\mathbf{s}]]_{\Delta}$ the unique $k[[\mathbf{s}]]_{\Delta}$-linear map extending g to $E[[\mathbf{s}]]_{\Delta}=k[[\mathbf{s}]]_{\Delta} \widehat{\otimes}_{k} E$. It is given by:

$$
\begin{equation*}
g^{e}\left(\sum_{\alpha} e_{\alpha} \mathbf{s}^{\alpha}\right):=\sum_{\alpha} g\left(e_{\alpha}\right) \mathbf{s}^{\alpha} \tag{1.3}
\end{equation*}
$$

We have a $k[[\mathbf{s}]]_{\Delta}$-bilinear and $A[[\mathbf{s}]]_{\Delta}$-balanced map:

$$
\langle-,-\rangle:(r, e) \in \operatorname{Hom}_{k}(E, F)[[\mathbf{s}]]_{\Delta} \times E[[\mathbf{s}]]_{\Delta} \longmapsto\langle r, e\rangle:=\widetilde{r}(e) \in F[[\mathbf{s}]]_{\Delta}
$$

The following assertions are clear (see [9, Lemma 3]):

1) The map (1.2) is an isomorphism of $\left(A[[\mathbf{s}]]_{\Delta} ; A[[\mathbf{s}]]_{\Delta}\right)$-bimodules. When $E=F$ it is an isomorphism of $k[[\mathbf{s}]]_{\Delta}$-algebras over $A[[\mathbf{s}]]_{\Delta}$.
2) The restriction map:

$$
\left.f \in \operatorname{Hom}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(E[[\mathbf{s}]]_{\Delta}, F[[\mathbf{s}]]_{\Delta}\right) \mapsto f\right|_{E} \in \operatorname{Hom}_{k}\left(E, F[[\mathbf{s}]]_{\Delta}\right)
$$

is an isomorphism of $\left(A[[\mathbf{s}]]_{\Delta} ; A\right)$-bimodules.
Let us call $R=\operatorname{End}_{k}(E)$. As a consequence of the above properties, the composition of the maps:

$$
\begin{equation*}
R[[\mathbf{s}]]_{\Delta} \xrightarrow{r \mapsto \widetilde{r}} \operatorname{End}_{k[[\mathbf{s}]]_{\Delta}}\left(E[[\mathbf{s}]]_{\Delta}\right) \xrightarrow{\left.f \mapsto f\right|_{E}} \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right) \tag{1.4}
\end{equation*}
$$

is an isomorphism of $\left(A[[\mathbf{s}]]_{\Delta} ; A\right)$-bimodules, and so $\operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right)$ inherits a natural structure of $k[[\mathbf{s}]]_{\Delta}$-algebra over $A[[\mathbf{s}]]_{\Delta}$. Namely, if $g, h: E \rightarrow E[[\mathbf{s}]]_{\Delta}$ are k-linear maps with:

$$
g(e)=\sum_{\alpha \in \Delta} g_{\alpha}(e) \mathbf{s}^{\alpha}, h(e)=\sum_{\alpha \in \Delta} h_{\alpha}(e) \mathbf{s}^{\alpha}, \quad \forall e \in E, \quad g_{\alpha}, h_{\alpha} \in \operatorname{Hom}_{k}(E, E)
$$

then the product $h g \in \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right)$ is given by:

$$
\begin{equation*}
(h g)(e)=\sum_{\alpha \in \Delta}\left(\sum_{\beta+\gamma=\alpha}\left(h_{\beta} \circ g_{\gamma}\right)(e)\right) \mathbf{s}^{\alpha} . \tag{1.5}
\end{equation*}
$$

Notation 1.2.7. We denote:
$\operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{s}]]_{\Delta}\right):=\left\{f \in \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right) \mid f(e) \equiv e \bmod \langle\mathbf{s}\rangle E[[\mathbf{s}]]_{\Delta} \forall e \in E\right\}$,

$$
\begin{gathered}
\operatorname{Aut}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}^{\circ}\left(E[[\mathbf{s}]]_{\Delta}\right):= \\
\left\{f \in \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}}\left(E[[\mathbf{s}]]_{\Delta}\right) \mid f(e) \equiv e_{0} \bmod \langle\mathbf{s}\rangle E[[\mathbf{s}]]_{\Delta} \forall e \in E[[\mathbf{s}]]_{\Delta}\right\}
\end{gathered}
$$

Let us notice that a $f \in \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right)$, given by $f(e)=\sum_{\alpha \in \Delta} f_{\alpha}(e) \mathbf{s}^{\alpha}$, belongs to $\operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{s}]]_{\Delta}\right)$ if and only if $f_{0}=\operatorname{Id}_{E}$.

The isomorphism in (1.4) gives rise to a group isomorphism:

$$
\begin{equation*}
r \in \mathscr{U}^{p}\left(\operatorname{End}_{k}(E) ; \Delta\right) \stackrel{\sim}{\longmapsto} \widetilde{r} \in \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}}^{\circ}\left(E[[\mathbf{s}]]_{\Delta}\right) \tag{1.6}
\end{equation*}
$$

and to a bijection:

$$
\begin{equation*}
\left.f \in \operatorname{Aut}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}^{\circ}\left(E[[\mathbf{s}]]_{\Delta}\right) \stackrel{\sim}{\sim} f\right|_{E} \in \operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{s}]]_{\Delta}\right) \tag{1.7}
\end{equation*}
$$

So, $\operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{s}]]_{\Delta}\right)$ is naturally a group with the product described in (1.5).

If R is a (not necessarily commutative) k-algebra and $\Delta \subset \mathbb{N}^{p}$ is a co-ideal, any continuous k-linear map $h: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ induces a natural continuous left and right R-linear map:

$$
h_{R}:=\operatorname{Id}_{R} \widehat{\otimes}_{k} h: R[[\mathbf{s}]]_{\Delta}=R \widehat{\otimes}_{k} k[[\mathbf{s}]]_{\Delta} \longrightarrow R[[\mathbf{s}]]_{\Delta}=R \widehat{\otimes}_{k} k[[\mathbf{s}]]_{\Delta}
$$

given by:

$$
h_{R}\left(\sum_{\alpha} r_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha} r_{\alpha} h\left(\mathbf{s}^{\alpha}\right)
$$

If $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ is k-derivation, it is continuous and $\mathfrak{d}_{R}: R[[\mathbf{s}]]_{\Delta} \rightarrow R[[\mathbf{s}]]_{\Delta}$ is a $(R ; R)$-linear derivation, i.e. $\mathfrak{d}_{R}(s r)=s \mathfrak{d}_{R}(r), \mathfrak{d}_{R}(r s)=\mathfrak{d}_{R}(r) s, \mathfrak{d}_{R}\left(r r^{\prime}\right)=$ $\mathfrak{d}_{R}(r) r^{\prime}+r \mathfrak{d}_{R}\left(r^{\prime}\right)$ for all $s \in R$ and for all $r, r^{\prime} \in R[[\mathbf{s}]]_{\Delta}$.

The set of all $(R ; R)$-linear derivations of $R[[\mathbf{s}]]_{\Delta}$ is a $k[[\mathbf{s}]]_{\Delta}$-Lie algebra and will be denoted by $\operatorname{Der}_{R}\left(R[[\mathbf{s}]]_{\Delta}\right)$. Moreover, the map:

$$
\mathfrak{d} \in \operatorname{Der}_{k}\left(k[[\mathbf{s}]]_{\Delta}\right) \longmapsto \mathfrak{d}_{R} \in \operatorname{Der}_{R}\left(R[[\mathbf{s}]]_{\Delta}\right)
$$

is clearly a map of $k[[\mathbf{s}]]_{\Delta}$-Lie algebras.
The following definition provides a particular family of k-derivations.
Definition 1.2.8. For each $i=1, \ldots, p$, the i th partial Euler k-derivation is $\chi^{i}=s_{i} \frac{\partial}{\partial s_{i}}: k[[\mathbf{s}]] \rightarrow k[[\mathbf{s}]]$. It induces a k-derivation on each $k[[\mathbf{s}]]_{\Delta}$, which will be also denoted by χ^{i}.
The Euler k-derivation $\chi: k[[\mathbf{s}]] \rightarrow k[[\mathbf{s}]]$ is defined as:

$$
\chi=\sum_{i=1}^{p} \chi^{i}, \quad \chi\left(\sum_{\alpha} c_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha}|\alpha| c_{\alpha} \mathbf{s}^{\alpha} .
$$

It induces a k-derivation on each $k[[\mathbf{s}]]_{\Delta}$, which will be also denoted by χ.
The proof of the following lemma is easy and it is left to the reader.
Lemma 1.2.9. Let E be an A-module and $r=\sum_{\beta} r_{\beta} \mathbf{s}^{\beta} \in \operatorname{Hom}_{k}(A, E)[[\mathbf{s}]]_{\Delta} a$ formal power series with coefficients in $\operatorname{Hom}_{k}(A, E)$. The following properties are equivalent:
(1) $r \in \operatorname{Der}_{k}(A, E)[[\mathbf{s}]]_{\Delta}$.
(2) For any $a \in A[[\mathbf{s}]]_{\Delta}$ we have $[r, a]=\widetilde{r}(a)$.
(3) $\widetilde{r} \in \operatorname{Der}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(A[[\mathbf{s}]]_{\Delta}, E[[\mathbf{s}]]_{\Delta}\right)$.
(4) $\left.\widetilde{r}\right|_{A} \in \operatorname{Der}_{k}\left(A, E[[\mathbf{s}]]_{\Delta}\right)$.

In particular, for each $r \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$, we have that $\widetilde{r} \in \operatorname{Der}_{k[[\mathbf{s}]]_{\Delta}}\left(A[[\mathbf{s}]]_{\Delta}\right)$ (see 1.2.6) and that the $A[[\mathbf{s}]]_{\Delta}$-linear map

$$
\begin{equation*}
r \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta} \longmapsto \widetilde{r} \in \operatorname{Der}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(A[[\mathbf{s}]]_{\Delta}\right) \tag{1.8}
\end{equation*}
$$

is an isomorphism of $A[[\mathbf{s}]]_{\Delta}$-modules. Moreover, $\operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$ is a Lie algebra over $k[[\mathbf{s}]]_{\Delta}$, where the Lie bracket of $\delta=\sum_{\alpha} \delta_{\alpha} \mathbf{s}^{\alpha}, \varepsilon=\sum_{\alpha} \varepsilon_{\alpha} \mathbf{s}^{\alpha} \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$ is given by:

$$
[\delta, \varepsilon]=\delta \varepsilon-\varepsilon \delta=\sum_{\alpha}\left(\sum_{\beta+\gamma=\alpha}\left[\delta_{\beta}, \varepsilon_{\gamma}\right]\right) \mathbf{s}^{\alpha}
$$

and the map (1.8) is also an isomorphism of $k[[\mathbf{s}]]_{\Delta}$-Lie algebras.

Lemma 1.2.10. Let $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ be a k-derivation and $R=\operatorname{End}_{k}(A)$. Then, for each $r \in R[[\mathbf{s}]]_{\Delta}$ we have $\widehat{\mathfrak{d}_{R}(r)}=\left[\mathfrak{d}_{A}, \widetilde{r}\right]$.

Proof. We have to prove that $\mathfrak{d}_{A}(\langle r, a\rangle)=\left\langle\mathfrak{d}_{R}(r), a\right\rangle+\left\langle r, \mathfrak{d}_{A}(a)\right\rangle$ for all $a \in$ $A[[\mathbf{s}]]_{\Delta}$. By continuity, it is enough to prove the identity for $r=r_{\alpha} \mathbf{s}^{\alpha}, a=a_{\beta} \mathbf{s}^{\beta}$ with $\alpha, \beta \in \Delta, r_{\alpha} \in R, a_{\beta} \in A$:

$$
\begin{gathered}
\mathfrak{d}_{A}(\langle r, a\rangle)=\mathfrak{d}_{A}(\widetilde{r}(a))=\mathfrak{d}_{A}\left(r_{\alpha}\left(a_{\beta}\right) \mathbf{s}^{\alpha} \mathbf{s}^{\beta}\right)=r_{\alpha}\left(a_{\beta}\right) \mathfrak{d}\left(\mathbf{s}^{\alpha}\right) \mathbf{s}^{\beta}+r_{\alpha}\left(a_{\beta}\right) \mathbf{s}^{\alpha} \mathfrak{d}\left(\mathbf{s}^{\beta}\right)= \\
\widetilde{\mathfrak{d}_{R}(r)}(a)+\widetilde{r}\left(\mathfrak{d}_{A}(a)\right)=\left\langle\mathfrak{d}_{R}(r), a\right\rangle+\left\langle r, \mathfrak{d}_{A}(a)\right\rangle .
\end{gathered}
$$

DEFINITION 1.2.11. For any k-derivation $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ and any $r \in$ $\mathscr{U}^{p}(R ; \Delta)$ we define:

$$
\varepsilon^{\mathfrak{d}}(r):=r^{*} \mathfrak{d}_{R}(r), \quad \bar{\varepsilon}^{\mathfrak{d}}(r):=\mathfrak{d}_{R}(r) r^{*}
$$

and we will write:

$$
\varepsilon^{\mathfrak{O}}(r)=\sum_{\alpha} \varepsilon_{\alpha}^{\mathfrak{d}}(r) \mathbf{s}^{\alpha}, \quad \bar{\varepsilon}^{\mathfrak{d}}(r)=\sum_{\alpha} \bar{\varepsilon}_{\alpha}^{\mathfrak{d}}(r) \mathbf{s}^{\alpha} .
$$

We will simply denote:

$$
\begin{aligned}
& \text {-) } \varepsilon^{i}(r):=\varepsilon^{\mathfrak{d}}(r), \bar{\varepsilon}^{i}(r):=\bar{\varepsilon}^{\mathfrak{d}}(r) \text { if } \mathfrak{d}=\chi^{i} \text { (the } i \text { th partial Euler derivation), } \\
& i=1, \ldots, p \text {. } \\
& \text {-) } \varepsilon(r):=\varepsilon^{\mathfrak{d}}(r), \bar{\varepsilon}(r):=\bar{\varepsilon}^{\mathfrak{d}}(r) \text { if } \mathfrak{d}=\boldsymbol{\chi} \text { is the Euler derivation. }
\end{aligned}
$$

Observe that $\bar{\varepsilon}^{\mathfrak{d}}(r)=r \varepsilon^{\mathfrak{d}}(r) r^{*}$ and, for any co-ideal $\Delta^{\prime} \subset \Delta$, we have $\tau_{\Delta \Delta^{\prime}}\left(\varepsilon^{\mathfrak{d}}(r)\right)=$ $\varepsilon^{\mathfrak{d}}\left(\tau_{\Delta \Delta^{\prime}}(r)\right), \tau_{\Delta \Delta^{\prime}}\left(\bar{\varepsilon}^{\mathfrak{d}}(r)\right)=\bar{\varepsilon}^{\mathfrak{}}\left(\tau_{\Delta \Delta^{\prime}}(r)\right)$. Moreover, if E is an A-module and $R=$ $\operatorname{End}_{k}(A)$, then

$$
\widetilde{\varepsilon^{\mathfrak{d}}(r)}=\widetilde{r}^{-1}\left[\mathfrak{d}_{A}, \widetilde{r}\right]=\widetilde{r}^{-1} \mathfrak{d}_{A} \widetilde{r}-\mathfrak{d}_{A}, \quad \widetilde{\bar{\varepsilon}^{\mathfrak{d}}(r)}=\left[\mathfrak{d}_{A}, \widetilde{r}\right] \widetilde{r}^{-1}=\mathfrak{d}_{A}-\widetilde{r} \mathfrak{d}_{A} \widetilde{r}^{-1}
$$

The proof of the following lemma is straightforward.
Lemma 1.2.12. For each $r \in \mathscr{U}_{k}^{p}(R ; \Delta)$, the maps:

$$
\mathfrak{d} \in \operatorname{Der}_{k}\left(k[[\mathbf{s}]]_{\Delta}\right) \longmapsto \varepsilon^{\mathfrak{d}}(r) \in R[[\mathbf{s}]]_{\Delta}, \quad \mathfrak{d} \in \operatorname{Der}_{k}\left(k[[\mathbf{s}]]_{\Delta}\right) \longmapsto \bar{\varepsilon}^{\mathfrak{d}}(r) \in R[[\mathbf{s}]]_{\Delta}
$$

are $k[[\mathbf{s}]]_{\Delta}$-linear.
In particular:

$$
\varepsilon(r)=\sum_{i=1}^{p} \varepsilon^{i}(r), \quad \bar{\varepsilon}(r)=\sum_{i=1}^{p} \bar{\varepsilon}^{i}(r)
$$

Lemma 1.2.13. Let $\mathfrak{d}, \mathfrak{d}^{\prime}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ be k-derivations and $r, r^{\prime} \in \mathscr{U}_{k}^{p}(R ; \Delta)$. Then, the following identities hold:
(i) $\bar{\varepsilon}^{\mathfrak{d}}(1)=\varepsilon^{\mathfrak{l}}(1)=0, \varepsilon^{\mathfrak{l}}\left(r^{\prime} r\right)=\varepsilon^{\mathfrak{l}}(r)+r^{*} \varepsilon^{\mathfrak{D}}\left(r^{\prime}\right) r, \bar{\varepsilon}^{\mathfrak{d}}\left(r r^{\prime}\right)=\bar{\varepsilon}^{\mathfrak{d}}(r)+$ $r \bar{\varepsilon}^{\mathfrak{d}}\left(r^{\prime}\right) r^{*}$.
(ii) $\varepsilon^{\mathfrak{D}}\left(r^{*}\right)=-r \varepsilon^{\mathfrak{D}}(r) r^{*}=-\bar{\varepsilon}^{\mathfrak{d}}(r)$.
(iii) $\varepsilon^{\left[\mathfrak{d}, \mathfrak{d}^{\prime}\right]}(r)=\left[\varepsilon^{\mathfrak{d}}(r), \varepsilon^{\mathfrak{d}^{\prime}}(r)\right]+\mathfrak{d}_{R}\left(\varepsilon^{\mathfrak{d}^{\prime}}(r)\right)-\mathfrak{d}_{R}^{\prime}\left(\varepsilon^{\mathfrak{d}}(r)\right)$.

Proof. The proof of (i) is straightforward. For (ii) and (iii) one uses that $\mathfrak{d}_{R}\left(r^{*}\right)=-r^{*} \mathfrak{d}_{R}(r) r^{*}$.
1.2.14 For each $r \in \mathscr{U}^{p}(R ; \Delta)$ and each $i=1, \ldots, p$ we have:

$$
\begin{aligned}
& \varepsilon^{i}(r)=r^{*} \chi_{R}^{i}(r)=\left(\sum_{\alpha} r_{\alpha}^{*} \mathbf{s}^{\alpha}\right)\left(\sum_{\alpha} \alpha_{i} r_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha}\left(\sum_{\beta+\gamma=\alpha} \gamma_{i} r_{\beta}^{*} r_{\gamma}\right) \mathbf{s}^{\alpha} \\
& \varepsilon(r)=r^{*} \chi_{R}(r)=\left(\sum_{\alpha} r_{\alpha}^{*} \mathbf{s}^{\alpha}\right)\left(\sum_{\alpha}|\alpha| r_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha}\left(\sum_{\beta+\gamma=\alpha}|\gamma| r_{\beta}^{*} r_{\gamma}\right) \mathbf{s}^{\alpha},
\end{aligned}
$$

and so, by using Lemma 1.2.5 we obtain:

$$
\begin{aligned}
& \varepsilon^{i}(r)=\sum_{\substack{\alpha \in \Delta \\
\alpha_{i}>0}}\left(\sum_{d=1}^{|\alpha|}(-1)^{d-1}\left(\sum_{\substack{ } \mathscr{P}(\alpha, d)} \alpha_{i}^{d} r_{\alpha^{1}} \cdots r_{\alpha^{d}}\right)\right) \mathbf{s}^{\alpha}, \\
& \varepsilon(r)=\sum_{\substack{\alpha \in \Delta \\
|\alpha|>0}}\left(\sum_{d=1}^{|\alpha|}(-1)^{d-1}\left(\sum_{\alpha \bullet \in \mathscr{P}(\alpha, d)}\left|\alpha^{d}\right| r_{\alpha^{1}} \cdots r_{\alpha^{d}}\right)\right) \mathbf{s}^{\alpha} .
\end{aligned}
$$

In a similar way we obtain:

$$
\begin{aligned}
& \bar{\varepsilon}^{i}(r)=\sum_{\substack{\alpha \in \Delta \\
\alpha_{i}>0}}\left(\sum_{d=1}^{|\alpha|}(-1)^{d-1}\left(\sum_{\alpha \bullet \in \mathscr{P}(\alpha, d)} \alpha_{i}^{1} r_{\alpha^{1}} \cdots r_{\alpha^{d}}\right)\right) \mathbf{s}^{\alpha}, \\
& \bar{\varepsilon}(r)=\sum_{\substack{\alpha \in \Delta \\
|\alpha|>0}}\left(\sum_{d=1}^{|\alpha|}(-1)^{d-1}\left(\sum_{\alpha \bullet \mathscr{A}(\alpha, d)}\left|\alpha^{1}\right| r_{\alpha^{1}} \cdots r_{\alpha^{d}}\right)\right) \mathbf{s}^{\alpha} .
\end{aligned}
$$

In particular, we have $\varepsilon_{\alpha}^{i}(r)=\bar{\varepsilon}_{\alpha}^{i}(r)=0$ whenever $\alpha_{i}=0$, i.e. whenever $i \notin \operatorname{supp} \alpha$, and $\varepsilon_{0}(r)=\bar{\varepsilon}_{0}(r)=0$:

$$
\begin{gathered}
\varepsilon^{i}(r)=\sum_{i \in \operatorname{supp} \alpha} \varepsilon_{\alpha}^{i}(r) \mathbf{s}^{\alpha}, \quad \bar{\varepsilon}^{i}(r)=\sum_{i \in \operatorname{supp} \alpha} \bar{\varepsilon}_{\alpha}^{i}(r) \mathbf{s}^{\alpha} \\
\varepsilon(r)=\sum_{|\alpha|>0} \varepsilon_{\alpha}(r) \mathbf{s}^{\alpha}, \quad \bar{\varepsilon}(r)=\sum_{|\alpha|>0} \bar{\varepsilon}_{\alpha}(r) \mathbf{s}^{\alpha}
\end{gathered}
$$

and $\varepsilon^{i}(r), \bar{\varepsilon}^{i}(r), \varepsilon(r), \bar{\varepsilon}(r) \in R[[\mathbf{s}]]_{\Delta,+}($ see (1.2.2) $)$. The following recursive identities hold:

$$
\begin{gathered}
\alpha_{i} r_{\alpha}=\sum_{\substack{\beta+\gamma=\alpha \\
\gamma_{i}>0}} r_{\beta} \varepsilon_{\gamma}^{i}(r)=\sum_{\substack{\beta+\gamma=\alpha \\
\gamma_{i}>0}} \bar{\varepsilon}_{\gamma}^{i}(r) r_{\beta} \\
\varepsilon_{\alpha}^{i}(r)=\alpha_{i} r_{\alpha}-\sum_{\substack{\beta+\gamma=\alpha \\
|\beta|, \gamma_{i}>0}} r_{\beta} \varepsilon_{\gamma}^{t}(r), \quad \bar{\varepsilon}_{\alpha}^{t}(r)=\alpha_{t} r_{\alpha}-\sum_{\substack{\beta+\gamma=\alpha \\
|\beta|, \gamma_{i}>0}} \bar{\varepsilon}_{\gamma}^{i}(r) r_{\beta}
\end{gathered}
$$

for all $\alpha \in \Delta$ with $\alpha_{i}>0$, and:

$$
\begin{gather*}
|\alpha| r_{\alpha}=\sum_{\substack{\beta+\gamma=\alpha \\
|\gamma|>0}} r_{\beta} \varepsilon_{\gamma}(r)=\sum_{\substack{\beta+\gamma=\alpha \\
|\gamma|>0}} \bar{\varepsilon}_{\gamma}(r) r_{\beta} \tag{1.9}\\
\varepsilon_{\alpha}(r)=|\alpha| r_{\alpha}-\sum_{\substack{\beta+\gamma=\alpha \\
|\beta|,|\gamma|>0}} r_{\beta} \varepsilon_{\gamma}(r), \quad \bar{\varepsilon}_{\alpha}(r)=|\alpha| r_{\alpha}-\sum_{\substack{\beta+\gamma=\alpha \\
|\beta|,|\gamma|>0}} \bar{\varepsilon}_{\gamma}(r) r_{\beta}
\end{gather*}
$$

for all $\alpha \in \Delta$.
REmark 1.2.15. After (1.9), our definition of $\bar{\varepsilon}$ generalizes the construction in 7.

Lemma 1.2.16. For any $r \in \mathscr{U}^{p}(R ; \Delta)$ and any $i, j=1, \ldots, p$ the following identity holds:

$$
\chi_{R}^{j}\left(\varepsilon^{i}(r)\right)-\chi_{R}^{i}\left(\varepsilon^{j}(r)\right)=\left[\varepsilon^{i}(r), \varepsilon^{j}(r)\right]
$$

Proof. Since $\left[\chi^{i}, \chi^{j}\right]=0$, it is a consequence of Lemma 1.2.13, (iii).
Notation 1.2.17. Under the above conditions, we will denote by $\Lambda^{p}(R ; \Delta)$ the subset of $\left(R[[\mathbf{s}]]_{\Delta,+}\right)^{p}$ whose elements are the families $\left\{\delta^{i}\right\}_{1 \leq i \leq p}$ satisfying the following properties:
(a) If $\delta^{i}=\sum_{|\alpha|>0} \delta_{\alpha}^{i} \mathbf{s}^{\alpha}$, we have $\delta_{\alpha}^{i}=0$ whenever $\alpha_{i}=0$.
(b) For all $i, j=1, \ldots, p$ we have $\chi_{R}^{j}\left(\delta^{i}\right)-\chi_{R}^{i}\left(\delta^{j}\right)=\left[\delta^{i}, \delta^{j}\right]$.

Let us notice that property (b) may be explicitly written as:

$$
\begin{equation*}
\alpha_{j} \delta_{\alpha}^{i}-\alpha_{i} \delta_{\alpha}^{j}=\sum_{\substack{\beta+\gamma=\alpha \\ \beta_{i}, \gamma_{j}>0}}\left[\delta_{\beta}^{i}, \delta_{\gamma}^{j}\right] \tag{1.10}
\end{equation*}
$$

for all $i, j=1, \ldots, p$ and for all $\alpha \in \Delta$ with $\alpha_{i}, \alpha_{u}>0$. Let us also consider the map:

$$
\boldsymbol{\Sigma}:\left\{\delta^{i}\right\} \in \Lambda^{p}(R ; \Delta) \longmapsto \sum_{i=1}^{p} \delta^{i} \in R[[\mathbf{s}]]_{\Delta,+}
$$

After Lemma 1.2.16, we can consider the map:

$$
\varepsilon: D \in \mathscr{U}^{p}(R ; \Delta) \longmapsto\left\{\varepsilon^{i}(r)\right\}_{1 \leq i \leq p} \in \Lambda^{p}(R ; \Delta)
$$

and we obviously have $\varepsilon=\boldsymbol{\Sigma}_{\circ} \varepsilon$.
Proposition 1.2.18. Assume that $\mathbb{Q} \subset k$. Then, the three maps in the following commutative diagram:

are bijective.
Proof. The injectivity of ε is a straightforward consequence of (1.9). Let us prove the surjectivity of ε. Let $\bar{r}=\sum_{\alpha} \bar{r}_{\alpha} \mathbf{s}^{\alpha}$ be any element in $R[[\mathbf{s}]]_{\Delta,+}$. Since $\mathbb{Q} \subset k$, the differential equation

$$
\chi(Y)=Y \bar{r}, \quad Y \in R[[\mathbf{s}]]_{\Delta}
$$

has a unique solution $r \in R[[\mathbf{s}]]_{\Delta}$ with initial condition $r_{0}=1$, i.e. $r \in \mathscr{U}^{p}(R ; \Delta)$. It is given recursively by:

$$
|\alpha| r_{\alpha}=\sum_{\substack{\beta+\gamma=\alpha \\|\gamma|>0}} r_{\beta} \bar{r}_{\gamma}, \quad \alpha \in \Delta,|\alpha|>0,
$$

and so $\varepsilon(r)=\bar{r}$. To finish, the only missing point is the injectivity of $\boldsymbol{\Sigma}$. Let $\left\{\delta^{i}\right\},\left\{\eta^{i}\right\} \in \Lambda^{p}(R ; \Delta)$ be with $\sum_{i} \delta^{i}=\sum_{i} \eta^{i}$. It is clear that $\delta_{\alpha}^{i}=\eta_{\alpha}^{i}$ whenever $|\alpha|=1$. Assume that $\delta_{\beta}^{i}=\eta_{\beta}^{i}$ for all $i=1, \ldots, p$ whenever $|\beta|<m$ and consider $\alpha \in \Delta$ with $|\alpha|=m$. By using (1.10) and the induction hypothesis we obtain:

$$
\alpha_{j} \delta_{\alpha}^{i}-\alpha_{i} \delta_{\alpha}^{j}=\sum_{\substack{\beta+\gamma=\alpha \\ \beta_{i}, \gamma_{j}>0}}\left[\delta_{\beta}^{i}, \delta_{\gamma}^{j}\right]=\sum_{\substack{\beta+\gamma=\alpha \\ \beta_{i}, \gamma_{j}>0}}\left[\eta_{\beta}^{i}, \eta_{\gamma}^{j}\right]=\alpha_{j} \eta_{\alpha}^{i}-\alpha_{i} \eta_{\alpha}^{j} \quad \forall i, j \in \operatorname{supp} \alpha .
$$

The above system of linear equations with rational coefficients joint with the linear equation:

$$
\sum_{i \in \operatorname{supp} \alpha} \delta_{\alpha}^{i}=\sum_{i \in \operatorname{supp} \alpha} \eta_{\alpha}^{i},
$$

gives rise to a non singular system and we deduce that $\delta_{\alpha}^{i}=\eta_{\alpha}^{i}$ for all $i \in \operatorname{supp} \alpha$, and so $\delta_{\alpha}^{i}=\eta_{\alpha}^{i}$ for all $i=1, \ldots, p$.

Notice that Lemma 1.2 .16 and Proposition 1.2 .18 can also be stated with the $\bar{\varepsilon}^{i}$ and $\bar{\varepsilon}$ instead of the ε^{i} and ε.
1.3. Substitution maps. In this section we give a summary of sections 2 and 3 of $[\mathbf{9}$. Let k be a commutative ring, A a commutative k-algebra, $\mathbf{s}=$ $\left\{s_{1}, \ldots, s_{p}\right\}, \mathbf{t}=\left\{t_{1}, \ldots, t_{q}\right\}$ two sets of variables and $\Delta \subset \mathbb{N}^{p}, \nabla \subset \mathbb{N}^{q}$ non-empty co-ideals.

Definition 1.3.1. An A-algebra map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ will be called a substitution map whenever $\operatorname{ord}\left(\varphi\left(s_{i}\right)\right) \geq 1$ for all $i=1, \ldots, p$. A such map is continuous and uniquely determined by the family $c=\left\{\varphi\left(s_{i}\right), i=1, \ldots, p\right\}$.

The trivial substitution map $A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ is the one sending any s_{i} to 0 . It will be denoted by 0 .

The composition of substitution maps is obviously a substitution map. Any substitution map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ determines and is determined by a family:

$$
\left\{\mathbf{C}_{e}(\varphi, \alpha), e \in \nabla, \alpha \in \Delta,|\alpha| \leq|e|\right\} \subset A, \quad \text { with } \quad \mathbf{C}_{0}(\varphi, 0)=1
$$

such that:

$$
\begin{equation*}
\varphi\left(\sum_{\alpha \in \Delta} a_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{e \in \nabla}\left(\sum_{\substack{\alpha \in \Delta \\|\alpha| \leq|e|}} \mathbf{C}_{e}(\varphi, \alpha) a_{\alpha}\right) \mathbf{t}^{e} . \tag{1.11}
\end{equation*}
$$

In section 3, 2., of [9] the reader can find the explicit expression of the $\mathbf{C}_{e}(\varphi, \alpha)$ in terms of the $\varphi\left(s_{i}\right)$. The following lemma is clear.

Lemma 1.3.2. If $\Delta^{\prime} \subset \Delta \subset \mathbb{N}^{p}$ are non-empty co-ideals, the truncation $\tau_{\Delta \Delta^{\prime}}$: $A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{s}]]_{\Delta^{\prime}}$ is clearly a substitution map and $\mathbf{C}_{\beta}\left(\tau_{\Delta \Delta^{\prime}}, \alpha\right)=\delta_{\alpha \beta}$ for all $\alpha \in \Delta$ and for all $\beta \in \Delta^{\prime}$ with $|\alpha| \leq|\beta|$.

Definition 1.3.3. We say that a substitution map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ has constant coefficients if $\varphi\left(s_{i}\right) \in k[[\mathbf{t}]]_{\nabla}$ for all $i=1, \ldots, p$. This is equivalent to saying that $\mathbf{C}_{e}(\varphi, \alpha) \in k$ for all $e \in \nabla$ and for all $\alpha \in \Delta$ with $|\alpha| \leq|e|$. Substitution maps which constant coefficients are induced by substitution maps $k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{t}]]_{\nabla}$.
1.3.4 Let M be an $(A ; A)$-bimodule.

Any substitution map map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ induces $(A ; A)$-linear maps:

$$
\varphi_{M}:=\varphi \widehat{\otimes} \operatorname{Id}_{M}: M[[\mathbf{s}]]_{\Delta} \equiv A[[\mathbf{s}]]_{\Delta} \widehat{\otimes}_{A} M \longrightarrow M[[\mathbf{t}]]_{\nabla} \equiv A[[\mathbf{t}]]_{\nabla} \widehat{\otimes}_{A} M
$$

and

$$
{ }_{M} \varphi:=\operatorname{Id}_{M} \widehat{\otimes} \varphi: M[[\mathbf{s}]]_{\Delta} \equiv M \widehat{\otimes}_{A} A[[\mathbf{s}]]_{\Delta} \longrightarrow M[[\mathbf{t}]]_{\nabla} \equiv M \widehat{\otimes}_{A} A[[\mathbf{t}]]_{\nabla}
$$

We have:

$$
\begin{aligned}
& \varphi_{M}\left(\sum_{\alpha \in \Delta} m_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha \in \Delta} \varphi\left(\mathbf{s}^{\alpha}\right) m_{\alpha}=\sum_{e \in \nabla}\left(\sum_{\substack{\alpha \in \Delta \\
|\alpha| \leq|e|}} \mathbf{C}_{e}(\varphi, \alpha) m_{\alpha}\right) \mathbf{t}^{e}, \\
& M_{M} \varphi\left(\sum_{\alpha \in \Delta} m_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha \in \Delta} m_{\alpha} \varphi\left(\mathbf{s}^{\alpha}\right)=\sum_{e \in \nabla}\left(\sum_{\substack{\alpha \in \Delta \\
|\alpha| \leq|e|}} m_{\alpha} \mathbf{C}_{e}(\varphi, \alpha)\right) \mathbf{t}^{e}
\end{aligned}
$$

for all $m \in M[[\mathbf{s}]]_{\Delta}$. If M is a trivial bimodule, then $\varphi_{M}={ }_{M} \varphi$. If $\varphi^{\prime}: A[[\mathbf{t}]]_{\nabla} \rightarrow$ $A\left[[\mathbf{u}]_{\Omega}\right.$ is another substitution map and $\varphi^{\prime \prime}=\varphi \circ \varphi^{\prime}$, we have $\varphi_{M}^{\prime \prime}=\varphi_{M} \circ \varphi_{M}^{\prime}$, ${ }_{M} \varphi^{\prime \prime}={ }_{M} \varphi \circ{ }_{M} \varphi^{\prime}$.

For all $m \in M[[\mathbf{s}]]_{\Delta}$ and all $a \in A[[\mathbf{s}]]_{\nabla}$, we have:

$$
\varphi_{M}(a m)=\varphi(a) \varphi_{M}(m),{ }_{M} \varphi(m a)={ }_{M} \varphi(m) \varphi(a)
$$

i.e. φ_{M} is $(\varphi ; A)$-linear and ${ }_{M} \varphi$ is $(A ; \varphi)$-linear. Moreover, φ_{M} and ${ }_{M} \varphi$ are compatible with the augmentations, i.e.:

$$
\begin{equation*}
\varphi_{M}(m) \equiv m_{0} \bmod \langle\mathbf{t}\rangle M[[\mathbf{t}]]_{\nabla},{ }_{M} \varphi(m) \equiv m_{0} \bmod \langle\mathbf{t}\rangle M[[\mathbf{t}]]_{\nabla}, m \in M[[\mathbf{s}]]_{\Delta} \tag{1.12}
\end{equation*}
$$

If φ is the trivial substitution map (i.e. $\varphi\left(s_{i}\right)=0$ for all $s_{i} \in \mathbf{s}$), then φ_{M} : $M[[\mathbf{s}]]_{\Delta} \rightarrow M[[\mathbf{t}]]_{\nabla}$ and ${ }_{M} \varphi: M[[\mathbf{s}]]_{\Delta} \rightarrow M[[\mathbf{t}]]_{\nabla}$ are also trivial, i.e. $\varphi_{M}(m)=$ ${ }_{M} \varphi(m)=m_{0}$, for all $m \in M[[\mathbf{s}]]_{\nabla}$.
1.3.5 The above constructions apply in particular to the case of any k-algebra R over A, for which we have two induced continuous maps: $\varphi_{R}=\varphi \widehat{\otimes} \operatorname{Id}_{R}: R[[\mathbf{s}]]_{\Delta} \rightarrow$ $R\left[[\mathbf{t}]_{\nabla}\right.$, which is $(A ; R)$-linear, and ${ }_{R} \varphi=\operatorname{Id}_{R} \widehat{\otimes} \varphi: R[[\mathbf{s}]]_{\Delta} \rightarrow R[[\mathbf{t}]]_{\nabla}$, which is $(R ; A)$-linear. For $r \in R[[\mathbf{s}]]_{\Delta}$ we will denote $\varphi \bullet r:=\varphi_{R}(r), r \bullet \varphi:={ }_{R} \varphi(r)$. Explicitly, if $r=\sum_{\alpha} r_{\alpha} \mathbf{s}^{\alpha}$ with $\alpha \in \Delta$, then:

$$
\begin{equation*}
\varphi \bullet r=\sum_{e \in \nabla}\left(\sum_{\substack{\alpha \in \Delta \\|\alpha| \leq|e|}} \mathbf{C}_{e}(\varphi, \alpha) r_{\alpha}\right) \mathbf{t}^{e}, \quad r \bullet \varphi=\sum_{e \in \nabla}\left(\sum_{\substack{\alpha \in \Delta \\|\alpha| \leq|e|}} r_{\alpha} \mathbf{C}_{e}(\varphi, \alpha)\right) \mathbf{t}^{e} . \tag{1.13}
\end{equation*}
$$

From (1.12), we deduce that:

$$
\varphi \bullet \mathscr{U}^{p}(R ; \Delta) \subset \mathscr{U}^{q}(R ; \nabla), \quad \mathscr{U}^{p}(R ; \Delta) \bullet \varphi \subset \mathscr{U}^{q}(R ; \nabla),
$$

and $\varphi \bullet 1=1 \bullet \varphi=1$.
If φ is a substitution map with constant coefficients, then $\varphi_{R}={ }_{R} \varphi$ is a ring homomorphism over φ. In particular, $\varphi \bullet r=r \bullet \varphi$ and $\varphi \bullet\left(r r^{\prime}\right)=(\varphi \bullet r)\left(\varphi \bullet r^{\prime}\right)$.
If $\varphi=\mathbf{0}: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ is the trivial substitution map, then $\mathbf{0} \bullet r=r \bullet \mathbf{0}=r_{0}$ for all $r \in R[[\mathbf{s}]]_{\Delta}$. In particular, $\mathbf{0} \bullet r=r \bullet \mathbf{0}=1$ for all $r \in \mathscr{U}^{p}(R ; \Delta)$.
If $\mathbf{u}=\left\{u_{1}, \ldots, u_{r}\right\}$ is another set of variables, $\Omega \subset \mathbb{N}^{r}$ is a non-empty co-ideal and $\psi: R[[\mathbf{t}]]_{\nabla} \rightarrow R[[\mathbf{u}]]_{\Omega}$ is another substitution map, one has:

$$
\psi \bullet(\varphi \bullet r)=(\psi \circ \varphi) \bullet r, \quad(r \bullet \varphi) \bullet \psi=r \bullet(\psi \circ \varphi)
$$

Since $\left(R[[\mathbf{s}]]_{\Delta}\right)^{\mathrm{opp}}=R^{\mathrm{opp}}[[\mathbf{s}]]_{\Delta}$, for any substitution map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ we have $\left(\varphi_{R}\right)^{\text {opp }}={ }_{R}$ opp φ and $\left({ }_{R} \varphi\right)^{\text {opp }}=\varphi_{R^{\text {opp }}}$.

For each substitution map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ we define the $(A ; A)$-linear map:

$$
\varphi_{*}: f \in \operatorname{Hom}_{k}\left(A, A[[\mathbf{s}]]_{\Delta}\right) \longmapsto \varphi_{*}(f)=\varphi \circ f \in \operatorname{Hom}_{k}(A, A[[\mathbf{t}]] \nabla)
$$

which induces another one $\overline{\varphi_{*}}: \operatorname{End}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(A[[\mathbf{s}]]_{\Delta}\right) \longrightarrow \operatorname{End}_{k[[\mathbf{t}]]_{\nabla}}\left(A[[\mathbf{t}]]_{\nabla}\right)$ given by:

$$
\overline{\varphi_{*}}(f):=\left(\varphi_{*}\left(\left.f\right|_{A}\right)\right)^{e}=\left(\left.\varphi \circ f\right|_{A}\right)^{e} \quad \forall f \in \operatorname{End}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(A[[\mathbf{s}]]_{\Delta}\right)
$$

More generally, for any left A-modules E, F we have $(A ; A)$-linear maps:

$$
\begin{gathered}
\left(\varphi_{F}\right)_{*}: f \in \operatorname{Hom}_{k}\left(E, F[[\mathbf{s}]]_{\Delta}\right) \longmapsto\left(\varphi_{F}\right)_{*}(f)=\varphi_{F} \circ f \in \operatorname{Hom}_{k}\left(E, F[[\mathbf{t}]]_{\nabla}\right), \\
\overline{\left(\varphi_{F}\right)_{*}}: \operatorname{Hom}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(E[[\mathbf{s}]]_{\Delta}, F[[\mathbf{s}]]_{\Delta}\right) \longrightarrow \operatorname{Hom}_{k[[\mathbf{t}]]_{\nabla}}\left(E[[\mathbf{t}]]_{\nabla}, F[[\mathbf{t}]]_{\nabla}\right), \\
\overline{\left(\varphi_{F}\right)_{*}}(f):=\left(\left.\varphi_{F} \circ f\right|_{E}\right)^{e}
\end{gathered}
$$

Let us consider the $(A ; A)$-bimodule $M=\operatorname{Hom}_{k}(E, F)$. For each $m \in M[[\mathbf{s}]]_{\Delta}$ and for each $e \in E$ we have $\widetilde{\varphi_{M}(m)}(e)=\varphi_{F}(\widetilde{m}(e))$, i.e.:

$$
\begin{equation*}
\left.\widetilde{\varphi_{M}(m)}\right|_{E}=\varphi_{F} \circ\left(\left.\widetilde{m}\right|_{E}\right) \tag{1.14}
\end{equation*}
$$

or more graphically, the following diagram is commutative (see (1.4)):

$$
\begin{align*}
& M[[\mathbf{s}]]_{\Delta} \underset{m \mapsto r}{\sim} \operatorname{Hom}_{k[[\mathbf{s}]]_{\Delta}}\left(E\left[[\mathbf{s}]_{\Delta}, F[[\mathbf{s}]]_{\Delta}\right) \xrightarrow[\text { restr. }]{\sim} \operatorname{Hom}_{k}\left(E, F[[\mathbf{s}]]_{\Delta}\right)\right. \tag{1.15}\\
& \varphi_{M} \downarrow \underbrace{\downarrow}_{\left(\varphi_{F}\right)_{*}} \downarrow_{\left(\varphi_{F}\right)_{*}}^{\sim} \\
& M[[\mathbf{t}]]_{\nabla} \underset{m \mapsto r}{\sim} \operatorname{Hom}_{k[[\mathbf{t}]]_{\nabla}}^{\sim}\left(E[[\mathbf{t}]]_{\nabla}, F[[\mathbf{t}]]_{\nabla}\right) \underset{\text { restr. }}{\sim} \operatorname{Hom}_{k}\left(E, F[[\mathbf{t}]]_{\nabla}\right) .
\end{align*}
$$

In order to simplify notations, we will also write:

$$
\varphi \bullet f:=\overline{\left(\varphi_{F}\right)_{*}}(f) \quad \forall f \in \operatorname{Hom}_{k[[\mathbf{s}]]_{\Delta}}\left(E[[\mathbf{s}]]_{\Delta}, F[[\mathbf{s}]]_{\Delta}\right),
$$

and so we have $\widetilde{\varphi \bullet m}=\varphi \bullet \widetilde{m}$ for all $m \in M[[\mathbf{s}]]_{\Delta}$. Let us notice that $(\varphi \bullet f)(e)=$ $\left(\varphi_{F} \circ f\right)(e)$ for all $e \in E$, i.e.:

$$
\begin{equation*}
\left.(\varphi \bullet f)\right|_{E}=\left.\left(\varphi_{F} \circ f\right)\right|_{E}=\varphi_{F} \circ\left(\left.f\right|_{E}\right), \text { but in general } \varphi \bullet f \neq \varphi_{F} \circ f \tag{1.16}
\end{equation*}
$$

If $\varphi=\mathbf{0}$ is the trivial substitution map, then for each k-linear map $f=\sum_{\alpha} f_{\alpha} \mathbf{s}^{\alpha}$: $E \rightarrow E[[\mathbf{s}]]_{\Delta}\left(\operatorname{resp} . f=\sum_{\alpha} f_{\alpha} \mathbf{s}^{\alpha} \in \operatorname{End}_{k}(E)[[\mathbf{s}]]_{\Delta} \equiv \operatorname{End}_{k[[\mathbf{s}]]_{\Delta}}\left(E[[\mathbf{s}]]_{\Delta}\right)\right)$, we have $\mathbf{0} \bullet f=f \bullet \mathbf{0}=f_{0} \in \operatorname{End}_{k}(E) \subset \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right)\left(\right.$ resp. $\mathbf{0} \bullet f=f \bullet \mathbf{0}=f_{0}^{e}=\overline{f_{0}} \in$ $\left.\operatorname{End}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(E[[\mathbf{s}]]_{\Delta}\right)\right)$.

If $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ is a substitution map, we have:

$$
\varphi \bullet(a f)=\varphi(a)(\varphi \bullet f),(f a) \bullet \varphi=(f \bullet \varphi) \varphi(a)
$$

for all $a \in A[[\mathbf{s}]]_{\Delta}$ and for all $f \in \operatorname{Hom}_{k}\left(E, E[[\mathbf{s}]]_{\Delta}\right)\left(\right.$ or $\left.f \in \operatorname{End}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta}\right.}\left(E[[\mathbf{s}]]_{\Delta}\right)\right)$. Moreover:

$$
\begin{gathered}
\left(\varphi_{E}\right)_{*}\left(\operatorname{Hom}_{k}^{\circ}\left(E, M[[\mathbf{s}]]_{\Delta}\right)\right) \subset \operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{t}]]_{\nabla}\right), \\
\varphi \bullet\left(\operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}}^{\circ}\left(E[[\mathbf{s}]]_{\Delta}\right)\right) \subset \operatorname{Aut}_{k[[\mathbf{t}]]_{\nabla}}^{\circ}\left(E[[\mathbf{t}]]_{\nabla}\right),
\end{gathered}
$$

and so we have a commutative diagram:

$$
\begin{gather*}
\mathscr{U}^{p}(R ; \Delta) \xrightarrow[r \mapsto \vec{r}]{\sim} \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}}^{\circ}\left(E[[\mathbf{s}]]_{\Delta}\right) \xrightarrow[\text { restr. }]{\sim} \operatorname{Hom}_{k}^{\circ}\left(E, E[[\mathbf{s}]]_{\Delta}\right) \\
\varphi \bullet(-) \downarrow \tag{1.17}\\
\downarrow \\
\mathcal{U}^{q}(R ; \nabla) \xrightarrow[r \mapsto \vec{r}]{\sim} \operatorname{Aut}_{k[[\mathbf{t}]]_{\nabla}}^{\sim}\left(E[[\mathbf{t}]]_{\nabla}\right) \xrightarrow[\text { restr. }]{\sim} \operatorname{Hom}_{k}\left(E, F[[\mathbf{t}]]_{\nabla}\right) .
\end{gather*}
$$

Now we are going to see how the $\varepsilon^{i}(r), \bar{\varepsilon}^{i}(r), \varepsilon(r), \bar{\varepsilon}(r)$ (see 1.2.14) can be expressed in terms of the action of substitution maps.

Let us consider the power series ring $A[[\mathbf{s}, \tau]]=A[[\mathbf{s}]] \widehat{\otimes}_{A} A[[\tau]]$, and for each $i=1, \ldots, p$ we denote $\sigma^{i}: A[[\mathbf{s}]] \rightarrow A[[\mathbf{s}, \tau]]$ the substitution map (with constant coefficients) defined by:

$$
\sigma^{i}\left(s_{j}\right)=\left\{\begin{array}{lll}
s_{i}+s_{i} \tau & \text { if } j=i \\
s_{j} & \text { if } j \neq i
\end{array}\right.
$$

Let us also denote $\sigma: A[[\mathbf{s}]] \rightarrow A[[\mathbf{s}, \tau]]$ the substitution map (with constant coefficients) defined by:

$$
\sigma\left(s_{i}\right)=s_{i}+s_{i} \tau \quad \forall i=1, \ldots, p
$$

and $\iota: A[[\mathbf{s}]] \rightarrow A[[\mathbf{s}, \tau]]$ the substitution map induced by the inclusion $\mathbf{s} \hookrightarrow \mathbf{s} \sqcup\{\tau\}$. We often consider ι as an inclusion $A[[\mathbf{s}]] \hookrightarrow A[[\mathbf{s}, \tau]]$.

It is clear that for each non-empty co-ideal $\Delta \subset \mathbb{N}^{p}$, the substitution maps $\sigma^{i}, \sigma, \iota: A[[\mathbf{s}]] \rightarrow A[[\mathbf{s}, \tau]]$ induce new substitution maps $A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{s}, \tau]]_{\Delta \times\{0,1\}}$, which will be also denoted by the same letters. Moreover, as a consequence of Taylor's expansion we have:

$$
\sigma^{i}(a)=a+\chi_{A}^{i}(a) \tau, \quad \sigma(a)=a+\chi_{A}(a) \tau
$$

where $\chi^{i}=s_{i} \frac{\partial}{\partial s_{i}}$ and $\chi=\sum_{i} \chi^{i}$ (see Definition (1.2.8).
The proof of the following lemma is clear.
Lemma 1.3.6. The map $\xi: R[[\mathbf{s}]]_{\Delta,+} \rightarrow \mathscr{U}^{p+1}(R ; \Delta \times\{0,1\})$ defined as:

$$
\xi\left(\sum_{\alpha \in \Delta,|\alpha|>0} r_{\alpha} \mathbf{s}^{\alpha}\right)=1+\sum_{\alpha \in \Delta,|\alpha|>0} r_{\alpha} \mathbf{s}^{\alpha} \tau
$$

is a group homomorphism.
Let us notice that the map ξ above is injective and its image is the set of $r \in \mathscr{U}^{p+1}(R ; \Delta \times\{0,1\})$ such that supp $r \subset\{(0,0)\} \cup((\Delta \backslash\{0\}) \times\{1\})$.

Proposition 1.3.7. For each $r \in \mathscr{U}^{p}(R ; \Delta)$, the following properties hold:
(1) $r^{*}\left(\sigma^{i} \bullet r\right)=\xi\left(\varepsilon^{i}(r)\right),\left(\sigma^{i} \bullet r\right) r^{*}=\xi\left(\bar{\varepsilon}^{i}(r)\right)$.
(2) $r^{*}(\sigma \bullet r)=\xi(\varepsilon(r)),(\sigma \bullet r) r^{*}=\xi(\bar{\varepsilon}(r))$.

Proof. It is a straightforward consequence of Taylor's expansion formula:

$$
\sigma^{i} \bullet r=r+\chi_{R}^{i}(r) \tau, \quad \sigma \bullet r=r+\chi_{R}(r) \tau
$$

Let us notice that in the above proposition, the action $\iota \bullet(-): R[[\mathbf{s}]]_{\Delta} \rightarrow$ $R[[\mathbf{s}, \tau]]_{\Delta \times\{0,1\}}$ is simply considered as an inclusion.

2. Multivariate Hasse-Schmidt derivations

2.1. Basic definitions. In this section we recall some notions and results of the theory of Hasse-Schmidt derivations [1, 6] as developed in $\mathbf{9}$.

From now on k will be a commutative ring, A a commutative k-algebra, $\mathbf{s}=$ $\left\{s_{1}, \ldots, s_{p}\right\}$ a set of variables and $\Delta \subset \mathbb{N}^{p}$ a non-empty co-ideal.

Definition 2.1.1. A (p, Δ)-variate Hasse-Schmidt derivation, or a (p, Δ)-variate $H S$-derivation for short, of A over k is a family $D=\left(D_{\alpha}\right)_{\alpha \in \Delta}$ of k-linear maps $D_{\alpha}: A \longrightarrow A$, satisfying the following Leibniz type identities:

$$
D_{0}=\operatorname{Id}_{A}, \quad D_{\alpha}(x y)=\sum_{\beta+\gamma=\alpha} D_{\beta}(x) D_{\gamma}(y)
$$

for all $x, y \in A$ and for all $\alpha \in \Delta$. We denote by $\operatorname{HS}_{k}^{p}(A ; \Delta)$ the set of all (p, Δ) variate HS-derivations of A over k. For $p=1$, a 1 -variate HS-derivation will be simply called a Hasse-Schmidt derivation (a HS-derivation for short), or a higher derivation ${ }^{2}$, and we will simply write $\operatorname{HS}_{k}(A ; m):=\operatorname{HS}_{k}^{1}(A ; \Delta)$ for $\Delta=\{q \in \mathbb{N} \mid q \leq$ $m\}$

Any (p, Δ)-variate HS-derivation D of A over k can be understood as a power series:

$$
\sum_{\alpha \in \Delta} D_{\alpha} \mathbf{s}^{\alpha} \in R[[\mathbf{s}]]_{\Delta}, \quad R=\operatorname{End}_{k}(A)
$$

and so we consider $\operatorname{HS}_{k}^{p}(A ; \Delta) \subset R[[\mathbf{s}]]_{\Delta}$. Actually $\operatorname{HS}_{k}^{p}(A ; \Delta)$ is a (multiplicative) sub-group of $\mathscr{U}^{p}(R ; \Delta)$. The group operation in $\operatorname{HS}_{k}^{p}(A ; \Delta)$ is explicitly given by:

$$
(D, E) \in \operatorname{HS}_{k}^{p}(A ; \Delta) \times \operatorname{HS}_{k}^{p}(A ; \Delta) \longmapsto D \circ E \in \operatorname{HS}_{k}^{p}(A ; \Delta)
$$

with:

$$
(D \circ E)_{\alpha}=\sum_{\beta+\gamma=\alpha} D_{\beta} \circ E_{\gamma},
$$

and the identity element of $\operatorname{HS}_{k}^{p}(A ; \Delta)$ is \mathbb{I} with $\mathbb{I}_{0}=\operatorname{Id}$ and $\mathbb{I}_{\alpha}=0$ for all $\alpha \neq 0$. The inverse of a $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ will be denoted by D^{*}.

For $\Delta^{\prime} \subset \Delta \subset \mathbb{N}^{p}$ non-empty co-ideals, we have truncations:

$$
\tau_{\Delta \Delta^{\prime}}: \operatorname{HS}_{k}^{p}(A ; \Delta) \longrightarrow \operatorname{HS}_{k}^{p}\left(A ; \Delta^{\prime}\right)
$$

which obviously are group homomorphisms. Since any $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ is determined by its finite truncations, we have a natural group isomorphism

$$
\begin{equation*}
\operatorname{HS}_{k}^{p}(A)=\lim _{\substack{\Delta^{\prime} \subset \Delta \\ \sharp \Delta^{\prime}<\infty}} \operatorname{HS}_{k}^{p}\left(A ; \Delta^{\prime}\right) . \tag{2.1}
\end{equation*}
$$

The proof of the following proposition is straightforward and it is left to the reader (see Notation 1.2.4 and 1.2.6).

Proposition 2.1.2. Let us denote $R=\operatorname{End}_{k}(A)$ and let $D=\sum_{\alpha} D_{\alpha} \mathbf{s}^{\alpha} \in$ $R[[\mathbf{s}]]_{\Delta}$ be a power series. The following properties are equivalent:
(a) D is a ($\mathbf{s}, \Delta)$-variate $H S$-derivation of A over k.
(b) The map $\widetilde{D}: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{s}]]_{\Delta}$ is a (continuous) $k[[\mathbf{s}]]_{\Delta}$-algebra homomorphism compatible with the natural augmentation $A[[\mathbf{s}]]_{\Delta} \rightarrow A$.

[^2](c) $D \in \mathscr{U}^{p}(R ; \Delta)$ and for all $a \in A[[\mathbf{s}]]_{\Delta}$ we have $D a=\widetilde{D}(a) D$.
(d) $D \in \mathscr{U}^{p}(R ; \Delta)$ and for all $a \in A$ we have $D a=\widetilde{D}(a) D$.

Moreover, in such a case \widetilde{D} is a $k[[\mathbf{s}]]_{\Delta}$-algebra automorphism of $A[[\mathbf{s}]]_{\Delta}$.
Notation 2.1.3. Let us denote:

$$
\begin{aligned}
& \operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right):=\left\{f \in \operatorname{Hom}_{k-\operatorname{alg}}\left(A, A[[\mathbf{s}]]_{\Delta}\right), f(a) \equiv a \bmod \langle\mathbf{s}\rangle \forall a \in A\right\}, \\
& \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta-\operatorname{alg}}}^{\circ}\left(A[[\mathbf{s}]]_{\Delta}\right):= \\
& \left\{f \in \operatorname{Aut}_{k\left[[\mathbf{s} \mathbf{s}]_{\Delta-\mathrm{alg}}\left(A[[\mathbf{s}]]_{\Delta}\right) \mid f(a) \equiv a_{0} \bmod \langle\mathbf{s}\rangle \forall a \in A[[\mathbf{s}]]_{\Delta}\right\} ~}\right.
\end{aligned}
$$

It is clear that $\operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right) \subset \operatorname{Hom}_{k}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right)$ and

$$
\operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}-\operatorname{alg}}^{\circ}\left(A[[\mathbf{s}]]_{\Delta}\right) \subset \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}}^{\circ}\left(A[[\mathbf{s}]]_{\Delta}\right)
$$

(see Notation 1.2.7) are subgroups, and we have group isomorphisms (see (1.7) and (1.6)):

$$
\begin{equation*}
\operatorname{HS}_{k}^{p}(A ; \Delta) \xrightarrow[\simeq]{D \mapsto \widetilde{D}} \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta}-\mathrm{alg}}^{\circ}\left(A[[\mathbf{s}]]_{\Delta}\right) \xrightarrow[\simeq]{\text { restr. }} \operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right) \tag{2.2}
\end{equation*}
$$

The composition of the above isomorphisms is given by:

$$
\begin{equation*}
D \in \operatorname{HS}_{k}^{p}(A ; \Delta) \stackrel{\sim}{\longmapsto} \Phi_{D}:=\left[a \in A \mapsto \sum_{\alpha \in \Delta} D_{\alpha}(a) \mathbf{s}^{\alpha}\right] \in \operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right) \tag{2.3}
\end{equation*}
$$

For each HS-derivation $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ we have $\widetilde{D}=\left(\Phi_{D}\right)^{e}$, i.e.:

$$
\widetilde{D}\left(\sum_{\alpha \in \Delta} a_{\alpha} \mathbf{s}^{\alpha}\right)=\sum_{\alpha \in \Delta} \Phi_{D}\left(a_{\alpha}\right) \mathbf{s}^{\alpha}
$$

for all $\sum_{\alpha} a_{\alpha} \mathbf{s}^{\alpha} \in A[[\mathbf{s}]]_{\Delta}$, and for any $E \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ we have $\Phi_{D \circ E}=\widetilde{D} \circ \Phi_{E}$. If $\Delta^{\prime} \subset \Delta$ is another non-empty co-ideal and we denote by $\pi_{\Delta \Delta^{\prime}}: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{s}]]_{\Delta^{\prime}}$ the projection (or truncation), one has $\Phi_{\tau_{\Delta \Delta^{\prime}}(D)}=\pi_{\Delta \Delta^{\prime} \circ} \Phi_{D}$.
2.2. The action of substitution maps on HS-derivations. Now, we recall the action of substitution maps on HS-derivations [9, §6]. Let $\mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}$, $\mathbf{t}=\left\{t_{1}, \ldots, t_{p}\right\}$ be sets of variables, $\Delta \subset \mathbb{N}^{p}, \nabla \subset \mathbb{N}^{q}$ non-empty co-ideals and let us write $R=\operatorname{End}_{k}(A)$.

Let us recall Proposition 10 in $\mathbf{9}$.
Proposition 2.2.1. For any substitution $\operatorname{map} \varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$, we have:

1) $\varphi_{*}\left(\operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{s}]]_{\Delta}\right)\right) \subset \operatorname{Hom}_{k-\mathrm{alg}}^{\circ}\left(A, A[[\mathbf{t}]]_{\nabla}\right)$,
2) $\varphi \cdot \operatorname{HS}_{k}^{p}(A ; \Delta) \subset \operatorname{HS}_{k}^{q}(A ; \nabla)$,
3) $\varphi \cdot \operatorname{Aut}_{k[[\mathbf{s}]]_{\Delta-\operatorname{alg}}}^{\circ}\left(A[[\mathbf{s}]]_{\Delta}\right) \subset \operatorname{Aut}_{k[[\mathbf{t}]]_{\nabla-\operatorname{alg}}}^{\circ}\left(A[[\mathbf{t}]]_{\nabla}\right)$.

Then we have a commutative diagram:

In particular, for any HS-derivation $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ we have $\varphi \cdot D \in \operatorname{HS}_{k}^{q}(A ; \nabla)$ (see 1.3.5). Moreover $\Phi_{\varphi \bullet D}=\varphi \circ \Phi_{D}$.

It is clear that for any co-ideals $\Delta^{\prime} \subset \Delta$ and $\nabla^{\prime} \subset \nabla$ with $\varphi\left(\Delta_{A}^{\prime} / \Delta_{A}\right) \subset$ $\nabla_{A}^{\prime} / \nabla_{A}$ we have:

$$
\begin{equation*}
\tau_{\nabla \nabla^{\prime}}(\varphi \bullet D)=\varphi^{\prime} \bullet \tau_{\Delta \Delta^{\prime}}(D) \tag{2.5}
\end{equation*}
$$

where $\varphi^{\prime}: A[[\mathbf{s}]]_{\Delta^{\prime}} \rightarrow A[[\mathbf{t}]]_{\nabla^{\prime}}$ is the substitution map induced by φ.
2.2.2 Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{r}\right\}$ be another set of variables, $\Omega \subset \mathbb{N}^{r}$ a non-empty co-ideal, $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}, \psi: A[[\mathbf{t}]]_{\nabla} \rightarrow A[[\mathbf{u}]]_{\Omega}$ substitution maps and $D, D^{\prime} \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ HS-derivations. From 1.3 .5 we deduce the following properties:
-) If we denote $E:=\varphi \bullet D \in \operatorname{HS}_{k}^{q}(A ; \nabla)$, we have

$$
\begin{equation*}
E_{0}=\mathrm{Id}, \quad E_{e}=\sum_{\substack{\alpha \in \Delta \\|\alpha| \leq|e|}} \mathbf{C}_{e}(\varphi, \alpha) D_{\alpha}, \quad \forall e \in \nabla \tag{2.6}
\end{equation*}
$$

-) If $\varphi=\mathbf{0}$ is the trivial substitution map or if $D=\mathbb{I}$, then $\varphi \cdot D=\mathbb{I}$.
-) If φ has constant coefficients, then $\varphi \bullet\left(D \circ D^{\prime}\right)=(\varphi \bullet D) \circ\left(\varphi \bullet D^{\prime}\right)$ and $(\varphi \bullet D)^{*}=$ $\varphi \cdot D^{*}$ (the general case is treated in Proposition 2.2.3).
-) $\psi \bullet(\varphi \bullet D)=(\psi \circ \varphi) \bullet D$.
The following result is proven in Propositions 11 and 12 of $\mathbf{9}$.
Proposition 2.2.3. Let $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{t}]]_{\nabla}$ be a substitution map. Then, the following assertions hold:
(i) For each $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ there is a unique substitution map $\varphi^{D}: A[[\mathbf{s}]]_{\Delta} \rightarrow$ $A[[\mathbf{t}]]_{\nabla}$ such that $(\widetilde{\varphi \bullet D}) \circ \varphi^{D}=\varphi \circ \widetilde{D}$. Moreover, $(\varphi \bullet D)^{*}=\varphi^{D} \bullet D^{*}$, $\varphi^{\mathbb{I}}=\varphi$ and:

$$
\mathbf{C}_{e}(\varphi, f+\nu)=\sum_{\substack{\beta+\gamma=e \\|f+g| \leq|\beta|,|\nu| \leq|\gamma|}} \mathbf{C}_{\beta}(\varphi, f+g) D_{g}\left(\mathbf{C}_{\gamma}\left(\varphi^{D}, \nu\right)\right)
$$

for all $e \in \Delta$ and for all $f, \nu \in \nabla$ with $|f+\nu| \leq|e|$.
(ii) For each $D, E \in \operatorname{HS}_{k}^{p}(A ; \nabla)$, we have $\varphi \bullet(D \circ E)=(\varphi \bullet D) \circ\left(\varphi^{D} \bullet E\right)$ and $\left(\varphi^{D}\right)^{E}=\varphi^{D \circ E}$. In particular, $\left(\varphi^{D}\right)^{D^{*}}=\varphi$.
(iii) If ψ is another composable substitution map, then $(\varphi \circ \psi)^{D}=\varphi^{\psi} \bullet D \circ \psi^{D}$.
(iv) If φ has constant coefficients then $\varphi^{D}=\varphi$.

3. Main results

3.1. The derivations associated with a Hasse-Schmidt derivation.

 In this section k will be a commutative ring, A a commutative k-algebra, $R=$ $\operatorname{End}_{k}(A), \mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}$ a set of variables and $\Delta \subset \mathbb{N}^{p}$ a non-empty co-ideal.Lemma 3.1.1. Let $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ be a k-derivation and $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ a HS-derivation. Then, for each $a \in A[[\mathbf{s}]]_{\Delta}$ we have $\mathfrak{d}_{R}(D) a=\widetilde{\mathfrak{d}_{R}(D)(a) D+}$ $\widetilde{D}(a) \mathfrak{d}_{R}(D)$.

Proof. By using Lemma 1.2 .10 we have:

$$
\begin{gathered}
\mathfrak{d}_{R}(D) a=\mathfrak{d}_{R}(D a)-D \mathfrak{d}_{A}(a)=\mathfrak{d}_{R}(\widetilde{D}(a) D)-\widetilde{D}\left(\mathfrak{d}_{A}(a)\right) D= \\
\mathfrak{d}_{A}(\widetilde{D}(a)) D+\widetilde{D}(a) \mathfrak{d}_{R}(D)-\widetilde{D}\left(\mathfrak{d}_{A}(a)\right) D=\widetilde{\mathfrak{d}_{R}(D)}(a) D+\widetilde{D}(a) \mathfrak{d}_{R}(D) .
\end{gathered}
$$

From now on, we will denote to simplify $\mathfrak{d}_{R}=\mathfrak{d}$ and $\mathfrak{d}_{A}=\mathfrak{d}$.
Proposition 3.1.2. Let $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$ be a k-derivation. Then, for any $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ we have $\varepsilon^{\mathfrak{d}}(D), \bar{\varepsilon}^{\mathfrak{d}}(D) \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta,+}=\operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta} \cap$ $R[[\mathbf{s}]]_{\Delta,+}$.

Proof. Remember that $\bar{\varepsilon}^{\mathfrak{d}}(D)=\mathfrak{d}(D) D^{*}$ and $\varepsilon^{\mathfrak{d}}(D)=D^{*} \mathfrak{d}(D)$ (Definition 1.2.11). We will use Lemma 1.2 .9 and Lemma 3.1.1. For any $a \in A[[\mathbf{s}]]_{\Delta}$ we have:

$$
\begin{gathered}
\left(\mathfrak{d}(D) D^{*}\right) a=\mathfrak{d}(D) \widetilde{D^{*}}(a) D^{*}=\left[\widetilde{\mathfrak{d}(D)}\left(\widetilde{D^{*}}(a)\right) D+\widetilde{D}\left(\widetilde{D^{*}}(a)\right) \mathfrak{d}(D)\right] D^{*}= \\
\widetilde{\mathfrak{d}(D)}\left(\widetilde{D^{*}}(a)\right)+a \mathfrak{d}(D) D^{*}=\left(\widetilde{\mathfrak{d}(D) D^{*}}\right)(a)+a\left(\mathfrak{d}(D) D^{*}\right),
\end{gathered}
$$

and so $\left[\mathfrak{d}(D) D^{*}, a\right]=\left(\widetilde{\mathfrak{d}(D) D^{*}}\right)(a)$ and $\mathfrak{d}(D) D^{*} \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$. The proof for $\varepsilon^{\mathfrak{d}}(D)$ is completely similar.

Example 3.1.3. If $D \in \operatorname{HS}_{k}(A ; m)$ is a 1 -variate HS-derivation of length m, then:

$$
\varepsilon_{1}(D)=D_{1}, \varepsilon_{2}(D)=2 D_{2}-D_{1}^{2}, \varepsilon_{3}(D)=3 D_{3}-2 D_{1} D_{2}-D_{2} D_{1}+D_{1}^{3}, \ldots
$$

Let us recall that the map $\xi: R[[\mathbf{s}]]_{\Delta,+} \rightarrow \mathscr{U}^{p+1}(R ; \Delta \times\{0,1\})$ has been defined in Lemma 1.3.6. The proof of the following lemma is clear.

Lemma 3.1.4. For each $\delta \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta,+}$ we have $\xi(\delta) \in \operatorname{HS}_{k}^{p+1}(A ; \Delta \times$ $\{0,1\}$).

So we have a group homomorphism $\xi: \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta,+} \rightarrow \operatorname{HS}_{k}^{p+1}(A ; \Delta \times\{0,1\})$ whose image is the set of $D \in \operatorname{HS}_{k}^{p+1}(A ; \Delta \times\{0,1\})$ such that $\operatorname{supp} D \subset\{(0,0)\} \cup$ $((\Delta \backslash\{0\}) \times\{1\})$.

The following proposition provides a characterization of HS-derivations in characteristic 0 .

Proposition 3.1.5. Assume that $\mathbb{Q} \subset k, R=\operatorname{End}_{k}(A)$ and $D \in \mathscr{U}^{p}(R ; \Delta)$. The following properties are equivalent:
(a) $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$.
(b) $\varepsilon^{\mathfrak{d}}(D) \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$ for all k-derivations $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta}$.
(c) $\varepsilon(D) \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$.

Proof. The implication (a) \Rightarrow (b) comes from Proposition 3.1 .2 and (b) \Rightarrow (c) is obvious. Let us prove $(\mathrm{c}) \Rightarrow(\mathrm{a})$. Write $\delta=\varepsilon(D)$, i.e. $\chi_{R}(D)=D \delta$. After Proposition 2.1.2 we need to prove that $D a=\widetilde{D}(a) D$ for all $a \in A$, and since $D a-\widetilde{D}(a) D$ belongs to the augmentation ideal of $R[[\mathbf{s}]]_{\Delta}$ and $\mathbb{Q} \subset k$, it is enough to prove that $\chi_{R}(D a-\widetilde{D}(a) D)=0$. By using that $\chi_{A}(a)=0$ and Lemma 1.2.10
we have:

$$
\begin{gathered}
\chi_{R}(D a-\widetilde{D}(a) D)=\chi_{R}(D) a+D \chi_{A}(a)-\chi_{A}(\widetilde{D}(a)) D-\widetilde{D}(a) \chi_{R}(D)= \\
D \delta a-\widetilde{\chi_{R}(D)}(a) D-\widetilde{D}\left(\chi_{A}(a)\right) D-\widetilde{D}(a) D \delta= \\
D a \delta+D \widetilde{\delta}(a)-\widetilde{\chi_{R}(D)(a) D-\widetilde{D}(a) D \delta=} \\
\widetilde{D}(a) D \delta+\widetilde{D}(\widetilde{\delta}(a)) D-\widetilde{(D \delta)}(a) D-\widetilde{D}(a) D \delta=0
\end{gathered}
$$

Theorem 3.1.6. Assume that $\mathbb{Q} \subset k$. Then, all the maps in the following commutative diagram:

are bijective.
Proof. It is a consequence of Proposition 1.2 .18 and Proposition 3.1.5,
A similar result holds for $\bar{\varepsilon}$ instead of ε.
Remark 3.1.7. Let us notice that, in Theorem 3.1.6, $\operatorname{HS}_{k}^{p}(A ; \Delta)$ carries a group structure (non-commutative in general) and an action of substitution maps, and on the other hand $\operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta,+}$ carries an $A[[\mathbf{s}]]_{\Delta}$-module structure and a $k[[\mathbf{s}]]_{\Delta}$-Lie algebra structure, but the bijection $\varepsilon: \operatorname{HS}_{k}^{p}(A ; \Delta) \xrightarrow{\sim} \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta,+}$ is not compatible with these structures. The formulas expressing the behavior of ε with respect to the group operation on HS-derivations or the behavior of ε^{-1} with respect to the addition of power series with coefficients in $\operatorname{Der}_{k}(A)$, turn out to be complicated and have a similar flavor to Baker-Campbell-Hausdorff formula.

3.2. The behavior under the action of substitution maps.

Definition 3.2.1. Let S be a k-algebra over $A, r \in \mathscr{U}^{p}(S ; \Delta), D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$, $r^{\prime} \in S[[\mathbf{s}]]_{\Delta}$ and $\delta \in \operatorname{Der}_{k}(A)[[\mathbf{s}]]_{\Delta}$. We say that
-) r is a D-element if $r a=\widetilde{D}(a) r$ for all $a \in A[[\mathbf{s}]]_{\Delta}$.
-) r^{\prime} is a δ-element if $r^{\prime} a=a r^{\prime}+\widetilde{\delta}(a) 1_{S}$ for all $a \in A[[\mathbf{s}]]_{\Delta}$.
It is clear that $D \in \operatorname{HS}_{k}^{p}(A ; \Delta) \subset \mathscr{U}^{p}\left(\operatorname{End}_{k}(A) ; \Delta\right)$ is a D-element. For $D=\mathbb{I}$ the identity HS-derivation, a $r \in \mathscr{U}^{p}(S ; \Delta)$ is an \mathbb{I}-element if and only if r commutes with all $a \in A[[\mathbf{s}]]_{\Delta}$. If $E \in \operatorname{HS}_{k}^{p}(A ; \Delta)$ is another HS-derivation, $r \in \mathscr{U}^{p}(S ; \Delta)$ is a D-element and $s \in \mathscr{U}^{p}(S ; \Delta)$ is an E-element, then $r s$ is a $(D \circ E)$-element.

The following lemma provides a characterization of D-elements. Its proof is easy and it is left to the reader.

Lemma 3.2.2. With the above notations, for each $r=\sum_{\alpha} r_{\alpha} \mathbf{s}^{\alpha} \in \mathscr{U}^{p}(S ; \Delta)$ the following properties are equivalent:
-) r is a D-element.
-) $b r=r \widetilde{D^{*}}(b)$ for all $b \in A[[\mathbf{s}]]_{\Delta}$.
-) r^{*} is a D^{*}-element.
-) If $r=\sum_{\alpha} r_{\alpha} \mathbf{s}^{\alpha}$, we have $r_{\alpha} a=\sum_{\beta+\gamma=\alpha} D_{\beta}(a) r_{\gamma}$ for all $a \in A$ and for all $\alpha \in \Delta$.
-) $r a=\widetilde{D}(a) r$ for all $a \in A$.
The following proposition reproduces Proposition 2.2.6 of [10].
Proposition 3.2.3. Let S be a k-algebra over $A, D \in \operatorname{HS}_{k}^{p}(A ; \Delta), \varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow$ $A[\mathbf{u}]]_{\nabla}$ a substitution map and $r \in \mathscr{U}^{p}(S ; \Delta)$ a D-element. Then the following identities hold:
(a) $\varphi_{S}(r)$ is a $(\varphi \bullet D)$-element.
(b) $\varphi_{S}\left(r r^{\prime}\right)=\varphi_{S}(r) \varphi_{S}^{D}\left(r^{\prime}\right)$ for all $r^{\prime} \in R[[\mathbf{s}]]_{\Delta}$. In particular, $\varphi_{S}(r)^{*}=$ $\varphi_{S}^{D}\left(r^{*}\right)$.
Moreover, if E is an A-module and $S=\operatorname{End}_{k}(E)$, then the following identity holds:
(c) $\left\langle\varphi \bullet r, \varphi_{E}^{D}(e)\right\rangle=\varphi_{E}(\langle r, e\rangle)$ for all $e \in E[[\mathbf{s}]]_{\Delta}$. In other words: $\varphi_{E} \circ \widetilde{r}=$ $(\varphi \bullet \widetilde{r}) \circ \varphi_{E}^{D}$.
Lemma 1.2 .10 and Proposition 3.1.2 can be generalized in the following way.
Proposition 3.2.4. Let S be a k-algebra over $A, D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$, $r \in \mathscr{U}^{p}(S ; \Delta)$ a D-element and $\mathfrak{d}: k[[\mathbf{s}]]_{\Delta} \rightarrow k[[\mathbf{s}]]_{\Delta} a k$-derivation. Then, the following properties hold:
(1) $\mathfrak{d}(r) a=\langle\mathfrak{d}(D), a\rangle r+\langle D, a\rangle \mathfrak{d}(r)$ for all $a \in A$
(2) $\varepsilon^{\mathfrak{d}}(r)$ is a $\varepsilon^{\mathfrak{d}}(D)$-element and $\bar{\varepsilon}^{\mathfrak{d}}(r)$ is a $\bar{\varepsilon}^{\mathfrak{d}}(D)$-element.

Proof. (1) Since $\delta(a)=0$ we have:

$$
\mathfrak{d}(r) a=\delta(r a)=\mathfrak{d}(\widetilde{D}(a) r)=\mathfrak{d}(\langle D, a\rangle r)=\langle\mathfrak{d}(D), a\rangle r+\langle D, a\rangle \mathfrak{d}(r)
$$

(2) For all $a \in A$ we have:

$$
\begin{gathered}
\varepsilon^{\mathfrak{d}}(r) a=r^{*} \mathfrak{d}(r) a \stackrel{(1)}{=} r^{*}(\widetilde{\mathfrak{d}(D)}(a) r+\widetilde{D}(a) \mathfrak{d}(r))= \\
\widetilde{D^{*}}(\widetilde{\mathfrak{d}(D)}(a)) r^{*} r+\widetilde{D^{*}}(\widetilde{D}(a)) r^{*} \mathfrak{d}(r)=\widetilde{\varepsilon^{\mathfrak{d}}(D)}(a) 1_{S}+a \varepsilon^{\mathfrak{d}}(r) .
\end{gathered}
$$

The proof for $\bar{\varepsilon}^{\mathfrak{d}}(r)$ is similar.
Let us consider two sets of variables $\mathbf{s}=\left\{s_{1}, \ldots, s_{p}\right\}$ and $\mathbf{u}=\left\{u_{1}, \ldots, u_{q}\right\}$, and let us denote by $\left\{v^{1}, \ldots, v^{p}\right\}$ the canonical basis of $\mathbb{N}^{p}: v_{l}^{i}=\delta_{i l}$.

THEOREM 3.2.5. For each non-empty co-ideals $\Delta \subset \mathbb{N}^{p}, \Omega \subset \mathbb{N}^{q}$, each substitution map $\varphi: A[[\mathbf{s}]]_{\Delta} \rightarrow A[[\mathbf{u}]]_{\Omega}$ and each HS-derivation $D \in \operatorname{HS}_{k}^{p}(A ; \Delta)$, there exists a family

$$
\left\{\mathbf{N}_{e, h}^{j, i}|1 \leq j \leq q, 1 \leq i \leq p, e \in \Omega, h \in \Delta,|h| \leq|e|\} \subset A\right.
$$

such that for any k-algebra S over A and any D-element $r \in \mathscr{U}^{p}(S ; \Delta)$, we have:

$$
\begin{equation*}
\varepsilon_{e}^{j}(\varphi \bullet r)=\sum_{\substack{0<|h| \leq|e| \\ i \in \operatorname{supp} h}} \mathbf{N}_{e, h}^{j, i} \varepsilon_{h}^{i}(r) \quad \forall e \in \Omega, \forall j=1, \ldots, q \tag{3.1}
\end{equation*}
$$

Moreover, $\mathbf{N}_{e, h}^{j, i}=\sum_{f, g, \beta} g_{j} \mathbf{C}_{f}\left(\varphi^{D}, \beta+h-v^{i}\right) D_{\beta}^{*}\left(\mathbf{C}_{g}\left(\varphi, v^{i}\right)\right)$, where $f, g \in \Omega, \beta \in \Delta$, $f+g=e,|\beta+h|-1 \leq|f|$ and $g_{j}>0$, whenever $e_{j}, h_{i}>0$, and $\mathbf{N}_{e, h}^{j, i}=0$ otherwise.

Proof. Let us write $r=\sum_{\alpha \in \Delta} r_{\alpha} \mathbf{s}^{\alpha}$. For each $\alpha \in \Delta$ and each $j=1, \ldots, q$ we have:

$$
\begin{gathered}
\chi^{j}\left(\varphi\left(\mathbf{s}^{\alpha}\right)\right)=\chi^{j}\left(\prod_{i=1}^{p} \varphi\left(s_{i}\right)^{\alpha_{i}}\right)=\sum_{\alpha_{i} \neq 0} \alpha_{i} \varphi\left(s_{i}\right)^{\alpha_{i}-1}\left(\prod_{\substack{1 \leq l \leq p \\
l \neq i}} \varphi\left(s_{l}\right)^{\alpha_{l}}\right) \chi^{j}\left(\varphi\left(s_{i}\right)\right)= \\
\sum_{\alpha_{i} \neq 0} \alpha_{i} \varphi\left(\mathbf{s}^{\alpha-v^{i}}\right) \chi^{j}\left(\varphi\left(s_{i}\right)\right)=\sum_{\alpha_{i} \neq 0} \alpha_{i}\left(\sum_{|e| \geq|\alpha|-1} \mathbf{C}_{e}\left(\varphi, \alpha-v^{i}\right) \mathbf{u}^{e}\right)\left(\sum_{e_{j}>0} e_{j} \mathbf{C}_{e}\left(\varphi, v^{i}\right) \mathbf{u}^{e}\right)= \\
\sum_{\alpha_{i} \neq 0} \alpha_{i}\left(\sum_{\substack{|e| \geq|\alpha| \\
e_{j}>0}}\left(\sum_{\substack{e^{\prime}+e^{\prime \prime}=e \\
\left|e^{\prime}\right| \geq|\alpha|-1 \\
e_{j}^{\prime \prime}>0}} e_{j}^{\prime \prime} \mathbf{C}_{e^{\prime}}\left(\varphi, \alpha-v^{i}\right) \mathbf{C}_{e^{\prime \prime}}\left(\varphi, v^{i}\right)\right) \mathbf{u}^{e}\right)=\sum_{\alpha_{i} \neq 0} \alpha_{i}\left(\sum_{\substack{|e| \geq|\alpha| \\
e_{j}>0}} \mathbf{M}_{\alpha, e^{j}}^{j, i} \mathbf{u}^{e}\right)
\end{gathered}
$$

with:

$$
\mathbf{M}_{\alpha, e}^{j, i}:=\sum_{\substack{e^{\prime}+e^{\prime \prime}=e \\\left|e^{\prime} \geq\left|>|\alpha|-1 \\ e_{j}^{\prime \prime}>0\right.\right.}} e_{j}^{\prime \prime} \mathbf{C}_{e^{\prime}}\left(\varphi, \alpha-v^{i}\right) \mathbf{C}_{e^{\prime \prime}}\left(\varphi, v^{i}\right)
$$

for $i \in \operatorname{supp} \alpha$ and $e \in \Omega$ with $e_{j}>0$ and $|e| \geq|\alpha|$. If either $\alpha_{i}=0$ or $e_{j}=0$, we set $\mathbf{M}_{\alpha, e}^{j, i}=0$. So, for each $j=1, \ldots, q$ we have:

$$
\begin{aligned}
& \varepsilon^{j}(\varphi \bullet r)=(\varphi \bullet r)^{*} \chi^{j}(\varphi \bullet r)=\cdots=\left(\varphi^{D} \bullet r^{*}\right)\left(\sum_{\alpha \in \Delta} \chi^{j}\left(\varphi\left(\mathbf{s}^{\alpha}\right)\right) r_{\alpha}\right)= \\
& \left(\sum_{e \in \Omega}\left(\sum_{|\alpha| \leq|e|} \mathbf{C}_{e}\left(\varphi^{D}, \alpha\right) r_{\alpha}^{*}\right) \mathbf{u}^{e}\right)\left(\sum_{\substack{e_{j}>0}}\left(\sum_{\substack{|\alpha| \leq|e| \\
\alpha_{i} \neq 0}} \alpha_{i} \mathbf{M}_{\alpha, e}^{j, i} r_{\alpha}\right) \mathbf{u}^{e}\right)= \\
& \sum_{\substack{ \\
e_{j}>0}}\left(\sum_{\substack{f+9=e \\
s_{j}|1| l|l| l|l| \\
g_{j}>0, i \in \sup ,}} \nu_{t} \mathbf{C}_{f}\left(\varphi^{D}, \mu\right) r_{\mu}^{*} \mathbf{M}_{\nu, g}^{j, i} r_{\nu}\right) \mathbf{u}^{e} \stackrel{(\star)}{=} \\
& \sum_{\substack{e_{j}>0}}\left(\sum_{\substack{f+g=e \\
1 \beta+\gamma\left|=|,|\nu|| \leq|s| \\
g_{j}>0, i \in \operatorname{supp}\right.}} \nu_{i} \mathbf{C}_{f}\left(\varphi^{D}, \beta+\gamma\right) D_{\beta}^{*}\left(\mathbf{M}_{\nu, g}^{j, i}\right) r_{\gamma}^{*} r_{\nu}\right) \mathbf{u}^{e}=
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{e_{j}>0}\left(\sum_{\substack{0<|h| \leq|e| \\
i \in \operatorname{supp} h}} \sum_{\substack{\gamma+\nu=h \\
i \in \operatorname{supp} \nu}} N_{e, \nu, \gamma}^{j, i} \nu_{i} r_{\gamma}^{*} r_{\nu}\right) \mathbf{u}^{e},
\end{aligned}
$$

where equality (\star) comes from the fact that r^{*} is a D^{*}-element (see Lemma 3.2.2) and

$$
N_{e, \nu, \gamma}^{j, i}= \begin{cases}\sum_{\begin{array}{c}
f+g=e \\
|\beta+\gamma| \leq|f| \\
|\nu| \leq|g|, g_{j}>0
\end{array}} \mathbf{C}_{f}\left(\varphi^{D}, \beta+\gamma\right) D_{\beta}^{*}\left(\mathbf{M}_{\nu, g}^{j, i}\right) & \text { if } \nu_{i}>0, e_{j}>0,|e| \geq|\nu+\gamma| \\
00 & \text { otherwise }\end{cases}
$$

But, for $h=\nu+\gamma$, we have:

$$
\begin{aligned}
& N_{e, \nu, \gamma}^{j, i}=\sum_{\substack{f+g=e \\
|\beta+\gamma| \leq|f| \\
|\nu| \leq|g|, g_{j}>0}} \mathbf{C}_{f}\left(\varphi^{D}, \beta+\gamma\right) D_{\beta}^{*}\left(\mathbf{M}_{\nu, g}^{j, i}\right)= \\
& \left.\sum_{\substack{f+g=e \\
|\beta+\gamma| \leq|f| \\
|\nu| \leq|g|, g_{j}>0}} \mathbf{C}_{f}\left(\varphi^{D}, \beta+\gamma\right) D_{\beta}^{*} \sum_{\substack{g^{\prime}+g^{\prime \prime}=g \\
\left|g^{\prime}\right| \geq|\nu|-1 \\
g_{j}^{\prime \prime}>0}} g_{j}^{\prime \prime} \mathbf{C}_{g^{\prime}}\left(\varphi, \nu-v^{i}\right) \mathbf{C}_{g^{\prime \prime}}\left(\varphi, v^{i}\right)\right)= \\
& \sum_{\substack{f+g^{\prime}+g^{\prime \prime}=e \\
\left|\beta^{\prime}+\beta^{\prime \prime}++|\leq|f|\\
| \nu\right|-1 \leq\left|g^{\prime}\right|, g_{j}^{\prime \prime}>0}} g_{u}^{\prime \prime} \mathbf{C}_{f}\left(\varphi^{D}, \beta^{\prime}+\beta^{\prime \prime}+\gamma\right) D_{\beta^{\prime}}^{*}\left(\mathbf{C}_{g^{\prime}}\left(\varphi, \nu-v^{i}\right)\right) D_{\beta^{\prime \prime}}^{*}\left(\mathbf{C}_{g^{\prime \prime}}\left(\varphi, v^{i}\right)\right)= \\
& \sum_{\substack{\rho+g^{\prime \prime}=e \\
\left|\beta^{\prime \prime}+h\right|-1 \leq|\rho| \\
g_{j}^{\prime \prime}>0}} g_{j}^{\prime \prime}\left(\sum_{\substack{f+g^{\prime}=\rho \\
\left|\beta^{\prime \prime}+\gamma+\beta^{\prime}\right| \leq|f| \\
|\nu|-1 \leq\left|g^{\prime}\right|}} \mathbf{C}_{f}\left(\varphi^{D}, \beta^{\prime \prime}+\gamma+\beta^{\prime}\right) D_{\beta^{\prime}}^{*}\left(\mathbf{C}_{g^{\prime}}\left(\varphi, \nu-v^{i}\right)\right)\right) D_{\beta^{\prime \prime}}^{*}\left(\mathbf{C}_{g^{\prime \prime}}\left(\varphi, v^{i}\right)\right) \stackrel{(\star)}{=} \\
& \sum_{\substack{\rho+g^{\prime \prime}=e \\
\left|\beta^{\prime \prime}+h\right|-1 \leq|\rho| \\
g_{j}^{\prime \prime}>0}} g_{j}^{\prime \prime} \mathbf{C}_{\rho}\left(\varphi^{D}, \beta^{\prime \prime}+\gamma+\nu-v^{i}\right) D_{\beta^{\prime \prime}}^{*}\left(\mathbf{C}_{g^{\prime \prime}}\left(\varphi, v^{i}\right)\right),
\end{aligned}
$$

where equality (\star) comes from Proposition 2.2.3, and so $N_{e, \nu, \gamma}^{j, i}$ only depends on $h=\gamma+\nu$. By setting:

$$
\mathbf{N}_{e, h}^{j, i}:=\sum_{\substack{f+g=e \\|\beta+h|-1 \leq|f| \\ g_{j}>0}} g_{j} \mathbf{C}_{f}\left(\varphi^{D}, \beta+h-v^{i}\right) D_{\beta}^{*}\left(\mathbf{C}_{g}\left(\varphi, v^{i}\right)\right)
$$

for $e_{j}, h_{i}>0,|e| \geq|h|$ and $\mathbf{N}_{e, h}^{j, i}:=0$ otherwise, we have $N_{e, \nu, \gamma}^{j, i}=\mathbf{N}_{e, \gamma+\nu}^{j, i}$, and so:

$$
\begin{aligned}
& \varepsilon^{j}(\varphi \bullet r)=\cdots=\sum_{e_{j}>0}\left(\sum_{\substack{0<|h| \leq|e| \\
0 \in \operatorname{supp} h}} \sum_{\substack{\gamma+\nu=h \\
i \in \operatorname{supp} \nu}} N_{e, \nu, \gamma}^{j, i} \nu_{i} r_{\gamma}^{*} r_{\nu}\right) \mathbf{u}^{e}= \\
& \sum_{e_{j}>0}\left(\sum_{\substack{0<|h| \leq|e| \mid \\
i \in \operatorname{supp} h+\nu=h \\
i \in \operatorname{supp} \nu}} \mathbf{N}_{e, \gamma+\nu}^{j, i} \nu_{i} r_{\gamma}^{*} r_{\nu}\right) \mathbf{u}^{e}=\sum_{e_{j}>0}\left(\sum_{\substack{0<|h| \leq|e| \\
i \in \operatorname{supp} h}} \mathbf{N}_{e, h}^{j, i} \sum_{\substack{\gamma+\nu=h \\
i \in \operatorname{supp} \nu}} \nu_{i} r_{\gamma}^{*} r_{\nu}\right) \mathbf{u}^{e}= \\
& \sum_{e_{j}>0}\left(\sum_{\substack{0<|h| \leq|e| \\
i \in \operatorname{supp} h}} \mathbf{N}_{e, h}^{j, i} \varepsilon_{h}^{i}(r)\right) \mathbf{u}^{e} .
\end{aligned}
$$

Corollary 3.2.6. Under the hypotheses of Theorem 3.2.5, we have:

$$
\varepsilon_{e}^{j}(\varphi \cdot D)=\sum_{\substack{0<|h| \leq|e| \\ i \in \operatorname{supp} h}} \mathbf{N}_{e, h}^{j, i} \varepsilon_{h}^{i}(D) \quad \forall e \in \Omega, \forall j=1, \ldots, q
$$

References

1. H. Hasse and F. K. Schmidt. Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Fun J. Reine Angew. Math. 177 (1937), 223-239.
2. M. Hazewinkel. Hasse-Schmidt Derivations and the Hopf Algebra of Non-Commutative Symmetric Functions Axioms 1 (2) (2012), 149-154. (arXiv:1110.6108).
3. N. Heerema. Higher derivations and automorphisms of complete local rings. Bull. Amer. Math. Soc. 76 (1970), 1212-1225.
4. D. Hoffmann and P. Kowalski. Integrating Hasse-Schmidt derivations J. Pure Appl. Algebra, 219 (2015), 875-896.
5. H. Matsumura. Integrable derivations Nagoya Math. J. 87 (1982), 227-245.
6. H. Matsumura. Commutative Ring Theory. Vol. 8 of Cambridge studies in advanced mathematics, Cambridge Univ. Press, Cambridge, 1986.
7. M. Mirzavaziri. Characterization of higher derivations on algebras Comm. Algebra, 38 (3) (2010), 981-987.
8. L. Narváez Macarro. On the modules of m-integrable derivations in non-zero characteristic Adv. Math. 229 (5) (2012), 2712-2740. (arXiv:1106.1391).
9. L. Narváez Macarro. On Hasse-Schmidt Derivations: the Action of Substitution Maps. In "Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Festschrift for Antonio Campillo on the occasion of his 65th birthday", Greuel, Gert-Martin (ed.) et al., 219-262. Springer International Publishing, Cham, 2018. (arXiv:1802.09894).
10. L. Narváez Macarro. Rings of differential operators as enveloping algebras of Hasse-Schmidt derivations J. Pure Appl. Algebra 224 (1) (2020), 320-361. (arXiv:1807.10193).
11. L. Narváez Macarro. Hasse-Schmidt modules versus integrable connections. (arXiv:1903.08985).
12. S. A. Saymeh. On Hasse-Schmidt higher derivations Osaka J. Math. 23 (2) (1986), 503-508.
13. M. P. Tirado Hernández. Integrable derivations in the sense of Hasse-Schmidt for some binomial plane curves. Rend. Sem. Mat. Univ. Padova, to appear. (arXiv:1807.10502).

Luis Narváez Macarro, Departamento de Álgebra \& Instituto de Matemáticas (IMUS),
Facultad de Matemáticas Universidad de Sevilla, Calle Tarfia s/n, 41012 Sevilla, Spain.
E-mail address: narvaez@us.es

[^0]: 2010 Mathematics Subject Classification. Primary: 14F10, 13N10; Secondary 13N15.
 Key words and phrases. Hasse-Schmidt derivation, derivation, power series ring, substitution map.

 Partially supported by MTM2016-75027-P, P12-FQM-2696 and FEDER.

[^1]: ${ }^{1}$ This result has been "rediscovered" in $\mathbf{1 2}$ for A a commutative algebra over a field k of characteristic zero.

[^2]: ${ }^{2}$ This terminology is used for instance in 6].
 ${ }^{3}$ These HS-derivations are called of length m in 8 .

