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Abstract

A detailed study of the electromagnetic responses for quasielastic (e, e′) reactions from nuclear matter 
is presented within the framework of a relativistic model including momentum dependent scalar and vector 
mean field potentials in both the initial and final nucleon wave function states. The effects ascribed to the 
use of energy-dependent potentials are carefully analyzed by comparing their predictions with the responses 
obtained in the case of constant, i.e., energy-independent, potentials, as well as with the plane wave limit in 
the final state. The study is extended to the scaling phenomenon. Results are provided for the scaling func-
tions corresponding to different nuclear systems evaluated at several kinematics ranging from intermediate 
to high values of the momentum transfer. Emphasis is placed on scaling of the first and second kinds and 
the role played by the relativistic scalar and vector mean field potentials.
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1. Introduction

In recent years physicists have devoted a great effort to the investigation of neutrino properties
through the analysis of neutrino oscillation experiments [1,2]. The main objective is to measure 
the leptonic CP violation phase, assessing the neutrino mass hierarchy, and improve our present 
knowledge on the oscillation mixing angles. As most of the detectors used in neutrino oscillation 
experiments consist typically of complex nuclear systems, i.e., carbon, argon, water or mineral 
oil, it is mandatory to describe accurately how neutrinos interact with nuclei at very different 
kinematical regimes. Not only the quasielastic (QE) region should be carefully evaluated but 
also the � and higher nucleon excitations, two-particle two-hole (2p-2h) effects and even deep 
inelastic scattering (DIS). Also the region of very low momentum transfer, in which the impulse 
approximation is highly questionable, can have a significant impact in the analysis of results. As 
known, this makes an important difference from the case of electron beams. Not only the interac-
tion, electromagnetic versus weak, is different but also the kinematics of the processes. Whereas 
the electron beam energy is known with accuracy, so one has control on the main reaction chan-
nel involved in the process, in the case of neutrinos the energy range covered by the beams can be 
extended from hundreds of MeV to several GeV. Hence in neutrino experiments nuclear effects 
corresponding to different reaction mechanisms can play an important role and should be under 
control in order to provide a coherent analysis and interpretation of data. Furthermore, the high 
energies involved require relativity as an essential ingredient.

As a general rule any model aiming to describe neutrino-nucleus interaction processes should 
be first tested against electron scattering data. Only after the nuclear model is validated using 
high quality electron scattering data in the relevant energy domain, one can think of extending it 
to nuclear weak processes. This has been often stressed in previous works where careful compar-
isons between theoretical predictions based on different nuclear models and electron scattering 
data collected in the quasielastic scattering (QES) domain have been presented [3–16]. Although 
these studies have been very successful, the complexity of the quantum many-body problem is 
still far from being resolved. In a series of previous works [3,17–23] we have analyzed in detail 
the properties of scaling and superscaling in quasielastic inclusive (e, e′) data. The importance of 
this phenomenon to test the validity of any nuclear model aiming to describe electron scattering 
reactions, and its impact when applied to neutrino-nucleus interactions, has been clearly proved. 
The SuperScaling Approach (SuSA), and its improved version, denoted as SuSAv2 [4,19,20], 
are based on the existence of “universal” scaling functions to be valid not only for electrons 
but also for neutrinos. The SuSA model is entirely based on the phenomenology, making use 
of a unique, universal, scaling function extracted from the analysis of the longitudinal electron 
scattering data. This phenomenological function is taken to be the same for the transverse elec-
tromagnetic channel as well as for all the neutrino responses. On the contrary, the SuSAv2 model 
incorporates relativistic mean field (RMF) effects in the longitudinal and transverse nuclear re-
sponses, as well as in the isovector and isoscalar channels that is of great importance in order to 
describe charged-current (CC) neutrino reactions that are purely isovector [24].

The origin of the SuSAv2 approach is based on the capability of the RMF to describe properly 
the scaling behavior of the electron scattering data. As shown in previous works [17,23,24], RMF 
is one of the few microscopic models capable of reproducing the asymmetric shape of the phe-
nomenological scaling function with a long tail extended to high values of the transfer energy. 
Moreover, RMF produces an enhancement in the transverse scaling function, a genuine dynam-
ical relativistic effect linked to the lower components in the wave functions, that is supported 
by the analysis of data. The RMF framework to finite nuclei has proven to successfully repro-



duce the scaling behavior shown by data at low to intermediate q values. However, the model 
clearly fails at higher momentum transfers where Final State Interactions (FSI) are expected to 
be weaker. This is so because of the use of very strong energy-independent scalar and vector 
potentials in the final state that lead to too much asymmetry in the scaling functions apart from 
shifting the QE peak to very high transfer energies, in clear disagreement with data. To remedy 
this shortfall of the RMF model, the SuSAv2 incorporates both the pure RMF scaling functions at 
low-to-intermediate q values and the Relativistic Plane Wave Impulse Approximation (RPWIA) 
ones at higher q by using a q-dependent blending function that smoothly connects both regimes. 
Although SuSAv2, once 2p-2h meson exchange currents (MEC) are also incorporated, works 
properly in most of the cases providing an excellent agreement with (e, e′) data in the whole 
energy range, it would be also highly desirable to provide a unified model that could address 
consistently both regimes, i.e., from low-to-intermediate up to very high q-values. Work along 
this line is presently in progress by describing the outgoing nucleon wave function as a solution 
in the continuum of the Dirac equation with energy-dependent potentials [25].

In this work our approach to the problem is however different. We place our focus on the 
failure of the pure RMF model in describing the electromagnetic responses at high q-values. 
As already mentioned, the use of energy-independent scalar and vector potentials in the final 
nucleon states leads to FSI effects that do not diminish as the momentum transfer reaches very 
high values. This is not yet fully understood, and it shows a clear deficiency of the model. In this 
work we present a systematic analysis of the problem, but making use of a simplified description 
of the electromagnetic responses based on the relativistic mean field model applied to nuclear 
matter. This strategy, that follows the previous studies in [26,27], allows us to provide analytical 
expressions for the tensors and response functions in most of the cases and show up in a very 
transparent way the role played by the relativistic potentials in the nuclear electromagnetic re-
sponses. A variety of situations is investigated by considering different options for the potentials, 
namely, dependence/independence on the energy, and use of the same and/or different poten-
tials in the initial/final states. Furthermore, a very detailed study of the scaling properties is also 
provided. Scaling functions are evaluated with the different model descriptions with particular 
emphasis on how the responses fulfill scaling of the first and second kinds and its connection 
with the specific role played by the relativistic scalar and/or vector potentials.

The paper is organized as follows: In Sec. 2 we introduce the basic formalism and present 
the general expressions involved in describing the electromagnetic (e, e′) response functions 
within the framework of the relativistic mean field model applied to nuclear matter. The most 
general expression of the polarization tensor, valid for different descriptions of the initial and 
final nucleon states, with its corresponding components to be applicable to the calculation of the 
longitudinal and transverse response functions is shown and discussed in detail. A study focused 
on scaling and superscaling properties is also provided. In Sec. 3 we present our results for the 
electromagnetic longitudinal and transverse response functions corresponding to very different 
kinematical situations and nuclear targets. A detailed discussion of the results obtained for the 
scaling functions is also shown. Finally, in Sec. 4 we summarize our conclusions.

2. General formalism

The general formalism for (e, e′) reactions has been presented in previous works [28,29].
Assuming Plane Wave Born Approximation (PWBA), i.e., one virtual photon exchanged and 
leptons described as free particles, the QE differential cross section can be expressed in terms of 
two nuclear response functions:



dσ

dε′d�′ = σM

[
vLRL(q,ω) + vT RT (q,ω)

]
, (1)

where ε′ (�′) is the scattered electron energy (solid angle) and σM represents the Mott cross 
section. The kinematic factors vL and vT come solely from the leptonic tensor and their ex-
plicit expressions can be found in [28,30]. Finally, RL and RT are the electromagnetic response 
functions that contain the whole dependence on the nuclear vertex coupling and depend on the 
momentum (q) and energy (ω) transferred in the process. The notation L (T ) refers to longitudi-
nal (transverse) components with respect to the direction of the momentum transfer q.

The response functions can be evaluated by taking the appropriate components of the polar-
ization propagator �μν (also referred to as the current-current correlation function) [26,27,30]

RL = − 2

πρ
Im

{
Z�00

p + N�00
n

}
(2)

RT = − 2

πρ
Im

{
Z

(
�11

p + �22
p

)
+ N

(
�11

n + �22
n

)}
, (3)

where �μν

p(n) refers to the polarization propagator for protons (neutrons), and Z (N ) represents 
the number of protons (neutrons) in the nuclear target. We use a coordinate system with the 
z(3)-axis in the direction of q. Note that if gauge invariance is fulfilled, the 3 component in the 
current is connected with the 0 (time) component. This explains that the longitudinal response 
is simply given by the time component of the polarization propagator. On the contrary, 1 and 2 
refer to the transverse components.

The nuclear responses in (2) and (3) are evaluated in a local density approximation from 
nuclear matter with the density given by ρ = 2k3

F /(3π2), and kF the Fermi momentum whose
specific value for the different nuclear systems investigated in this work will be given later. Since 
closure can be used to carry out the sum over final states, the polarization propagator can be 
expressed in terms of the full propagator, Ĝ, of the nuclear many-body system,

�
μν

p(n)(q,ω) = −i

∫
d4P

(4π)4 T r[Ĝ(P + Q)�
μ

p(n)Ĝ(P )�ν
p(n)] , (4)

where Ĝ(P ) represents the Green function for a nucleon propagator and �μ

p(n) is the electro-
magnetic vertex corresponding to protons (neutrons). Here we use the relativistic free nucleon 
expression [31]

�
μ

p(n) = F
p(n)

1 γ μ + F
p(n)

2
iσμνQν

2M
(5)

with Fp(n)

1 and Fp(n)

2 the Pauli and Dirac proton (neutron) form factors, respectively, that depend
only on the transferred four-momentum, Q2 = ω2 −q2. In this paper the proton and neutron form 
factors used correspond to the well-known Galster parametrization [32]. The term M represents 
the mass of the nucleon. The corresponding Dirac equation is written as[

α · p + β (M + S(p)) + V (p)
]
U(p) = EpU(p) , (6)

where α and β are the Dirac matrices, and S and V represent the relativistic scalar and vector 
potentials that may include dependence on the energy-momentum. In our case we take S (V ) 
from a Dirac optical potential fit at the self-consistent energy Ep,

Ep =
√

p2 + [M + S(p)]2 + V (p) . (7)



Thus, the Green function evaluated in a mean field approximation and corresponding to a value 
of the Fermi momentum kF is given by

Ĝ(P ) = (/P ∗ + M∗
p)

[
1

P ∗2 − M∗2
p + iε

+ iπ

E∗
p
δ(p0 − Ep)�(kF − |p|)

]
, (8)

where we use the standard Feynman notation, i.e., /P ∗ ≡ P ∗μγμ, and have introduced the effec-
tive nucleon four-momentum:

P ∗μ = (p0 − V (p) , p) = (Ep − V (p) , p) = (E∗
p , p) (9)

with the energy E∗
p =

√
p2 + M∗2

p expressed in terms of the effective mass M∗
p , i.e., the nucleon

mass modified by the presence of the scalar potential, M∗
p ≡ M + S(p).

Finally, integrating over p0 the imaginary part of the polarization propagator becomes

Im�μν = −
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4πE∗
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pf
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− q0)T
μν(p, q,ω) ,

(10)

where P μ
f = (Pi + Q)μ and θ is the angle between pi and q. After a laborious algebra involving 

the trace of Dirac matrices, the final expression for the tensor T μν results
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. (11)

In order to evaluate the specific components of the polarization tensor corresponding to the lon-
gitudinal and transverse response, we distinguish between the variables, P ∗μ = (Ep − V (p) , p)

and P μ = (Ep , p) that apply to both the initial (pi ) and final (pf ) states. Taking into account 
energy-momentum conservation, i.e., P μ

f = (Pi + Q)μ, we can introduce an effective transfer 
four-momentum given as

Q∗μ = (P ∗
f − P ∗

i )μ = Qμ − �V μ , (12)

where we have introduced the notation �V μ ≡ (V (pf ) − V (pi ) , 0). Then, note that Q∗μ and 
Qμ only differ in the time component, that is, in the energy transfer that satisfies: ω∗ = ω −
�V with �V ≡ V (pf ) − V (pi ). Finally, introducing also the effective masses, M∗

i,f , from the 

corresponding energies, namely, E∗
p =

√
M∗2 + p2 , the following results emerge:
i,f i,f i,f
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In what follows we evaluate explicitly the specific components of the tensor that enter in the 
longitudinal and transverse response functions.

As shown in (2) the longitudinal response is given by the time-time component of the tensor, 
T 00. After some algebra we can write

T 00 = 1
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To make contact with some previous works [18,21,30] we introduce a set of dimensionless vari-
ables:

κ ≡ q

2M
; λ ≡ ω

2M
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M
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The longitudinal tensor results:
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Note that the whole dependence on the self-energy vector potential V (p) only enters through the 
τ ∗ and λ∗ terms.

For the transverse channel (3) we have to evaluate the two pure transverse components in the 
tensor. After some algebra one can finally write,
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{[

Q∗2 −
(
M∗

f − M∗
i

)2
][

F1 +
(
M∗

f + M∗
i

) F2

2M

]2

+2�V

[(
M∗

i − M∗
f

)
M

E∗
i + M∗

i

M
ω∗

]
F1F2

+
[
�V 2

[(
M∗

f + M∗
i

)2

4M2 − Q∗2

4M2 − 4
E∗

i

4M2

(
E∗

i + ω∗)]
+2�V

[
ω∗

(
M∗

i + M∗
f

)2

4M2 − 2

(
M∗2

f − M∗2

i

)
4M2

(
2E∗

i + ω∗)]]F 2
2

+2|p|2
(

1 − cos2 θ
)[

F 2
1 − Q2

4M2 F 2
2

]}
. (17)

In terms of the dimensionless variables introduced in (15)

T 11 + T 22 = 4M2
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(18)

From the above expressions for the two channels the polarization tensor can be evaluated by 
solving the integrals numerically. Results for the response functions are presented in next section. 
Here we assume the phenomenological scalar and vector potentials, S(p), V (p), to be fitted to 
polynomials in p. Their explicit expressions are given in Appendix A, and they are consistent 
with the analysis of elastic electron scattering data at high energies.

In what follows we restrict our attention to some simplified situations in which the integrals 
can be solved analytically, so explicit expressions for the polarization tensor, likewise for the 
nuclear response functions, can be obtained. As already mentioned, the whole dependence on 
the vector potential V enters through the terms τ ∗ and λ∗. In the particular case of assuming 
the vector potentials in the initial and final states to be almost equal, namely, V (pi ) � V (pf ), 
the term �V tends to zero, and the effective energy transfer ω∗ coincides with ω. Thus, in the 
limit case of vector potentials being equal in the initial and final states, the tensor (likewise the 
polarization propagator) does not depend on V and the only dependence on the scalar potential 
S enters through the effective masses: M∗

i,f . In terms of the dimensionless variables, the explicit 
expression for the tensor in the longitudinal channel is analogous to (16) but changing τ ∗ and 
λ∗ by τ and λ, respectively. In the case of the transverse channel, the final result is given in the 
form:
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2
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Finally in the simple case of constant scalar and vector potentials the integrals in the polariza-
tion propagator can be solved analytically. The final expressions for the components of �μν

(assuming equal constant potentials in the initial and final states) are:
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We use the notation sm ≡ S/M , being S the constant scalar potential, and have introduced the 
usual terms [33,34]

� = Max
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ε∗
F − 2λ

)
;
(

− λ + κ

√
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(
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τ
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, (22)
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The dimensionless Fermi energy is given by ε∗
F ≡ E∗

F /M =
√

(1 + sm)2 + η2
F with ηF ≡ kF /M .

For completeness, in this study we also consider the case of the Relativistic Plane Wave Im-
pulse Approximation, that is, no scalar neither vector potentials are considered in the final state 
that is simply described as a free relativistic Dirac wave function. On the contrary, the initial 
nucleon states are determined by S(pi) and V (pi ). The general expressions for the components 
of the tensor and the polarization propagator are given in Appendix B. In next section we present 
the response functions and discuss in detail the results corresponding to the different approaches 
considered in the work.

The study of scaling and superscaling in inclusive quasielastic (QE) electron scattering reac-
tions has been presented in detail in previous works [4,18–21,29,33]. Here we simply summarize 
the main points and focus on those aspects of more relevance to the discussion that follows. The 
QE (e, e′) cross section at medium-to-high values of the momentum transfer q divided by an 
appropriate single-nucleon cross section (derived from the analysis of the problem based on the 
Relativistic Fermi Gas (RFG) model) leads to a general function that is almost independent of q



and is the same for all nuclear systems. This is known as scaling of first and second kind, respec-
tively. The occurrence of both types of scaling is denoted as superscaling. From the analysis of 
the longitudinal response function extracted from (e, e′) data, we introduce a general, universal, 
scaling function that only depends on a single variable ψ , known as scaling variable. This is 
basically given in terms of the minimum nucleon kinetic energy allowed in the process scaled 
by the Fermi kinetic energy. In the simple case of the RFG model, the scaling function is simply 
given as f (ψ) = (3/4)(1 − ψ2)�(1 − ψ2). This result clearly differs from the analysis of data 
that leads to a phenomenological scaling function extended to higher/lower values of ψ with 
an asymmetric shape and a tail extended to higher positive values of ψ . This asymmetry of the 
scaling function is successfully reproduced by the predictions of the RMF model [17,23,24].

In this work our aim is not to get scaling functions from a comparison with data, but to 
provide a systematic analysis of the scaling and superscaling phenomenon within the framework 
of the relativistic mean field approach in nuclear matter. Our interest is to analyze the effects 
introduced by the use of scalar and vector potentials considering both momentum-independent 
and momentum-dependent potentials. Whereas analytical expressions for the scaling functions 
can be obtained in the former, for energy-dependent potentials the equations must be solved 
numerically. Notwithstanding a general discussion of results is shown in next section.

From the general expression of the polarization propagator applicable to the case of equal 
constant scalar and vector potentials in the initial and final states (20), (21), the longitudinal and 
transverse electromagnetic nuclear responses can be written in the form:

RL = 3N
4Mκη3

F

(ε∗
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κ2

τ

{[
� + τ + (1 + sm)2

]
(F 2
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2 )
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2
}

, (24)

RT = 3N
4Mκη3

F

(ε∗
F − �)�(ε∗

F − �)
[
2τ (F1 + (1 + sm)F2)

2 + �
(
F 2

1 + τF 2
2

)]
. (25)

A detailed analysis of the function � and its specific behavior at different kinematical situations 
is presented in [33]. In this paper our interest is focused on scaling at high momentum transfers 
where the value of � is determined by the second choice in (22). The response functions are 
usually expressed by introducing a general dimensionless scaling variable, ψ∗, that is given by 
[37]

ψ∗ = 1√
ξ∗
F

λ(1 + sm) − τ√
τ(λ + 1 + sm) + κ

√
τ
(
τ + (1 + sm)2

) (26)

with ξ∗
F ≡ (E∗

F − M∗)/M = ε∗
F − (1 + sm). Notice that the only dependence on the potential 

enters through the term sm = S/M that accounts for the effective mass of the nucleon (only 
dependent on the scalar potential S). In the particular case of S = 0 one recovers the usual 
expression for the scaling variable as given in previous works [18,21].

In terms of the scaling variable the longitudinal and transverse electromagnetic response func-
tions result:

RL = N
Mκη3

F

ξ∗
F f (ψ∗)κ

2

τ

{[
� + τ + (1 + sm)2

]
(F 2

1 + τF 2
2 )

−τ (F1 + (1 + sm)F2)
2
}

(27)



RT = N
Mκη3

F

ξ∗
F f (ψ∗)

{
2τ [F1 + (1 + sm)F2]2 + �(F 2

1 + τF 2
2 )

}
(28)

with ηF ≡ kF /M and N representing the number of nucleons. The scaling function is given as

f (ψ∗) = 3

4
(1 − ψ∗2

)�(1 − ψ∗2
) . (29)

Although not explicitly written, the previous expressions for the nuclear response functions, that 
hold separately for protons and neutrons, incorporate both contributions as shown in (2), (3). 
Furthermore, they can be rewritten by introducing the electric and magnetic form factors of the 
nucleon, i.e., GE and GM . However, in order to illustrate how the response functions behave with 
scaling and superscaling, it is more convenient to change notation by referring all kinematical 
variables to the effective nucleon mass, M∗ ≡ M + S = M(1 + sm), instead of M . Then, we 
introduce the following dimensionless variables:

τ̃ ≡ |Q2|/(4M∗2
) = τ/(1 + sm)2 ; κ̃ ≡ q/(2M∗) = κ/(1 + sm) ;

η̃F ≡ kF /M∗ = ηF /(1 + sm) ; ε̃F ≡ E∗
F /M∗ = ε∗

F /(1 + sm) ;
ξ̃F ≡ (E∗

F − M∗)/M∗ = ε̃F − 1 = ξ∗
F /(1 + sm) .

From the Dirac and Pauli form factors we can define the “effective” electric and magnetic nucleon 
form factors as:

G̃M ≡ F1 + (1 + sm)F2 ; G̃E ≡ F1 − τ̃ (1 + sm)F2 . (30)

Notice that F1 and F2 are simply given by

F1 = G̃E + τ̃ G̃M

1 + τ̃
; (1 + sm)F2 = G̃M − G̃E

1 + τ̃
. (31)

After some algebra, the final expressions for the electromagnetic responses in terms of the mod-
ified electric and magnetic nucleon form factors result,

RL = N
M∗κ̃ η̃3

F

ξ̃F f (ψ∗) κ̃
2

τ̃

[
G̃2

E + G̃2
E + τ̃ G̃2

M

1 + τ̃
�̃

]
(32)

RT = N
M∗κ̃ η̃3

F

ξ̃F f (ψ∗)
[

2τ̃ G̃2
M + G̃2

E + τ̃ G̃2
M

1 + τ̃
�̃

]
, (33)

where, by analogy with the previous variables, we have introduced �̃ ≡ (M/M∗)2� = �/(1 +
sm)2. Notice that the two expressions for the response functions are formally identical to the ones 
obtained in the case of the RFG model [18,29,33]. This means that in the case of constant scalar 
and vector potentials being the same in the initial and final states, superscaling is fulfilled with 
the scaling function being identical to the RFG case but with all variables referred to the effective 
mass, M∗, and modifying accordingly the definition of the nucleon form factors. In particular, it 
is important to point out how the relative contribution of the form factor F2 is modified by the 
presence of the scalar potential.

In next section we present a detailed study of our results for the nuclear responses and scaling 
functions. In the latter one may distinguish between the global scaling function, evaluated di-
viding the total cross section by the appropriate single-nucleon eN elastic cross section, and the 
separate longitudinal (L) and transverse (T ) contributions. These are given as the ratio between 
the corresponding nuclear responses and the appropriate longitudinal (transverse) contributions 



to the elastic single-nucleon cross section: fL,T ≡ kF RL,T /GL,T . Within the RFG model the 
so-called scaling of zeroth kind, i.e., f = fL = fT , is exactly fulfilled. For a detailed study on 
this topic and the explicit expressions of GL,T the reader can consult [18].

3. Analysis of results

In this section we present and discuss in detail the results obtained for the nuclear electromag-
netic responses and scaling functions corresponding to four nuclear systems: 12C, 16O, 40Ca and 
56Fe. In all the cases we analyze the different approaches discussed in previous sections, i.e., the 
relativistic mean field with energy-dependent scalar and vector potentials compared with the case 
of constant potentials, RPWIA and the pure RFG model taken as reference. We show results for 
different kinematical situations covering from intermediate momentum transfer values, q = 0.5
GeV/c, up to 2 GeV/c.

3.1. Response functions

In Fig. 1 we present the response functions corresponding to 12C. The value of the Fermi 
momentum has been fixed to kF = 228 MeV/c. Panels on the left (right) refer to the longitudinal 
(transverse) responses that are shown in terms of the transfer energy, ω, for fixed values of q: 0.5 
GeV/c (top panels), 1 GeV/c (second row), 1.5 GeV/c (third) and 2 GeV/c (bottom). In each case 
we compare the predictions given by the pure RFG (black solid line), RPWIA (green dot-dashed), 
constant scalar and vector potentials in both the initial and final nucleon states, denoted as CtSV 
(blue dotted) and energy-dependent scalar and vector potentials, named EDSV (red dashed).

As observed, the role introduced by the potentials gives rise to very significant effects that de-
pend on the particular approach considered and the response, longitudinal/transverse, analyzed. 
At q = 0.5 GeV/c (top panels), the results corresponding to scalar and vector potentials taken as 
constant or including energy dependence are not so different. Compared to the pure RFG, both 
responses are extended to larger ω-values, getting smaller values for the maximum and showing 
more asymmetry. This is particularly true in the case of the longitudinal response. The plane 
wave limit approach (RPWIA) differs clearly from the other models. Notice that the minimum 
value of ω allowed by the kinematics is significantly larger. This is connected with the role played 
by the potentials only in the initial state (see previous sections for details). On the contrary, the 
maximum ω-value allowed is located between the pure RFG result and the ones corresponding 
to the models where the potentials enter in both the initial and final states: CtSV and EDSV. The 
shape of the RPWIA response also differs significantly from the other approaches.

For higher q-values, the results that depart the most are the ones corresponding to the CtSV 
approach. Notice that this discrepancy gets larger as q increases. On the contrary, the results for 
the RPWIA and EDSV models get closer, particularly in the case of the transverse response. This 
is consistent with the kinematics selected where much larger values of the transfer energy and 
momentum (likewise for the ejected nucleon momentum/energy) are involved. This means that 
the strength of the potentials in the final state are much weaker. Contrary to the discussion for 
q = 0.5 GeV/c, at higher q the role of the potentials gives rise to responses with maxima larger 
than the pure RFG model.

In Figs. 2, 3, 4 we present the electromagnetic responses obtained with the different ap-
proaches for 16O, 40Ca and 56Fe, respectively. The values used for the Fermi momentum are 
kF = 230 MeV/c (16O) and 241 MeV/c (40Ca and 56Fe). As observed, the results show a simi-
lar behavior to the ones for 12C except for the magnitude of the responses, and the discrepancy 



Fig. 1. Longitudinal (left panels) and transverse (right) electromagnetic response functions for 12C versus the energy 
transfer ω. Results are shown for different values of the momentum transfer q and the models considered in the work
(see text for details): RFG (black solid), EDSV (red dashed), CtSV (blue dotted) and RPWIA (green dot-dashed).



Fig. 2. Same as Fig. 1, but for 16O.



Fig. 3. Same as Fig. 1, but for 40Ca.



Fig. 4. Same as Fig. 1, but for 56Fe.



Fig. 5. Double differential inclusive 12C(e, e′) cross section versus the energy transfer. Predictions corresponding to the 
EDSV, RPWIA and SuSAv2 approaches are compared with data [35,36].

introduced by the different models follows a similar trend to the one discussed in Fig. 1. In all 
cases it is remarkable the accordance between the RPWIA and EDSV predictions for the trans-
verse responses at q ≥ 1 GeV/c. For the longitudinal response the difference is clearly visible, 
RPWIA being higher than the EDSV result. The main discrepancy at high q is introduced by the 
CtSV model due to the strong scalar and vector constant potentials involved in both the initial 
and final states. Finally, notice the behavior shown by the RPWIA predictions corresponding to 
the heavier nuclear systems, 40Ca and 56Fe, at q = 0.5 GeV/c. This is simply a consequence of 
the assumptions implied by the RPWIA model that lead the value of τ∗ to become negative at 
lower q (0.5 GeV/c) and larger kF -values (40Ca and 56Fe).

To conclude we present in Fig. 5 the double differential inclusive (e, e′) cross sections for 12C 
against the energy transfer ω. Two kinematical situations for fixed values of the electron beam 
energy (E ) and scattering angle (θ ) have been selected. The panel on the left, E = 560 MeV, 
θ = 60◦, corresponds to a value of the momentum transfer at the quasielastic peak, namely, the 
value of q where the maximum in the QE peak appears, qQE = 508 MeV/c. On the contrary, 
the panel on the right (E = 1501 MeV, θ = 37.5◦) corresponds to qQE = 917 MeV/c. These 
values are consistent with the ones considered in the previous analysis of the response functions. 
In each panel we confront the predictions of the EDSV and RPWIA models with the elaborate 
SuSAv2 calculation [4] and with the available experimental data [35,36]. As observed, the EDSV 
prediction for the maximum agrees better with SuSAv2 and data, while the RPWIA results are too 
high. Notwithstanding significant discrepancies are clearly visible between the model predictions 
due to the approaches implicit in nuclear matter calculations. Whereas SuSAv2, based on RMF 
applied to finite nuclei, extends to low and high ω values, the EDSV and RPWIA calculations, 
based on nuclear matter, show strict limits in ω due to the fixed Fermi momentum. Notice also 
that EDSV and RPWIA cross sections are significantly larger than the SuSAv2 prediction for 
ω-values on the right of the maximum of the QE peak. However, the EDSV model, in spite of its 
simplicity, is in accordance with data in the QE domain.

3.2. Scaling functions

The analysis of scaling and superscaling is shown in Figs. 6-9. In what follows we discuss the 
results corresponding to different kinematics and several nuclei. We present the results for the 
superscaling function as given in previous sections for the several approaches considered in this 



Fig. 6. Longitudinal (left panels) and transverse (right) scaling functions for 12C. Top (bottom) panels correspond to 
the EDSV (RPWIA) models. Results are presented for different values of the momentum transfer: q = 0.5 GeV/c (red 
dashed), q = 1 GeV/c (blue dotted), q = 1.5 GeV/c (green dot-dashed) and q = 2 GeV/c (magenta double-dotted dashed). 
The RFG prediction (black solid) is also shown for reference.

Fig. 7. Longitudinal and transverse scaling functions evaluated with the EDSV model (left panel) and RPWIA (right) for
the four nuclear systems considered: 12C (black solid), 16O (red dashed), 40Ca (blue dotted) and 56Fe (green dot-dashed). 
In the two panels, fL (fT ) corresponds to the lower (upper) curves.

work. In Fig. 6 we analyze scaling of first kind, i.e., the scaling function’s independence of the 
momentum transfer q . We have selected the EDSV model and the plane wave limit (RPWIA), and 
show results only for 12C. The superscaling function corresponding to the RFG, i.e., (3/4)(1 −
ψ2)�(1 − ψ2), is also shown for reference. Top panels contain the results corresponding to 
the case of energy-dependent scalar and vector potentials in the initial and final states, whereas 



Fig. 8. Scaling functions for 12C corresponding to different q-values. Left (right) panels correspond to the EDSV 
(RPWIA) models and the separate longitudinal (red dashed) and transverse (blue dotted) functions are shown. The RFG
prediction (black solid) is presented for reference.

bottom panels refer to the RPWIA approach. We show separately the longitudinal (panels on 
the left) and transverse (right) scaling functions comparing the predictions corresponding to four 
different values of the momentum transfer, q = 0.5 GeV/c (red dashed), 1 GeV/c (blue dotted), 
1.5 GeV/c (green dot-dashed) and 2 GeV/c (magenta double-dotted dashed).

As observed, a clear difference occurs between the two models. In the RPWIA case (bottom 
panels) the shape and magnitude of the scaling functions are similar to the RFG ones, except for 
a shift in the scaling variable (shift in the transfer energy ω). Furthermore, scaling of first kind 
works extremely well for q ≥ 1 GeV/c. Only the case q = 0.5 GeV/c departs from the others 
being shifted to larger ψ -values. Finally, notice that both longitudinal and transverse scaling 



Fig. 9. Longitudinal and transverse scaling functions for 12C at different q-values. The different curves correspond to: 
i) fL evaluated for the EDSV model (red dashed) and CtSV (blue dotted), and ii) fT for EDSV (green dot-dashed) and
CtSV (magenta double-dotted dashed). The RFG prediction (black solid) is also shown for reference.

functions are similar. On the contrary, the results obtained within the EDSV model for fL and fT

clearly differ being for the latter much higher (with the peaks close to 0.75, the maximum value 
reached by the RFG result). In the case of fL the maxima are below ∼ 0.6 (about 20% lower 
than the RFG peak). Furthermore, contrary to RPWIA, scaling of first kind breaks down with 
the maxima decreasing and the tails being more extended to larger ψ -values as the momentum 
transfer gets smaller. The magnitude of this effect depends on the particular q-values selected. 
Notice that the scaling functions for q = 1 and 1.5 GeV/c are in very good accordance. It is 
important to point out that the significant reduction observed in the longitudinal scaling function 
reflects the variation introduced in the nucleon form factors due to the presence of the scalar 
potential and consequently the modification ascribed to the effective mass.

In Fig. 7 we analyze scaling of second kind by showing the scaling functions obtained for 
carbon, oxygen, calcium and iron. As in the previous case, we consider the EDSV model (left 
panel) and RPWIA (right panel). Each panel contains the separate longitudinal (lower curves) and 
transverse (upper curves) scaling functions. All results correspond to q = 1 GeV/c. Notice that 
scaling of second kind, i.e., independence of the nuclei, works perfectly well. All results collapse 



into a single (very narrow) scaling function. This is consistent with the analysis of data. However, 
note that the magnitude of the functions is very different in each case, in particular, for fL as 
compared to fT when evaluated with the EDSV model. For completeness in Fig. 8 we compare 
directly the longitudinal and transverse scaling functions for the two models considered and three 
different values of the momentum transfer. The RFG prediction is also shown for reference. In 
the RPWIA case (right panels), as already mentioned, the results are not very different to the 
RFG ones, apart from the shift in the scaling variable. The difference (in the maximum) between 
fL (red dashed) and fT (blue dotted) is of the order of ∼ 8 − 10% with fL being smaller. On the 
contrary, the discrepancies are much more significant in the case of the EDSV approach where 
fL departs from fT by ∼ 30 − 35% (at q = 0.5 GeV/c) and ∼ 20 − 25% (q = 1 and 1.5 GeV/c). 
Whereas fT reaches its maximum close to the RFG result (0.75), fL is strongly reduced.

To conclude, in Fig. 9 we compare the EDSV predictions for fL (red dashed) and fT (green 
dot-dashed) with the results evaluated using constant scalar and vector potentials in the initial and 
final states (CtSV): fL (blue dotted) and fT (magenta double-dotted dashed). As in the previous 
figure we consider three kinematical situations corresponding to q = 0.5, 1 and 1.5 GeV/c. The 
RFG prediction is incorporated for reference. Only at q = 0.5 GeV/c the predictions of CtSV and 
EDSV are similar for both the longitudinal and transverse scaling functions, although the former 
much smaller (the maxima reached at ∼ 0.5). For higher q-values the discrepancy between fL

and fT remains for both models, although the CtSV predictions are extended to much larger 
ψ -values. This result is already observed within the RMF model applied to finite nuclei, and it is 
connected with the strength of the scalar and vector potentials in the final state.

4. Conclusions

In this paper we have presented a systematic study of the electromagnetic quasielastic (e, e′)
response functions within a relativistic mean field applied to nuclear matter. Our goal has been 
to explore the effects introduced by the scalar and vector potentials in both the initial and final 
nucleon states. Although being aware of the over-simplified description provided by the model, 
it allows us to get analytical expressions for the responses whose behavior can be then explored 
in detail. Emphasis has been placed on the effects linked to the particular structure of the scalar 
and vector potentials used. Different options have been considered; from energy/momentum de-
pendent potentials to fixed-constant ones and the special case of the plane wave limit, i.e., no 
potential in the final state. The use of relativistic potentials being equal and/or different in the 
initial and final states has also been analyzed at depth.

As already investigated in the past, the RMF applied to finite nuclei has shown its capability 
to explain the detailed structure of the (e, e′) responses. However, this model clearly fails at very 
high values of the momentum transfer because of the strong potentials used. This behavior has 
been clearly proved in the present work, also showing how the responses evaluated with energy-
dependent potentials get closer to the plane wave limit predictions as the energy/momentum 
values increase. This is fully consistent with the assumptions considered in the SuSAv2 model 
[4,5,20].

Finally, we have completed our systematic study by incorporating scaling and superscaling 
arguments. We have computed the separate longitudinal and transverse scaling functions for the 
different models and several nuclei, and have analyzed how scaling of first (independence on 
the momentum transferred) and second kind (nucleus independence) work. We have shown the 
specific role of the relativistic potentials in scaling breakdown. Whereas the scalar term modi-
fies the nucleon mass (an effective mass is introduced), the vector term affects the energy but 



disappears in the particular case of using identical potentials in both the initial and final states. 
It is also important to point out that superscaling is perfectly fulfilled under some conditions, 
i.e., the use of constant scalar/vector potentials being the same in the initial and final states, but
with new scaling variables referred to the effective mass and the nucleon form factors modified
accordingly.

In summary, our objective in this work has been to explore, within a simple but fully rela-
tivistic approach, the effects associated to the use of scalar and vector potentials in the electro-
magnetic (e, e′) responses and in the scaling and superscaling functions. This has allowed us to 
understand in a rather transparent way the limitations of other more realistic models, i.e., the 
RMF applied to finite nuclei, when compared with data at very different kinematics.
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Appendix A. Functional momentum dependence of the scalar and vector potentials 
(EDSV model)

The explicit expressions for the phenomenological scalar and vector potentials, S(p) and 
V (p), used in this work are as follows:

S(p) = αS0

[
a0 + a1T (p) + a2T (p)2

]
V (p) = αV0

[
b0 + b1T (p) + b2T (p)2

]
,

where, following [26,27], we have used S0 = −0.431 GeV and V0 = 0.354 GeV for the constant 
scalar and vector potentials. The term T (p) is the kinetic energy of the nucleon and the parame-
ters ai, bi are given by: a0 = 0.97, a1 = −0.66, a2 = 0.28, b0 = 0.97, b1 = −0.97 and b2 = 0.33. 
The factor α = kF /k0

F represents an average over the nuclear volume with k0
F = 0.257 GeV/c

the standard value of the Fermi momentum for nuclear matter.

Appendix B. Relativistic Plane Wave Impulse Approximation (RPWIA)

In this appendix we present the explicit expressions obtained in the Relativistic Plane Wave 
Impulse Approximation. Notice that the scalar and vector potentials only enter in the initial state, 
i.e., S(pi ) and V (pi ). Making use of the general set of dimensionless variables introduced in
(15), the longitudinal and transverse components of the tensor T μν can be written as
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In the particular case of the scalar and vector potentials assumed to be constant the integrals 
involved in the polarization propagator can be solved analytically and the final results can be 
written in the following form,
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where the �∗ function is given by
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