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Abstract: This paper proposes a new technique for implementing Finite State Machines (FSMs)
in Field Programmable Gate Arrays (FPGAs). The proposed approach extends the called column
compaction in two ways. First, it is applied to the state-encoding bits in addition to the outputs,
allowing a reduction in the number of logic functions required both by the state transition function
and by the output function. Second, the technique exploits the dedicated multiplexers usually
included in FPGAs to increase the number of columns that can be compacted. Unlike conventional
state-encoding techniques, the proposed approach reduces the number of logic functions instead
of their complexity. An Integer Linear Programming (ILP) formulation that maximizes the number
of compacted columns has been proposed. In order to evaluate the effectiveness of the proposed
approach, experimental results using standard benchmarks are presented. In most cases, the proposed
approach reduces the number of used Look-Up Tables (LUTs) with respect to the conventional FSM
implementation.

Keywords: finite state machine; column compaction; state encoding; dedicated multiplexer; synthesis;
FPGA

1. Introduction

Finite State Machines (FSMs) are probably the most widely used component in digital
design. They allow one to model any sequential circuit, particularly control units. Opti-
mizing FSM implementations in terms of area, speed or power consumption is essential
to meet the design constraints demanded by applications. For this reason, the synthesis
of FSMs has received the attention of researchers, designers and EDA tool developers for
decades [1–4]. One of the most active fields has been the encoding of the FSM states to
achieve optimal implementations of the state transition and output functions [5–20].

Other techniques are focused on the optimal assignment of don’t care outputs, which
are very usual because the values of some outputs do not matter in some states. The
technique called column compaction exploits these don’t cares to reduce the number of
logic functions that must be implemented [21–25]. The aim of this technique is to assign
values of zero or one to the don’t cares in order to achieve that two or more outputs are
equal to each other, and so only one logic function must be implemented for each group of
equivalent outputs.

Our technique extends column compaction in two ways. First, it extends the concept
of column compaction to the state-encoding bits. To the best knowledge of the authors’
knowledge, column compaction has never been applied to the state transition function.
In addition to assign values to don’t cares to find equivalent outputs, our technique
also encodes the states to achieve that some encoding bits are equal to some outputs.
Therefore, it can be viewed as an extension of column compaction that is applied to the
state transition function, in addition to the output function. This allows one to reduce
the number of logic functions required to implement both functions. We will refer to the
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one-to-one correspondence between state-encoding bits and outputs as direct mapping of
state-encoding bits. For analogy, column compaction will be referred to as direct mapping
of outputs.

Second, the proposed technique exploits the dedicated 2:1 multiplexers usually in-
cluded in Field Programmable Gate Arrays (FPGAs), which allow one to combine the
outputs of two Look-Up Tables (LUTs) [26]. In order to reduce the number of LUTs used,
the technique searches pairs of outputs that can be combined by means of dedicated multi-
plexers to generate the next state-encoding bits or other outputs. Therefore, the proposed
technique also extends the concept of compaction to that of mapping via multiplexers. Each
multiplexer is controlled by a bit of the present state. Due to the fact that the state-encoding
bits are control inputs of the multiplexers and outputs of some of them, state encoding has
a great influence on the results that can be obtained. Unlike conventional state-encoding
techniques, the proposed approach reduces the number of logic functions instead of their
complexity. Our technique is based on an Integer Linear Programming (ILP) formulation,
which allows a solver to find the optimal mapping (or suboptimal, when the execution
time is limited).

As a conclusion, the proposed technique uses three mechanisms to reduce the number
of logic functions: direct mapping of outputs (i.e., column compaction), direct mapping of
state-encoding bits and mapping via multiplexers, which are each modeled by a unique ILP
formulation. Unlike the other two mechanisms, which are presented for the first time, column
compaction is a classical technique. However, the novelty lies in the fact that it is based on a
ILP formulation instead of heuristics [22], which allows one to obtain the optimal value, or in
the worst case, to find a bound of the error corresponding to a non-optimal solution.

The remainder of this article is organized as follows. In Section 2, brief background
about FSMs and FPGA devices is presented. Section 3 describes the fundamentals of the
proposed technique and its architecture. Section 4 presents the proposed ILP formula-
tion. Section 5 shows the obtained experimental results. Finally, conclusions are drawn
in Section 6.

2. Background

Let F = (S, t, o, S0) be a FSM, where S represents the set of states; t : S× {0, 1}r → S,
the state transition function; o : S × {0, 1}r → {0, 1,−}m, the output function; and S0,
the reset state. The parameters r and m represent the numbers of inputs and outputs,
respectively.

The State Transition Diagram (STD) is commonly used to show the behavior of a
FSM. Figure 1 shows an example of FSM, whose STD is shown in Figure 1a. For a proper
description of the proposed technique, it is more convenient to represent the FSM in the
form of a State Transition Table (STT). As Figure 1b,c show, a STT is a table whose rows
represent the transitions of the FSM as the 4-tuple (in, ps, ns, out), where in represents
the inputs; ps, the present state; ns, the next state; and out, the outputs. The symbol “–”
represents a don’t care value. A symbolic STT shows the states as symbols (see Figure 1b),
whereas a codified STT shows the states once they have been codified (see Figure 1c).

FPGAs are semiconductor devices that are based around a matrix of Configurable
Logic Blocks (CLBs) connected via programmable interconnects. In current Xilinx FPGA
devices, each CLB is composed by two slices, and each one of them includes four LUTs. In
addition, each slice includes three dedicated 2:1 multiplexers: two called F7 and one called
F8. Each F7 combines the outputs of two LUTs whereas F8 combines the outputs of two
F7s. Dedicated multiplexers can be used to create general-purpose functions of up to 13
inputs in 2 LUTs or 27 inputs in 4 LUTs (i.e., in one slice) [26].
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Figure 1. Example of the mapping of state-encoding bits and outputs to outputs: (a) STD, (b) symbolic
SST, (c) encoded STT and (d) implementation.

3. Mapping Outputs and States Encoding Bits to Outputs by Means of Multiplexers

The aim of the proposed technique is to generate FSM outputs or the next state-
encoding bits from FSM outputs without using extra LUTs. Both direct mapping and
mapping via multiplexers are applied for this purpose. Mapping via multiplexers benefits
from dedicated multiplexers, avoiding the use of extra LUTs. The advantage of direct
mapping is that it allows one to reduce the number logic levels (i.e., to remove the logic
levels corresponding to the dedicated multiplexers) and to improve the routing; therefore,
this mapping can increase the speed. To sum up, including mapping via multiplexer allows
one to find solutions with a more mapped signals. However, the proposed ILP formulation
gives priority to direct mapping.

By exploiting the usual strong relationship between the transition and output functions,
the proposed technique codifies the states to achieve that the maximum number of signals
(whether outputs or state-encoding bits) are mapped. In addition to encode the states, the
proposed technique assigns values to the don’t care outputs to achieve its objective. There
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is a key difference between the proposed technique and the conventional state-encoding
approaches [5–20] that justifies its novelty. State-encoding algorithms assign a different
code to each FSM state with the purpose of simplifying the complexity of the transition
and output functions. On the other hand, the proposed approach reduces the number of
logic functions instead of its complexity. Compared with the conventional state-encoding
approaches, assigning don’t care outputs and codifying states in a non-optimal way in
terms of function complexity can result in an increase in the number of LUTs required by
each logic function. However, a reduction in the number of logic functions achieved by the
proposed technique can compensate for such an increase, resulting in a lesser overall LUT
count.

Figure 2 shows the general architecture to implement the FSMs obtained from the
proposed technique. For simplicity, the signals generated from a single output (i.e., by
applying direct mapping) have been excluded from the figure. The combinational block im-
plements the logic corresponding to the unmapped bits of the next state and the unmapped
outputs, so it partially implements the state transition and output functions. The mapped
signals are generated from unmapped outputs by means of multiplexers controlled by a bit
of the present state (which is not necessarily different from those of other multiplexers).
The larger the number of mapped signals, the simpler the combinational block. This is due
to the fact that the number of logic functions is reduced.

Figure 2. General architecture for mapping state-encoding bits and outputs to outputs.

Figure 1c shows the STT of the FSM example (Figure 1b) after applying a mapping of
state-encoding bits and outputs to outputs. After codifying the states and assigning some
don’t care outputs, the next state-encoding bit N2 can be mapped to outputs O1 and O2 by
means of a multiplexer controlled by the present state-encoding bit P1, which selects O1 if
P1 = 0 and O2 if P1 = 1 (see Figure 1b,c). Note that Figure 1c shows in bold the don’t care
outputs that have been assigned. Similarly, O5 can be mapped to O3 and O4 by means of a
multiplexer controlled by P2, which selects O3 if P2 = 0 and O4 if P2 = 1. This mapping
allows one to reduce the number of logic functions that must be implemented in LUTs
from seven to five (see Figure 1d). By supposing LUTs of four inputs, the implementation
obtained by the proposed technique requires five LUTs, whereas the conventional FSM
implementation requires seven LUTs, independently of the state encoding used.

We define optimal mapping of outputs and state-encoding bits to outputs (OMOSEBO)
as the problem of finding the mapping that maximizes the number of mapped signals (i.e.,
that minimizes the number of logic functions that are required to implement the output
and state transition functions).
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We have proposed an ILP formulation for this problem, which prioritizes direct
mapping over mapping via multiplexers. Some constraints are imposed by the Xilinx
FPGA architecture itself. As the output of each LUT is physically connected to a unique F7
multiplexer, routing the output of the LUT to a different multiplexer requires an additional
LUT (called route-thru). F8 multiplexers present similar problems because the output of
each F7 is physically connected to a unique F8 multiplexer. To prevent these situations,
the ILP formulation must ensure that a FSM output cannot be used to generate more than
one signal via multiplexer. However, although dedicated multiplexers F7 and F8 can be
chained, allowing the multiplexing of up to four signals, we have limited our approach
to a unique number of multiplexers to avoid increasing the complexity of the proposed
ILP formulation. Therefore, the solver must exclude candidate solutions in which outputs
mapped via multiplexers are inputs of other multiplexers.

4. Integer Linear Programming Formulation

Let S = {S1, S2, . . . , Se} be the set of states of a FSM. Let us suppose that Oi for
i = 1, . . . , m represents each output of the FSM. Let us consider the tuple (T1, T2, . . . , Tq),
where Ti ≡ (Sj, Sk) ∈ S× S, and Sj and Sk represent the present and next state, respectively,
of the transition corresponding to i-th row of the STT. Let us consider that Pi and Ni
represent the i-th encoding bit of the present and the next state, respectively. Let us suppose
that Oi

j ∈ {0, 1,−} represents the value of the output Oj for the transition corresponding to
the i-th row of the STT.

The ILP formulation requires the following binary variables:

• fi,j,k,r for all i, j, k, r, which is equal to one if and only if Ni can be generated from Oj
and Ok via a multiplexer controlled by Pr so that Ni = Oj for all transitions in which
Pr = 0, and Ni = Ok for the remaining (Ni is therefore mapped to Oj and Ok).

• gi,j,k,r for all i, j, k, r, which is equal to one if and only if Oi can be generated from Oj
and Ok via a multiplexer controlled by Pr so that Oi = Oj for all transitions in which
Pr = 0, and Oi = Ok for the remaining (Oi is therefore mapped to Oj and Ok).

• hi,j for all i, j, which represents the value of the Oj for the transition corresponding to
the i-th row of the STT. Note that hi,j must be equal to Oi

j for all i, j such that Oi
j ∈ {0, 1}

(i.e., Oi
j is not a don’t care); however, the remainder values of hi,j will be determined

by the solver.
• ci,j for all i, j, which represents the j-th bit of the encoding of Si.
• di,j,k for all i, j, k such that j < k, which is equal to one if and only if i-th bit of the

encoding of Sj and that of Sk are different.

Note that if fi,j,j,r = 1, then there exits a direct mapping of Ni to Oj (so the value of r is
not relevant). Similarly, if gi,j,j,r = 1, then there exists a direct mapping of Oi to Oj.

The objective of the OMOSEBO problem is to find a mapping of outputs and state-
encoding bits that maximize the following tuple in lexicographical order:

( ∑
u,v,t,r

fu,v,t,r + ∑
{w,v,t,r|v 6=t}

gw,v,t,r + ∑
{w,v,r|v>w}

gw,v,v,r, ∑
u,v,r

fu,v,v,r + ∑
{w,v,r|v>w}

gw,v,v,r) (1)

The first element allows one to maximize the number of mapped signals; the second
one prioritizes the direct mapping over the mapping via multiplexer. The terms gw,v,v,r
include only the cases in which v > w to avoid counting twice one output directly mapped
to another (e.g., if gw,v,v,r = 1 and gv,w,w,r′ = 1, then only Ov or Ow can be removed in the
corresponding implementation).

Encoding e states requires d = dlog2 ee bits; therefore, z = d + m is the total number
of signals (either outputs or state-encoding bits). As ∑u,v,t,r fu,v,t,r + ∑{w,v,t,r|v 6=t} gw,v,t,r +

∑{w,v,r|v>w} gw,v,v,r represent the number of mapped signals, it is obvious that ∑u,v,t,r fu,v,t,r +

∑{w,v,t,r|v 6=t} gw,v,t,r + ∑{w,v,r|v>w} gw,v,v,r < z. We use this property to define the weight
α = 1 + 1

z for the terms corresponding to direct mapping in order to model the multi-
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objective function. The ILP formulation of the OMOSEBO problem can be expressed as
follows:

Maximize

∑
{u,v,t,r|v 6=t}

fu,v,t,r + α ∑
u,v,r

fu,v,v,r + ∑
{w,v,t,r|v 6=t}

gw,v,t,r + α ∑
{w,v,r|v>w}

gw,v,v,r (2)

subject to

− fu,v,t,r + ci,r − hj,v + ck,u ≥ −1 ∀u, v, t, r, Tj ≡ (Si, Sk) (3)

fu,v,t,r − ci,r − hj,v + ck,u ≤ 1 ∀u, v, t, r, Tj ≡ (Si, Sk) (4)

− fu,v,t,r − ci,r − hj,t + ck,u ≥ −2 ∀u, v, t, r, Tj ≡ (Si, Sk) (5)

fu,v,t,r + ci,r − hj,t + ck,u ≤ 2 ∀u, v, t, r, Tj ≡ (Si, Sk) (6)

−gw,v,t,r + ci,r − hj,v + hi,j,w ≥ −1 ∀w, v, t, r, Tj ≡ (Si, Sk) (7)

gw,v,t,r − ci,r − hj,v + hi,j,w ≤ 1 ∀w, v, t, r, Tj ≡ (Si, Sk) (8)

−gw,v,t,r − ci,r − hj,t + hi,j,w ≥ −2 ∀w, v, t, r, Tj ≡ (Si, Sk) (9)

gw,v,t,r + ci,r − hj,t + hi,j,w ≤ 2 ∀w, v, t, r, Tj ≡ (Si, Sk) (10)

∑
v,t,r

fu,v,t,r ≤ 1 ∀u (11)

∑
v,t,r

gw,v,t,r ≤ 1 ∀w (12)

∑
{u,t,r|t 6=v}

fu,v,t,r + ∑
{u,t,r|t 6=v}

fu,t,v,r + ∑
{w,t,r|t 6=v}

gw,v,t,r + ∑
{w,t,r|t 6=v}

gw,t,v,r ≤ 1 ∀vs. (13)

gw,w,t,r = 0 ∀w, t, r (14)

gw,t,w,r = 0 ∀w, t, r (15)

(gw,v,t,r − 1)m + ∑
{v′ ,t′ ,r′ |t′ 6=v′}

gv,v′ ,t′ ,r′ ≤ 0 ∀w, v, t 6= v, r (16)

(gw,t,v,r − 1)m + ∑
{v′ ,t′ ,r′ |t′ 6=v′}

gv,v′ ,t′ ,r′ ≤ 0 ∀w, v, t 6= v, r (17)

( fu,v,t,r − 1)m + ∑
{v′ ,t′ ,r′ |t′ 6=v′}

gv,v′ ,t′ ,r′ ≤ 0 ∀u, v, t 6= v, r (18)

( fu,t,v,r − 1)m + ∑
{v′ ,t′ ,r′ |t′ 6=v′}

gv,v′ ,t′ ,r′ ≤ 0 ∀u, v, t 6= v, r (19)

(gw,v,v,r − 1)z + ∑
w′ ,v′ ,r′

gw′ ,w,v′ ,r′ + gw′ ,v′ ,w,r′ + ∑
u,v′ ,r′

fu,w,v′ ,r′ + fu,v′ ,w,r′ ≤ 0 ∀w, v, r (20)

−di,j,k + cj,i + ck,i ≥ 0 ∀i, j, k (21)

di,j,k + cj,i + ck,i ≤ 2 ∀i, j, k (22)

∑
i

di,j,k ≥ 1 ∀j, k (23)

hi,j = Oi
j ∀i, j|Oi

j ∈ {0, 1} (24)

Constraints (3)–(6) ensure that the mapping is coherent with the transition function.
Constraints (3) and (4) are the result of the linearization of the following constraint:

fu,v,t,r = 1∧ ci,r = 0 =⇒ ck,u = hj,v ∀u, v, t, r, Tj ≡ (Si, Sk) (25)

For each transition Tj ≡ (Si, Sk), if Pr = 0 (i.e., the r-th bit of the encoding of the
present state, Si, is equal to 0), then the multiplexer connects Ov to Nu; therefore, the u-th
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bit of the coding of the next state, Sk, must be equal to the value of the output Ov. Similarly,
for the cases in which Pr = 1, (5) and (6) are obtained from the following constraint:

fu,v,t,r = 1∧ ci,r = 1 =⇒ ck,u = hj,t ∀u, v, t, r, Tj ≡ (Si, Sk) (26)

Constraints (7)–(10) guarantee the coherence with the output function. Constraints (7)
and (8) are obtained by the linearization of the following constraint:

gw,v,t,r = 1∧ ci,r = 0 =⇒ hj,w = hj,v ∀w, v, t, r, Tj ≡ (Si, Sk) (27)

If Pr = 0, then the multiplexer connects Ov to Ow; therefore, they must be equal to
each other. Similarly, for the cases in which Pr = 1, (9) and (10) are obtained from the
following constraint:

gw,v,t,r = 1∧ ci,r = 1 =⇒ hj,w = hj,t ∀w, v, t, r, Tj ≡ (Si, Sk) (28)

Constraints (11) and (12) ensure that the state-encoding bits and the outputs, respec-
tively, are not mapped more than once (see Figure 3a,b). Constraint (13) guarantees that
any output cannot be used to generate more than one signal by means of a multiplexer,
whether a state-encoding bit or an output (see Figure 3c). Constraints (14) and (15) prevent
that an output is mapped to itself (see Figure 3d).

Constraints (16) and (17) are the results of the linearization of the constraints

gw,v,t,r = 1 =⇒ ∑
v′ ,t′ 6=v′ ,r′

gv,v′ ,t′ ,r′ = 0 ∀w, v, t 6= v, r (29)

and

gw,t,v,r = 1 =⇒ ∑
v′ ,t′ 6=v′ ,r′

gv,v′ ,t′ ,r′ = 0 ∀w, v, t 6= v, r (30)

respectively. They prevent that an output generated from others via a multiplexer is used
to map an output using a multiplexer (see Figure 4a). Similarly, (18) and (19) are obtained
by linearization of the constraints

fu,v,t,r = 1 =⇒ ∑
v′ ,t′ 6=v′ ,r′

gv,v′ ,t′ ,r′ = 0 ∀u, v, t 6= v, r (31)

and

fu,t,v,r = 1 =⇒ ∑
v′ ,t′ 6=v′ ,r′

gv,v′ ,t′ ,r′ = 0 ∀u, v, t 6= v, r (32)

respectively. They prevent the mapping of a state-encoding bit in the circumstances
described above (see Figure 4b).

Constraint (20) is obtained from constraint

gw,v,v,r = 1 =⇒ ∑
w′ ,v′ ,r′

gw′ ,w,v′ ,r′ + gw′ ,v′ ,w,r′ + ∑
u,v′ ,r′

fu,w,v′ ,r′ + fu,v′ ,w,r′ = 0 ∀w, v, r (33)

which prevents an output directly mapped to another being used to generate a third signal
(either an output or a state-encoding bit). Figure 4c,d show the cases of outputs and state-
encoding bits, respectively. The aim of these constraints is to prevent that a direct mapping
leads to the situations shown in Figure 4e, despite constraints from (16) to (19). It might be
thought that (20) prevents some valid solutions. For example, supposing that Ov is not a
mapped output, the implementation shown on the left of Figure 4c could be valid if it is
not prevented by (20), allowing that Ow and Ow′ are mapped outputs. However, the solver
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will find the following equivalent solution (which do is allowed): Ov and O′v generate O′w
via the multiplexer, and Ov also generates Ow.

(a)

(b)

(c)

(d)

Figure 3. Solutions that ILP constraints from (11) to (15) prevent: (a) constraint (11), (b) constraint (12),
(c) constraint (13) and (d) constraints (14) and (15).
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Finally, (21)–(23) guarantee the code assigned to each state is different from the other
ones. Constraints (21) and (22) ensure that the i-th bit of the encoding of Sj is different from
the i-th bit of the encoding of Sk if di,j,k = 1; that is,

di,j,k = 1 =⇒ cj,i 6= ck,i ∀i, j, k (34)

Constraint (23) guaranties that any pair of states, Sj and Sk, differ at least in one bit.
Constraint (24) assigns the values of the outputs that are not don’t care values, and

thus they cannot be determined by the solver.

(a)

(b)

(c)

(d)

(e)

Figure 4. Solutions that ILP constraints from (16) to (20) prevent: (a) constraints (16) and (17),
(b) constraints (18) and (19), (c) constraint (20) for outputs, (d) constraint (20) for state encoding bits
and (e) an example of the situation that must be prevented.

5. Experimental Results

OMOSEBO has been evaluated using FSMs of the MCNC benchmark set [27]. The
number of states of these FSMs were previously minimized by STAMINA [28]. All designs
were synthesized and implemented using Xilinx Vivado Design Suite 2022.1 in a Spartan-7
FPGA (xc7s6cpga196-2). Therefore, the results include the delay of the placement-and-
routing stage. In order to evaluate the effectiveness of OMOSEBO, the implementations
obtained using this technique were compared to the corresponding conventional FSM
implementations (which will be called CONV). CONV implementations were generated
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using the template for FSMs of Vivado (see Figure 5, which shows the VHDL code for
implementing the FSM example using the FSM template). The proposed ILP formulation
was implemented using the API of Gurobi [29] for Python and solved with a time limit of
4 hours. The optimization was carried out on an Intel i7-10700K at 3.80 GHz with 16 GB
of RAM. The HDL description generated after the optimization process uses a modified
version of the FSM template that included a standard description of multiplexors (see
Figure 6, which shows the VHDL code for implementing the FSM example by applying
OMOSEBO). As the aim of OMOSEBO is to improve the area, Vivado was configured
for area optimization using the preconfigured strategies Flow_AreaOptimized_high and
Area_Explore for synthesis and implementation, respectively.

entity fsm_example is
port ( clk: in std_logic;

input : in std_logic_vector( 1 to 1 );
output : out std_logic_vector( 1 to 5 ));

end fsm_example;

architecture conv of fsm_example is
type state_type is (S0, S1, S2, S3);
signal state , next_state : state_type;
signal output_i : std_logic_vector( 1 to 5 );
signal input_i : std_logic_vector( 1 to 1 );

begin
SYNC_PROC: process (clk)
begin

if (clk ’event and clk = ’1’) then
input_i <= input;
output <= output_i;
state <= next_state;

end if;
end process;
TRANSITIONS: process( state , input_i )
begin

case (state) is
when S0 =>

if input_i (1)=’0’ then
next_state <= S0;
output_i <= "0-01-";

else
next_state <= S1;
output_i <= " -1010";

end if;
when S1 =>

next_state <= S2;
output_i <= "11-11";

when S2 =>
if input_i (1)=’0’ then

next_state <= S3;
output_i <= "01100";

else
next_state <= S1;
output_i <= "11011";

end if;
when S3 =>

if input_i (1)=’0’ then
next_state <= S3;
output_i <= "1--01";

else
next_state <= S0;
output_i <= "00111";

end if;
end case;

end process;
end conv;

Figure 5. VHDL code for implementing the FSM example using the FSM template.
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entity fsm_example is
port ( clk: in std_logic;

input : in std_logic_vector( 1 to 1 );
output : out std_logic_vector( 1 to 5 ));

end fsm_example;

architecture omosebo of fsm_example is
constant S0: std_logic_vector (1 to 2) := "00";
constant S1: std_logic_vector (1 to 2) := "11";
constant S2: std_logic_vector (1 to 2) := "01";
constant S3: std_logic_vector (1 to 2) := "10";
signal state , next_state : std_logic_vector (1 to 2);
signal output_i : std_logic_vector( 1 to 5);
signal output_i_src : std_logic_vector( 1 to 4);
signal input_i : std_logic_vector( 1 to 1 );

begin
output_i (1) <= output_i_src (1);
output_i (2) <= output_i_src (2);
output_i (3) <= output_i_src (3);
output_i (4) <= output_i_src (4);
output_i (5) <= output_i_src (3) when state (2) = ’0’ else output_i_src (4);
next_state (2) <= output_i_src (1) when state (1) = ’0’ else output_i_src (2);
input_i <= input;
output <= output_i;
SYNC_PROC: process (clk)
begin

if (clk ’event and clk = ’1’) then
state <= next_state;

end if;
end process;
TRANSITIONS: process( state , input_i )
begin

case (state) is
when S0 => -- 00

if input_i (1)=’0’ then
next_state (1) <= S0(1);
output_i_src <= "0-01";

else
next_state (1) <= S1(1);
output_i_src <= "1101";

end if;
when S1 => -- 11

next_state (1) <= S2(1);
output_i_src <= "11-1";

when S2 => -- 01
if input_i (1)=’0’ then

next_state (1) <= S3(1);
output_i_src <= "0110";

else
next_state (1) <= S1(1);
output_i_src <= "1101";

end if;
when S3 => -- 10

if input_i (1)=’0’ then
next_state (1) <= S3(1);
output_i_src <= "1010";

else
next_state (1) <= S0(1);
output_i_src <= "0011";

end if;
when others =>

next_state <= (others => ’-’);
output_i_src <= (others => ’-’);

end case;
end process;

end omosebo;

Figure 6. VHDL code for implementing the FSM example by applying OMOSEBO.

Table 1 shows the number of LUTs and the maximum clock frequency (in MHz)
obtained by CONV and OMOSEBO. In addition, the columns “LUT Red.” and “Freq. Inc.”
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show the area reduction and the speed increment, respectively, obtained by OMOSEBO
with respect to CONV; thus, positive values correspond to the cases in which the proposed
approach was successful (in column “LUT Red.”, these values are shown in bold).

Table 1. Implementation results.

CONV OMOSEBO Comparison
FSM # LUTs Freq. # LUTs Freq. LUT Red. Freq. Inc.

(MHz) (MHz) (%) (%)

s1 78 358 32 430 59 20
mark1 26 443 15 592 42 34

s27 7 649 5 693 29 7
planet 104 406 85 438 18 8
opus 17 567 14 665 18 17
s510 58 461 50 440 14 −5
s820 77 389 68 396 12 2
ex1 70 415 63 407 10 −2
ex6 20 643 18 627 10 −2
styr 103 376 95 348 8 −7
ex4 15 742 14 716 7 −4
cse 41 426 41 472 0 11

s832 76 379 85 382 −12 1
keyb 40 357 46 348 −15 −3
mc 3 907 4 851 −33 −6

Mean 49 501 42 520 11 5

In 53% of cases, the time limit was reached. In half of these cases, the gap (i.e., the
measure that indicates how long the obtained solution is from the optimal) was more than
50%. Therefore, the results could be improved using more time.

OMOSEBO required a lesser number of LUTs than CONV in 73% of cases. The average
LUT reduction was 11%; however, if only the successful cases are taken into account, this
value increases to 21%. Although OMOSEBO reduced the number of logic functions in
all cases, there were three FSMs (20% of the sample) in which the number of used LUTs
was greater than that obtained by CONV. This is due to the fact that OMOSEBO encodes
the states to reduce the number of logic functions, whereas CONV encodes the states to
simplify the logic functions, and so there may be cases in which the increase in complexity
of the logic functions does not compensate for fewer functions. In addition, the don’t care
outputs assigned by OMOSEBO may make the simplification process performed by Vivado
more difficult.

Regarding the maximum clock frequency, the results do not show a clear correlation
between LUT reduction and speed increment (the correlation coefficient is 0.69). Neverthe-
less, although the goal of the proposed technique is to reduce the area, in the 55% of cases
in which the OMOSEBO reduced the area, it also increased the speed, obtaining an average
speed increment of 15% for such cases. In order to study the relationship between speed
increment and area reduction, we obtained the regression line (see Figure 7). Although area
and speed usually are conflicting goals, in general terms, the area reduction obtained by
OMOSEBO was achieved without degrading the speed; in fact, the regression line shows
that the area reduction has a positive impact on the increase in speed.

In order to show the improvement that OMOSEBO represents with respect to conven-
tional column compaction [22], we applied that technique to all studied FSMs. For that, we
added the following constraints to the proposed ILP formulation:

fu,v,t,r = 0 ∀u, v, t, r (35)

gw,v,t,r = 0 ∀w, v, t, r|t 6= vs. (36)
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The constraint (35) prevents the mapping of state bits to outputs. Similarly, (36)
prevents the mapping of outputs to outputs via multiplexers. Therefore, only direct
mapping of outputs (i.e., column compaction) is allowed.

The impact of column compaction with respect to the solutions found by OMOSEBO,
which also includes direct mapping of next state bits and mapping via multiplexers, is very
limited. Although the optimal value was reached in all cases, column compaction reduced
the number logic functions only in four cases. In the remaining 11 cases, the reduction was
due exclusively to direct mapping of next state bits and/or to mapping via multiplexers.
Even in those four cases, the number of logic functions obtained by OMOSEBO was less
than that of column compaction for two of them (a 17% and a 27% less for keyb and mark1,
respectively), and equal for the two others (s820 and s832).

−20 0 20 40 60
LUT reduction (%)

−10

0

10

20

30

Sp
ee

d 
in
cr
em

en
t (
%
)

r=0.69

Figure 7. Speed increment vs. LUT reduction (r represents the correlation coefficient).

6. Conclusions

In this paper, OMOSEBO, a new technique for implementing FSMs in FPGAs, has
been presented. It can be viewed as an extension of column compaction that is applied
to the state transition function in addition to the output function. Moreover, OMOSEBO
also extends the concept of compaction to that of mapping via multiplexers. Therefore,
the proposed technique uses three mechanisms to reduce the number of logic functions:
direct mapping of outputs (i.e., column compaction), direct mapping of state-encoding bits
and mapping via multiplexers, which are modeled by a unique ILP formulation. Unlike
conventional state-encoding techniques, in which states are encoded to simplify the state
transition and output functions, OMOSEBO reduces the number of required logic functions.

In order to evaluate the effectiveness of OMOSEBO, experimental results using stan-
dard benchmarks have been presented. Regarding column compaction, unlike other similar
approaches, the proposed ILP formulation allows one to find optimal solutions. Despite
that, in 11 of the 15 studied cases, the reduction in the number of logic functions is due
exclusively to direct mapping of next state bits and/or mapping via multiplexers, whereas
only in 2 of the studied cases, the reduction is due exclusively to column compaction. In
conclusion, OMOSEBO represents a significant improvement over column compaction.

The FSM implementations obtained by applying OMOSEBO have been compared to
conventional FSM implementations. The results show that OMOSEBO reduces the number
of used LUTs with respect to the conventional implementation in 73% of cases.
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