
A tool-supported method to generate User Interface logs

Antonio Martı́nez-Rojas
University of Seville

amrojas@us.es

Andrés Jiménez-Ramı́rez
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Abstract

The rise of robotic process automation (RPA) fuels
areas like robotic process mining and task mining.
Although traditional process mining research can
exploit a range of resources (i.e., event logs) to test
and benchmark new techniques, that is not the case
for robotic process mining. Moreover, benchmark
data for RPA needs to incorporate detailed references
and properties to elements of the graphical user
interface that a software robot is intended to interact
with. Therefore, it is not feasible to create such
data by hand. To address this omission, the current
paper proposes a tool-supported method to generate
synthetic event logs for evaluating RPA techniques. To
mimic real-life scenarios closely, these logs can be
tailored to incorporate variations along a wide range of
dimensions. As an application example of the method,
the paper describes a case generator tool, which is
publicly available, that can be used to benchmark
robotic process mining proposals. We also elaborate
on further applications of the method in ways that are
beneficial to the BPM and RPA communities.

Keywords: Robotic Process Automation, Event Log
Generation, Task Mining, User Interface

1. Introduction

Robotic Process Automation (RPA) is a fast-growing
technology that leverages user interface (UI)
automation. Both industry and academia have shown
considerable interest in this technology (Enrı́quez
et al., 2020; Syed et al., 2020). RPA delivers process
automation at the UI level, which brings significant
benefits. In principle, this means that no involvement of
any IT department is required. Moreover, RPA is the

only feasible strategy for process automation in contexts
where it is not possible to access the underlying IT
infrastructure, e.g., when legacy systems or virtual
desktop environments are involved.

The focus of this work is on the combination of RPA
with the Process Mining paradigm, which is a recurrent
theme in recent literature, e.g., Geyer-Klingeberg et al.,
2018; Jimenez-Ramirez et al., 2019; Leno et al., 2021;
Leno et al., 2019; W. M. van der Aalst, 2021. Research
initiatives in this context involve (1) obtaining event
logs from the interaction between the user and the
front-end of the information systems (the so-called UI
logs) and (2) processing them for different aims, e.g.,
analyzing and discovering the processes to be automated
or generating automation scripts themselves. Although
existing tools are effective to obtain UI logs from
real-world systems (e.g., by means of screen recorders),
they may bring along several issues that relate to testing
and benchmarking, in particular for academic purposes.
First of all, when the logged information comes from
real use cases, such a log can rarely be shared publicly
because of privacy issues. Secondly, creating synthetic
UI logs for controlled experiments is time-consuming
and error-prone; it entails repeating similar sequences of
interactions continuously in order to produce a log with
a reasonable number of events.

To some extent, existing techniques from the Process
Mining field can be applied to generate synthetic
logs, e.g., by simulating process models (Burattin,
2016; vanden Broucke et al., 2012). In addition,
some logs are publicly available and categorized, so
that the community can use them to benchmark their
new proposals (W. van der Aalst, 2017; van Dongen,
2019). Even in the specific context of RPA, approaches
exist that can generate UI logs for experimentation
(Agostinelli et al., 2021; Leno et al., 2019). The biggest



drawback of all existing resources and techniques is
that they focus on the events but neglect the graphical
information of the UIs that relate to these events, i.e.,
screen captures. As identified in the recent literature
(Jimenez-Ramirez et al., 2019; Jiménez-Ramı́rez et al.,
n.d.; Martı́nez-Rojas et al., 2022), including information
on what happens on the screen in the UI log is of the
utmost importance for a thorough analysis and support
of processes for RPA. We shall refer to this missing
aspect in logs as image data.

The current paper addresses the generation of
synthetic, comprehensive UI logs that offer image data
on top of event-related data. The contribution of the
proposal is twofold (cf. Fig. 1). First, in order to
generate UI logs that meet the desired criteria (e.g., with
respect to the number of events, frequency of cases, look
and feel of the system), a catalog of generic variability
functions is designed to act over different parts of the
UI log. Second, a tool-supported method is provided
to generate UI logs. More precisely, the generation
involves the extension of a given excerpt of a UI log, the
so-called seed log, by considering a set of configured
variability functions on the one hand and the desired
variability criteria on the other.

           

         

       
           

          

       

         

         
           

         

   

   

Figure 1. Overall contribution.

We present a case generator tool that is implemented
on the basis of the proposed method. This tool
is publicly available at http://canela.lsi.us.es/agosuirpa/
and has been used successfully in a research context.

The rest of the paper is organized as follows. Section
2 explains the notion of variability in UI logs and reflects
on the state of the art. Section 3 presents the method.
Section 4 elaborates on the application of the method to
a real research project. Section 5 describes the related
work. And, finally, section 6 concludes the paper.

2. Variability in User Interface Logs

UI logs are commonly used for logging the
interaction between the user and the front-end of a
system while she is performing a process. Different
approaches have used UI logs (Agostinelli et al., 2020;
Jimenez-Ramirez et al., 2019; Leno et al., 2021) to
collect events at a user interface level. Although

differences between these exist, their commonalities
can be gathered in the following definition:

Definition 1 A UI Log extends the definition of an event
log (xes) by incorporating additional attributes for each
event regarding the corresponding UI interaction. These
attributes can be grouped into the following categories:
(1) Process attributes: traditional information on events
that appear in event logs, e.g., timestamp, event id,
or case id. (2) Application attributes: information
obtained from the system with which the interaction
takes place, e.g., app name, screen capture, screen
size, or other attributes obtained from the application.
(3) User input attributes: information on the action
performed by the user during an event, e.g., type of
action (i.e., mouse click, or keystroke), X and Y click
coordinates, keystrokes, or other attributes obtained
from the user.

When the user performs a step (i.e., clicking a mouse
button or typing text with the keyboard), a new event is
stored in the UI log. All steps are grouped into traces
that relate to the different cases the user performs, i.e.,
all the events related to the same instance of the process
belong to the same trace, also known as case. A UI log
may contain traces of different process variants.

In general, UI log attributes can take on different
values under different circumstances, but the range of
values is typically constrained. Variability of attribute
values may be observed across the whole log, within
a particular trace, or even for one specific event. For
instance, the range of values of the X coordinates of
a click event —which can be represented with the Int
data type— should be inside the vertical resolution of
the display in question. This can be understood as
a general value constraint for the entire log, i.e., the
system resolution is likely to be constant across the log.
However, the range of attribute values may be further
constrained by the boundaries of the button that is being
clicked. This can be understood as specific for this
particular event, i.e., the button boundaries determine
which X coordinates a click on this button can take on.

While many of the UI log attributes relate to
procedural or temporal aspects of an event, some
approaches (Jimenez-Ramirez et al., 2019) include the
screen capture path as one of them. This feature is quite
relevant in contexts where the front-end application
cannot be accessed, which is common in the Business
Process Outsourcing sector. Here, users typically work
through virtual desktops (e.g., Team Viewer or Citrix).
Although the reference to the screen capture path is
textual, the linked screen capture is an image.

The variability and design of UIs have been
researched since the 80s (Kasik, 1982). To date, several



Figure 2. Metamodel for a UI. Adapted from the

Concrete UI Model of Akiki et al., 2016

proposals have been developed to devise UIs (Akiki
et al., 2014). In general, such approaches deal with the
topic of variability on different levels, from the abstract
dynamic behavior of the system (i.e., navigability) to the
specific implementation of each system view (e.g., the
application HTML code). Although modern approaches
exist in this area (Martinie et al., 2014; Sanctorum &
Signer, 2019), they are all based on a widely-accepted
framework called CAMELEON (Calvary et al., 2003).
It distinguishes models for the UI on 4 different levels:
task, abstract, concrete, and final. It is in the concrete
UI model where the look and feel of the application
is composed of the specific UI elements instances, i.e.,
buttons, input texts, images, etc.

Although the behavior of the elements enables
navigability through the different UIs of an app, the
considered UI log explicitly includes how the different
UIs (i.e., the screen captures) are visited. By adapting
the metamodel suggested by Akiki et al., 2016, which
focuses on the static features of a UI, a concrete UI
model can be characterized as shown in Fig. 2. This
metamodel proposes that each UI consists of a set of
UIElements. These can be composed and, according to
its UIElementType (e.g., button type or checkbox type),
each UIElement exposes a set of attribute-value pairs
(e.g., text value for a button or status for a checkbox).

Work on UI papers tends not to focus on a
standardized palette of UI elements: the considered
elements slightly differ from one author to the other. For
instance, Gupta and Mohapatra, 2020 consider a palette
of 21 different UI elements, while Moran et al., 2018
consider just 14. Regardless of the types of UI elements
that are considered, the variability of a concrete UI
model can be divided into two types (Akiki et al., 2016):

• Feature-set: These variations focus on what UI
elements are shown in the UI. These variations
include adding or deleting UI elements and
changing their values or state, e.g., disabling a
button or modifying the text of an input text.

• Layout: These variations mainly refer to usability
aspects. Variations of this type include changing
the position or size of the UI elements or even

changing the UI types, e.g., changing a drop-down
list by radio buttons or displaying a vertical menu
in a horizontal layout.

In conclusion, the variability of image attributes can
be defined according to the possible variations in the
features-set and layout of the concrete UI, i.e., the screen
capture. This insight will drive the design of our method.

3. Generating User Interface Logs

In line with the stated objectives to generate
synthetic UI logs, our method requires a user to select
which variability functions need to be applied from a
given catalog (cf. Sect 3.1). These functions will
be used to extend an initial UI log provided by the
user into a larger log of a varied nature (cf. Sect.
3.2). A software infrastructure is required to support the
suggested method (cf. Sect. 3.3).

3.1. The Variation Function Catalog

The variation function catalog is designed to contain
the main utilities to perform atomic variations in a UI
log related to both event (i.e., the UI log attributes) and
image (i.e., the UI model) information, as presented in
Sect. 2. Although the content of the catalog can be
extended with new functions, all of them conform to the
following definition:

Definition 2 A Variation Function VF=(name,
allowedAttributes, f) is identified by its name, can
be applied to any of the log attributes included in
allowedAttributes, and defines a function f that
receives the following parameters:

1. The triplet UI log, event id, and attribute name
which points to the value that the function varies.

2. A class value which links the styles between VFs.

3. A memory which is a multimap that enables
exposing information between variation
functions. The key of this multimap is the
triplet (event Id, attribute name, VF name), and
the values are any information that the VF wants
to store to be consulted by other VFs. Since more
than one VF can be applied to the same attribute,
the memory is a multimap instead of a map.

4. A custom list of params required by the function.

In addition, f returns the new value of the attribute.

A variation function can be used to vary the value
of an attribute of an event in the UI log. It is
possible to create VFs that are independent of some



of the parameters. For instance, the ClickOnCoordsVF
example (cf. Alg. 1), which can be applied to the X
coordinate or Y coordinate attributes, only returns the X
or Y coordinate in a bounding box received as params,
i.e., the function returns a random number between an
upper and lower bound. This random number is also
stored in the memory to allow for reuse by other VFs.

Algorithm 1: ClickOnCoordsVF Example
Input : UILog log, Int eventId, Str

attName, Int class, Multimap
memory, Int lBound, Int uBound

Output: Int newV alue
1 newV alue← randomInt(lboud, uBound)
2 memory.put((eventid, attname,

”ClickOnCoordsV F”), newvalue)

Next to the catalog, the proposed method includes
the UI repository, which contains UI elements to ease
the definition of the VFs related to changes in the
feature-set of the images. This repository allows
filtering the UI elements by the use of three parameters:
(1) the UI element type (e.g., checkbox, button, etc.),
(2) the state that depends on the type (e.g., pushed
and released for buttons, checked and unchecked for
checkboxes), and (3) the family id, which refers to the
look and feel of the UI element. More than one image
can be stored in the repository for a single UI element 1

yet when the repository is accessed exactly one random
image is returned.

To illustrate the use of the UI repository by the VFs,
consider the following example (cf. Alg. 2). The
CheckBoxVF is applied to the screencapture attribute.
Then, it receives the bounding box where a checkbox UI
element appears in the screen capture. So, this function
substitutes the existing checkbox with another checkbox
version from the UI repository. In this case, the VF
class attribute is passed as the UI Element family.
The idea is to keep the same look and feel between
the different VFs of the same case in the UI log. This
function makes the new checkbox that is gathered from
the UIRepo available in memory so that other VFs can
use it when required.

To access elements from memory, the current
approach supports the following expressions:
$memory.get(eventId, attrName, V FName)[order]
Where the order is the index in the collection returned
for this key. This type of expression can be used
inside a function as well as a parameter when a VF is
selected, which will be dynamically resolved when the

1For this approach, the images included in the repository
corresponds to the dataset proposed by Moran et al., 2018

Algorithm 2: CheckBoxVF Example
Input : UILog log, Int eventId, Str

attName, Int class, Multimap
memory, Int trBound, Int tlBound,
Int brBound, Int blBound

Output: Str newV alue
1 Str

path← log.get(eventId, ”screencatpure”)
2 Str chkBxImgPath←

UIRepo.get([type=”checkbox”,family=
class])

3 memory.put((eventid, attname, ”CheckBoxV F”),
chkBxImgPath)

4 ImgDraw(path, chkBxImgPath, trBound,
tlBound, brBound, blBound)

5 newV alue← path

VF function is applied.
In general, event information within the UI log can

be varied with a single VF. However, to sufficiently
vary image attributes it may be desirable to use more
VFs. As can be seen in the CheckBoxVF example, the
function modifies the input image (the path variable)
by the abstract method ImgDraw. This places a given
image in the place indicated by the bounding box, so
it modifies the linked image. Another sequence of VFs
could be applied to the same image attribute to also alter
other parts of that image.

The current proposal includes 8 VFs for event
attributes and 16 VFs for image attributes. They can
be consulted at https://github.com/RPA-US/agosuirpa/
wiki/Variability-Functions

3.2. Generating UI logs from a Seed Log

Instead of generating the UI logs from scratch, the
generator extends and variates a given seed log.
Definition 3 A seed log is a UI log that contains only
one case for each process variant.

In order to configure the generation of the UI log, the
method requires the following parameters:

• LogSize: the desired size (i.e., number of events)
of the log. The seed log will be extended with
events until this number is reached. The final log
may be slightly larger since it only contains full
cases. Thus, the size will depend on the number
of events of each process variant in the seed log.

• Weights: the frequency weight of each process
variant in the generated log. This list of values
gives a relative weight to each process variant, so



that variations of the process variants with higher
weights are more likely to appear in the generated
log. A fully-balanced log is achieved using the
same weights for all the alternatives.

• V FParams: a list of tuples (location, name,
params) that specify where to variate the seed
log: location is the concrete event in the seed log
where the VF is to be applied (i.e., it identifies
the event and attribute), name identifies the VF
to be applied, and params is the list of custom
parameters for the VF.2

Algorithm 3: UILog Generation Algorithm
Input : UILog seedLog, Int LogSize, List

Weights, List V FParams
Output: UILog newLog

1 List traces←separateCases(seedLog)
2 while |newLog| ≤ LogSize do
3 Trace trace←random(traces,Weights)

4 newLog
+←− variate(trace, V FParams)

5 end

The overall algorithm that governs the generation is
shown in Alg. 3. First, the list of process alternatives
of the seed log (i.e., each case) is separated into traces.
Then, as long as the generated log has not exceeded
the required LogSize, one of these traces is randomly
selected according to the given Weights. The resulting
log will include the trace after applying the variability
functions indicated in V Fparam (cf. Alg. 4).

Algorithm 4 runs over all the events of the trace to
create a variation of each one. A default VF behavior
to calculate the process attributes of the log (i.e., event,
case, activity ids, and timestamp, cf. Def. 1) is applied
when it does not make sense to override (cf. line 2
in Alg. 4). This function (1) calculates the next ids
following incremental counters for events and cases,
(2) copies the activity id, and (3) calculates the next
timestamp of the event preserving the intervals of the
original seed log. The rest of the event attributes are
calculated in two different ways. The first option is
that those attributes that do not present a VF associated
with them (i.e., the location parameter does not point
to them) are just copied from the seed log (cf. line
4 in Alg. 4). Note that screencapture attributes are
always modified; therefore, the copy function replicates
the image indicated by the attribute’s value (i.e., the
path) and returns the new path. The other option applies
when the location of a VFParam points to the current

2Note that the allowedAttributes field of the VF (cf. Def. 2)
must include the attribute in the location.

Algorithm 4: Trace Variation Algorithm
Input : Trace trace, List params
Output: UILog newTrace

1 foreach Event event ∈ trace do
2 Event

newEvent← copyDefaults(event)
3 foreach Attribute att ∈ event do
4 Attribute newAtt←

copy(att.name, att.value)
5 if

params.contain(trace.id, event.id, att.id)
then

6 foreach VFParam p ∈
params.get(trace.id, event.id, att.id)
do

7 VariabilityFunction
vf ← V FRepo.get(p.name)

8 newAtt.value←
vf.f(newAtt.value, trace.id, p.params)

9 end
10 end
11 newEvent

+←−
(newAtt.name, newAtt.value)

12 end
13 newTrace

+←− newEvent

14 end

attribute. Then, its function f is applied to generate the
new attribute (cf. lines 5 to 8 in Alg. 4). When calling
such function, the trace.id is considered as the class, so
that all the events of the same trace are changed with a
similar look and feel. Note that more than one VF can
point to the same attribute and, therefore, all of them are
sequentially applied to generate the new attribute. As the
last step, the resulting attribute is included in the event
and, when all the attributes are processed, the created
event is included in the new trace.

If the user does not include any VF in the method,
an extended UI log will be obtained with the same
application attributes, user input attributes, and screen
captures as the seed log. Clearly, this would represent a
rather unrealistic UI log. While the application attributes
of the UI log tend to be the same between different cases
of the same process variant (i.e., they can be directly
copied from the seed log), the user input attributes and
the screen captures are likely to differ.

Example 1 To illustrate this proposal, Fig. 3
depicts an example process with synthetic screen
captures for each activity. The process consists of



              

             

        

                    

       

                       

    

             

               

             

                 

            

      
    

       

                         
                         

     

       

      

     

     

       

           

 

    

 

                  

     

                   

Figure 3. Process screenshots of a teacher entering students’ marks.

#ID case activity timestamp event_type keystrokes click_type click_coords screencapture

1 1 A 2022/01/10-0:4:32 keystroke “Tari Tavarez” img_1

2 1 A 2022/01/10-0:4:35 click Left 120,205 img_1

3 1 B 2022/01/10-0:4:50 click Left 98,172 img_2

4 1 B 2022/01/10-0:4:35 keystroke “10” img_2

5 1 B 2022/01/10-0:4:50 click Left 10,240 img_2

6 1 C 2022/01/10-0:5:09 click Left 115,206 Img_3

7 1 D 2022/01/10-0:5:19 click Left 130,126 img_4

8 2 A 2022/01/10-0:5:15 keystroke “Burton Bert” img_5

9 2 A 2022/01/10-0:5:19 click Left 122,211 img_5

10 2 B 2022/01/10-0:5:22 click Left 98,172 img_6

11 2 D 2022/01/10-0:5:25 click Left 130,126 img_7

Figure 4. Seed log for the example of a teacher entering students marks.

4 activities that a teacher performs to consolidate
students’ marks through an web system: Search
student profiles (Act.A), Open profile (Act.B),
Confirm edition (Act.C), and Close profile (Act.D).

To create a synthetic UI log from this example,
a seed log (cf. Fig. 4) must be provided. In
this example, the log consists of 11 events and 2
distinct cases, i.e., one for each process variant.
In addition, we specify: (1) the desired log size
(e.g., 150 events), (2) the frequency weights (e.g.,
[80,20], meaning that process variant 1 will be 4
times more likely to appear in the resulting UI
log than process variant 2), and (3) a number of
VFParams.

For this example, we include VFs to vary the
student names across the different cases. This
name appears in three places: keystroke attribute in
event #1, two times in the screen capture of event
#1 (i.e., in Act.A), and in the screen capture of
event #3 (i.e., Act.B). To exemplify the use of the
method, let us consider how this can be done for the
keystroke attribute and for the first screen capture.

To vary the student name that is typed by
the user, we apply the VF with the name
random text from list to the location (#1,
“keystrokes”) (cf. Def. 2). The custom parms of
this function is a list of strings, e.g., [“Student 1”,
“tudent 2”, ”Student 3”]. At random, one of these
strings is selected, which will replace the value in
the “keystrokes” column. Next to that, this VF

stores the selected string in the memory, which may
be of use for another function.

Second, this student’s name must appear in
the list shown in the associated screenshot, i.e.,
img 1. To make this happen, we apply a new
VF with the name write text in image to the
location (#1, “screencapture”). Here, the custom
params are (1) the text and (2) the bounding box
where to print the text inside the screenshot. As
the reader may notice, the text that must be printed
is exactly the name selected by the previous
VF. Therefore, to specify the text parameter,
access to memory is opened with the following
expression: $memory.get(1, “keystrokes”,
“random text from list”)[0]. This expression
points to the value stored in the memory when the
function random text from list was applied to
(#1, “keystrokes”) the first time (cf. [0]), i.e., the
student name.

In a highly similar way, the dependency
between this keystrokes value and the rest of the
occurrences in the trace can be established using
the same expression as above.

3.3. Software Infrastructure

Figure 5 depicts the infrastructure developed to
support the presented method.3 The 5 data units,
developed in PostgreSQL, are the following: (1) The

3The source code can be accessed at https://github.com/RPA-US/
agosuirpa.



VFCatalog contains the catalog of the implemented
variability functions written in Python (cf. Def.
2). These VFs can be accessed by their name,
allowedAttributes, or class. (2) The UIRepo includes
UI elements crops to be used by the VFs that require
working with screen capture attributes. These UI
element crops can be accessed by their UI element
type, state if it has, and the family which refers to
the look and feel. (3) The LogStore manages the logs
used by the method. This store keeps track of both
the initial seed logs and the generated logs. (4) The
ScreenStore registers the images corresponding to the
screen captures linked in the log. In addition, this store
keeps the information about the UI elements that have
been identified in the screen capture so that it becomes
easier to identify them when creating the VFs related to
variations in the UI log. (5) The ConfigStore keeps the
configuration history that has been used to generate the
UI logs from the seed logs. That is, it keeps track of the
LogSize, Weights, and VFParams that are specified. The
LogsStore, ScreensStore, and ConfigStore are securely
stored for each user of the platform.

In addition, the infrastructure contains the following
processing components: (1) The REST API, as offered
by the server, developed with the Django framework.
It exposes the main platform capabilities to be used
as a service. It can be accessed at http://canela.lsi.
us.es/api/v1/docs/. (2) The UI Analyzer, which is
a component developed in Python with the OpenCV
library. It is in charge of processing the screen captures
of the ScreenStore to detect the existing UI elements
and complements the information to be included when
defining the VF parameters in the configurations. (3)
The User Configuration Wizard, which is the front-end
developed with React. It assists the user to interact
with the platform, i.e., to create the configurations.

VF
Catalog

User
profile

User
Config

Wizards

UI Repo
Logs Store

Seed 
UILog

Generated 
UILog

Config Store Screen Store

Screen
Capture
Analysis

REST API

Figure 5. Developed infrastructure

Since creating a complete configuration might entail
some complexity, this wizard allows a user to create it
iteratively and interactively. The wizard support both
the event and the image attributes. As to the latter, as
can be seen in Fig. 6, the wizard even provides support
to select or define the crops in the image, which helps
to ensure the correct definition of the VFs. (4) The Log
Generator, as developed in Python, which is the main
component. It implements the method described in Sect.
3. More precisely, it offers a public endpoint for Alg. 3.

4. Application

To demonstrate the applicability of our proposal, we
will discuss a specific tool that has been used in a recent
research project. The set-up of the tool is described in
Sect. 4.1, while Sect. 4.2 reflects on its benefits.

4.1. Set-up of AGOSUIRPA

The method proposed in Sect. 3 has been used
for the implementation of a tool, called AGOSUIRPA,
which can be accessed at http://canela.lsi.us.es/. Its
aim is to support users in two tasks: (1) generating
synthetic cases for case studies or experimentation in the
context of RPA combined with Process Mining, and (2)
publishing the cases as open data so that other users can
both use and extend them. Against this backdrop, the
tool comprises three phases (cf. Fig. 7).

First, in the scenario generation phase, the seed
UI log provided by the user is replicated to have a
set of scenarios, i.e., modified seed UI logs. This
phase addresses an issue when doing experimentation:
results may only be statistically significant if obtained
from a sufficiently large number of similar scenarios.
Therefore, the number of desired scenarios and a first
variability configuration are required. The VFs included
in this phase must focus on making changes in the look
and feel of the images rather than making more detailed
changes in the event information. It is important to note
that in this setting the seed UI log is just varied but not
extended. So, the resulting UI log for each scenario has
the same size as the seed UI log.

Second, in the case generation phase, the method
is applied to the seed UI log of each scenario. In
contrast to the first phase, the seed logs are extended
and varied according to a variability configuration, a
list of log sizes, and a list of frequency weights. This
second variability configuration should include VFs that
go beyond the look and feel in the sense that the newly
generated events present meaningful differences from
the events in the seed UI log. Since experimentation
is typically performed over cases of different properties,
this tool allows specifying two main property sets that



Figure 6. The User Configuration Wizard window which assist the user when configuring a VF related to a screen

capture (left). This windows allows crop selections (in blue) and the configuration of a VF parameters (right).
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Figure 7. Case generator process.

recurrently appear in Process Mining experimentation:
the log size and the balancing of cases. For each
combination of log size and frequency weights, the
tool invokes the method with the same seed UI log
of the scenario and VFs. That is, the tool will
generate a number of |screnarios| × |logSizes| ×
|frequencyWeights| cases, i.e., UI logs.

Third, if the user considers that the resulting cases
are valid for experimentation, they can be packaged
and made publicly available on the platform. This
publication includes the resulting UI logs, a user-given
description, and the configuration used in both the
scenario and the case generation phases. In addition,
if any issue is detected in the resulting cases, the user

can update the input seed UI log or the configuration of
any of the previous phases to obtain a new version of the
cases until the desired data is achieved.

4.2. Benefits of AGOSUIRPA

This development of AGOSUIRPA can be seen as
a concrete application in the academic context of the
method that we proposed in the present work. More
precisely, in their research paper, Martı́nez-Rojas et al.,
2022 describe how the conditions that govern decisions
can be discovered in those business processes where
the relevant information is on the screen rather than in
the UI log. For this purpose, AGOSUIRPA was used
to generate cases for three different processes. This
data was specifically designed to evaluate the quality of
the method for decision discovery. The three processes
contain 6 activities on average, a single decision point
each, and more than a single variant per process.

The AGOSUIRPA tool was highly beneficial in
the described setting since it helped to efficiently and
automatically generate the cases for these processes.
By using AGOSUIRPA, the team only needed (1) to
specify a seed UI log for each of these processes
and (2) to configure the scenario generator phase and
the case generator phase. In particular, 40 screen
captures and events were designed for the 3 processes
in total. In addition, 92 variability functions were
configured in the tool. For each of the 3 processes, 30
scenarios, with 4 different log sizes, and 2 frequency
weights were selected. Eventually, the tool generated
720 UI logs with a number of 4320 corresponding
screen captures. The generated UI logs associated
with each of these processes can be accessed at: https:



//canela.lsi.us.es/agosuirpa/experiment/1, https://canela.
lsi.us.es/agosuirpa/experiment/2, and https://canela.lsi.
us.es/agosuirpa/experiment/3 respectively.

Although no exact time measurement took place to
compare the situation with and without the tool, the
time invested with the tool was a matter of days, while
manual edits of the UI logs and images are likely to have
required weeks of work. The use of the data helped to
show that the discovery method was robust under the
varying properties of the processes and UIs involved.

5. Related Work

Other approaches exist for the generation of
event logs and UIs. In the context of event logs,
the Process Mining community has been actively
contributing with both tools (Burattin, 2016; Jouck
& Depaire, 2019; vanden Broucke et al., 2012) and
benchmarks (W. van der Aalst, 2017; van Dongen,
2019). vanden Broucke et al., 2012 defined a plugin
for ProM4 to generate event logs from a given Petri
Net, which allows to inject rare events which, typically,
are complicated to capture in real systems. In turn,
Burattin, 2016 describes a standalone tool that can
generate random process models and simulate them to
obtain event logs. Similarly, Jouck and Depaire, 2019
define a methodology for generating artificial logs by
simulating models. In addition, other tools with similar
objectives can be found online, e.g., (“BIMP simulator
tool”, 2022), which uses a BPMN model as input to
generate an event log. Next to these tools, van Dongen,
2019 put together many event logs as a challenge for
researchers. With a similar objective, W. van der Aalst,
2017 includes several event logs and their corresponding
process model so that the community can use these as
benchmarks. Unlike the present work, these approaches
focus on event information of the event log, lacking
any references to the image attributes that might be
associated with them. Furthermore, although some
of the discussed approaches enable configuring the
generation of logs, the configuration options are often
more coarse-grained than in the present proposal.

In the context of the generation of UIs, several
research proposals (Akiki et al., 2016; Martinie et al.,
2014; Sanctorum & Signer, 2019) base the modeling
of the UIs of an information system on different levels.
This ranges from the most abstract level (i.e., the
navigability of the system) to the most concrete level
(i.e., the system’s source code). Although these levels
vary from author to author, they are based on the
de-facto task model standard (Calvary et al., 2003).
Besides this, Abb and Rehse, 2022 offers a reference

4ProM is a Process Mining framework.

data model for UI logs, which could be used as an
alternative to the metamodel used in this work, although
it is not intended for the subsequent generation of
variability based on it. Some proposals go beyond the
definition of a singular UI. They provide mechanisms to
derive UI variants from a given feature model (Martinez
et al., 2017) so that a different configuration of features
will produce a different UI. Unlike the present work,
these proposals focus on automating the transition from
abstract levels (e.g., task models or feature models) to
a more concrete level. They generally lack support for
generating UI variations at the same abstraction level.

6. Conclusion

The present work arises from the need for a
methodological framework (cf. Sec. 3) and a support
tool (cf. Sect. 4) that allows the scientific community to
generate synthetic event logs to evaluate RPA techniques
simply and systematically. The method’s applicability
has been demonstrated with a concrete tool for an
academic research project, which shows the usefulness
and efficiency of the proposal. In particular, it turned
out to be possible to synthetically generate a multitude
of varied event logs for evaluation purposes.

The proposed method has limitations. Two types
of UI variability were identified in Sect. 2. However,
the current version of the approach neglects most of the
layout types. For example, the method does not provide
efficient mechanisms to vary the type of UI elements
or make significant changes to the layout, which in
turn, may be rare to occur inside a realistic UI log.
Nevertheless, the feature-set type is widely covered,
enabling us to consider a wide spectrum of realistic
cases. To address these shortcomings, implementing
such new mechanisms is planned in our roadmap.
Moreover, future work encompasses: (1) defining a case
variables list as input, so that data can be generated
including this level of detail with Variability Functions,
and (2) developing new mechanisms to automatically
detect the look and feel of the application in terms of
fonts, sizes, and icons according to the seed log.
Acknowledgments: This research has been
supported by the Spanish Ministry of Science,
Innovation and Universities under the NICO project
(PID2019-105455GB-C31) and by the FPU scholarship
program, granted by the Spanish Ministry of Education
and Vocational Training (FPU20/05984)

References

Abb, L., & Rehse, J.-R. (2022). A reference data
model for process-related user interaction logs.



International Conference on Business Process
Management, 57–74.

Agostinelli, S., Lupia, M., Marrella, A., & Mecella, M.
(2020). Automated generation of executable
RPA scripts from user interface logs. BPM,
116–131.

Agostinelli, S., Lupia, M., Marrella, A., & Mecella,
M. (2021). Smartrpa: A tool to reactively
synthesize software robots from user interface
logs. CAiSE, 137–145.

Akiki, P. A., Bandara, A. K., & Yu, Y. (2014). Adaptive
model-driven user interface development
systems. ACM Computing Surveys, 47(1),
1–33.

Akiki, P. A., Bandara, A. K., & Yu, Y. (2016).
Engineering adaptive model-driven user
interfaces. IEEE Transactions on Software
Engineering, 42(12), 1118–1147.

BIMP simulator tool [Available at https://bimp.cs.ut.ee/
simulator]. (2022).

Burattin, A. (2016). PLG2: multiperspective process
randomization with online and offline
simulations. BPM Demo Track, 1–6.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., & Vanderdonckt, J. (2003). A
unifying reference framework for multi-target
user interfaces. Interacting with computers,
15(3), 289–308.

Enrı́quez, J. G., Jiménez-Ramı́rez, A.,
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