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Resumen

Como consecuencia de la globalización, las interacciones entre países, empresas, per-
sonas, etc., se han incrementado durante las últimas décadas. La estructura básica
de soporte matemático para modelar interacciones es la red. Por lo tanto, el Diseño
de Redes juega un papel importante para facilitar tales interacciones. Sin embargo,
la mayoría de los problemas de Diseño de Redes son difíciles de resolver. Nuestro
objetivo es estudiarlos desde el punto de vista de la Optimización Combinatoria para
encontrar enfoques exactos y metaheurísticos que mejoren el proceso de obtención
de soluciones óptimas, o al menos buenas, para aplicaciones prácticas.

En esta tesis estudiamos algunos problemas de Diseño de Redes, los cuáles se
pueden agrupar en dos grandes clases detalladas más adelante según la característica
principal de cada uno. En todos los problemas se considera que la demanda está
dada por un conjunto de pares de puntos origen/destino. Es decir, cada demanda
tiene que pasar de un nodo de origen a un nodo de destino. Estos problemas diseñan
una red para servir a cierta parte de este conjunto de pares de demanda. Otra
característica que comparten es la de la existencia de una red alternativa que puede
ser utilizada por este conjunto de demanda. De esta situación se ha destacado la
posible competencia existente entre la red que se va a diseñar y la red alternativa
actual.

Por un lado, los Capítulos 2, 3 y 4 tratan con problemas de Cobertura para
el Diseño de Redes. Estos problemas buscan diseñar una red de tal forma que se
maximice la proporción de la demanda cubierta o se cubra un cierto porcentaje del
total. En particular, el tercer capítulo muestra una aplicación práctica para el Diseño
de Redes en el área del transporte.

Por otro lado, el Capítulo 5 extiende las nociones de λ-Cent-Dian y Centro-
Generalizado, ya existentes en Teoría de Localización de Instalaciones, al área de
Diseño de Redes. Los problemas tratados en este capítulo están enfocados para
diseñar redes que minimicen la distancia máxima de un conjunto de pares de demanda
conocido (dentro de esa red), la distancia promedio, una combinación lineal de ambos
objetivos o la diferencia entre ellos. Estos objetivos pueden ser de interés para algunas
de las necesidades existentes en la actualidad.
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Todos los problemas han sido abordados desde el punto de vista de la Progra-
mación Matemática. Cada uno de ellos ha sido descrito en detalle y se han encontrado
algunas propiedades. Luego, se han propuesto formulaciones. Posteriormente, desde
una perspectiva computacional, se han desarrollado métodos de preprocesamiento
antes de centrarnos en los procedimientos de resolución.

La investigación aquí realizada también se puede agrupar por la naturaleza de
los métodos de resolución utilizados para abordar los problemas propuestos. Por un
lado, se han desarrollado algunas estabilizaciones para el método de descomposición
de Benders. Por otro lado, también se han considerado enfoques metaheurísticos para
algunos de los problemas en cuestión. Se han evaluado procedimientos elaborados
por otros autores: un GRASP (Greedy Randomized Adaptive Search Procedure),
de tipo búsqueda adaptativa con aleatoriedad, y un algoritmo genético. Además,
hemos desarrollado un algoritmo de recocido simulado (Simulated Annealing) y otro
algoritmo de búsqueda adaptativa en el caso en el que se consideran vecindarios de
gran tamaño (Adaptive Large Neighborhood Search).



Abstract

As a consequence of globalization, interactions among countries, companies, people,
etc, have been increased during recent decades. The basic mathematical support
structure for modeling such interactions is a network. Thus, Network Design plays
an important role for facilitating the interactions. Nevertheless, the majority of
Network Design problems are difficult to solve. Our goal is to study them from the
Combinatorial Optimization point of view to find exact and metaheuristic approaches
that improve the process of getting optimal ,or at least good, solutions for practical
applications.

In this thesis, we study some Network Design problems, which can be grouped
into two large classes detailed below, according to the main feature of each one.
In all the problems it is considered that the demand is given by a set of pairs of
origin-destination points. That is, each demand has to move from an origin-node
to a destination-node. Another feature in common is the existence of an alternative
network that can be used by the demand set. In this situation, the possible existing
competition between the network to be designed and the already actual alternative
network has been highlighted.

On the one hand, Chapters 2, 3 and 4 deal with Covering Network Design
problems. These problems seek to design a network in such a way that the pro-
portion of demand covered is maximized or exceeds a certain percentage of the total.
Particularly, the third chapter shows a practical application for Network Design in
the transportation area.

On the other hand, Chapter 5 extends the existing notions in Facility Location
Theory of λ-Cent-Dian and Generalized-Center to the area of Network Design. The
problems in this chapter are focused on designing a network that minimizes the
maximum distance of a known set of origin-destination pairs (within that network),
the average distance, a linear combination of both objectives or the difference between
them. These objectives may be of interest for some of the needs at the present time.

All problems are approached from the standpoint of Mathematical Programming.
Each of them has been described in detail and some properties have been found.
Then, formulations have been proposed. Afterwards, from a computational perspec-

III



IV

tive, preprocessing methods have been developed before focusing on the resolution
procedures.

The research done can also be grouped by the nature of the resolution methods
used to tackle the problems proposed. On the one hand, some stabilizations for
the Benders decomposition method have been developed. On the other hand, meta-
heuristic approaches have been also considered for some of the problems concerned.
In this situation, Greedy Randomized Adaptive Search Procedures and a Genetic Al-
gorithm elaborated by other authors are evaluated. Furthermore, we have developed
a Simulated Annealing and an Adaptive Large Neighborhood Search routine.
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At present, and for some decades now, there has been a growing need to set
connections in different aspects of current life, both from an individual and a global
point of view. The mathematical structure that models the interaction (connection)
between pairs of elements of a set is the graph. If the elements of a graph, either
the vertices and/or the edges, have attached weights, the graph is usually called a
network. Several features of the system depend on the way the vertices are con-
nected. Problems on how to decide which edges select from an underlying network
in accordance with some or several criteria are called Network Design problems.
These problems lie in the Discrete Mathematics area and usually are very difficult to
solve, but very important in many subjects. Therefore, in the area of Mathematical
Optimization, the study of Network Planning and Design began to gain importance.

The main objective of this chapter is to briefly introduce some Network Design
problems and describe their most outstanding features. There will be a review of
problems related mainly to the areas of telecommunications and transportation. To
do this, we will start from the beginning, from the existing problems in Facility
Location Theory. Such problems sometimes have similar objective functions since
their aim is to serve some demand points and, in some way, they could be considered
as particular cases of Network Design. Moreover, Facility Location Theory is a
subject well developed, and therefore it is a source of inspiration for Network Design
problems. Then, we will introduce the notion of Extensive Facility Location since it
is a concept interlaced with that of Network Design in which synergies appear.

1.1 Facility Location Problems

Covering problems along with median and center problems are three classical main
branches of Facility Location Theory.

Covering problems in graphs have attracted the attention of researchers since the
middle of the last century. As far as the authors are aware the first papers on the
Vertex-Covering problem were due to Berge (1957) and Norman and Rabin (1959) in
the late 50s. This problem is related to the Set-Covering problem in which a family
of sets is given and the minimal subfamily whose union contains all the elements
is sought for. In Hakimi (1965) the Vertex-Covering problem was formulated as an
integer linear programming model and solved by using Boolean functions. Toregas et
al. (1971) applied the Vertex-Covering problem to the location of emergency services.
They assumed that a vertex is covered if it is within a given coverage distance. Church
and ReVelle (1974) introduced the Maximal-Covering Location problem by fixing the
number of facilities to be located. Each vertex has an associated population and the
objective is to cover the maximum population within a fixed distance threshold. Since
then many variants and extensions of the Vertex-Covering problem and Maximal-
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Covering problem have been studied (see García and Marín (2020)).
Center and Median problems in graphs and Euclidean spaces were the basis

of the beginning of Location Science in the late 50’s and 60‘s of the past century.
Whereas median problems aim at maximizing the efficiency of the system, center
ones try to maximize the effectiveness or fairness. Given a set of points (demands,
customers), either in a graph or in a continuous space with associated weights, the
median problems consist in finding one or several weighted points (facilities) so that
the normalized sum of the weighted distances of the facilities to the given points
would be minimized. However, center problems consist in finding one or several
points so that the worst distance from a demand point to its closest facility is mini-
mized. Median notion fits well with problems in which the goal consists in minimizing
the cost or maximizing the profit of the system. The goal of the center problems is
to minimize the maximum distance. Thus, it fits better to locate emergency facilities
where the farthest point must be as close as possible to the facility. However, isolated
these objectives do not satisfy the requirements and/or the aim of many problems
in which a balance between both of them is desirable.

1.2 Extensive Facility Location and Network Design Pro-
blems

Extensive Facility Location
A facility is called extensive if it is too large regarding its environment to be

represented by one isolated point. An Extensive Facility Location problem in graphs
consists of locating a subgraph that optimizes some objective function and satis-
fies some constraints regarding a known set of demand points, belonging or not to
the vertex set of the underlying graph. This demand wants to access the designed
subgraph.

Covering problems have been extended to Extensive Facility Location, where a
subnetwork is to be selected from an (physical or not) underlying network with the
aim of being used by traffic of goods or people. The Extensive Vertex-Covering
problem and the Extensive Maximal-Covering problem are extensions of the point
Vertex-Covering and Maximal-Covering problems where the number of vertices of
the coverage is substituted by the length or other characteristic of the covering
subgraph. These problems depend on the type of underlying graph, the location
of the demand, the shape of the graph used for covering and its tips (discrete or
continuous), the way of covering and other characteristics. Several papers have dealt
with Extensive Facility Location with covering objectives (see Mesa (2018) and the
references therein).

The λ-cent-dian problems have been extended to Extensive Facility Location.



1.2. Extensive Facility Location and Network Design Problems 5

The first time that a research on λ-cent-dian of extensive facilities was published was
in López-de-los Mozos and Mesa (1992), in which some properties for the λ-cent-dian
path in a tree network are derived. The paper of Averbakh and Berman (1999) deals
with three problems of path location in trees: minimization of a convex combination
of the maximum and average distances, and the two of optimizing one criterion sub-
ject to a value for the other. Authors solved all the problems presented in O(n) time
by the application of some dynamic programming ideas. Problems which locates a
path or a tree-graph with a possibly limited length so that the maximum distance or
the sum of distances to the vertices is minimized generalize, to non-point facilities,
the concept of center and median, respectively. In these papers Extensive Facility
Location problems with other objective functions as k-centrum, ordered median and
equity measures have also been reviewed. See for this Mesa and Boffey (1996) and
Puerto et al. (2018).

Network Design
Network Design is a broad and spread subject whose models often depend on

the field in which they are applied. A classification of the basic problems of Net-
work Design was done by Magnanti and Wong (1984) where some classical graph
problems such as the Minimal Spanning Tree, Steiner Tree, Shortest Path, Facility
Location and Traveling Salesman problems are included as particular cases of a ge-
neral mathematical programming model. Since the construction of a network often
costs a large amount of money and time, decisions on Network Design constitute a
crucial step when planning networks. Infrastructure Network Design is a major step
in the planning of a network since the performance, the efficiency, the robustness
and other features strongly depend on the selected nodes and the way of connecting
them.

Network Design is applied in a wide range of fields: transportation, telecommu-
nications, energy, supply chain, geostatistics, evacuation, monitoring, etc, but es-
pecially for the first two named. In the telecommunications area, a very common
problem is to design the backbone and local area networks to serve the demand of a
set of given points. In these cases, the demand is not given by isolated points, but
by pair of points thus generating flows that must be carried out through the network
to be designed. In Forsgren and Prytz (2008) it is considered an overview of the
issues that arise as well as a number of specific optimization models and problems
in this area. In Smith and Winter (1991) there is a set of 7 issues that basically
collects problems in the area of telecommunications and other related combinatorial
problems. Chapter 2 of Yaman (2006) gathers some significant examples of location
problems that arise in the design of telecommunications networks and reviews the
polyhedral properties of these problems. Also, Wong (2021) summarizes the major
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developments in telecommunications network design technologies/services. In trans-
portation, there are many applications, such as, air transportation, postal delivery
systems, service networks, trucking, and transit systems. For instance, the main
purpose of a rapid transit network is to improve the mobility of the inhabitants of a
city or a metropolitan area from a set of origin points to a set of destination points.
In this case, the demand is also given by pair of points. This improvement could lead
to lower journey times, less pollution and/or less energy consumption which drive
the communities to more sustainable mobility. Recently, it has been published the
book Crainic et al. (2021), which covers most of the problems in this area. However,
the majority of them dealt with in this book have as objective function the cost of
constructing the network. In Chapter 17 (see Mauttone et al. (2021)) problems mini-
mizing the travel time of the passengers are also formulated and studied. In Guihaire
and Hao (2008) a global review of the crucial strategic and tactical steps of transit
planning is presented. They propose a classification of 69 approaches dealing with
the design, frequency setting and timetabling of transit lines and their combinations.

Sometimes telecommunications and transportation problems have been classified
as hub location problems (see Contreras (2021), Klincewicz (1998) and Martins de
Sá et al. (2015)).

Synergies
Extensive Facility Location and Network Design are interlaced subjects where

synergies often appear. Moreover, Network Design and point-location problems are
very related since the network is the way to access the points and, therefore the
efficiency of the optimal points depends on the network design. In fact, several rel-
atively recent models integrate the location of facilities (points) and the design of
the network to use to fulfill the demand. The objective function of the model in the
paper by Melkote and Daskin (2001) includes transportation cost, facility location
and construction of the network.

Direct and indirect coverage
As it is explained in Hutson and ReVelle (1989), the concept of coverage has been

used to indicate proximity to a facility within a specified time or distance standard.
For network problems, there are two types of coverage that are relevant. Under direct
coverage, a node is said to be covered only if an arc chosen to be in the network is
incident to that node. That is, nodes that are part of the network are covered
directly. Indirect coverage is more closely aligned with the traditional definition of
coverage based on proximity to a facility and includes direct coverage as a special
case when the current distance equals zero.

Problems with indirect coverage are closely related to those of Extensive Facility
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Location since in the latter there is a set of demand points that is not contained in
the set of nodes of the network designed. That is, the demand wants to access the
designed subgraph. Furthermore, the notion of indirect coverage is also associated
with hubs problems. Hubs, or central trans-shipment facilities, allow the construc-
tion of a network where large numbers of direct conections can be replaced with
fewer indirect connections (see O’Kelly and Miller (1994)).

Pairs of points of demand
Sometimes, when designing an infrastructure network, the demand is given by

pairs of origin/destination points, called O/D pairs, and each such pair has an asso-
ciated weight representing the traffic between the origin and the destination nodes.
Usually, this demand is encoded using an origin/destination matrix. The Network
Design problems presented in this dissertation support this type of demand.

Alternative networks
When planning a new network, often there exists at least a network already func-

tioning. If such a network is offering its service to the same set of origin/destination
pairs as those considered for the new network, in some way both modes compete
with each other. For example, a new rapid transit system may be planned in order
to improve the mobility of a big city or metropolitan area, in which there already
exists another transit system, in addition to the private transportation system. This
current transit system could be denser than the planned one but slower since it uses
the same right-of-way as the private traffic system. Thus, in some way, both systems
compete with each other and both compete with the private system of transporta-
tion. A similar effect occurs with mobile telecommunication operators. Therefore,
the traffic between an origin and a destination is distributed among the several com-
panies or systems that provide the service.

Researches in Facility Location and Extensive Facility Location consider a
customer-server system, where demand uses the network to access the point or ex-
tensive facilities. However, in some Network Design problems to reach or be close
to the facility is not enough to complete the service. In many telecommunication,
transportation, public services and other systems the demand uses the facility as an
intermediate instead of a final step (see Contreras and Fernández (2012)). These
problems consider a customer-server-customer system. This is, for example, the case
of the public urban transportation network, where a customer has to spend a time
to reach the stop/station from its origin, then wait for the next service, spend an
in-vehicle time, and finally reach its destination. The network design of these sys-
tems is even more complex than those where the customers just have to go to the
servers. In this situation, the customer has used at least two types of systems and
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they are not competing between them. That is, for some customers, they are, in
fact, cooperating.

In this thesis, we have studied the situation in which there is competition between
the network that is going to be designed and another that already exists.

Mode sharing
Given a set of O/D pairs, there are mainly two ways of allocating the share of

each system. The first one is the binary all-or-nothing way where each demand is
only assigned to one of the proposed modes. In this way, for the case in which there
are two modes, there will be a set of O/D pairs assigned to the new network and the
remaining set assigned to the existing network, such as in Perea et al. (2020). The
second one is based on some continuous function, using, for example, a multi-logit
probability distribution, as in Cascetta (2009). In this case, each demand is shared
between the different systems. Both allocation schemes are based on the comparison
of distances, times, costs, generalized costs or utilities. In this thesis, we consider
the binary one, where each O/D pair is assigned to one of the available modes.

Optimality measures considered for Network Design
In Infrastructure Network Design, since it is generally too expensive to connect

all the potential nodes, one must determine a subnetwork that serves at best the
traffic demand. Depending on the application, different optimality measures can be
considered. In particular, in the field of transportation, and especially in the area
of passenger transportation, the aim is to get the infrastructure close to potential
customers. In this framework, Schmidt and Schöbel (2014) propose to minimize the
maximum routing cost for a set of origin/destination pairs when using the new net-
work to be constructed. Alternatively, the traffic between an origin and a destination
may be considered as captured if the cost or travel time when using the network is
not larger than the cost or travel time of the best alternative solution (not using
the new network). In this case, Perea et al. (2020) and García-Archilla et al. (2013)
propose to select a subnetwork from an underlying network with the aim of captu-
ring or covering as much traffic as possible for a reasonable construction cost. On
the other hand, two of the most present objectives in the literature when planning
a telecommunications network are satisfying all projected demand at minimum to-
tal discounted cost (investment plus operating), or selectively satisfying demand to
maximize the total profit (see Balakrishnan et al. (1991) and Ji et al. (2015)).

Computational complexity
Problems with indirect and direct coverage which locate a subtree of a known

network with a limited number of vertices or bounded length are NP-hard in general
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since they are special cases of the Steiner Tree problem (see Johnson and Garey
(1979)). However, if the underlying graph is a tree some of the problems can be
solved by polynomial-time algorithms (see Bern and Bienstock (1991)). In Hakimi
et al. (1993), authors determine the algorithmic complexity of four generalization
optimization problems that locate paths or tree-shaped facilities in trees and general
networks. They are related to the p-center, p-median, p-max-eccentricity and p-max-
distance-sum problems for the cases p = 1 and p > 1. In Puerto et al. (2018), the
location of dimensional facilities on networks is reviewed, mainly considering two
common objective functions in literature, the center and the median. Moreover,
the best-known complexity results are presented. Without loss of generality, in the
problems dealt with in this thesis we have considered coverage in its direct form. We
have worked with general networks and, as we justify in each chapter, the problems
we have studied are NP-hard. Therefore, from a mathematical point of view, it is
a simplification. Considering indirect coverage in these problems only adds a bit of
complexity to the formulation.

In Bärmann (2016), the author gives a classification of the most important types
of Network Design problems. They could be classified into the following four groups
with increasing complexity. Problems without capacity on the edges, named as Un-
capacitated Network Design problems. Problems with a fixed charge on each arc to
determine the price to equip it with a capacity, named as Fixed-Charge Capacitated
Network Design problems. The demand of each O/D pair is given since the aim
is to provide enough arcs to route the requested demand through the network. In
third place, Capacity or Coverage Expansion Network Design problems, which are
a generalization of the above. In this situation, there are some previously existing
capacities that may be used at no cost. Furthermore, there is a set of available mo-
dules for each arc to increase its capacity. Finally, Multiperiod Network Expansion
problems, which consider that the demand of each O/D pair is different for each time
period in the planning horizon.

At an early stage the NP-hardness of a special Network Design problem was
stated. In the paper by Johnson et al. (1978), it was shown that the Knapsack
problem is reducible to the problem of choosing a subgraph such that it minimizes
the sum of the shortest path weights between all vertex pairs subject to a budget
constraint. In Perea et al. (2020) it is proved that, considering a budget constraint,
the problem to find the optimal network that maximizes the sum of the weights of a
set of pairs to cover is NP-hard, regardless of whether cycles are allowed or not.



10 Chapter 1. Introduction

1.2.1 Description and notation for the elements in Network Design
problems

For the network design problems considered in this dissertation, the following ele-
ments are considered.

• An undirected graph denoted by N = (N,E), where N and E are the sets of
potential nodes and edges that can be constructed. Then, N is the potential
graph. Each element e ∈ E is denoted by {i, j}, with i, j ∈ N . We use the
notation i ∈ e if node i is a terminal node of e. Besides, for each e = {i, j} ∈ E,
we define two arcs: a = (i, j) and â = (j, i). The resulting set of arcs is denoted
by A. Furthermore, an alternative directed graph N alt = (Nalt, Aalt), with
Nalt = N and Aalt ⊂ N × N such that Aalt 6= A, is present. To simplify the
notation, in the problem formulations presented in this dissertation we do not
refer directly to N alt.

• W ⊂ N × N represents a set of origin/destination (O/D) pairs that must be
defined. This is a strict inclusion since couples with both equal nodes are not
eligible. Each w = (ws, wt) ∈W , with ws 6= wt, is composed by an origin node
ws ∈ N and a destination node wt ∈ N .

• Costs for building nodes, i ∈ N , and edges, e ∈ E, in the potential network N
are denoted by bi and ce, respectively, with bi, ce ∈ R≥1. We denote the total
construction cost as Ctotal =

∑
i∈N

bi +
∑
e∈E

ce.

• The weight of every feasible arc a ∈ A is denoted by da ∈ R≥1. Such parameter
may represent length, time or cost of traversing, generalized cost or even utility.
Without loss of generality, we will refer to it as the distance between the end-
nodes of each arc.

• Each w = (ws, wt) ∈W has some parameters and elements associated:

– A demand gw ∈ Z+. We denote the total demand as Gtotal =
∑

w∈W gw.
Without loss of generality, the demand is concentrated in the set of po-
tential nodes.

– A length uw ∈ R+, corresponding to an unknown predefined path from
ws to wt in N alt.

– For a given subnetwork S ⊆ N , dS(w) expresses the length of the shortest
path from ws to wt in the subnetwork S. If pair w cannot be connected
within S, we define dS(w) = +∞. To name the notion of the minimum
value between dS(w) and uw, we use `S(w).
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– A subgraph Nw = (Nw, Ew) ⊆ N containing all feasible nodes and edges
for w, i.e. that belong to a path in N whose total length is lower than
or equal to uw. We also denote Aw as the set of feasible arcs in Nw. In
Section 2.2.2, we describe how to construct these subgraphs. The meaning
of feasible node, edge and/or arc can be further restricted depending on
the conditions of the problem to be studied.

• For the neighborhood purpose, let δ(i) be the set of edges incident to node
i. By δw(i) is denoted the set of edges incident to node i in the subgraph
Nw. Notation δw+(i) (δw−(i) respectively) is used to refer to the set of arcs going
out (in, respectively) of node i ∈ Nw. In particular, we set δw−(ws) = ∅ and
δw+(wt) = ∅.

The existence of N alt translates into the fact that there already exists a different
network competing with the one to be constructed, named as the prospective network.
It is considered an all-or-nothing way. That is, each demand goes through one of
them, it cannot be decomposed. In that sense, each length uw performs as a threshold
to get paths shorter than it in N . We refer to them as competitive paths. If the O/D
pair w is assigned to the prospective network, we then say that it is covered or
served. For example, in terms of the transportation area, the existing network N alt

represents a private transportation mode, the planned one N represents a public
transportation mode and the parameters gw, uw, w ∈ W , refer to the passengers
going from ws to wt and the utility of taking the private mode. The O/D pair w is
supposed to travel using the private mode if there is not a path in the public network
with better utility than uw.

1.3 Decomposition Methods

To solve large scale mixed-integer linear optimization problems it is often useful to
rely on decompostion methods. Lagrangean relaxation, Benders decomposition and
column generation constitute the most popular approaches of this type.

Lagrangian methods are relaxation methods that approximate a difficult problem
to solve with a simpler one, using Lagrange multipliers associated to some constraints.
The solution to the relaxed problem is an approximation of the original problem and
it provides useful information. Lagrangian techniques are still very important today
(see Guignard (2003) and Fathollahi-Fard et al. (2020)).

By using the Benders decomposition approach, the formulation is decomposed
into two sets of variables, such as one of them is formed only by continuous variables.
The rest of them contains a set of complicating variables. Usually, complicating
means integer variables. The idea of this procedure consists in isolating such set
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of variables. That is, this procedure relies on the projection of the feasible set of
the problem onto the space that contains the complicating variables. By projecting
out variables, the total number of variables is decreased, significantly in most cases.
This decrease translates into the addition of new linear constraints which could be
necessary to describe the projection. In this procedure, continuous variables are
projected out and new linear constraints, formed by the complicating variables, are
added. Hence, this decomposition method is more appropriate for problems that
have a greater number of variables than constraints. In this thesis, we have chosen
the Benders decomposition theory as the tool to solve the problems that concern us.
Their formulations can be decomposed in the same way as the Benders decomposition
method requires. We can check that the formulations presented in this dissertation
are composed of a similar number of variables and constraints. Nevertheless, this has
not turned out to be an inconvenience, since not the entire set of constraints generated
by the Benders procedure is used. In Subsection 2.1, the Benders decomposition
framework is briefly described.

Column generation is another often-applied approach. Normally, it is used in
combination with a Dantzig-Wolfe reformulation of the original problem. Dantzig-
Wolfe decomposition is the dual of Benders decomposition. Then, the formulation
is decomposed into two sets of constraints.

The last two approaches have been gaining interest over the years as an alternate
automatic scheme but remains infamously difficult to use efficiently since they are
hard to implement, but also due to the fact that to use them the formulation of the
problems needs to exhibit a specific structure. For more details about these three
categories of exact methods see Martin (2012).

Although decomposition methods cannot solve nowadays large instances in a
short time, this is not necessarily a disadvantage, it depends on the problem to
be solved. For example, in transportation area, the Infrastructure Network Design
problems belong to the strategic phase of the sequential process of transportation
planning. Therefore, the computational time is less important in this phase than
in others, such as operational or online phases. Moreover, decomposition methods
require profound knowledge and thus provide more insight on the problems, the
mathematical formulations and the solutions obtained.

1.4 Metaheuristic solution algorithms

Since most Network Design problems are NP-hard, some research efforts have been
oriented to apply metaheuristic algorithms to obtain good though not necessarily
optimal solutions, within a reasonable computational time. For instance, in the fields
of transportation and telecommunications Network Design, Tabu Search (Pedersen
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et al. (2009), Xu et al. (1996)), Genetic Algorithms (Król and Król (2019), Perea et
al. (2020), Chou et al. (2001)), Simulated Annealing (Fan and Machemehl (2006),
Kermansshahi et al. (2010), Girgis et al. (2014)), Greedy Randomized Adaptive
Search Procedures (García-Archilla et al. (2013), Maya Duque and Sörensen (2011),
Risso and Robledo (2013)) and Adaptive Large Neighborhood Search algorithms
(Canca et al. (2016), Canca et al. (2017), Zhang et al. (2022), Mehta et al. (2015))
have been applied to medium-size instances. Besides, matheuristics procedures have
been also exploited (see Canca et al. (2019), Chouman and Crainic (2015), Wu et al.
(2020)).

1.5 Contributions of this thesis

Chapter 2 presents several contributions. It is based on the paper by Víctor Bucarey,
Bernard Fortz, Natividad González-Blanco, Martine Labbé and Juan Antonio Mesa
López-Colmenar (see Bucarey et al. (2022)). First, we present new mathematical
integer formulations for the Covering Network Design problems (MC) and (PC).
The demand is given by a set of origin/destination pairs, instead of single demand
points. The formulation for (MC) is stronger than a previously proposed one, see
e.g. Marín and Jaramillo (2009) and García-Archilla et al. (2013) (although the pro-
posed formulation was not the main purpose of the latter), while (PC) was never
studied to the best of our knowledge. Our second contribution consists of polyhedral
properties that are useful from the algorithmic point of view. A third contribution
is the study of decomposition algorithms for the Network Design based on different
Benders implementations. We propose a normalization technique and we consider
the facet-defining cuts. Our computational experiments show that our Benders im-
plementations are competitive with exact and non-exact methods existing in the
literature and even comparing with the Benders decomposition existing in CPLEX.

In Chapter 3, we have applied our most competitive implementation from Chap-
ter 2 to a formulation based on the integrated design of a rapid transit line and the
relocation of a slow transit line. This work is described in the short-paper by Na-
tividad González-Blanco, Antonio J. Lozano, Vladimir Marianov and Juan A. Mesa
(see González-Blanco et al. (2021)).

In Chapter 4, we review some literature and verify that many metaheuristics
have been developed to solve very specific problems in the area of transportation and
telecommunications Network Design. The (MC) problem of Chapter 2 is relatively
well-known in the Network Design area. However, to the best of our knowledge, it
seems that it has been somewhat forgotten when it comes to applying the classical
metaheuristics that exist in the literature. This problem has only been studied from
two metaheuristic points of view, one in García-Archilla et al. (2013) and another in
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Perea et al. (2020). Then, two different techniques from those already discussed in
these mentioned works have been proposed in this chapter. We have developed two
Neighborhood Search procedures. One of them is a Simulated Annealing algorithm
and the other is an Adaptive Large Neighborhood Search procedure. A difference
between them is that the second one works with a larger neighborhood. Nevertheless,
as we will see, not always working with a large neighborhood will achieve better
results. An exhaustive analysis has been elaborated for each one, considering also
the two metaheuristics already studied mentioned above. These metaheuristics are
designed to obtain good though not necessarily optimal solutions, within a reasonable
computing time.

Finally, Chapter 5 extends for the first time the existing solution concepts in Facil-
ity Location Theory of λ-cent-dian and generalized-center to the much more complex
Network Design area. Such as in the previous chapters, we are given the demand as
a set of origin/destination pairs, instead of single points, and a budget constraint.
The λ-cent-dian concept aims at studying the trade-off between efficiency and eq-
uity. The generalized-center is the particular case of the λ-cent-dian concept when
λ→∞ and it consists of the difference between these both measures of efficiency and
equity. We investigate the properties of the λ-cent-dian and generalized-center solu-
tion networks under the lens of equity, efficiency, and Pareto-optimality with respect
to the bicriteria center/median problem, obtaining some similar conclusions than in
the case of locating a facility. As it happens in Facility Location, we prove that in
Network Design area the Pareto-optimality solutions set is not always completely
generated with minimization of the λ-cent-dian function with λ ∈ [0, 1]. Secondly,
we provide a mathematical formulation for the λ-cent-dian problem with λ ≥ 0.
Besides, we discuss the bilevel structure of this problem for λ > 1 and we readapt
the formulation for this case. A third contribution is to describe a procedure to give
a complete parametrization of the Pareto-optimality set based on solving two linear
formulations. Then, we evaluate and discuss the quality of the different solution
concepts considered using some inequality measures, not only from the point of view
of efficiency and equity. In this evaluation we include the generalized-center notion,
which has not been taken into account in many works. Eventually, for λ ∈ [0, 1] we
test both a Benders decomposition method and a metaheuristic technique to solve
it at scale.
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Benders Decomposition for
Network Design Covering
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We consider two variants for the Covering Network Design problem. We are given
a set of origin/destination pairs, called O/D pairs, and each such O/D pair is covered
if there exists a path in the network from the origin to the destination whose length
is not larger than a given threshold.

After presenting formulations, we develop a Benders decomposition approach to
solve the problems. Further, we consider several stabilization methods to determine
Benders cuts as well as the addition of cut-set inequalities to the master problem. We
also consider the impact of adding an initial solution to our methods. Computational
experiments show the efficiency of these different aspects.

2.1 Introduction

Covering problems in graphs and extensions
Covering problems in graphs have attracted the attention of researchers since

the middle of the last century. As far as the authors are aware the first papers
on the Vertex-Covering Problem were due to Berge (1957) and Norman and Rabin
(1959) in the late 50s. This problem is related to the Set-Covering Problem in
which a family of sets is given and the minimal subfamily whose union contains
all the elements is sought for. In Hakimi (1965) the Vertex-Covering Problem was
formulated as an integer linear programming model and solved by using Boolean
functions. Toregas et al. (1971) applied the Vertex-Covering Problem to the location
of emergency services. They assumed that a vertex is covered if it is within a given
coverage distance. Church and ReVelle (1974) introduced the Maximal-Covering
Location problem by fixing the number of facilities to be located. Each vertex has
an associated population and the objective is to cover the maximum population
within a fixed distance threshold. Since then many variants and extensions of the
Vertex-Covering and Maximal-Covering problems have been studied (see García and
Marín (2020)). A classical binary formulation of Vertex-Covering problem is the
following, denoted as (VC), where bi, i ∈ N refers to a vector cost.

(V C) min
y

∑
i∈N

bi yi (2.1)

s.t. yi + yj ≥ 1, {i, j} ∈ E, (2.2)

yi ∈ {0, 1}, i ∈ N. (2.3)

Covering problems have been extended to Extensive Facility Location, where
facilities are too large to be represented as isolated points, and Network Design, where
a subnetwork is to be selected from an (physical or not) underlying network with the
aim of being used by traffic of goods or people. The Extensive Vertex-Covering and
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Extensive Maximal-Covering problems are extensions of the point Vertex-Covering
and Maximal-Covering problems where the number of vertices of the coverage is
substituted by the length or other characteristic of the covering subgraph. These
problems depend on the type of underlying graph, the location of the demand, the
shape of the graph used for covering and its tips (discrete or continuous), the way of
covering and other characteristics. Several papers have dealt with Extensive Facility
Location with covering objectives (see Mesa (2018) and the references therein).

In this chapter we deal with Covering Network Design problems.
For the Covering Network Design problems presented in this chapter the demand

is given by pairs of origin/destination points, called O/D pairs. Each such pair has
an associated weight representing the traffic between the origin and the destination.
Usually, this demand is encoded using an origin/destination matrix. Besides, the
existence of an alternative transportation mode is considered. This mode is func-
tioning and offering its service to the same set of O/D pairs. Then, we consider that
both modes are competing between them.

Since it is generally too expensive to connect all the potential nodes, one must
determine a subnetwork that serves best the traffic demand. Depending on the ap-
plication, different optimality measures can be considered. In particular, in the field
of transportation, and especially in the area of passenger transportation, the aim is
to get the infrastructure close to potential customers, but not to cover everywhere.
In this framework, Schmidt and Schöbel (2014) propose to minimize the maximum
routing cost for an origin/destination pair set when using the new network. Alterna-
tively, the traffic between an origin and a destination may be considered as captured
if the cost or travel time when using the network is not larger than the cost or travel
time of the best alternative solution (not using the new network). In this case, Perea
et al. (2020) and García-Archilla et al. (2013) propose to select a subnetwork from an
underlying network with the aim of capturing or covering as much traffic as possible
for a reasonable construction cost. This chapter is devoted to this problem, called the
Maximal Covering Network Design problem (MC) as well as to the closely related
problem called, Partial Covering Network Design problem (PC). The latter aims to
minimize the network design cost for constructing the network under the constraint
that a minimum percentage of the total traffic demand is covered.

Covering Network Design problems presented in this chapter only consider the
binary all-or-nothing way of assigning the demand. That is, the demand is only cov-
ered by one of the proposed modes. Typically, the demand is covered if the demand
points are served within a range of quality service, as in Perea et al. (2020). We
consider that each O/D pair is covered only if the time spent to travel from its origin
to its destination in the network is below a threshold. This threshold represents the
comparison between the time spent in the proposed network and a private mode,
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assigning the full share to the most beneficial one.

Benders Decomposition framework
Benders decomposition was introduced in the early 60s as a method to solve

mixed-integer problems (see Benders (1962)).
Benders decomposition for Network Design problems has been studied since the

80s. In Magnanti et al. (1986), the authors minimize the total construction cost
of an uncapacitated network subject to the constraint that all O/D pairs must be
covered. Given the structure of the problem, the Benders reformulation is stated
with one subproblem for each O/D pair. A Benders decomposition for a multi-
layer Network Design problem is presented in Fortz and Poss (2009). In Costa et
al. (2009), a Multi-Commodity Capacitated Network Design problem is studied and
the strength of different Benders cuts is analysed. In Marín and Jaramillo (2009) a
multi-objective approach is solved through Benders decomposition. The coverage is
maximized and the total cost design is minimized. Benders decomposition was also
applied in Botton et al. (2013), in the context of designing survivable networks. In
Mahéo et al. (2020), authors present how to apply the Benders scheme to specific
problems, with an emphasis on the case in which the subproblem formulation can
be decomposed naturally into independent blocks of constraints. After, they explain
and justify how to extend it to the case with integer subproblems.

This type of decomposition has been applied to many problems in different fields,
see Rahmaniani et al. (2017) for a recent literature review on the use of Benders
decomposition in Combinatorial Optimization. One recent contribution applied to
Set-Covering and Maximal-Covering Location problems appears in Cordeau et al.
(2019). The authors propose different types of normalized Benders cuts for these
two covering problems.

This decomposition procedure is briefly explained below, which is also known as
a projection algorithm. It consists of a sequence of projections, relaxations and outer
approximations.

Definition 1. Let Q be a set of points (x, z) ∈ Rn×Rm. Then, the projection of Q
onto the x-space, denoted by Projx(Q), is the set of points given by

Projx(Q) = {x ∈ Rm : (x, z) ∈ Q for some z ∈ Rn}.

The classic structure of a Network Design problem suitable for applying the
Benders decomposition method looks like this:
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min cTx+ fT y

s.t. Ax+By = b

Dy = d

x ∈ (R+ ∪ {0})n1

y ∈ (Z+ ∪ {0})n2

(2.4)

where it is considered that the decision variables have been organized into two sets,
x ∈ (R+ ∪ {0})n1 and complicating variables y ∈ (Z+ ∪ {0})n2 . The latter have to
satisfy the constraint set Dy = d, with D ∈ Rm2×n2 and d ∈ Rm2 given. Besides,
both types of variables must satisfy the constraint set Ax + By = b, where A ∈
Rm1×n1 , B ∈ Rm1×n2 and b ∈ Rm1 are also known. The objective function contains
the vectors c ∈ Rn1 and f ∈ Rn2 .

Taking into account this previous concept, model (2.4) can be re-expressed as

min
y∈Y

{
fT y + min

x≥0
{cTx |Ax = b−By}

}
(2.5)

where Y = {y |Dy = d, y ∈ (Z+∪{0})n2}. That is, the original model is decomposed
into two problems. First, we consider the following master problem

min fT y + q(y)

s.t. Dy = d

y ∈ (Z+ ∪ {0})n2

(2.6)

where q(y) represents the expected value of the objective function of the so-called
Subproblem or Slave Problem given by

q(y) = min cTx

s.t. Ax = b−By,

x ∈ (R+ ∪ {0})n2 .

(2.7)

Usually, q(y) is referred as the incumbent. Note that in formulation (2.7), y denotes
a feasible solution vector from (2.6). Subproblem (2.7) is a continuous linear problem
whose dual problem is

max (b−By)T u

s.t. ATu ≤ c,

u ∈ Rm1 .

(2.8)

This dual formulation is known as the Benders Subproblem. Hence, by (2.8), formu-
lation (2.5) is equivalent to
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min
y∈Y

{
fT y + max

u∈Rm1
{(b−By)T u |ATu ≤ c}

}
. (2.9)

We observe that the feasible space of the Benders Subproblem, S = {u |ATu ≤ c},
is independent from y. If the space S is empty, S = ∅, which means that this
dual problem is infeasible, two situations can be handled: (1) its Slave Problem is
unbounded and, consequently, the original problem is also unbounded, or (2) its
Slave Problem is infeasible and, then, the original problem is infeasible. In the case
in which S 6= ∅ there are two different options too. In the unbounded case, let R be
the set of extreme rays of S and UR be the set of unboundedness directions such that
(b − By)T ur > 0, ur ∈ UR. As this indicates the infeasibility of the y solution for
the Slave Problem, it has to be avoided. Thus, constraints (b−By)T ur ≤ 0, r ∈ R,
are added. In the bounded case, let P be the set of extreme points of S and up be
one of them which is the optimal solution of the inner problem. Therefore, (2.9) can
be reformulated as

min
y∈Y

fT y + max
p∈P
{(b−By)T up}

s.t. (b−By)T ur ≤ 0, r ∈ R
(2.10)

By the Weak Duality Theorem, we know that q(y) ≥ (b − By)T up, p ∈ P. Then,
without fixing the vector of variables y, (2.10) is equivalent to

min
y,q(y)

fT y + q(y)

s.t. q(y) ≥ (b−By)T up, p ∈ P

0 ≥ (b−By)T ur, r ∈ R

Dy = d

y ∈ (Z ∪ {0})n2 , q(y) ∈ R,

(2.11)

which is known as Benders master problem. The first two blocks of constraints
are referred to as Optimality and Feasibility cuts. Both types of cuts are known
as Benders cuts. These blocks are considerably large and it is not practical to use
them completely. Thus, the idea is that the algorithm solves a “relaxed” Benders
master problem which includes a subset of constraints of these large blocks. For
that, the algorithm starts by solving the master problem which either does not
include initial Benders cuts or includes few. Then, the solution obtained is used
to fix the corresponding parameters in the Benders Subproblem and solve it. The
dual solution obtained represents a potential improvement for the variables of the
master problem and is used in the form of a optimality or feasibility cut. Then,
the augmented master problem is solved again. To reach optimality, the algorithm
continues until the objective value of the Subproblem and the incumbent are equal.
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Nowadays, there are two ways of implementing a Benders decomposition scheme.
On the one hand, using a cutting plane scheme, which is the classical one, but seldom
used in practice. In each iteration a Benders cut is generated to be added to the
master problem and solve it again as an ILP. On the other hand, as other authors
have already noted, the most efficient way in which this strategy is used is together
with the branch-and-cut scheme. That is, at each node of the branching tree of
the branch-and-cut scheme Benders cuts (among other) can easily be generated and
embedded into it. This prodedure is named as the branch-and-Benders-cut scheme.

Structure of this chapter
The structure of the chapter is as follows. In Section 2.2, we present mixed-integer

linear formulations for (MC) and (PC). We also study some polyhedral properties
of the formulations and propose a simple algorithm to find an initial feasible solution
for both problems. In Section 2.3, we study different Benders implementations and
some algorithmic enhancements. Also, we discuss some improvements based on cut-
set inequalities. A computational study is detailed in Section 2.4. Finally, our
conclusions are presented in Section 2.5.

2.2 Problem formulations and some properties

In this section we present mixed-integer linear formulations for theMaximal-Covering
Network Design Problem (MC) and the Partial-Covering Network Design Problem
(PC). We also describe some preprocessing procedures. We finish with some poly-
hedral properties.

According to the elements defined in Subsection 1.2.1, for both Mixed-Integer
Linear Formulations, the following binary variables are used:

• Node selection variables. For each i ∈ N , yi is a binary variable to decide
whether or not node i is built.

• Edges selection variables. For each e ∈ E, xe is a binary variable to decide
whether or not edge e is built.

• Mode choice variables. For each w ∈ W , zw is a binary variable that takes
value 1 if the O/D pair w is covered.

• Flow variables. For each w ∈W , they are used to model a path from ws to wt

in the network to be built, if possible. Variable fwa , a ∈ A takes value 1 if arc
a belongs to such path for w.
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2.2.1 Mixed-Integer Linear Formulations

We first present a formulation of the Maximal-Covering Network Design Problem
(MC), whose aim is to design an infrastructure network maximizing the total demand
covered subject to a budget constraint:

(MC) max
x,y,z,f

∑
w∈W

gwzw (2.12)

s.t.
∑
e∈E

cexe +
∑
i∈N

biyi ≤ αCtotal, (2.13)

xe ≤ yi, e ∈ E, i ∈ e, (2.14)

∑
a∈δw+(i)

fwa −
∑

a∈δw−(i)

fwa =


zw, if i = ws,

−zw, if i = wt,

0, otherwise,

w ∈W, i ∈ Nw, (2.15)

fwa + fwâ ≤ xe, w ∈W, e = {i, j} ∈ Ew : a = (i, j), â = (j, i), (2.16)∑
a∈Aw

daf
w
a ≤ uwzw, w ∈W, (2.17)

yi, xe, z
w ∈ {0, 1}, i ∈ N, e ∈ Ew, w ∈W, (2.18)

fwa ∈ {0, 1}, a ∈ Aw, w ∈W. (2.19)

The objective function (2.12) to be maximized represents the demand covered. Cons-
traint (2.13) limits the total construction cost, being α ∈ (0, 1]. If we consider α = 0

the optimal solution network is to construct nothing, no pair is covered. Constraint
(2.14) ensures that if an edge is constructed, then its terminal nodes are constructed
as well. For each pair w, expressions (2.15), (2.16) and (2.17) guarantee demand
conservation and link flow variables fwa with mode choice variables zw and design
variables xe. Constraints (2.16) are named capacity constraints and they force each
edge to be used only in one direction at most. Constraints (2.17), referenced as
mode choice constraints, put an upper bound on the length of the path for each
pair w = (ws, wt). This ensures variable zw takes value 1 only if there exists a
path between ws and wt with length at most uw in the prospective network. This
path is represented by variables fwa . Finally, constraints (2.18) and (2.19) state that
variables are binary.

In Perea et al. (2020), authors prove that this problem is NP-hard.

Remark 1. For (MC), note that if α = 1, there is not a limit of budget. The
problem consists of a search for feasible paths.

The other formulation presented is for the Partial-Covering Network Design pro-
blem (PC), which minimizes the total construction cost of the network subject to a
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minimum coverage level of the total demand and can be formulated as follows:

(PC) min
x,y,z,f

∑
i∈N

biyi +
∑
e∈E

cexe (2.20)

s.t.
∑
w∈W

gwzw ≥ β Gtotal, (2.21)

Constraints (2.14), (2.15), (2.16), (2.17), (2.18), (2.19),

where β ∈ (0, 1]. If we consider β = 0 the optimal solution network is to construct
nothing. The objective function (2.20) to be minimized represents the design cost.
Constraint (2.21) imposes that, at least, a proportion β of the total demand is
covered. It is named as trip coverage constraint.

Proposition 1. For the specific case β = 1, (PC) is an extension of the Vertex-
Cover problem (2.1)-(2.3).

Proof. The (PC) can be rewritten in the following manner. For each w ∈ W , let
Lw be a set with all its competitive paths (that is, shorter than uw) in N . Besides,
each competitive/feasible path l ∈ Lw has an associated cost awl ∈ R≥1 and a binary
variable hwl , which takes value 1 if the feasible path l is assigned to w.

min
h

∑
w∈W

∑
l∈Lw

awl h
w
l (2.22)

s.t.
∑
l∈Lw

hwl ≥ 1, w ∈W, (2.23)

hwl ∈ {0, 1}, l ∈ Lw, w ∈W. (2.24)

For each feasible path l ∈ Lw, binary variable hwl is defined, which takes value 1 if l
is the feasible path assigned to w.

The following remarks are related to the flow variables set of both previous for-
mulations.

Remark 2. For (MC) and (PC), given a design solution (x,y), for each O/D
pair w ∈ W there could be several paths with length not larger than uw. Then, the
values of the flow variables fwa will describe one of them, which can contain subtours
and/or not be necessarily the shortest one, but the path choice has no influence on
the objective function values (2.12) and (2.20), respectively.

Remark 3. For (MC) and (PC), since the objective is to design a network, it can
be believed that they can be decomposed into two separate problems: first, designing
a network and then channeling the flow through the network constructed. This inter-
pretation is not correct. A suboptimal solution could be considered for either one, or
even an infeasible solution in the case of (PC).
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Remark 4. In the previous works by Marín and Jaramillo (2009) and García-
Archilla et al. (2013), constraints (2.16) and (2.17) are formulated in a different
way. For example, in García-Archilla et al. (2013), these constraints were written as

fwa + zw − 1 ≤ xa, w ∈W, e = {i, j} ∈ Ew : a = (i, j), (2.25)∑
a∈Aw

daf
w
a +M(zw − 1) ≤ uwzw, w ∈W, (2.26)

where the design variable xa is defined for each arc. Given that zw−1 ≤ 0, expressions
(2.16) and (2.17) are stronger than (2.25) and (2.26), respectively.

In addition, constraint (2.26) involves a “big-M” constant. Our proposed for-
mulation does not need it, which avoids the numerical instability generated by this
constant. As we will see in Subsection 2.4.2, we observed that our proposed formula-
tion is not only stronger than the one proposed in García-Archilla et al. (2013), but
it is also computationally more efficient. In consequence, we only focus our analysis
on our proposed formulation.

Remark 5. Another observation is that constraints (2.16) are a reinforcement of
the usual disaggregated capacity constraints:fwa ≤ xe,fwâ ≤ xe.

(2.27)

In most applications where flow or design variables appear in the objective functions,
the disaggregated version is sufficient to obtain a valid model since subtours are na-
turally non-optimal and the optimal solution is composed by a set of shortest paths.
However, it is not the case in our models, and there exist optimal solutions with
subtours although the aggregated version (2.16) is used, as explained in Remark 2.
Such constraint avoid subtours of length two. The use of (2.16) instead of (2.27) can
be simply taken as a reinforcement to the formulations to reduce the combinatorial
part without increasing the number of constraints to the problems. Such a strengthe-
ning was already introduced in the context of Uncapacitated Network Design, see e.g.
Balakrishnan et al. (1989), and Steiner Trees, see e.g. Sinnl and Ljubić (2016) and
Fortz et al. (2021).

2.2.2 Preprocessing methods

In this section we describe some methods to reduce the size of the instances before
solving them. First, we describe how to build each subgraph Nw = (Nw, Ew),
w ∈ W . Then for each problem, (MC) and (PC), we sketch a method to eliminate
O/D pairs which will never be covered.
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To create each subgraph Nw we only consider useful nodes and edges from N .
That is, we eliminate all the nodes i ∈ N that do not belong to any path from ws

to wt shorter than uw. The resulting set is Nw. Then, we define Ew as the set of
edges in E incident only to the non eliminated nodes. That is, Nw and Ew are the
sets formed by all feasible nodes and edges for w. Finally, the set Aw is obtained
by duplicating all edges in Ew with the exception of arcs (i, ws) and (wt, i). We
describe this procedure in Algorithm 1.

We assume that the cost of constructing each node and each edge is not higher
than the budget.

Algorithm 1: Preprocessing I
for w ∈W do

Nw = N
for i ∈ N do

compute the shortest path for the O/D pairs (ws, i) and (i, wt).
if the sum of the length of both paths is greater than uw then

Nw = Nw \ {i}
Ew = Ew \ δ(i)

end
end
Aw = {(i, j) ∈ A : {i, j} ∈ Ew, j 6= ws, i 6= wt}

end
return {Nw = (Nw, Ew), Aw}w∈W

Next, we focus on (MC). We can eliminate O/D pairs w that are too expensive
to be covered. That means, the O/D pair w is deleted from W if there is no path
between ws and wt satisfying: i) its building cost is less than αCtotal; and ii) its
length is less than uw. This can be checked by solving a Shortest Path problem with
Resource Constraints and can thus be done in a pseudo-polynomial time. Desrochers
(1986) shows how to adapt Bellman-Ford algorithm to solve it. In Feillet et al. (2004)
authors adapt this idea and strengthen it to solve the Elementary Shortest Path
problem with Resource Constraints. However, given the moderate size of graphs we
consider, we solve it as a feasibility problem. For each w, we consider the feasibility
problem associated to constraints (2.13) (2.14), (2.15), (2.16), (2.17) and (2.18), with
zw fixed to 1. If this problem is infeasible, then the O/D pair w is deleted from W .
Otherwise, there exists, at least, a feasible path denoted by Pathw. Pair w is a feasible
pair, in terms coverage. We denote by (Ñw, Ẽw) the subgraph of Nw induced by
Pathw.
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2.2.3 Polyhedral properties

Both formulations (MC) and (PC) involve flow variables fwa whose number can
be huge when the number of O/D pairs is large. To circumvent this drawback
we use a Benders decomposition approach for solving (MC) and (PC). In this
subsection, we present properties of the two formulations that allow us to apply such
a decomposition in an efficient way.

The first proposition shows that we can relax the integrality constraints on the
flow variables fwa . Let (MC_R) and (PC_R) denote the formulations (MC) and
(PC) in which constraints (2.19) are replaced by non-negativity constraints, i.e.

fwa ≥ 0, w ∈W,a ∈ A. (2.28)

We denote the set of feasible points to a formulation F by F(F ). Regarding the
notion of projection of a set of points (see Definition 1), the following statement is
proved, after executing the previous preprocessing methods.

Proposition 2. The projections of (MC) and (MC_R) onto the f -space coincide.
The same is true for (PC). That is,

Projx,y,z(F(MC)) = Projx,y,z(F(MC_R))

and
Projx,y,z(F(PC)) = Projx,y,z(F(PC_R)).

Proof. We provide the proof for (MC), the other one being identical.
First, F(MC) ⊆ F(MC_R) implies Projx,y,z(F(MC)) ⊆ Projx,y,z(F(MC_R)).
Second, let (x,y, z) be a point belonging to Projx,y,z(F(MC_R)). For every O/D
pair w ∈ W such that zw = 0 then fw = 0. In the case where zw = 1, there
exists a flow fwa ≥ 0 satisfying (2.15) and (2.16) that can be decomposed into a
convex combination of flows on paths from ws to wt and cycles. Given that the flow
fwa also satisfies (2.17), then a flow of value 1 on one of the paths in the convex
combination must satisfy this constraint. Hence, by taking fwa equal to 1 for the
arcs belonging to this path and to 0 otherwise, we show that (x,y, z) also belongs
to Projx,y,z(F(MC)).

Note that a similar result is presented in the article Ljubić et al. (2019). Based on
Proposition 2, we propose a Benders decomposition where variables fwa are projected
out from the model and replaced by Benders feasibility cuts. As we will see in Section
2.3.3, we also consider the Benders facet-defining cuts proposed in Conforti and
Wolsey (2019). To apply this technique it is necessary to get an interior point of the
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convex hull of Projx,y,z(F(MC_R)) (resp. Projx,y,z(F(PC_R))). The following
property gives us an algorithmic tool to apply this technique to (MC).

Proposition 3. After preprocessing, the convex hull of Projx,y,z(F(MC_R)) is
full-dimensional.

Proof. To prove the result, we exhibit |N |+|E|+|W |+1 affinely independent feasible
points:

• The 0 vector is feasible.

• For each i ∈ N , the points:

yi = 1, yi′ = 0, i′ ∈ N \ {i}, xe = 0, e ∈ E, zw = 0, w ∈W.

• For each e = {i, j} ∈ E, the points:

yk = 1, k ∈ e, yk = 0, k ∈ N \ {i, j}, xe = 1, xe′ = 0, e′ ∈ E \ {e},

zw = 0, w ∈W.

• For each w ∈W , the points:

yi = 1, i ∈ Ñw, yi = 0, i ∈ N \ Ñw, xe = 1, e ∈ Ẽw, xe = 0, e ∈ E \ Ẽw,

zw = 1, zw
′

= 0, w′ ∈W \ {w}.

Clearly these points are feasible and affinely independent. Thus, the polytope is
full-dimensional.

The proof of Proposition 3 gives us a way to compute an interior point of the
convex hull of Projx,y,z(F(MC_R)). The average of these |N |+|E|+|W |+1 points
is indeed such an interior point.

This is not the case for (PC), as we show in Example 1.

Example 1. Consider the instance of (PC) given by the data presented in Table
2.1 and Figure 2.1. We consider the case where at least half of the population must
be covered, that is β = 0.5. In order to satisfy the trip coverage constraint (2.21),
the O/D pair w = (1, 4) must be covered. Hence z(1,4) = 1 is an implicit equality.
Furthermore, the only path with a length less than or equal to u(1,4) = 15 is composed
of edges {1,2} and {2,4}. Hence, x{1,2}, x{2,4}, y1, y2 and y4 must take value 1. As
a consequence, the polytope associated to (PC) is not full-dimensional.
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Origin Destination uw gw

1 4 15 200
2 4 10 50
3 4 15 50

Table 2.1: Data in Example 1.
We consider β = 0.5.

1

2

3

4

d = 10 d = 5

d = 10 d = 10

Figure 2.1: Graph of Example 1.

We can compute the dimension of the convex hull of Projx,y,z(F(PC_R)) in an
algorithmic fashion. For that, we find feasible affinely independent points and, at
the same time, we detect O/D pairs which must be covered in any feasible solution.
Due to the latter, there are a subset of nodes and a subset of edges that have to be
built in any feasible solution. This means that there is a subset of design variables
yi, i ∈ N , xe, e ∈ E and mode choice variables zw, w ∈W that must be fixed to value
1. In this case, we say that O/D pair w is essential, and, if applicable, that edge e
and node i are essential for w. At the opposite to (MC), a solution to (PC) with
all variables set to 0 is not feasible. However, the solution obtained by serving all
O/D pairs and building all nodes and edges is feasible. Therefore, we start with a
solution with all variables in x,y, z set to 1 and we check, one by one, if it is feasible
to set them to 0. By setting one variable xe or yi to 0, it may become impossible to
cover some essential O/D pair w. To simplify the notation, we introduce the binary
parameters θwe (and θwi ) taking value 1 if edge e (respectively node i) is essential for
w. These new points are stored in a set S. Each time that the algorithm finds a
variable that cannot be set to 0, we store it in sets N̄ , Ē, W̄ , respectively. At the
end of the algorithm, the dimension of the convex hull of Projx,y,z(F(PC_R)) is

dim(Px,y,z) = |N |+ |E|+ |W | −
(
|N̄ |+ |Ē|+ |W̄ |

)
.

This procedure is depicted in Algorithm 2.
Algorithm 2 allows : i) to set some binary variables equal to 1, decreasing the

problem size; and ii) to compute a relative interior point of the convex hull of
Projx,y,z(F(PC_R)), necessary for the facet-defining cuts, as explained below in
Section 2.3.3. The relative interior point is given by the average of the points in set
S.



30 Chapter 2. Benders Decomposition for Network Design Covering Problems

Algorithm 2: Computing the dimension for the polytope of (PC).
Initialization: Set N̄ = ∅, Ē = ∅, W̄ = ∅ and S = ∅.
Add to set S: (yi = 1, i ∈ N, xe = 1, e ∈ E, zw = 1, w ∈W )

for w′ ∈W do
if

∑
w∈W\{w′}

gw ≥ β Gtotal then

Add to set S:(
yi = 1, i ∈ N, xe = 1, e ∈ E, zw

′
= 0, zw = 1, w ∈W \ {w′}

)
else

W̄ = W̄ ∪ {w′}.
end
for e = {i, j} ∈ E do

Compute shortest path from w′s to w′t in the graph (Nw′ , Ew
′ \ {e}).

if the length of the shortest path is greater than uw′ or there is no
path between w′s and w′t then
N̄ = N̄ ∪ {i, j}
Ē = Ē ∪ {e}

end

end

end
for e′ ∈ E \ Ē do

Add to set S:(
yi = 1, i ∈ N, xe = 1, e ∈ E \ {e′}, xe′ = 0, zw = 1− θwe′ , w ∈W

)
end
for i′ ∈ N \ N̄ do

Add to set S:
(yi′ = 0, yi = 1, i ∈ N \ {i′}, xe = 0, i′ ∈ e, xe = 1, i′ /∈ e,
zw = 1− θwi′ , w ∈W

)
end
dim(Px,y,z) = |N |+ |E|+ |W | −

(
|N̄ |+ |Ē|+ |W̄ |

)
return N̄ , Ē, W̄ , S and dim(conv(Px,y,z))

Example 1 cont. Regarding the previous example and following Algorithm 2, the
O/D pair (1, 4) must be covered, z(1,4) = 1. It is essential. Due to that, as its
shortest path in the networks (N (1,4), E(1,4) \ {{1, 2}}) and (N (1,4), E(1,4) \ {{2, 4}})
is greater than u(1,4) = 15, variables x{1,2}, x{2,4}, y1, y2, y4 are set to 1. These edges
are essential for it. Finally, the dimension of this polyhedron is

dim(Px,y,z) = 4 + 4 + 3− (3 + 2 + 1) = 5.
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The relative interior point computed is:

x{1,2} = 1, x{2,4} = 1, x{1,3} =
5

6
, x{3,4} =

2

3
, y1 = 1, y2 = 1, y3 =

5

6
, y4 =

5

6
,

z(1,4) = 1, z(2,4) =
5

6
, z(3,4) =

1

2
.

2.2.4 Setting an initial solution

We determine an initial feasible solution for (MC) and (PC) with a simple greedy
heuristic in which we sequentially select O/D pairs with best ratio demand over-
building cost. More precisely, given the potential network N = (N,E), we compute
for each O/D pair w the ratio rw = gw

C(Pathw)
, where C(Pathw) is the cost of a

feasible path for w. We order these ratios decreasingly. We use this initial order in
the heuristic for both (MC) and (PC). For (MC) the method proceeds as follows.
It starts with an empty list of built nodes and edges, an empty list of O/D pairs
covered, and a total cost set to 0. For each O/D pair w, in decreasing order of rw,
the heuristic tries to build Pathw considering edges and nodes that are already built.
If the additional cost plus the current cost is less than the budget αCtotal, nodes and
edges in Pathw are built and the O/D pair w is covered (i.e. zw = 1). The total
cost, the lists of built nodes and edges are updated. Otherwise we proceed with the
next O/D pair. At the end of the algorithm we have an initial feasible solution.

To get an initial solution for (PC) we start with a list of all the O/D pairs
covered and the amount of population covered equal to Gtotal. For each O/D pair
w, in decreasing order of rw, the algorithm checks if by deleting the O/D pair w
from the list, the coverage constraint (2.21) is satisfied. If so, the O/D pair w is
deleted from the list and the amount of population covered is updated. Finally, the
algorithm builds the union of the subgraphs (Ñw, Ẽw) induced by the paths l̃w for all
the O/D pairs covered. Note that both initial solutions can be computed by solving
|W | shortest paths problems. These tasks can be executed much faster than solving
(MC) and (PC) to optimality.

Pseudo-codes for both routines are provided in Appendix A. In Section 2.4, we
will show the efficiency of adding this initial solution at the beginning of the branch-
and-Benders-cut procedure.

2.2.5 Relation between (MC) and (PC)

With respect to the (MC) problem, there exists a set of optimal solution networks
for which the demand satisfied is the same, but the cost of these optimal solution
networks does not have to be necessarily the same. Then, with the aim of designing
the cheapest network which maximizes the demand covered, once the (MC) is solved,
its objective value is used to set the lower bound for the coverage constraint (2.21)
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of (PC) problem and solve it. In this manner, the (PC) problem builds a network
that covers the same demand percentage as the (MC), but it could be at a lower
cost. This situation is shown with the following example.

Example 2. Consider the instance given by the data presented in Table 2.2 and
Figure 2.2 for the case in which the available budget is upper bounded by the 67%

of the total cost of the underlying network, that is, 0.67Ctotal = 40. We observe
that the (MC) problem for this given instance has two optimal solution networks
N1 = ({1, 2, 3}, {{1, 2}, {1, 3}}) and N2 = ({2, 4}, {{2, 4}}) whose objective values
are equal to 200 and the construction cost is 40 and 25, respectively. If the objective
is to build the cheapest network which maximizes the demand covered, once the
(MC) problem is solved, the (PC) problem must be computed with the lower bound
of the trip coverage constraint β = 0.5, to cover the same percentage as in the optimal
solution network for (MC). In this way, N2 is the cheapest optimal solution network
for (MC) problem. Besides, N2 is the optimal solution for (PC) problem if β = 0.5.

Origin Destination uw gw

1 2 15 50
2 3 30 150
2 4 15 200

Table 2.2: Data in Example 2.

1
b = 5

2

b = 5

3

b = 5

4
b = 5

c=
15

d=
10

c=15d=5

c=10d=15
c=

10

d=
10

Figure 2.2: Graph of Example 2.
We consider α = 0.67.

2.3 Benders decomposition implementations

In the following, we describe different Benders implementations for (MC) and (PC)

obtained by projecting out variables fwa . Given that (MC) and (PC) share the
same subproblem structure, the Benders decomposition applied to (MC) is valid for
(PC) and vice versa. Thus, we will apply the same Benders decomposition for both
problems throughout this chapter. These implementations are used as subroutines
in a branch-and-Benders-cut scheme. This scheme allows cutting infeasible solutions
along the branch-and-bound tree. Depending on the implementation, infeasible so-
lutions can be separated at any node in the branch-and-bound tree or only when an
integer solution is found. In the case of (MC), the master problem that we solve is:
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(M_MC) max
x,y,z

∑
w∈W

gwzw (2.29)

s.t. (2.13), (2.14), (2.18)

+ {Benders Cuts (x,y, z)}.

The master problem for (PC), named (M_PC), is stated analogously.
In Section 2.3.1, we discuss the standard Benders cuts obtained by dualizing the

respective feasibility subproblem. Then, in Section 2.3.2 we discuss ways of gener-
ating normalized subproblems, to produce stronger cuts. We name them normalized
Benders cuts. In Section 2.3.3, we apply facet-defining Benders cuts in order to get
stronger cuts too, as proposed in Conforti and Wolsey (2019). Finally, we discuss an
implementation where, at the beginning, cut-set inequalities are added to enhance
the link between x and z, and then Benders cuts are added.

2.3.1 LP feasibility cuts

Since the structure of the model allows it, we consider a feasibility subproblem made
of constraints (2.15), (2.16), (2.17) and (2.28) for each commodity w ∈ W , denoted
by (SP )w. As it is clear from the context, we remove the index w from the notation.
The dual of each feasibility subproblem can be expressed as:

(DSP )w max
γ,σ,υ

z γws −
∑
e∈E

xe σe − u z υ (2.30)

s.t. γi − γj − σe − da υ ≤ 0, a = (i, j) ∈ A : e = {i, j}, (2.31)

σe, υ ≥ 0, e ∈ E, (2.32)

where γ is the vector of dual variables related to constraints (2.15), σ is the vector
of dual variables corresponding to the set of constraints (2.16) and υ is the dual
variable of constraint (2.17).

Remark 6. Since constraints (2.15) are linearly dependent, we set γwt = 0.

Given a solution (x,y, z) of the master problem, there are two possible outcomes
for (SP )w:

1. (SP )w is infeasible and (DSP )w is unbounded. Then, there exists an increasing
direction (γ,σ,υ) with positive cost. In this case, the current solution (x,y, z)

is cut by
(γws − u υ) z −

∑
e∈E

σe xe ≤ 0. (2.33)

2. (SP )w is feasible and consequently, (DSP )w has an optimal objective value
equal to zero. In this case, no cut is added.
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Remark 7. We note that each subproblem (SP )w is feasible whenever zw = 0, so it
is necessary to check feasibility to add feasibility cuts (2.33) only in the case where
zw > 0.

2.3.2 Normalized Benders cuts

The overall branch-and-Benders-cut performance heavily relies on how the cuts are
implemented. It is known that feasibility cuts may have poor performance due to
the lack of ability of selecting a good extreme ray (see, for example, Fischetti et
al. (2010); Ljubić et al. (2012)). However, normalization techniques are known to
be efficient to overcome this drawback (see Magnanti and Wong (1981); Balas and
Perregaard (2002, 2003)). The main idea is to transform extreme rays in extreme
points of a suitable polytope. In this section we study three ways to normalize the
dual subproblem described above.

First, we note that the feasibility subproblem made of constraints (2.15), (2.16),
(2.17) and (2.28) can be reformulated as a min cost flow problem in Nw with capa-
cities x and arc costs d, called as normalized subproblem (NSP ).

(NSP )w min
x,y,z,f

∑
a∈A

da fa (2.34)

s.t. (2.15), (2.16), (2.28).

The associated dual subproblem is:

(DNSP )w max
γ,σ

z αws −
∑
e∈E

σexe (2.35)

s.t. γi − γj − σe ≤ da, a = (i, j) ∈ A : e = {i, j}, (2.36)

σe ≥ 0, e ∈ E. (2.37)

Regarding Remark 7, as in (SP )w, the primal subproblem (NSP )w may be infeasible
whenever zw > 0. Subproblems (NSP )w are no longer feasibility problems, although
some of their respective dual forms can be unbounded. As the splitting demand
constraint has to be satisfied there are two kind of cuts to add:

1. (NSP )w is infeasible and (DNSP )w is unbounded. In this case, the solution
(x,y, z) is cut by the constraint

γws z −
∑
e∈E

σe xe ≤ 0. (2.38)

2. (NSP )w is feasible and (DNSP )w has optimal solution. Consequently, if their
solutions (γ,σ) and (x,y, z) satisfy that γws z −

∑
e∈E σe xe > uz then, the
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solution (x,y, z) is discarded to the master problem by the constraint

(γws − u) z −
∑
e∈E

σe xe ≤ 0. (2.39)

We refer to this implementation as BD_Norm1.
In this situation, as it has already been seen, there still exists dual subproblems

(DNSP )w which generate extreme rays. We refer to BD_Norm2 as second dual nor-
malization obtained by adding the dual constraint γws = u+ 1 to each subproblem.
In this case, every extreme ray of (SP )w corresponds to one of the extreme points
of (NSP )w. A cut is added whenever the optimal dual objective value is positive.
This cut has the form

z −
∑
e∈E

σe xe ≤ 0. (2.40)

We finally tested a third dual normalization, BD_Norm3, by adding constraints

σe ≤ 1, e ∈ E, (2.41)

directly in (DSP )w.
We tested the three dual normalizations described above for (MC) using ran-

domly generated networks with 10, 20 and 40 nodes, as described in Subsection
2.4.1. As we will see in Subsection 2.4.2, only BD_Norm1 results to be competitive.

2.3.3 Facet-defining Benders cuts

Here we describe how to generate Benders cuts for (MC) based on the ideas exposed
in Conforti and Wolsey (2019). The procedure for (PC) is the same. Given an
interior point or core point (xin,yin, zin) of the convex hull of feasible solutions
and an exterior point (xout,yout, zout), that is a solution of the LP relaxation of
the current restricted master problem, a cut that induces a facet or an improper
face of the polyhedron defined by the LP relaxation of Projx,y,zF(MC) is gene-
rated. We denote the difference xout − xin by ∆x. We define ∆y and ∆z ana-
logously. The idea is to find the furthest point from the core point, feasible to
the LP-relaxation of Projx,y,zF(MC) and lying on the segment line between the
core point and the exterior point. This point is of the form (xsep,ysep, zsep) =

(xout,yout, zout)−λ(∆x,∆y,∆z). Figure 2.3b shows this type of cuts. We refer the
problem of generating such facet-defining Benders cuts as facet-defining subproblem,
(FSP ), and it reads as follows:
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(FSP )w min
f ,λ

λ (2.42)

s.t.
∑

a∈δw+(i)

fa −
∑

a∈δw−(i)

fa =

zout − λ∆z, if i = ws,

0, otherwise,
(2.43)

fa + fâ ≤ xoute − λ∆xe, e = {i, j} ∈ E : a = (i, j), â = (j, i), (2.44)∑
a∈A

da fa ≤ u zout − u∆z λ, (2.45)

0 ≤ λ ≤ 1, (2.46)

fa ≥ 0, a ∈ A. (2.47)

In order to obtain the Benders feasibility cut we solve its associated dual:

(DFSP )w max
γ,σ,υ

zout γws −
∑
e∈E

xoute σe − u zout υ (2.48)

s.t. ∆z γws −
∑
e∈E

∆xe σe − u∆z υ ≤ 1, (2.49)

γi − γj − σe − da υ ≤ 0, a = (i, j) ∈ A : e = {i, j},

σe, υ ≥ 0, e ∈ E.

pout

(a) Standard Benders cuts

pout
pin

psep

(b) Facet-defining Benders cuts

Figure 2.3: Benders cuts

Given that (FSP )w is always feasible (λ = 1 is feasible) and that its optimal
value is lower bounded by 0, then, both (FSP )w and (DFSP )w have always finite
optimal solutions. Whenever the optimal value of λ is 0, (xout,yout, zout) is feasible.
A cut is added if the optimal value of (DFSP )w is strictly greater than 0. The new
cut has the same form as in (2.33). Note that this problem can be seen as a dual
normalized version of (SP )w with the dual constraint (2.49). This approach is an
improvement in comparison with the stabilization cuts proposed by Ben-Ameur and
Neto (2007), where λ is a fixed parameter.
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Core points can be obtained by computing the average of the points described
in the proof of Proposition 3 for (MC) formulation and the average of the points in
list S obtained by applying Algorithm 2 for (PC) formulation.

2.3.4 Cut-set inequalities

By projecting out variables vector f , information regarding the link between vectors
x and z is lost. To deal with that, we use cut-set inequalities, which are a type of valid
inequalities family widely used in different algorithms for Network Design problems.
Some articles in which they have been studied are, for instance, Barahona (1996),
Koster et al. (2013) and Costa et al. (2009). In our case, the cut-set inequalities
represent the information lost with respect to the connectivity for the O/D pair w
in the solution given by the design variables vector x, as shown in Figure 2.4.

ws as at wtzw −zw

S Sc

∑
e∈δ(ws)

xe
∑

e∈δ(wt)

xe

∑
{i,j}∈Ew:

i∈S, j∈SC

xe

Figure 2.4: Cut-set inequalities

Definition 2. Let (S, SC) be a (ws, wt)-partition of Nw for a fixed O/D pair w, i.e.
(S, SC) satisfies: i) ws ∈ S; ii) wt ∈ SC , with SC = N \S its complement. A cut-set
inequality is defined as

zw ≤
∑

{i,j}∈Ew:

i∈S, j∈SC

x{i,j}, w ∈W : (S, SC) is a (ws, wt)-partition of Nw. (2.50)

It is easy to see that cut-set inequalities belong to the LP-based Benders family, as
explained in Remark 8.

Remark 8. Note that it is easy to see that cut-set inequalities belong to the LP-based
Benders family 2.33. Let (S, SC) be a (ws, wt)-partition in the graph Nw for w ∈W .
Consider the following dual solution:
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• γi = 1 if i ∈ S; γi = 0 if i ∈ SC .

• σe = 1 if e = {i, j} ∈ Ew, i ∈ S, j ∈ SC ; σe = 0, otherwise.

• υ = 0.

This solution is feasible to (DSP )w and induces a cut as (2.50).

In order to improve computational performance of the Benders procedure, we
test two approaches to include these inequalities:

1. We implement a modification of the Benders callback algorithm with the fol-
lowing idea. First, for each w ∈ W , using the solution vector (x,y) from the
master problem, the algorithm generates a network (Nw, Ew) with capacity 1

for each edge built. Then, a Depth-First Search algorithm is applied to obtain
the connected component containing ws. If the connected component does not
contain wt, a cut of the form (2.50) is added. Otherwise, we generate a Benders
cut as before. This routine is depicted in Algorithm 3.

Algorithm 3: Callback implementation with cut-set inequalities.
Require: (xe, e ∈ E, yi, i ∈ N , zw, w ∈W ) from the master solution vector
(x,y, z).
for w ∈W do

Build graph (Nw(y), Ew(x)) induced by the solution vectors x and y
from the master.
Compute the connected component S in (Nw(x), Ew(x)) containing ws.
if wt is not included in S then

Add the cut zw ≤
∑

{i,j}∈Ew:

i∈S, j∈SC

x{i,j}.

else
Solve the corresponding subproblem ((DSP )w, (DNSP )w,
(DFSP )w) and add cut if it is necessary.

end

end
return Cut.

We tested this implementation with subproblems (DFSP )w. We observed that
the convergence is slower and we generate more cuts. These preliminary results
are shown in Table 2.6.

2. We add to the master problem the cut-set inequalities respective to the origin
and at the destination of each O/D pair w ∈ W at the beginning of the algo-
rithm. These valid inequalities have the form
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zw ≤

∑
e∈δ(ws)

xe,

zw ≤
∑

e∈δ(wt)
xe.

(2.51)

This means that for each O/D pair to be covered, there should exist at least
one edge incident to its origin and one edge incident to its destination, i.e. each
O/D pair should have at least one arc going out of its origin and another one
coming into its destination.

2.4 Computational experiments

In this section, we compare the performance of the different families of Benders cuts
presented in Section 2.3 using the branch-and-Benders-cut algorithm (denoted as
B&BC).

All our computational experiments were performed on a computer equipped with
an Intel Core i5-7300 CPU processor, with 2.50 gigahertz 4-core, and 16 gigabytes
of RAM. The operating system is 64-bit Windows 10. Codes were implemented in
Python 3.8. These experiments have been carried out through CPLEX 12.10 solver,
named CPLEX, using its Python interface. CPLEX parameters were set to their default
values and the models were optimized in a single threaded mode.

For that, t denotes the average value for solution times given in seconds, gap
denotes the average of relative optimality gaps in percent (the relative percent dif-
ference between the best solution and the best bound obtained within the time limit),
LP gap denotes the average of LP gaps in percent and cuts is the average of number
of cuts generated.

2.4.1 Data sets: benchmark networks and random instances

We divide the tested instances into two groups: benchmark instances and random in-
stances. Our benchmark instances are composed by the Seville city network (García-
Archilla et al., 2013) and Sioux Falls city network (Hellman, 2013), named as Seville
and Sioux Falls in what follows.

The Seville instance is composed partially by the real data given by the authors
of García-Archilla et al. (2013). From this data, we have used the topology of the
underlying network, cost and distance vector for the set of arcs and the demand
matrix. This network is composed of 49 nodes and 119 edges. Originally, the set
of O/D pairs W was formed by all possible ones (49 · 48 = 2352). However, some
entries in the demand matrix of this instance are equal to 0 and we thus exclude them
from the analysis. Specifically, 630 pairs have zero demand, almost 27% of the whole
set. We consider a private utility u equal to twice the shortest path length in the
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underlying network. Each node cost is generated according to a uniform distribution
U(7, 13). The available budget has been fixed to 30% of the cost of building the
whole underlying network and the minimum proportion of demand to be covered to
β = 0.5.

For the Sioux Falls instance, the topology of the network is described by 24

nodes and 38 edges. Set W is also formed by all possible O/D pairs (38 · 37 = 1406).
The parameters have been chosen in the same manner as for the random instances.

We generate our random instances as follows. We consider planar networks with
a set of n nodes, with n ∈ {10, 20, 40, 60}. Nodes are placed in a grid of n square
cells, each one of 10 units per side. For each cell, a point is randomly generated close
to the center of the cell. For each setting of nodes we consider a planar graph with its
maximum number of edges, deleting each edge with probability 0.3. We replicated
this procedure 10 times for each n, so that the number of nodes is the same while the
number of edges may vary. Therefore, there are 40 different underlying networks.
We name these instances as N10, N20, N40 and N60. We provide the average cycle
availability, connectivity and density for random instances networks in Table 2.3. A
couple of them are depicted in Figure 2.5.

Figure 2.5: Example of underlying networks with |N |=20 and |N |=40.

Network Cycle availability Connectivity Density
|E|−|N |+1
2|N |−5

|E|
|N |

|E|
3(|N |−2)

N10 0.11 1.05 0.44
N20 0.11 1.12 0.41
N40 0.13 1.22 0.43
N60 0.16 1.29 0.45

Overall 0.12 1.17 0.43

Table 2.3: Cycle availability, connectivity and density parameters for the underlying
networks in random instances.

Once a random instance N is generated, construction costs bi, i ∈ N , are also
randomly generated according to a uniform distribution U(7, 13). So, each node costs
10 monetary units on average. The construction cost of each edge e ∈ E, ce, is set
to its Euclidean length. This means that building the links cost 1 monetary unit per
length unit. The node and edge costs are rounded to integer numbers. We set the
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budget αCtotal equal to 50% of the cost of building the whole underlying network
considered. That is, α = 0.5.

To build set W , we randomly pick each possible O/D pair of nodes with prob-
ability 0.5. In consequence, this set has n(n−1)

2 pairs on average. Parameter uw is
set to 2 times the length of the shortest path between ws and wt in the potential
network N , uw = 2 dN (w). Finally, the demand gw for each O/D pair w is randomly
generated according to the uniform distribution U(10, 300).

2.4.2 Preliminary experiments

Before presenting an extensive computational study of the algorithms, we provide
some preliminary results to analyze: i) the efficiency of the formulation presented
in García-Archilla et al. (2013); ii) the efficiency of the cut normalizations described
in Subsection 2.3.2, and iii) the performance of the cut-set based Branch-and-cut
procedure described in Subsection 2.3.4.

Network
Formulation using (2.16)-(2.17) Formulation using (2.25)-(2.26)
t LP gap t LP gap

N10 0.17 43.21 0.26 96.43
N20 5.78 56.33 228.22 106.71

gap LP gap gap LP gap
N40 11.74 68.15 54.85 137.13

Table 2.4: Comparing the performance of the two different types of mode choice and
capacity constraints for (MC) within a time limit of 1 hour. The majority of N40
instances were not solved to optimality, then the average gap is shown.

We first show that our formulation using (2.16)-(2.17) is not only stronger than
the one formulated with (2.25)-(2.26) but also more efficient. Table 2.4 shows some
statistics for the two formulations discussed at the end of Subection 2.2.1, for in-
stances with 10 and 20 nodes. We also tested instances with 40 nodes but most of
them were not solved to optimality within one hour. In that case, we provide the
optimality gap instead of the solution time. We consider 5 instances of each size.
Note that constraints (2.26) are equivalent to constraints (2.17) by setting M = 0.
We tested several positive values for M .

Secondly, we tested the three dual normalizations described in Subsection 2.3.2
for (MC). Table 2.5 shows average values obtained for solution time in seconds and
number of cuts needed for this experiment. The only one that seems competitive is
BD_Norm1. We observed that cut coefficients generated with BD_Norm1 are mainly 0’s
or 1’s. In the case of BD_Norm2 and BD_Norm3 we observe that coefficients generated
are larger than the ones generated by BD_Norm1, so they may induce numerical
instability. This situation is similar for the case of (PC).
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Network BD_Norm1 BD_Norm2 BD_Norm3
t cuts t cuts t cuts

N10 0.21 44 0.22 47 0.24 104
N20 2.83 362 5.76 595 5.22 1418
N40 687.88 2904 * * * *

Table 2.5: Comparing the performance of the three dual normalizations within a
time limit of 1 hour for (MC). N10, N20 and N40 are refered to networks with 10,
20 and 40 nodes, respectively. The mark ’*’ indicates that four out of five instances
were not solved within 1 hour.

Finally, we tested the cut-set inequalities implementation described in Subsection
2.3.4 with subproblems (DFSP )w. We observed that convergence is slower and we
generate more cuts. This might be due to the fact that these cuts do not include
information about the length of the path in the graph, but only information regarding
the existence of the path. These preliminary results are shown in Table 2.6, which
provides average values obtained for solution times in seconds and the number of
cuts added.

Network
BD_CW Algorithm 3+BD_CW

t cuts t cuts
N10 0.23 48 0.15 46
N20 2.47 411 2.53 500
N40 619.31 3486 722.02 3554

Table 2.6: Comparing the performance of the Algorithm 3 for (MC). N10, N20 and
N40 refer to networks with 10, 20 and 40 nodes respectively.

In conclusion, all three implementations, with the exception of BD_norm1, are
excluded from further analysis.

2.4.3 Branch-and-Benders-cuts performance

Our preliminary experiments show that including cuts only at integer nodes of the
branch and bound tree is more efficient than including them in nodes with frac-
tional solutions. Thus, in our experiments, we only separate integer solutions un-
less we specify the opposite. We used the LazyConstraintCallback function of
CPLEX to separate integer solutions. Fractional solutions were separated using the
UserCutCallback function. We study the different implementations of B&BC pro-
posed in Subsections 2.3.1, 2.3.2 and 2.3.3. We use the following nomenclature:

• BD_Trd: B&BC algorithm using the feasibility Benders subproblems structure
(DSP )w, and its corresponding feasibility cuts (2.33).
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• BD_Norm: B&BC algorithm using the normalized Benders subproblems structure
(DNSP )w, and its corresponding cuts (2.38) and (2.39).

• BD_CW: B&BC algorithm using the facet-defining Benders subproblems structure
(DFSP )w, and its corresponding feasibility cuts (2.33).

We compare our algorithms with the direct use of CPLEX, and the automatic
Benders procedure proposed by CPLEX, noted by Auto_BD. CPLEX provides different
implementations depending on the information that the user provides to the solver:
i) CPLEX attempts to decompose the model strictly according to the decomposition
provided by the user; ii) CPLEX decomposes the model by using this information as a
hint and then refines the decomposition whenever possible; iii) CPLEX automatically
decomposes the model, ignoring any information supplied by the user. We have
tested these three possible settings, and only the first one is competitive.

Furthermore we have tested the following features:

• CS: If we include cut-set inequalities at each origin and destination as in (2.51).

• IS: If we provide an initial solution to the solver.

• RNC: If we add Benders cuts at the root node.

2.4.4 Branch-and-Benders-cuts performance on random instances

All the experiments have been performed with a limit of one hour of CPU time
considering 10 instances of each size. Tables in this subsection show average val-
ues obtained for solution times in seconds, relative gaps in percent, and number of
cuts needed. To determine these averages, we only consider the instances solved at
optimality by all the algorithms.

First, we compare the performance of CPLEX for formulations (MC) and (PC)

and the three different B&BC implementations described above (BD_Trd, BD_Norm and
BD_CW). We also study the impact of the initial cut set inequalities CS in the efficiency
of the proposed algorithms. Table 2.7 shows the performance of the algorithms for
networks N10, N20 and N40. All the algorithms are able to solve at optimality N10
and N20 instances in less than 7 seconds for (MC) and (PC). For (MC) without
CS, the fastest algorithm is BD_CW in sets N10, N20 and N40 for the instances solved
to optimality. This is not the case for (PC), since we can observe that Auto_BD is
slightly faster. In general, when CS is included, the solution time and the amount of
cuts required decrease. Specifically, for (MC) in N40, the most efficient algorithm is
BD_CW+CS which gets the optimal solution 43.8% faster than Auto_BD+CS. For (PC),
it seems to be also profitable, since for N40 BD_CW+CS gets the optimal solution using
55% less time than Auto_BD. These results are shown in the second and fourth block
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of Table 2.7.

Network CPLEX Auto_BD BD_Trd BD_Norm BD_CW
t t cuts t cuts t cuts t cuts

(MC)

w.o.
CS

N10 0.18 0.43 27 0.25 92 0.24 91 0.19 94
N20 6.77 4.51 273 3.89 620 3.18 590 3.34 641
N40 1646.93 617.85 1967 1095.25 3990 541.03 3677 457.81 4137

+CS
N10 - 0.32 12 0.21 49 0.28 52 0.23 54
N20 - 3.94 178 2.29 382 2.50 383 1.85 416
N40 - 484.95 1248 637.49 2378 575.87 2530 272.39 3186

(PC)

w.o.
CS

N10 0.18 0.29 16 0.24 92 0.28 89 0.20 91
N20 6.73 4.87 305 3.55 607 4.68 681 2.15 606
N40 2153.15 504.06 1752 657.59 4470 514.42 4246 837.41 4412

+CS
N10 - 0.28 11 0.16 56 0.20 57 0.145 54
N20 - 4.12 213 3.11 497 3.43 495 2.070 461
N40 - 439.23 1527 261.74 3528 323.21 3583 197.55 3949

Table 2.7: Comparing the performance of the three Branch-and-Benders-cuts for
(MC) and (PC).

Table 2.8 shows the instances in N40 solved in one hour. Without CS, some
instances in set N40 cannot be solved to optimality neither for (MC) nor for (PC).
Nevertheless, by including CS, Benders implementations can solve all the instances
in N40 in the one hour limit.

CPLEX Auto_BD BD_Trd BD_Norm BD_CW

(MC)
without CS 3 10 9 8 8

+CS - 10 10 10 10

(PC)
without CS 3 9 8 8 8

+CS - 10 10 10 10

Table 2.8: Instances N40 solved for (MC) and (PC) within a time limit of 1 hour.

We now concentrate on N60 instances. Table 2.9 compares the performance by
adding cutset inequalities CS, setting an initial feasible solution IS and adding cuts
at the root node RNC. We perform this experiment by computing the optimality gap
after one hour. Without any of the features mentioned above, the trend on Table
2.7 is confirmed in (MC) for instances in set N60 where the optimality gap obtained
after one hour is smaller in Auto_BD, see the first row in Table 2.9. However, for
(PC) the gap after one hour is slightly better for BD_CW than for the other methods
in this family (see the fifth row in Table 2.9). With respect to adding an initial
solution, we observe that for (MC) it is only profitable for BD_CW+CS, obtaining on
average a 3.5% better optimality gap than without it. The impact of adding an initial
solution for (PC) is significant for BD_Trd+CS, BD_Norm+CS and BD_CW+CS obtaining
on average solutions with a gap around 4% smaller. However, this improvement is
not significant for Auto_BD for (PC) (see third row of both blocks in Table 2.9).
Besides, we note that we obtain worse solutions by adding also RNC in both problems
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with all the algorithms tested. In summary, for the set of instances N60 we have
that the best algorithm is BD_CW+CS+IS for (MC). It decreases the solution gap by
around 8% comparing with the best option of Auto_BD, which is Auto_BD+CS. With
regard to (PC), the best options are BD_CW+CS+IS and BD_Norm+CS+IS, since their
solution gaps are around 5.5% smaller than the ones returned by Auto_BD+CS.

Auto_BD BD_Trd BD_Norm BD_CW
gap cuts gap cuts gap cuts gap cuts

(MC)

w.o.{CS, IS, RNC} 38.54 6545 45.68 14068 44.53 13340 43.77 16707
+CS 30.06 3729 24.27 8754 22.17 8912 25.76 11378

+CS+IS 32.90 4987 27.23 9038 26.94 9469 22.27 11151
+CS+IS+RNC - 37.88 8054 37.92 8230 33.58 10834

(PC)

w.o.{CS, IS, RNC} 20.49 7009 20.40 14784 21.41 15501 19.93 15116
+CS 15.92 5109 14.89 12354 14.09 11687 14.50 11744

+CS+IS 15.86 4372 11.06 8961 10.47 8490 10.44 9683
+CS+IS+RNC - 20.93 10971 21.28 11449 19.94 11053

Table 2.9: Computing gaps to solve (MC) and (PC) comparing the performance of
three families of Benders cuts. Instances N60 are used.

In the following, we analyze the performance of algorithms BD_Norm+CS BD_CW+CS

when changing parameters α, β and u in the corresponding models. In Tables 2.10
and 2.11, we report average solution times and number of cuts needed to obtain
optimal solutions for N40 for different values of these parameters. The instances are
grouped by the three different increasing values of the available percentage of budget
α (Table 2.10.a) or the minimum percentage of demand to cover β (Table 2.11.a)
and private utility u (Tables 2.10.b and 2.11.b). For (MC), it is observed that the
bigger the value of α is, the shorter the average solution time is. Table 2.10.b. shows
that the larger the parameter u is, the shorter the solution time for BD_Norm+CS is.
This behavior seems to be different if we are using BD_CW+CS.

α
BD_Norm+CS BD_CW+CS
t cuts t cuts

0.3 1053.56 1580 873.58 2017
0.5 622.45 2634 375.30 3358
0.7 151.24 3970 177.90 5035

a.

u
BD_Norm+CS BD_CW+CS
t cuts t cuts

1.5 dN 802.05 2792 495.84 3041
2 dN 622.46 2634 375.30 3358
3 dN 591.02 2674 490.28 3173

b.

Table 2.10: Sensitivity analysis for (MC) with |N | = 40, using Benders cuts.

For (PC), Table 2.11.a shows that both algorithms take less time to solve the
problem to optimality for β = 0.7 than for β = 0.3 and β = 0.5. BD_CW+CS is 5
minutes faster on average than BD_Norm+CS with β = 0.5. For β = 0.3 the result
is the opposite, BD_Norm+CS is 100 seconds faster on average than BD_CW+CS. By
varying u, we observe that the less the difference between public and private mode
distances in the underlying network is, the longer it takes to reach optimality.
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β
BD_Norm+CS BD_CW+CS
t cuts t cuts

0.3 640.28 2675 744.95 2848
0.5 697.87 3673 387.40 3914
0.7 273.53 3873 242.04 4460

a.

u
BD_Norm+CS BD_CW+CS
t cuts t cuts

1.5 dN 653.47 3625 620.79 3613
2 dN 697.87 3673 387.40 3914
3 dN 561.43 3521 378.11 3643

b.

Table 2.11: Sensitivity analysis for (PC) with |N | = 40, using Benders cuts.

2.4.5 Branch-and-Benders-cuts performance on benchmark instances

We start by analyzing the Seville instance. Figures 2.6 and 2.7 show some results
for this instance solved with BD_CW+CS for different parameter values. Points not
connected in these graphs refer to those nodes that have not been built. The O/D
pairs involving some of these nodes are thus not covered. They have been drawn to
represent these not covered areas. Data corresponding to each case is collected at the
bottom of its figure, in which v(ILP) refers to the objective value. For model (MC),
parameter cost represents the cost of the network built, and, for (PC), Gcov makes
reference to the demand covered. For (MC), we observe that smaller values of α
carry larger solution times as in random instances. For (PC), as opposite to random
instances, higher values of β are translated in larger solution times. Besides, in this
instance, for both models, the shorter the parameter u is, the larger the solution
times are.

α u
GRASP BD_CW+CS

t Best_Value gap t v(ILP)
0.2

2 dN

110.829 48629 6.97 1036.11 52274
0.3 260.220 59828 3.96 313.07 62294
0.4 396.226 63546 0.72 21.36 64011

0.3
1.5 dN 267.275 55778 6.97 2243.83 59958
3 dN 225.312 62049 0.99 113.88 62670

Table 2.12: Sensitivity analysis for GRASP of García-Archilla et al. (2013) for (MC)
with Seville instance.

Furthermore, we compare the performance of the GRASP from García-Archilla
et al. (2013), for which its main points are collected in Subsection 4.2, and our imple-
mentation BD_CW+CS. The goal of this experiment is to compare our implementation
with a state-of-the-art heuristic for network design problems. We implemented the
GRASP to run 5 times and return the best solution. Table 2.12 shows solution times,
best value for GRASP (Best_Value), the optimality gap, and the optimal value com-
puted with BD_CW+CS (v(ILP)). On the one hand, we observed that the more time
BD_CW+CS takes to compute the optimal solution, the larger the gap of the solution
returned by GRASP is. This happens for smaller values of the percentage α and
utility u. On the other hand, for problems where GRASP obtains small optimality
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gap, BD_CW+CS is more efficient to compute the optimal solution. In other words,
since GRASP is a constructive algorithm, it is not competitive for instances whose
optimal solution captures most of the demand.

Underlying Network α = 0.3, u = 2 dN

Ctotal = 295297826, Gtotal = 64011 t = 313.07 , cuts = 7149

cost = 88939.76, v(ILP) = 62294

α = 0.2, u = 2 dN α = 0.4, u = 2 dN

t = 1036.11, cuts = 8428 t = 21.36, cuts = 2259

cost = 53362.53, v(ILP) = 52274 cost = 124353.84, v(ILP) = 64011

α = 0.3, u = 1.5 dN α = 0.3, u = 3 dN

t= 2243.83, cuts = 8537 t = 113.88, cuts = 6400

cost = 88800.91, v(ILP) = 59958 cost = 88879.76, v(ILP) = 62670

Figure 2.6: Sensitivity analysis for (MC) using Seville instance.
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Underlying Network β = 0.5, u = 2 dN

Ctotal = 295297826, Gtotal = 64011 t = 463.45, cuts = 3934

Gcov = 32070, v(ILP) = 28905.71

β = 0.3, u = 2 dN β = 0.7, u = 2 dN

t = 353.43, cuts = 2294 t = 532.17, cuts = 6070

Gcov = 19204, v(ILP) = 17687.02 Gcov = 44830, v(ILP) = 42521.65

β = 0.5, u = 1.5 dN β = 0.5, u = 3 dN

t = 1358.20, cuts = 4663 t = 396.56, cuts = 3337

Gcov = 32105, v(ILP) = 30562.25 Gcov = 32024, v(ILP) = 28190.34

Figure 2.7: Sensitivity analysis for (PC) using Seville instance.

We discuss the results for the Sioux Falls instance, summarized in Figures B.1
and B.2 in Appendix B. We observe for (MC), as in the Seville network, that the
smaller the values of α and u are, the larger the solution time is. The same is true
when varying β in (PC), but not for u. It takes less time if the difference between
both modes of transport is smaller or larger than 2 dN .
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Our exact method is able to obtain the best quality solution, with a certificate
of optimality in reasonable times. Given that network design problems are strategic
decisions, having the best quality decision is often more important than the com-
putational times. However, having efficient exact methods as the ones proposed in
this chapter, allows decision makers to perform sensitivity analysis with optimality
guarantees in reasonable times.

We also tested our algorithms on benchmark instances Germany50 and Ta2 from
SNDLib (http://sndlib.zib.de/). We observed that adding cuts at the root node
is beneficial for Germany50. We think that this behavior is due to the fact that
Germany50 has a denser potential graph (in particular, Germany50 is not a planar
graph). The rest of the results obtained for these instances are aligned with the
results obtained for Seville and Sioux Falls instances. For the sake of shortness,
this analysis is included in the supplementary material in https://github.com/

Natividad13/Network_Design_Instances.

2.5 Conclusions

In this chapter, two variants of the Covering Network Design Problem have been
studied: Maximal-Covering Network Design problem, which maximizes the demand
covered under a budget constraint, and Partial-Covering Network Design problem,
which minimizes the total constructing cost subject to a lower bound on the demand
covered. For that, mixed-integer linear programming formulations are proposed,
which are stronger than existing ones, for both problems. Besides, some polyhedral
properties of these formulations are provided, useful from the algorithmic point of
view. Then, we have developed exact methods based on Benders decomposition. We
also discuss some preprocessing procedures to scale up the instances solved. These
preprocessing techniques play a key role in order to obtain information about the
instances and to derive a better algorithmic performance. Our computational results
show that the techniques developed in this chapter allow obtaining better solutions in
less time than the techniques in the existing literature. Further research on this topic
is focused on the synergy of sophisticated heuristics to find good feasible solutions
and decomposition methods, such as the ones presented in this chapter, to get better
bounds and close the optimality gap. This further research has been started for
the Maximal-Covering Network Design problem. In Chapter 4, three metaheuristic
algorithms are presented and compared between them. Finally, we remark that
objectives of (MC) and (PC) can be included in a bicriteria optimization model.
An interesting extension is to exploit the decomposition methods described in this
chapter to the multiobjective setting.

http://sndlib.zib.de/
https://github.com/Natividad13/Network_Design_Instances
https://github.com/Natividad13/Network_Design_Instances
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Usually, when a rapid transit line is planned in a metropolitan area a slow transit
system (e.g. bus system) already partially covers the demand of the new line. Thus,
frequently the slow mode have to be cancelled or their routes modified.

In this chapter, we present an integrated formulation for designing a rapid transit
line and re-locating an existing slow line with the aim of maximizing the demand
covered. After that, we tackle the solution of the problem with a competitive Benders
decomposition approach.

3.1 Introduction

The sequential problem of designing a rapid transit network and improv-
ing the feeder bus system

Re-routing bus lines is a very common task when a rapid transit line starts
functioning. That is, usually, when a rapid transit line is planned, a slow transit
mode/system (e.g. bus lines) already partially covers the demand of the new rapid
transit line. Thus, when the rapid transit starts its regular services, the slow mode
have to be cancelled or their routes modified to avoid becoming totally or partially
useless. During the last five years, more than 80 new metro lines have been added to
metro networks around the world and 27 new metro systems have been inaugurated.
Therefore, more than one hundred new lines have become operational. Many other
existing lines have been extended or upgraded. Moreover, new modern trams, train-
trams, and commuter lines have also started their operation. In almost all the
cases, bus lines were (partially) doing the service before. One typical example is
the adaptation of the Bus Rapid Transit TranSantiago when Metro Line 7 started
operating. Another example is the bus line 3 of TUSSAM (Urban Transport of
Seville) with planned Line 3 of Metro of Seville. As a rule, the metro planning
projects do not take into account the bus system because often they depend on
different agencies.

The process of designing a rapid transit line and re-locating a slow line is planned
according to a sequential method. Firstly, the rapid transit line is designed taking
into account the private and the public flows, and possibly surveys on mobility in
order to predict the future utilization of the new infrastructure and/or other crite-
ria. Then, in a second stage, the bus route network is re-designed. However, this
sequential process can lead to a suboptimal solution. The Feeder Buses Planning
Problem has been researched to some extent (see Deng et al. (2013)). Models and
algorithms for the Rapid Transit Network Design problem have been recently revised
(see Laporte and Mesa (2020)). Nevertheless, as far as we are aware, for the design
of a rapid transit line and the re-location of a slow line in an integrated manner no
research has been done.
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Structure of this chapter
The structure of the chapter is as follows. In Section 3.2, we present an integer

mathematical programming formulation for the problem of designing simultaneously
a rapid transit line and a new route of an existing slow line. Therefore, the aim
is to design both lines with the objective of maximizing the number of passengers
captured by both public modes against an existing private mode. Besides, some
properties related to the number of transfer stations between both lines and a light
preprocessing-routing are described. Furthermore, we solve the problem by a com-
petitive Benders decomposition approach using the benchmark instance of Seville
city network.

3.2 Problem formulation

In this section, we present a formulation that locates a Rapid Transit Line and
Improves the Feeder Bus System in an integrated manner to maximize the demand
to be captured by the set of both against an existing private mode. In this situation,
a captured demand can combine both rapid and slow modes. That is, transfers
are possible within the designed system. This mathematical formulation is named
(RTL+IFBS) in what follows.

Data The formulation to be presented requires additional elements to those defined
in Subsection 1.2.1, which we define below.

1. We consider the underlying network N = (N,E), used by the private mode,
where N and E are the sets of nodes and edges. Without loss of generality, the
rapid transit line to be located and the slow line to be re-located are subgraphs
of N (see points 2 and 3 below).

2. The network R = (NR, ER) is the subgraph of N from which the rapid transit
line will be selected. Thus NR ⊂ N and ER ⊂ E.

3. The network S = (NS , ES) is the subgraph of N from which the slow line S
will be selected. Thus NS ⊂ N and ES ⊂ E.

4. For each e = {k, l} ∈ E, we define two arcs: a = (k, l) and â = (k, l). The
resulting set of arcs is denoted by A. With respect to each mode of transport
we refer to the set of arcs by AR and AS , respectively.

5. For the rapid transit line R, there exists a maximum number of edges EmaxR to
be constructed. For the slow line S, bounds EmaxS and EidS are given to limit
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the number of edges to be used and the minimum number of edges that must
be coincident between the old and the modified line S (i.e. the number of edges
not re-located). For that, vector vSe , e ∈ ES denotes the current path of S.

6. For each mode of transport, we assume that there is a set of possible starting
points, OR and OS , of the lines. In the same way, sets containing possible end
points DR and DS .

7. Each O/D pair w ∈ W has an associated subgraph Nw = (Nw, Ew) ⊆ N
containing all feasible nodes and edges for w, i.e. that belong to a path in N
whose number of edges is smaller than or equal to EmaxR or EmaxS , depending on
the case (see the paragraph “Preprocessing methods” further in this chapter).
We also denote Aw as the set of feasible arcs in Nw.

8. For the neighborhood purpose, let δ(i) be the set of edges of ER incident to
node i. By δw(i) we denote the set of edges of ER incident to node i in graph
Nw. Notation δw+(i) (δw−(i) respectively) is used to refer to the set of arcs of AR
going out (in, respectively) of node i ∈ Nw. In particular, we set δw−(ws) = ∅
and δw+(wt) = ∅. In the same way, we use notation ϑw(k) and ϑw+(k) (ϑw−(k)

respectively) to denote the set of edges of ES incident to node k and the set
of arcs going out (in, respectively) of node k in ES . In particular, we set
ϑw−(ws) = ∅ and ϑw+(wt) = ∅.

9. The set of possible transfer nodes is denoted by Ntrans ⊆ NR ∩NS .

10. Other costs are those of traversing arc a in the rapid and slow mode, tRa and
tSa , respectively. The transfer cost at station k from S to R and from R to
S are tSRk and tRSk , respectively. The dwell time costs (stop times) are tRstop
are tSstop, which will be assumed independent from nodes. The waiting time at
stations/stops, twait, is usually set as a half of the headway.

Variables According to the previous elements defined, the following binary vari-
ables are used:

1. xRe = 1 if edge e = {k, l} ∈ ER is included in the rapid public line R; 0

otherwise. Analogously, xSe = 1 if edge e = {k, l} ∈ ES is included in the slow
public line S; 0 otherwise.

2. yRi = 1 if node i ∈ N is included in the alignment of the rapid system R, but
it does not stop on it; 0 otherwise.

3. zRi = 1 if R stops at i; 0 otherwise. Analogously, zSk = 1 if k is a stop of mode
S; 0 otherwise.
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4. fw = 1 if demand w uses S, R, and/or the combined modes RS and SR.

5. fwRa = 1 if demand w traverses arc a ∈ AR, 0 otherwise.

6. fwSa = 1 if demand w traverses arc a ∈ AS ; 0 otherwise.

7. fwSRk = 1 if demand w transfers from S to R at node k ∈ Ntrans; 0 if there is
no transfer of w from S to R at k.

8. fwRSk = 1 if demand w transfers from R to S at node k ∈ Ntrans; 0 if there is
no transfer of w from S to R at k.

Objective function and constraints The aim of the problem is to design a rapid
transit line R and to re-design the slow line S so that the trip coverage of both public
modes would be maximized:

max
x,y,z,f ,fR,fS ,fRS ,fSR

∑
w∈W

gwfw (3.1)

Therefore, the private traffic is minimized.

• Budget constraints. An equivalent way to impose upper bounds on the budget
is by upper bounding the number of edges that can form each line.∑

e∈ER

xRe ≤ EmaxR , (3.2)

∑
e∈ES

xSe ≤ EmaxS . (3.3)

• Design constraints.

xRe ≤ zRi + yRi , e ∈ ER, i ∈ e, (3.4)∑
o∈OR

∑
e∈δ(o)

xRe = 1, (3.5)

∑
d∈DR

∑
e∈δ(d)

xRe = 1, (3.6)

∑
o∈OR

zRo = 1, (3.7)

∑
d∈DR

zRd = 1, (3.8)

zRi + yRi ≤ 1, i ∈ NR, (3.9)∑
e∈ER

xRe + 1 =
∑
i∈NR

(yRi + zRi ), (3.10)
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∑
e∈δ(k)

xRe ≤ 2(zRk + yRk ), k ∈ NR \ (OR ∪DR), (3.11)

∑
e∈δ(i)

xRe ≤ |B| − 1, i ∈ B, B ⊆ NR, |B| ≥ 2, (3.12)

xSe ≤ zSi , e ∈ ES , i ∈ e, (3.13)∑
o∈OS

zSo = 1, (3.14)

∑
d∈DS

zSd = 1, (3.15)

∑
e∈ES

vSe x
S
e ≥ EidS , (3.16)

∑
e∈ES

xSe + 1 =
∑
i∈NS

zSi , (3.17)

∑
e∈ϑ(k)

xSe ≤ 2zSk , k ∈ NS \ (OS ∪DS), (3.18)

∑
e∈ϑ(i)

xSe ≤ |B| − 1, i ∈ B, B ⊆ NS , |B| ≥ 2, (3.19)

fw ≤ 1− yRws , w = (ws, wt) ∈W, if ws ∈ NR and ws /∈ NS , (3.20)

fw ≤ 1− yRwt , w = (ws, wt) ∈W, if wt ∈ NR and ws /∈ NS , (3.21)

fw ≤


zRk + zSk , if k ∈ NR ∩NS ,

zRk , if k ∈ NR and k /∈ NS ,

zSk , if k ∈ NS and k /∈ NR,

w ∈W, k ∈ {ws, wt}. (3.22)

Constraints (3.4) enforce the extremes of a constructed edge of line R to be
stations (constructed nodes) or non-stop nodes. Constraints (3.5) and (3.6)
guarantee that the end-nodes of R have only one incident edge. Constraints
(3.7) and (3.8) impose that exactly one node has to be selected from the sets
of possible origins and destinations of the rapid transit line (see Remark 10).
Constraints (3.9) do not allow a node i ∈ NR to be simultaneously a stop and
non-stop node. Constraints (3.10)-(3.12) impose that the design of network
R is a chain graph (see Remark 9). For the re-location of the slow line S,
we consider similar constraints. Constraints (3.13) enforce the extremes of a
constructed edge of line S to be stop nodes. Constraints (3.14) and (3.15)
impose that exactly one node has to be selected from the sets of possible
origins and destinations of S (see Remark 10). Constraint (3.16) states that
the old and new line S must coincide in a number of edges. Constraints (3.17)-
(3.19) impose that the design of network S is a chain graph (see Remark 9).
Constraints (3.20) and (3.21) impose that through a non-stop node in R only
passes flow whose origin or destination is another node different from this one.
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Constraints (3.22) enforce to the origin and destination of an O/D pair be
station in R and/or stop node in S if its demand uses the public system.

• Flow conservation constraints.

∑
a∈δ+w (k)

fwRa +
∑

a∈ϑ+w(k)

fwSa −

 ∑
a∈δ−w (k)

fwRa +
∑

a∈ϑ−w(k)

fwSa

 =


fw, if k = ws,

−fw, if k = wt,

0, otherwise

w ∈W, k ∈ NR ∪NS and k /∈ Ntrans \ {ws, wt}.

(3.23)

∑
a∈δ−w (k)

fwRa + fwSRk −

 ∑
a∈δ+w (k)

fwRa + fwRSk

 = 0,

w ∈W, k ∈ Ntrans \ {ws, wt},

(3.24)

∑
a∈ϑ−w(k)

fwSa + fwRSk −

 ∑
a∈ϑ+w(k)

fwSa + fwSRk

 = 0,

w ∈W, k ∈ Ntrans \ {ws, wt}.

(3.25)

Constraints (3.23) are the usual flow conservation ones for both public systems.
Besides, flow conservation constraints for transfer points (3.24) and (3.25) are
needed.

• Location-allocation constraints. They do not allow flow on an edge of the lines
R and S unless the edge has been built.

fwRa + fwRâ ≤ xRe , w ∈W, e = {i, j} ∈ ER : a = (i, j), â = (j, i),

(3.26)

fwSa + fwSâ ≤ xSe , w ∈W, e = {i, j} ∈ ES : a = (i, j), â = (j, i). (3.27)
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• Alignment stop constraints.

fwSRk + fwRSk ≤ zRk , w ∈W,k ∈ Ntrans \ {ws, wt},

(3.28)

fwSRk + fwRSk ≤ zSk , w ∈W,k ∈ Ntrans \ {ws, wt},
(3.29)∑

a∈δ+(ws)

fwRa ≤ zRws , w = (ws, wt) ∈W, if ws ∈ NR, (3.30)

∑
a∈δ−(wt)

fwRa ≤ zRwt , w = (ws, wt) ∈W, if wt ∈ NR.

(3.31)

Constraints (3.28) and (3.29) locate stops whenever there is traffic demand
entering or leaving one of the two modes. Constraints (3.30) and (3.31) state
that a station in R has to be constructed in a node if the node has inflow or
outflow, respectively.

• Mode choice. The demand is assigned either to the public modes or to the
existing private one depending on the total cost (time or length) of the trip.∑
a∈AR

tRa f
wR
a +

∑
a∈AS

tSa f
wS
a +

∑
k∈Ntrans

tRSk fwRSk +
∑

k∈Ntrans

tSRk fwSRk +

+ tRstop
∑
k∈NR

zRk
∑

a∈δ+(k)

fwRa + tSstop
∑
k∈NS

zSk
∑

a∈ϑ+(k)

fwSa +

+ fw
(
tRwait −

1

2
tRstop

)
≤ uwfw, w ∈W.

(3.32)

• Binary constraints. All the variables are assumed to be in {0, 1}.

xRe , x
S
e , y

R
k , z

R
k , z

S
k , f

w, fwRa , fwSa , fwRSk , fwSRk ∈ {0, 1}. (3.33)

Remark 9. Constraints (3.12) and (3.19) are the common ones for the sub-tours
(cycles) elimination. These constraints have a high combinatorial burden. Then, in
practice, they are not usually added to the formulation. Instead, when a solution
contains cycles, additional constraints can be imposed to avoid the presence of those
cycles in the solution network. However, it could be interesting to include the possi-
bility of considering circular lines since well developed networks (such as Madrid or
París) often contains one circular line at least.
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Remark 10. For the case study, we have added to the formulation the constraints

zRi + zSi ≤ 1, i ∈ (OR ∩OS) ∪ (OR ∩DS) ∪ (OS ∩DR) ∪ (DR ∩DS), (3.34)

which ensure that the end-points of R and S must be different.

Limiting the number of transfers between the different lines To limit the
number of transfers between lines R and S, we have considered two options.

• On the one hand, using the set of variables fwRSk and fwSRk . That is, for
example, if we add to the formulation constraints∑
k∈Ntrans\{ws,wt}

fwSRk ≤ 1, w ∈W, (3.35)

∑
k∈Ntrans\{ws,wt}

fwRSk ≤ 1, w ∈W, (3.36)

we are limiting each commodity w to make at most two transfers, one from R
to S and one from S to R. If instead of these two previous costraints we add
this one ∑

k∈Ntrans\{ws,wt}

fwRSk + fwSRk ≤ 1, w ∈W, (3.37)

only one transfer is allowed for each commodity.

• On the other hand, limiting the number of transfers can also be done indirectly
upper bounding the number of transfer stations to build. For that, we use the
set of variables zRi and zSi where i ∈ Ntrans. That is, we can add the following
constraint∑

i∈V
zRi + zSi ≤ 2t+ 1, V ⊆ Ntrans, |V | = t+ 1, (3.38)

where t refers to an upper bound for the number of transfer stations to build.
Note that, if for a transfer station i, both variables zRi and zSi are set to 1, it
means that i is an station which can be used by some commodity to tranfer to
one line to the other.

For the case study detailed in Section 3.4, we have used the second option. It
has been set to build at most one transfer station between R and S. Then, we have
added to the formulation the set of constraints:

zRi + zSi + zRj + zSj ≤ 3, i, j ∈ Ntrans, i 6= j. (3.39)
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Linearization of terms fRa zRk and fSa z
S
k We define new variables hRa and hSa to

replace the products of variables fRa zRk and fSa zSk , respectively. Then, we add to the
formulation the following sets of constraints.

hwRa ≤ fwRa , w ∈W,a ∈ AR,

hwRa ≤ zRas , w ∈W,a ∈ AR,

fwRa −
(
1− zRas

)
≤ hwRa , w ∈W,a ∈ AR,

hwRa ∈ {0, 1}, w ∈W,a ∈ AR.

(3.40)

hwSa ≤ fwSa , w ∈W,a ∈ AS ,

hwSa ≤ zSas , w ∈W,a ∈ AS ,

fwSa −
(
1− zSas

)
≤ hwSa , w ∈W,a ∈ AS ,

hwSa ∈ {0, 1}, w ∈W,a ∈ AS .

(3.41)

Preprocessing methods It is always appropriate to apply preprocessing methods
to reduce the data set in question. In this case, we have performed a very light
preprocessing. For each w we have built a subgraph Nw = (Nw, Ew). Similar to the
preprocessing in problems of Chapter 2, in each subgraph we only consider useful
nodes and edges from N . For the (RTL+IFBS) problem, in each subgraph, such
nodes and edges are those that belong to any path from ws to wt with a number of
edges equal to or less than

• ERmax if ws, wt ∈ NR and ws, wt /∈ NS ,

• ESmax if ws, wt ∈ NS and ws, wt /∈ NR,

• ERmax if ws ∈ NR ∩NS , wt ∈ NR and wt /∈ NS ,

• ESmax if ws ∈ NR ∩NS , wt ∈ NS and wt /∈ NR,

• ERmax + ESmax − 1 if ws ∈ NR, ws /∈ NR, wt ∈ NS and wt /∈ NS .

Note that the role of ws and wt is interchangeable.

3.3 Benders decomposition implementation

In this section we describe two Benders implementations to solve the problem. Actu-
ally, our Benders implementations are used as a subroutine in a Branch-and-Benders-
cut scheme. By the Benders Theory, a set of continuous variables is needed. Propo-
sition 4 shows that we can relax binary variables fwRa , fwSa , fwRSk and fwSRk . Let
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(RTL+IFBS_R) denote the formulation (RTL+IFBS) in which the mentioned flow
variables are replaced by non-negativity variables, i.e.

fwRa ≥ 0, w ∈W,a ∈ AR, (3.42)

fwSa ≥ 0, w ∈W,a ∈ AS , (3.43)

fwRSk , fwSRk ≥ 0, w ∈W,a ∈ Ntrans. (3.44)

By Definition 1, the following proposition states.

Proposition 4. The projections of (RTL+IFBS_R) and (RTL+IFBS_R) onto
de (fR, fS , fRS , fSR)-space coincide.

ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS)) = ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS_R)).

Proof. First, F(RTL+IFBS) ⊆ F(RTL+IFBS_R) implies
ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS)) ⊆ ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS_R)).
Second, let (xR,xS ,yR, zR, zS ,f) be a point belonging to
ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS_R)). For every O/D pair w ∈ W such that
fw = 0, then fwR = 0, fwS = 0, fwRS = 0 and fwSR = 0. In the case
where fw = 1, there exists a flow fwR > 0, fwS > 0, fwRS > 0 and fwSR >

0 satisfying (3.23)-(3.32) that can be decomposed into a convex combination of
flows on paths from ws to wt and cycles. Due to the fact that the end-points
of R are different from those of S and that there exists one tranfer station at
most, there is only one feasible path for such flow. Hence, by taking fwRa , fwSa ,
fwRSk and fwSRa equal to 1 for the arcs and transfer stations belonging to this
path and to 0 otherwise, we show that (xR,xS ,yR, zR, zS ,f) also belongs to
ProjxR,xS ,yR,zR,zS ,f (F(RTL+IFBS)).

The master problem that we solve is:

(M_RTL+IFBS) max
x,y,z,f

∑
w∈W

gwfw (3.45)

s.t. (3.2)-(3.22)

+ {Benders Cuts (x,y, z,f)}

xRe , x
S
e , y

R
k , z

R
k , z

S
k , f

w, hwRa , hwSa ∈ {0, 1}.

In Section 3.3.1, we show the standard Benders cuts obtained by dualizing the
respective feasibility subproblem. Then, in Section 3.3.2, we use the ideas exposed
in Conforti and Wolsey (2019) in order to get stronger cuts than the standard ones.
Both approaches have been fully detailed for two covering problems in Chapter 2.
The situations that arise when applying Benders Theory are quite similar to the
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other problems studied. For this reason, in the next two subsections we will only
show the formulations and the cuts derived from Benders Theory. For more details
see Subsection 2.3.3.

3.3.1 LP feasibility cuts

Since the structure of the model allows it, we consider a feasibility subproblem made
of constraints (3.23)-(3.32), (3.40) and (3.41) for each commodity w ∈ W , denoted
by (SP )w. As it is clear from the context, we remove the index w from the notation.
Then, the dual of each feasibility subproblem can be expressed as follows.

Firstly, the objective function is:

max
α,β,γ,δ,σ,η,ν,θ

f αws −
∑
e∈ER

xRe σ
R
e −

∑
e∈ES

xSe σ
S
e − νSR − νRS−

−
∑
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f δSa −
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k∈Ntrans\{ws,wt}

zRk θ
R
k −

∑
k∈Ntrans\{ws,wt}

zSk θ
S
k−

−

u− f (tRwait − 1

2
tRstop

)
− tRstop

∑
a∈AR

hRa − tSstop
∑
a∈AS

hSa

 η+

+
∑
a∈AR

hRa λ
R
a +

∑
a∈AS

hSa λ
S
a +

∑
a∈AR

(
hRa − zRas

)
µRa +

∑
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(
hSa − zSas

)
µSa−

−
∑
a∈AR

(
1 + hRa − zRas

)
ρRa −

∑
a∈AS

(
1 + hSa − zSas

)
ρSa

(3.46)

Besides, if ws ∈ NR, the term − zRws γRws is added to the objective function. In the
same way, if wt ∈ NR, we add − zRwt γ

R
wt .

With respect to the constraints:

αi − αj − σRe − δRa − tRa η + λRa − ρRa
◦ if j ∈ Ntrans \ {ws, wt} : +βRj

◦ if i ∈ Ntrans \ {ws, wt} : −βRi
◦ if i = ws : − γRws

◦ if j = wt : − γRwt


≤ 0, a = (i, j) ∈ AR : e = {i, j}, (3.47)

αi − αj − σSe − δSa − tSa η + λSa − ρSa
◦ if j ∈ Ntrans \ {ws, wt} : +βSj

◦ if i ∈ Ntrans \ {ws, wt} : −βSi

 ≤ 0, a = (i, j) ∈ AS : e = {i, j}, (3.48)

− νSR + βRk − βSk − θRk − θSk − tSRk η ≤ 0, k ∈ Ntrans \ {ws, wt}, (3.49)

− νRS + βSk − βRk − θRk − θSk − tRSk η ≤ 0, k ∈ Ntrans \ {ws, wt}, (3.50)
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γRi , σ
R
e , σ

S
e , δ

R
e , δ

S
e , θ

R
i , θ

S
i , ν

RS , νSR, η ≥ 0. (3.51)

Hence, due to the feasibility structure of (SP )w, only feasibility Benders cuts will
be needed:αws − ∑

a∈AR

δRa −
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a∈AS

δSa +

(
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1

2
tRstop

)
η

 f
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◦ if ws ∈ NR : − γRws zRws

◦ if wt ∈ NR : − γRwt z
R
wt



≤ C, (3.52)

where C has the expression u η + νSR + νRS +
∑
a∈AR

ρRa +
∑
a∈AS

ρSa .

3.3.2 Facet-defining Benders cuts

By the theory detailed in Subsection 2.3.3, an interior point (xR,in, xS,in, yR,in, zR,inzS,in, f in)

of the convex hull of feasible solutions and a solution of the LP relaxation of the cu-
rrent restricted master problem (xR,out, xS,out, yR,out, zR,outzS,out, fout) are needed.
In this situation, the expression of the dual subproblem considered depends on them.
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Firstly, the objective function is:

max
α,β,γ,δ,σ,η,ν,θ

fout αws −
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(3.53)

Besides, if ws ∈ NR, the term − zRws γRws is added to the objective function. In the
same way, if wt ∈ NR, we add − zRwt γ

R
wt .

With respect to the set of constraints, we consider constraints (3.47)-(3.51) to-
gether with the following normalization constraint:
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◦ if ws ∈ NR : −∆zRwsγ
R
ws

◦ if wt ∈ NR : −∆zRwtγ
R
wt



≤ 1

(3.54)
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3.4 Computational experiments

Our computational experiments were performed on a computer equipped with a Intel
Core i5-7300 CPU processor, with 2.50 gigahertz 4-core, and 16 gigabytes of RAM.
The operating system is 64-bit Windows 10. Codes were implemented in Python
3.8. These experiments have been carried out through CPLEX 12.10 solver, using its
Python interface. CPLEX parameters were set to their default values and the model
was optimized in a single threaded mode.

The tested instance is similar to the one used in González-Blanco et al. (2021).
It is considered a subgraph of the Seville city network (composed of 64 nodes and
128 edges), shown in Figure 3.1a. Green nodes and edges form the sets NR and ER.
Orange nodes and edges form the sets NS and ES . Nodes in red represent the set
of possible starting and end stations of both modes. Blue nodes and black edges
are those that belong to both modes of transport. Pink nodes represent the transfer
stations. Line graph in red of Figure 3.1b represents the old slow line.

With respect to the parameters, the new slow line S must coincide with the
old one on at least 3 edges, EidS = 3, and can consist of a maximum of 6 edges in
total. With respect to the rapid transit line, it must be composed of 10 nodes and
9 edges at most. The W set is formed by all possible O/D pairs. For the rest of the
parameters see the suplementary material in https://github.com/Natividad13/

Network_Design_Benchmark_Instance.

(a) Underlying network (b) Red line denotes the old slow line

Figure 3.1: Instance tested.

To apply the facet-defining Benders cuts approach we need an interior point. In
this case, we have got it by solving the relaxed version of (RTL+IFBS) using CPLEX

and setting its parameter barrier.crossover to −1.
Regarding the computational time, after two hours, the optimal solution is ob-

https://github.com/Natividad13/Network_Design_Benchmark_Instance
https://github.com/Natividad13/Network_Design_Benchmark_Instance
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tained using the implemented Branch-and-Benders-cut scheme ad-hoc to the problem
which generates facet-defining Benders cuts (named as BD_CW). That is, an hour and
a half earlier than if we directly solve the MIP formulation with CPLEX. It should be
noted that the implementation which generates the standard Benders cuts (BD_Trd)
and the Benders decomposition algorithm existing in CPLEX (Auto_BD) are not com-
petitive in this case (see Table 3.1).

CPLEX Auto_BD BD_Trd BD_CW
t t cuts t cuts t cuts

8244.44 - 36482.63 2863 5743.59 1103

Table 3.1: Computing times to compare the performance of Benders cuts for
(RTL+IFBS).

This integrated model results in an optimum design with respect to the maximiza-
tion of the coverage for the whole public transport system (composed by the rapid
and slow modes). Locating each line independently, without taking into account the
influence that may exist between them, or even locating them in a sequential way,
can result in suboptimal solutions. The sequential design method is the one used
in practice. That is, currently the rapid transit line R is located first and then the
slow line S is re-located. For example, considering the tested instance, the optimal
objective value for the integrated model is 62.02% and 72.17% bigger than those of
the sequential and independently location models, respectively. Figure 3.2 shows the
optimal solutions for the integrated and sequential models respectively.

Figure 3.2: Optimal solutions for the sequential and integrated models to maximize
the coverage.
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3.5 Conclusions

In this chapter we have presented a formulation which locates a rapid transit line
and modifies the old route of a slow transit line simultaneously with the purpose of
maximizing the demand covered. We have focused on the case study in which a single
transfer station is allowed and the end-points of the lines do not coincide. In addition,
it is shown in an example with the Seville network instance that the design of both
lines in an integrated way obtains greater coverage than that of sequentally designing
(first the rapid transit line is designed and then the slow line is re-located).

To solve this problem, we have developed a branch-and-Benders-cut scheme
specifically for the formulation discussed. Using the Seville network instance, we
have obtained that the Benders approach that uses the ideas of Conforti and Wolsey
(2019) is competitive against the standard decomposition of Benders (Subsection
3.3.1), the Benders procedure existing in CPLEX and that of directly using CPLEX.

Further research will go in the direction of considering the design of more than
one rapid transit line as well as the re-location of more than one slow transit line
in an integrated way. It will be interesting to explore the solution depending on
the presence or not of cycles between the set of lines and the maximum number of
transfer stations to be considered. Furthermore, developing a Benders decomposition
to generate facet-defining Benders cuts for this much more complex case could be
also efficient and advantageous.
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In this chapter we develop and test two metaheuristic techniques for the Maximal-
Covering Network Design problem presented in Chapter 2. One of them is a Simu-
lated Annealing algorithm and the other is an Adaptive Large Neighborhood Search
procedure. Besides, we also test the Genetic Algorithm exposed in Perea et al.
(2020). These three routines start from an already known initial solution. To com-
pute this solution we have used the GRASP described in Perea et al. (2020). An
extensive computational study is dedicated to each one of them using medium size
randomly generated instances. Eventually, we compute these metaheuristics for a
large instance.

4.1 Introduction

The current concept of metaheuristic techniques is based on the different interpre-
tations of what is an intelligent way of solving a problem. Metaheuristics are clever
strategies to design or improve very general heuristic procedures with high perfor-
mance. Several authors have contributed in books and articles with interleaved
reflections on a rigorous definition of the concept of metaheuristic, a structure and
exhaustive classification of the different strategies and on the complete study of the
characteristics of each one (see, for example, Lee and El-Sharkawi (2008), Potvin
and Gendreau (2019)).

Metaheuristics for Network Design problems
Since most Network Design problems are NP-hard, some research efforts have

been oriented to apply metaheuristic algorithms to obtain good though not neces-
sarily optimal solutions, within a reasonable computational time. For instance, in
the fields of Transportation and Telecommunications Network Design, Tabu Search
(Pedersen et al. (2009), Xu et al. (1996)), Genetic Algorithms (Król and Król (2019),
Perea et al. (2020), Chou et al. (2001)), Simulated Annealing (Fan and Machemehl
(2006), Kermansshahi et al. (2010), Girgis et al. (2014)), Greedy Randomized Adap-
tive Search Procedures (García-Archilla et al. (2013), Maya Duque and Sörensen
(2011), Risso and Robledo (2013)) and Adaptive Large Neighborhood Search algo-
rithms (Canca et al. (2016), Canca et al. (2017), Zhang et al. (2022), Mehta et al.
(2015)) have been applied to medium-size instances. Besides, matheuristics proce-
dures have been also exploited (see Canca et al. (2019), Chouman and Crainic (2015),
Wu et al. (2020)).

Constructive and improvement algorithms
As presented in Ahuja et al. (2002), the literature devoted to heuristic algo-

rithms often distinguishes between two broad classes: constructive algorithms and
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improvement algorithms. A constructive algorithm builds a solution from scratch
by assigning values to one or more decision variables at each iteration, just like the
Greedy Randomized Adaptive Search Procedures do. An improvement algorithm
generally starts with an initial (feasible or not) solution and tries to obtain a better
solution in a iterative manner. Genetics and Neighborhood Search (also named Local
Search) algorithms are wide classes of improvement algorithms.

Structure of this chapter
In Section 4.2 we describe the Greedy Randomized Adaptive Search Procedure

from García-Archilla et al. (2013), used in this chapter to compute initial feasible
solutions that will be improved. Then, in Sections 4.3 and 4.4 Simulated Annealing
and Adaptive Large Neigborhood Search schemes are designed for the (MC) pro-
blem. In Section 4.5, the Genetic algorithm developed in Perea et al. (2020) for this
problem is also presented. Further, in Subsection 4.6.2, a sensitivity analysis for the
construction algorithm of Section 4.2 is done. Then, using the best configuration
identified for it, in Subsections 4.6.3, 4.6.4 and 4.6.5, the other three improvement
metaheuristics are analyzed in detail in order to evaluate their performance based
on the parameters that make them up to improve solutions. Finally, in Subsection
4.6.6 they are compared using a large instance.

4.2 Determination of an initial solution with a GRASP

The metaheuristics presented in the next sections of this chapter start from a given
initial feasible solution. The idea is to get this solution from a construction algorithm.
In this case, for the (MC) problem, a Greedy Randomized Adaptive Search Procedure
(GRASP) has been chosen; specifically, the one presented in García-Archilla et al.
(2013).

A GRASP is a multi-start metaheuristic. That is, each iteration consists of
two phases. The first one, also named as construction phase, generates a solution
from scratch. The second one consists of a local search procedure. This phase is
refered also to as improvement phase and it typically (but not necessarily) improves
the solution found above. In other words, the construction phase builds a feasible
solution whose neighborhood is investigated until a local optimum is found during
the local search phase.

Regarding the GRASP developed in García-Archilla et al. (2013), its construction
phase consists of adding one edge per iteration to an empty initial graph satisfying
the budget constraint until no more edges can be added. At each iteration, the
set of feasible edges is updated. An edge is said to be a feasible edge if it has not
been built previously and its cost (plus that of its end-nodes if they are not built)
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is equal to or lower than the remaining available budget. Next, this set is ordered
according to the objective value when each edge is individually added to the network
under construction. From this set, the k ≥ 2 edges that contribute the greatest are
selected. Then, one of them is randomly chosen to be added to the network under
construction. This procedure is repeated until the set of feasible edges is empty
for some iteration reached. This routine is described in Algorithm 4. Further, the
improvement phase works as follows. For each edge e in the current solution network,
a new network is built by replacing e with a set of feasible non-built edges. These
edges are added using the same criterion of the construction phase. The iteration
finishes by picking the best solution obtained and comparing it with the solution
obtained in the construction phase. This procedure is depicted in Algorithm 5. This
randomized Local Search scheme is applied niter_max times.

With respect to the neighborhood, note that at each iteration no connected
graphs could be generated. In García-Archilla et al. (2013), three possibilities about
the neighborhood were taken into account: generate only connected graphs, generate
graphs that might not be connected, or random generation.

In Subsection 4.6.2, a sensitivity analysis of the parameters of this GRASP is
tested using random instances.

Algorithm 4: Constructive phase of GRASP
Require: N̄ = (N̄ , Ē) with N̄ = ∅ and Ē = ∅, W̄ = ∅, C = 0.
Compute FE = {e = {i, j} ∈ E \ Ē | ce + bi + bj

1 ≤ αTC − C}.
while FE 6= ∅ do

if |FE| > k then
Determine a set SE = {e1, . . . , ek} consisting of the k edges on FE
that generate the largest objective value when they are individually
added to Ē.

else
Set SE = FE

end
Randomly choose one edge e∗ = {i∗, j∗} ∈ SE to be added to N̄ .
Update N̄ , FE, C.

end
for w ∈W do

Compute the shortest path for w in N̄ = (N̄ , Ē).
if its length is equal or shorter than uw then

W̄ = W̄ ∪ {w}
end

end
return N̄ , W̄ .
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Algorithm 5: Improvement phase of GRASP
Require: N̄ = (N̄ , Ē), W̄ = ∅, Cimp = C.
Compute ĒC = E \ Ē.
for ē ∈ Ē do

Define N̄ē = (N̄1, Ē \ {ē})
Bē = αTC − Cimp − cē − cī − cj̄
Compute FEē = {e = {i, j} ∈ ĒC \ Ē | ce + bi + bj

2 ≤ Bē}
while FEē 6= ∅ do

Determine the edge ẽ = {̃i, j̃} ∈ FEē that gives the largest
improvement in the objective function when added to Nē.
Update N̄ē, FEē, Bē.

end

end
Set N̄ ∗ the network that gives the largest improvement in the objective
function among all N̄ē, ē ∈ Ē.
return N̄ ∗, W̄ .

4.3 Simulated Annealing

Annealing is the process of subjecting a solid to a high temperature with a subsequent
cooling until it converges to a low energy state (that is, a steady frozen state). An
example would be to obtain high-quality crystals from the molten solid. In the early
1950s, N. Metropolis proposed an algorithm that simulates this process of annealing.
Later, in the 1980s, two independent researches were done by Kirkpatrick, Gelatt
and Vecchi (Kirkpatrick et al. (1983)) and Černỳ (Černỳ (1985)). They adapted the
Metropolis algorithm in order to be useful for solving combinatorial problems due
to the fact that they noted the similarities between the physical process and these
problems (Monticelli et al. (2008)).

As explained in Eglese (1990), the Metropolis algorithm simulates the behaviour
of a set of atoms while the temperature decreases. At each iteration, a random atom
is displaced and it causes a change in the energy of the system, δ. If δ < 0, the
resulting change is accepted, but if δ > 0, this change is accepted with probability
exp(−δ/kBT ), where T is the current temperature and kB the physical Boltzmann
constant. When a large number of iterations is carried out keeping the same tem-
perature, the system reaches thermal equilibrium. It is known that the probability
distribution of the system states follows a Boltzmann distribution at thermal equi-
librium. To maintain consistency, the chosen function for the acceptance criterion in
the Metropolis algorithm also ensures that the system evolves into the Boltzmann
distribution.
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In the analogy, the different states of the system corresponds to the different
feasible solutions to the Combinatorial Optimization problem, and the free energy of
the system correspond to the function to optimize. Moreover, if the solid evolves into
a metastable, it could be identified as a local optimal solution but, if in its evolution
there are no defects, the solid has become a perfect crystal, which is identified as
a global optimal solution for the combinatorial optimization problem. Nevertheless,
this analogy is not complete since in the annealing process there is a physical variable
which is the temperature in each state. In the algorithm routine, the “temperature”
is simply a parameter that must be properly determined to get good solutions.

Nowadays, the term Simulated Annealing (SA) refers to the metaheuristic tech-
nique used to solve combinatorial problems.

In a theoretical aspect, the SA algorithm can be modelled as a sequence of Markov
chains of finite length. That is, the probability of accepting a new feasible solution
only depends on the previous accepted solution. However, this lack of memory can
be fixed by storing the best solution so far. At the end, a descent algorithm can be
used to get the local optimal solution generated in the earlier phases.

In subsections 4.3.1, 4.3.2 and 4.3.3 the algorithmic routine of SA and some
specific features of this metaheuristic are described. At the same time, we detail
the SA that we have designed for the (MC) problem. Then, in Subsection 4.6.3,
a computational study is dedicated to determine the optimal combination of its
parameters, using random instances.

4.3.1 Algorithmic routine of SA

Let S be the set of all feasible solutions and f be a cost function defined on elements
of S. We deal with the problem of finding the solution/state si ∈ S which maximizes
f .
Algorithm 6: Local search
Require: An initial solution/state sinitial from the solution space S.
scurrent = sinitial

while Stopping criteria = False do
Compute S(scurrent)

Select snew ∈ S(scurrent)

Compute the difference δ = f(snew)− f(scurrent)

if δ > 0 then
scurrent := snew

end
Evaluate Stopping criteria

end
return An state scurrent.
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The SA is a type of Local Search algorithm (descent algorithm). A simple form
of Local Search algorithm starts with an initial feasible solution sinitial from the
solution space S. This initial solution can be chosen from S in a deterministic or
random manner. Then, at each iteration of the algorithm, a neighbor solution of the
current one, snew ∈ S(scurrent), is generated by a suitable routine, being S(scurrent)

the neighborhood of scurrent. If the objective value of this new feasible solution is
better than the previous one, then the current solution is replaced. The process
is repeated until no further improvement can be found in the neighborhood of the
current solution and so the descent algorithm terminates at a local optimal solution
(see Algorithm 6). This can be a disadvantage since the local optimal solution could
be far from any global optimal solution. In SA, to avoid becoming trapped in a local
optimum, the strategy is modified to accept sometimes a neighbor solution worse
than the current one. That is, at each iteration, the probability of accepting a new
solution is set as

PT (Accept snew) =

1, if f(snew) > f(scurrent),

− exp
(
f(scurrent)−f(snew)

T

)
, if f(snew) ≤ f(scurrent),

(4.1)

being T the current temperature. To maintain the analogy, the SA algorithm starts
with a high value of T and it is gradually dropped after a certain number of neigh-
borhood moves niter_int_max. Algorithm 7 describes the routine of SA.

Note that observing the acceptance criteria function (4.1) when f(snew) ≤ f(scurrent),
it follows that the smaller the decrease in the value of f , the more likely it is that
the new solution generated will be accepted. Furthermore, the larger T , the more
likely it is to accept worse solutions since T approaches zero. Besides, the larger
niter_int_max, the more likely it is to reach good solutions. If both parameters
niter_int_max and T are short it is likely to be trapped in a local optimum. In the
last iterations of the algorithm, it is very unlikely to accept worse solutions.

Concerning our purpose of getting good solutions for the maximization problem
(MC), the solution obtained in iteration k will be better than that of the previous
iteration if it satisfies more demand than the prior one.

From the algorithmic point of view, there are some decisions to be made on which
the behaviour of the SA hardly depends. On the one hand, the parameters of the
cooling schedule have to be determined: the initial temperature, the reduction factor
function, the number of iterations at each temperature and the stopping criteria. On
the other hand, the neighborhood of any solution as well as the procedure to generate
an initial solution must be defined.
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Algorithm 7: Simulated Annealing
Require: Values for the initial temperature Tinitial, the reduction factor α,
the number of iterations at each temperature, niter_int_max, and a given
feasible initial solution sinitial.
scurrent = sinitial

while Stopping criteria = False do
niterations_int = 0

while niterations_int ≤ niter_int_max do
Compute S(scurrent)

Select snew ∈ S(scurrent)

Compute the difference δ = f(snew)− f(scurrent)

if δ > 0 then
scurrent := snew

else
Select random(0, 1)

if random(0,1)< exp(−δ/T ) then
scurrent := snew

end

end
Update niterations_int

end
Update temperature T
Evaluate Stopping criteria

end
return The state scurrent.

4.3.2 Cooling schedule

The cooling schedule is the set of parameters which greatly controls the strategy of
SA: the initial temperature, the reduction factor function, the number of iterations
niter_int_max at each temperature and the stopping criteria. With respect to the
temperature reduction function, a wide range has been proposed in the literature.
For this work, a proportional temperature function is used. Then, at iteration k of
the algorithm, the value of the temperature is

T k = a T (k−1), (4.2)

being a ∈ (0, 1) a constant called the reduction factor. It is the rate at which the
temperature is reduced. For the stopping criteria, a maximum number of outer
iterations that attend to something or a temperature to be reached, among others,
can be set. In our case, the stopping criteria is related to a maximum number of
outer iterations, niter_max. The value given to each of these parameters is based on
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the idea of thermal equilibrium.

4.3.3 Neighborhood structure

The neighborhood structure is an aspect that highly reverberates on the quality of the
final solution that is obtained. In this work, for (MC), the following neighborhood
phase has been computed. Given a network, a neighboring network is built by
eliminating the edge that generates the least loss in the objective function if it is
not considered. Then, randomly, you continue adding edges of the remaining ones,
allowing at most an addition of two. In this case, a network solution differs from its
neighbor by at most three edges.

4.4 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) is a term introduced by Stefan Ropke
and David Pisinger in Ropke and Pisinger (2006). The ALNS concept extends the
Large Neighborhood Search heuristic of Shaw (1997) which was based on ideas similar
to those of the ruin and recreate method of Schrimpf et al. (2000). That is, ALNS
refers to a Local Search algorithm, just like the SA. A difference of the ALNS exposed
in Ropke and Pisinger (2006) with respect to the traditional Local Search algorithm
is in the acceptance criteria of solutions. In the first, the acceptance criteria is the
same as in the SA algorithm, instead of using a simple descent approach. Anyway,
any other criterion could have been chosen in order to improve the solution obtained
with the traditional Local Search algorithm. Furthermore, another feature of ALNS
is that it considers a larger neighborhood, with respect to the size of the input data.
The main difference between Shaw (1997) and Ropke and Pisinger (2006) concerns
the way to construct the neighborhood. The routine of Ropke and Pisinger (2006)
composes a neighborhood by a set of sub-heuristics that are competing with each
other so that they are executed according to a frequency that refers to their historical
performance.

As explained in Ahuja et al. (2002), for large problem instances, it is impractical
to search explicitly each of the elements that make up the neighborhood. Thus, one
must examine only a relatively small portion of the neighborhood or develop efficient
algorithms for searching the whole neighborhood implicitly. The ALNS fits into the
former category.

From the theoretical aspect, as with the SA algorithm, the ALNS can be modelled
as a sequence of Markov chains of finite length. That is, the probability of accepting
a new feasible solution only depends on the previous accepted solution. Moreover,
since the acceptance criteria is the same as in SA, the solution from the last iteration
is not necessarily the best one. However, this lack of memory can be fixed by storing
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the best solution so far. Eventually, a descent algorithm can be used to get the local
optimal solution generated in the earlier phases.

In this section it is proposed an ALNS algorithm for the (MC) problem, us-
ing slightly some ideas of Ropke and Pisinger (2006) and Coelho et al. (2012). The
specific features of the ALNS algorithm routine are explained in the following subsec-
tions. At the same time, we describe the ALNS that we have developed for the (MC)

problem. Finally, in Subsection 4.6.4, a detailed study is dedicated to determine the
optimal combination of its parameters.

4.4.1 Algorithmic routine of ALNS

A solution obtained from an ALNS algorithm is conditioned by its main algorithmic
components: the way the neighborhood is built, the range of adaptive operators
that interfere in the construction of solutions and the weight assigned to each one.
The acceptance criteria of solutions also have an influence. Each of these factors
is detailed below. At the same time, we exemplify the ALNS routine that we have
developed for the (MC) problem, depicted in Algorithm 8.

Large neighborhood The number of nodes and/or edges in the underlying graph
usually determines the size of the neighborhood. In our case, we have stated that
two solution graphs si and sj are considered neighbors if they have at most 1+2ndel

different edges, being ndel the number of edges removed in the first phase of the
selected operator. In Subsection 4.4.2, we explain how to generate a neighbor of a
given graph.

Adaptive selection of operators At each iteration, alternating between different
heuristics to modify and improve the current solution graph could give us a more
robust heuristic overall, see Ropke and Pisinger (2006).

To select the heuristic to use, a weight is assigned to each one and a roulette
wheel selection principle is executed. In this way, the proposed heuristics make up
the operators of the roulette wheel mechanism. If there are k operators with weights
wk, k ∈ {1, 2 . . . , k}, the probability of selecting the operator j is

wj
k∑
i=1

wi

. (4.3)

In the next subsection, we describe four sub-heuristics of the ALNS proposed for
(MC).
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Algorithm 8: Adaptive Large Neighborhood Search + GRASP
Require: Values for reduction factor α, the reaction factor κ, the number
of segments s, the weights and the scores for the operators.
niterations = 0

adjusted = False

while adjusted = False do
Compute two initial solutions s1

initial, s
2
initial with GRASP

Set fmax = max{f(s1
initial), f(s2

initial)} and
fmin = min{f(s1

initial), f(s2
initial)}

if fmax − fmin < ρ%fmax then
T = − exp(fmax − fmin)/ ln(0.5)

adjusted = True

scurrent = siinitial such that f(siinitial) = fmin

end

end
while Stopping criteria = False do

niterations = niterations + 1

Select an operator j according to wj , j = 1, . . . , 4

while the selected operator cannot be applied do
Select an operator j according to wj , j = 1, . . . , 4

Attempt to apply operator j to scurrent
end
snew is the new solution graph obtained after applying operator j to
scurrent

Update θj = θj + 1

if f(snew > f(scurrent)) then
scurrent = snew

if f(scurrent > fmax) then
sbest = scurrent

Update the score: πj = πj + σ1

else
Update the score: πj = πj + σ2

end

else
if snew is accepted by the SA criteria then

scurrent = snew

Update the score: πj = πj + σ3

end
Update temperature T

end
if niterations is multiple of s then

Update the weights of all operators and reset their scores
end
Evaluate Stopping criteria

end
return The state scurrent.
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Adaptive weight adjustment It is possible to set the weights wi, {1, 2, . . . , k} by
hand, although it seems more natural to adjust them automatically at each iteration
using statistics from the previous one. Hence, at the beginning of the ALNS all
weights are fixed to 1 and all operators have the same probability of being selected.
After each iteration, the score of each operator may be increased by σ1, σ2 or σ3,
which measures how well the operator applied has performed in this iteration. For
it, the total number of iterations of the ALNS procedure niter_max is divided into a
number of segments s. At the start of each segment, the score of each operator is set
to zero. If it turns out that the operator applied in an iteration has resulted in a new
global best graph solution stored so far, then its associated score is increased by σ1.
If simply the solution is better than the incumbent one, then its associated score is
increased by σ2. If it turns out that the new solution is worse than the current one
but it has been accepted, then its score is increased by σ3. It is natural to establish
σ1 ≥ σ2 ≥ σ3 > 0. That is, the better the solution, the more its score increases.
At the end of each segment, the weights are updated using the recorded scores.
Concretely, the weight associated to an operator j in segment h+ 1 is obtained as

wj,h+1 =

wj,h if θj = 0,

(1− κ)wj,h + κ
πj
θj

if θj 6= 0,
(4.4)

where πj is the score of the operator j calculated during the last segment and θi is
the number of times that the operator j has been used in this segment. Besides, the
reaction factor κ controls how quickly the weight adjustment reacts to changes in
the operator performance.

Acceptance and stopping criteria With the aim of avoiding getting trapped
in a local optimum, not only solutions that are better than the current one are
accepted. For that, the acceptance criteria function (4.1) of SA is adopted. The
temperature starts out at an initial value and it is decreased every iteration using a
function. This initial temperature T can be set by means of solutions obtained by
the algorithm or fixed by a chosen value. In our proposal, the function is established
to the proportional expression (4.2). A good choice of the initial temperature T may
be set by inspecting two initial solutions s1

initial and s
2
initial. Let us denote by smaxinitial

the one with the largest objective value and by smininitial the one with the smallest
objective value. The start temperature is now set such that if smininitial solution is ρ%

worse than smaxinitial, that is f(smaxinitial)−f(smininitial) > ρ%smaxinitial, then s
min
initial is accepted

with probability 0.5:

PT (Accept smininitial) = exp

(
f(smaxinitial)− f(smininitial)

T

)
= 0.5 (4.5)
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or, equivalently,
T = −(f(smininitial)− f(smaxinitial))/ ln(0.5). (4.6)

The parameter ρ% is selected by the user so that the routine does not take a
long time in the step of calculating the initial temperature T . With respect to the
stopping criteria, a maximum number of iterations niter_max has been set.

4.4.2 Neighborhood structure and Operators

While the SA only uses a heuristic to build the neighborhood, the ALNS uses the
entire set of operators to build neighboring solutions to the current one. In each
iteration of the algorithm, the operators construct a new neighbor.

The proposed ALNS for (MC) considers four compound operators, defined in the
following way. Each of them is composed of two phases or simple operators. The
simple operators are classified according to two types: repair operators and destroy
operators. The first phase of each compound operator consists of applying a destroy
operator and then, in the second phase, a repair operator is executed. That is, firstly,
ndel edges are removed from the current solution graph and then, at most 1 + ndel

edges are added to try to improve the current network.
The destroy operators considered are:

• Deleting the minimum worst ndel edges. This operator selects the edge that
causes the smallest leak in the covered demand of the current solution graph
if it is deleted from it. Once this edge is identified, it is definitely removed.
Then, the graph is updated and ndel− 1 edges are removed from it in this way.

• Deleting ndel random edges. This operator randomly selects an edge from the
current solution graph to remove it. Then, the graph is updated and ndel − 1

edges are removed from it in this way.

The repair operators considered are:

• Adding the 1 + ndel remaining best edges at most. This operator selects the
remaining feasible edge that causes the largest gain in the demand to cover if
it is added to the current solution graph. Once it is identified, it is definitely
added. Then, the graph is updated, and also the remaining budget. If it is
possible, more edges are added in this way, until adding 1 + ndel at most.

• Adding 1 + ndel random remaining edges at most. This operator randomly
selects edges from the remaining set of feasible edges to add them to the current
solution graph in a sequential manner. First, randomly a remaining feasible
edge is selected and added to the current solution graph. Then, the available
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budget is updated and, if it is possible, more edges are added in the same way,
allowing 1 + ndel new edges at most.

Thus, the four compound operators are:

• Deleting the ndel worst edges - adding the 1 + ndel remaining best edges

• Deleting the ndel worst edges - adding 1 + ndel random remaining edges

• Deleting ndel random edges - adding the 1 + ndel remaining best edges

• Deleting ndel random edges - adding 1 + ndel random remaining edges

4.5 Genetic Algorithms

Genetic algorithms (GA) were developed by Holland (1975) and were later modified
by other researchers in order to improve them. The goal was to abstract and rigo-
rously explain the adaptive processes of natural systems of genetics to design artificial
systems software.

Genetic algorithms are search and optimization procedures based on the mecha-
nics of the principles of natural genetics and selection. They combine survival of the
fittest among a population of individuals with structured yet randomized informa-
tion exchange. This exchange is governed by operators that simulate the phases of
selection, crossover and mutation that occur in natural genetics.

In natural genetics, a number of individuals, namely the population, evolves
through several generations due to the genetic evolution process. Each individual
is identified by its chromosome, which contains a number of genes. The possible
values that genes can take are the alleles. That is, the chromosome is coded as
a vector of fixed length (string) with values from the alleles. This complete gene
encoding is called the genotype of the individual. Throughout this natural proce-
dure, the most adapted individuals survive, and the less adapted are discarded. In
the analogy, the population corresponds to a set of feasible solutions generated by a
different technique. This set of feasible solutions evolves through several iterations
of the algorithm. The chromosome of an individual represents a set of variables,
i.e., a solution. To encode a solution one has to identify the kind of genotype the
problem needs. Besides, to evaluate a solution, a fitness function is defined according
to the problem at hand. Nevertheless, just as it happens with the SA algorithm, this
analogy is not complete. In the routine of a genetic algorithm, some parameters are
used to best simulate the natural genetic operators and thus be able to discard the
least fit solutions.

In this section, we will briefly describe the general mechanics of a genetic algo-
rithm. At the same time, we describe the one developed in Perea et al. (2020) for
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(MC) problem. Then, in Subsection 4.6.5, we explain some computational conclu-
sions about the GA of Perea et al. (2020). After, we test it using a large instance.

4.5.1 Algorithmic routine of GAs

Algorithm 9 describes the general procedure of a genetic algorithm. For that, an ini-
tial set of feasible solutions |S| is considered, which can be created in a deterministic
or random manner. Then, at each iteration, a series of basic operators, explained
in Subsection 4.5.2, are applied in the following order. First, the selection opera-
tor chooses two individuals (solutions) from the current set of solutions, si and sj .
Next, these two elements are the protagonists of the crossover phase to form two new
individuals, named the resulting offspring. They will replace other elements of the
population according to some criteria established in relation to the fitness function.
Taking into account this update in the population, the mutation operator is executed
to select some individuals of the current population to flip randomly some positions
in their strings. Finally, the population is updated again. This routine is repeated
until the stopping criteria allows it. The stopping criteria is common to be related to
a maximum number of iterations, a maximum execution time of the algorithm or the
achievement of a solution with a sufficiently good value of the fitness function among
others. Eventually, the best solution of the final state for the population represents
the solution of the algorithm.

Algorithm 9: Genetic Algorithm
Require: Values for the probability pm of executing the mutation operator
and a given initial population of feasible solution graphs.
Encoding the population
while Stopping criteria = False do

Perform crossover operator with probability pc
Perform mutation operator with probability pm
Evaluate Stopping Criteria

end
return The best element of the current population.
The main components of a genetic algorithm are described bellow.

Encoding In order to apply a GA to a given problem, the first decision to be
made is the kind of genotype to select. That is, to identify the encoding the problem
needs. There are several types of encodings. For the (MC) problem, the solution is
characterized by the set of edges that are built from the underlying graphG = (N,E).
Thus, the chosen encoding by Perea et al. (2020) uses a vector of length |E| for which
each component has value 1 if the edge associated with that position appears in the
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solution network, and 0 otherwise.

The fitness function For a given problem, a fitness function has to be defined
to measure the quality of any potential solution. In Perea et al. (2020), the fitness
function considered only counts the amount of demand served.

Initial population A set of individuals is needed to apply a GA. These individuals
must be solutions or parts of solutions to the problem to optimize. In Perea et
al. (2020), the individuals of the initial population to be considered are built by
computing the constructive phase of the GRASP described in Subsection 4.2.

4.5.2 Neighborhood structure and Operators

SA and ALNS use a probability function that allows the acceptance of a worse
solution with a decreasing probability as the search progresses. With GAs, a pool
of solutions is used, and the neighborhood is composed of the interaction of pairs of
solutions in the execution phase of the crossover operator and also by the disturbance
of some individuals in the execution phase of the mutation operator. Note that if
none of the crossover and mutation operators is executed, the final solution of a GA
is the same as the initial one. That is, the best element of the initial population
coincides with the final solution.

With regard to operators, the following are the most frequent.

Selection Each solution of the population has an associated probability that tries
to simulate the reproductive ability of an individual according to natural genetics.
Normally this probability is related to the value of the fitness function that has such
solution. This operator can be understood as the initial step for the crossover and
mutation operators, which selects a required number of solutions. Authors in Perea
et al. (2020) set the same probability for each solution for being selected.

Crossover With this operator, two selected strings of the population exchange
one or more parts from some chosen positions, in a random or deterministic manner,
to create two new solutions. Then, these two offspring are evaluated by means of
some criteria. The fitness function is used to replace or not other solutions of the
population by these two offspring. This phase may have an associated probability
of execution, pc. Note that, the crossover operator can be executed only in a pair
of solutions or consider more pairs of solutions to exchange. Authors in Perea et al.
(2020) set pc = 1, i.e. the crossover phase is always executed and only to one pair of
solutions. Besides, two types of crossover operators have been performed. To under-
stand them, let us consider the following two subnetworks of such a given underlying
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network, N1 = ({1, 2, 3}, {{1, 2}, {2, 3}}) and N2 = ({1, 2, 3}, {{1, 3}, {2, 3}}), which
are coded as s1 = (1, 0, 1, 0) and s2 = (0, 1, 1, 0), respectively.

• Single-point crossover. An integer 1 ≤ k ≤ |E| − 1 is randomly generated.
This integer separates each string into two parts. Two offspring, s1 and s2 are
generated as follows. On the one hand, the part formed by the first k elements
of s1 is joined together with the last |E| − k elements of s2. Conversely, on
the other hand, the part formed by the first k elements of s2 is joined together
with the last |E| − k elements of s1. That is, assume the coded solutions
s1 = (1, 0, 1, 0) and s2 = (0, 1, 1, 1). If k = 1, the new two offspring are
s′1 = (1, 1, 1, 1) and s′2 = (0, 0, 1, 0).

• Two-point crossover. Two integers 1 ≤ k1 ≤ k2 ≤ |E| − 1 are randomly
generated. These integers separate each string in three parts. Two offspring,
s1 and s2 are generated as follows. On the one hand, the part formed by the
first k1 elements of s1, the part formed by the k1 element to the k2 element of s2

and the part formed by the last |E| − k2 elements of s1 are joined. Conversely,
on the other hand, the part formed by the first k1 elements of s2, the part
formed by the k1 element to the k1 element of s2 and the part formed by the
last |E| − k2 elements of s2 are joined. That is, assume the coded solutions
s1 = (1, 0, 1, 0) and s2 = (0, 1, 1, 1). If k1 = 1 and k2 = 3, the new two offspring
are s′1 = (1, 1, 1, 0) and s′2 = (0, 0, 1, 1).

Each of the two offspring may be characterized by one of the following two cases.
On the one hand, if the cost of the resulting offspring is larger than the available
budget, then it is an infeasible solution graph for the problem. This solution is
corrected by removing the edge that most reduces the total cost. This procedure is
repeated until the total cost is less than or equal to the available budget. On the
other hand, it could be that the cost of the resulting offspring was lower than the
available budget. In this case, if there are remaining edges that can be built, these
are added in the same way as in GRASP (see Section 4.2). Once the offspring is
corrected or extended, it is added to the current population if its value of the fitness
function induces an improvement with respect to the worst solution of the current
population, which is removed.

Mutation In this phase, some solutions are selected from the population according
to the selection operator. Then, in each of them, some positions are chosen in their
associated strings to flip them or exchange them in some way. These positions can
be chosen in a random manner or according to an associated probability to each of
them. Just like the crossover phase, the mutation operator has a probability related
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to its execution, pm. In Perea et al. (2020), the mutation operator only selects
one solution from the current population randomly. Then, a random position with
value 1 and a random position of value 0 are chosen and they are exchanged with a
certain probability pm. If the cost of the resulting solution is larger than the available
budget (infeasible solution graph) or there is budget left to continue adding edges to
the solution, it is corrected or extended following the same procedures defined before
for the crossover operator.

4.6 Computational experiments

In this section, it is shown that the performance of the proposed metaheuristics algo-
rithms of Sections 4.3, 4.4 and 4.5 is influenced by the values that their parameters
take. In what follows, we will refer as GRASP, SA, ALNS and GA to the different
metaheuristics previously described for the (MC) problem. The purpose is to mea-
sure the quality of the solutions they obtain. Note that, for each algorithm, some
of the involved parameters are continuous and belong to a very large range. Then,
we cannot try all combinations of all of them for any instance given. Furthermore,
even if one could find the optimal parameters combination at a specific instance, it
might not be optimal for another different instance given. However, it is also ex-
pected that a specific combination of the input parameters behaves in a similar way
for different-sized networks but with similar topology.

To carry out the proposed objective, first Subsection 4.6.1 shows a detailed des-
cription of the two groups of instances used to test such metaheuristics. Then, in
Subsection 4.6.2, the best configuration of the GRASP is identified with the aim of
using it for the next experiments as a generator of initial solution networks. Sub-
sections 4.6.3, 4.6.4 and 4.6.5 contain an extensive sensitivity analysis for SA, ALNS
and GA, using the random instances sets N20 and N80 described in Subsection 4.6.1.
These experiences are used to analyze the behavior of each metaheuristic, not to com-
pare them with each other. After identifying the best configuration for each of them,
they are executed using a large instance to compare them.

Regarding the sensitivity analysis of the improvement algorithms, the explored
variables are the following. For the sensitivity analysis of GRASP, only the first two
have been used.

• Value: On the one hand, for the computational results related to the GRASP,
this variable measures the overall normalized objective value of the solution.
We divide the objective value obtained with the GRASP by the objective value
in the situation where nothing is built. On the other hand, for the rest of the
metaheuristic algorithms, this variable measures the increase in coverage from
the GRASP solution.
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• t: The overall execution time.

• RPD: The average relative percent deviation with respect to the best solution
found by the BD_CW implementation after 1 hour. It is computed by the fol-
lowing formula:

RPD = 100
ZBD_CW − Z ′

ZBD_CW
, (4.7)

being Z ′ and ZBD_CW the values of the solutions obtained by the GRASP and
the BD_CW implementation, respectively.

Besides, for the GA, one more variable is also studied:

• Population_Value: the overall percentage increase in the population average
coverage.

So that the results between the different instances are comparable, the objective
value is normalized by Gtotal. The variables Value, RPD, and Population_Value are
constructed with this normalized value.

All of the instances in N20 were solved to optimality, thus ZBD_CW represents the
optimal solution value in this case. For the instances in N80, none of them was
solved to optimality in 1 hour, then ZBD_CW represents the objective value of the
best solution found. Note that for the case in which ZBD_CW represents the optimal
solution, the smaller the value of RPD, the better the quality of the solution found
by the metaheuristic. However, if ZBD_CW does not correspond with the optimal
solution and Z ′ > ZBD_CW, the greater the RPD, the better the solution found by the
metaheuristic is.

All our computational experiments were performed on a computer equipped with
an Intel Core i5-7300 CPU processor, with 2.50 gigahertz 4-core, and 16 gigabytes
of RAM. The operating system is 64-bit Windows 10. Codes were implemented in
Python 3.8. These experiments have been carried out through CPLEX 20.1 solver,
named CPLEX, using its Python interface. CPLEX parameters were set to their de-
fault values and the models were optimized in a single-threaded mode. Besides, the
different statistical analyses have been done through the use of R.

Due to the large dimensions of the collected data for this analysis, we have
added it as supplementary material in https://github.com/Natividad13/GRASP_

for_Network_Design, https://github.com/Natividad13/SA_for_Network_Design,
https://github.com/Natividad13/ALNS_for_Network_Design and https://github.

com/Natividad13/GA_for_Network_Design.

https://github.com/Natividad13/GRASP_for_Network_Design
https://github.com/Natividad13/GRASP_for_Network_Design
https://github.com/Natividad13/SA_for_Network_Design
https://github.com/Natividad13/ALNS_for_Network_Design
https://github.com/Natividad13/GA_for_Network_Design
https://github.com/Natividad13/GA_for_Network_Design
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4.6.1 Data sets: random instances

The random instances used to test the metaheuristic described are generated in the
same manner as in Subsection 2.4.1 with some different points. We have considered
networks of size n ∈ {20, 40, 60, 80} nodes. We name these instances as N20, N40,
N60 and N80. There are 20 underlying networks of each size. The underlying planar
graph of each instance has been generated with higher density. That is, their edges
are deleted with a probability of 0.2. The budget αCtotal is equal to 40% of the
cost of building the whole underlying graph considered, which means that α = 0.4.
Besides, to build the set of O/D pairs W all possible ones are taken into account.
Thus, set W is composed of n(n − 1) elements. Parameter uw is set to 2 times the
Euclidean length between ws and wt. The rest of the parameters of the instance are
chosen as in Chapter 2.

For the final experiment, we have used a network of size n = 100 nodes, generated
randomly and in the same way as the others.

4.6.2 Preliminary experiments for GRASP

With the purpose to analyze the performance of the GRASP when changing its
parameters k and niter_max, a sensitivity analysis is done using the sets of random
instances N20, N40 and N60. For that, all the possible combinations of the following
chosen values for each of both parameters are tested, being α = 0.4.

• The stopping criteria: niter_max ∈ {10, 20, 40, 100}

• Cardinality of the set of best edges to select from:
k ∈ {n/7, n/5, n/4, n/3}

niter_max

k

n/7 n/5 n/4 n/3

t Value t Value t Value t Value

N20

10 6.377 0.340 5.625 0.320 5.576 0.323 5.579 0.313
20 11.311 0.339 10.962 0.339 11.170 0.333 10.885 0.328
40 24.236 0.340 21.648 0.334 21.582 0.337 21.264 0.335
100 54.884 0.346 54.080 0.345 53.773 0.347 52.166 0.346

N40

10 189.950 0.308 182.784 0.295 179.184 0.291 171.244 0.284
20 351.891 0.313 347.342 0.312 329.162 0.300 318.899 0.292
40 703.500 0.327 691.119 0.315 663.588 0.308 641.381 0.301
100 1731.961 0.332 1689.035 0.328 1630.774 0.314 1570.210 0.303

N60

10 1301.410 0.292 1193.310 0.259 1224.868 0.264 1109.236 0.256
20 2482.400 0.284 2334.754 0.279 2241.138 0.283 2107.454 0.273
40 4971.832 0.302 4669.736 0.290 4436.286 0.286 4159.585 0.276

Table 4.1: Sensitivity analysis for the GRASP of (MC) using N20, N40 and N60
random instances.
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In Table 4.1, we report variables t and Value for the sets of random instances.
We have grouped these computational results by four different increasing values for
niter_max and, fixing it, by four different values for parameter k.

For each set N20, N40 and N60, an ANOVA analysis is performed to measure
whether there is significant evidence between the different values of niter_max and
k for each of the variables. The individual p-values are shown in Table 4.2. With
respect to the variable Value, for N40 and N60 instances there exists significant
evidence to confirm that the different levels of these two parameters affect. For N20,
there does not exist significant evidence to confirm that the different values of the
parameters affect Value, at the 95% confidence level. Respecting variable t, there
exists significant evidence to confirm that the different levels of niter_max affect it,
using any of the three sets of instances N20, N40 and N60. There is no significant
evidence to say that the interaction between niter_max and k affects it in any case.
It seems that for medium size instances, it is significant the choice of the values of
the parameters k and niter_max.

Value t

N20
niter_max 0.0706 <2e-16

k 0.6356 0.715

N40
niter_max 0.000208 <2e-16

k 0.000156 0.517

N60
niter_max 0.00548 < 2e-16

k 0.01148 0.000919

Table 4.2: P-values of the ANOVA for the GRASP of (MC) using N20, N40 and
N60 instances.

Figure 4.1 shows the results of columns Value in Table 4.1. By observing this
figure and focusing on N40 and N60 instances, we can say that the larger is niter_max
or the smaller is k, the larger the coverage. That is, the greater the number of gen-
erations fixed or the smaller the set of feasible remaining edges to select from, the
more demand is covered. Then, for N40 and N60, the best options considered are
(niter_max, k) = (100, n/7) and (niter_max, k) = (40, n/7), respectively. In conse-
quence, for the experiments tested in the next subsections, k is fixed to n/7.
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Figure 4.1: Sensitivity analysis for GRASP for (MC) using N20, N40 and N60
instances.

4.6.3 Preliminary experiments for SA

A sensitivity analysis for the SA algorithm proposed in Section 4.3 is done for N20
and N80 instances, being α = 0.4. For N20, it is composed considering all the
possible combinations of the following chosen values for each of the parameters.

• The stopping criteria: niter_max ∈ {5, 10, 20, 40}

• Number of interior iterations: niter_int_max ∈ {5, 10, 20, 40}

• Initial temperature: T ∈ {100, 200, 500, 1000, 2000}

• The reduction factor (cooling rate factor):
r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
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Therefore, each of the 20 random instances of N20 was solved by SA with each
of the possible 42 · 5 · 9 = 720 combinations of the parameters, having in total
720 · 20 = 14400 executions of SA for the (MC) problem. After analyzing this
experiment, a similar one was done for N80. Due to the size of the networks N80 and
from the conclusions of the first experiment, some different values for the parameters
were tested for the second one.

• The stopping criteria: niter_max ∈ {5, 10}

• Number of interior iterations: niter_int_max ∈ {5, 10, 20}

• Initial temperature: T ∈ {100, 200, 400, 800, 1600}

• The reduction factor (cooling rate factor): r ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

For N80, the possible combinations are 150, but those with niter_max = 10 and
niter_int_max = 20 were not taken into account due to the fact that their compu-
tational time is larger than 1 hour. Thus, 125 combinations were tested, having
in total 2500 executions of SA. Computational data respecting this experiment are
added as supplementary material in https://github.com/Natividad13/SA_for_

Network_Design.

Value t RPD
niter_max 0.204 <2e-16 0.429

niter_int_max 5.31e-05 <2e-16 6.43e-13
T 2.32e-09 0.044 < 2e-16
r 0.215 0.959 0.005

Table 4.3: P-values of the ANOVA for the SA of (MC) with N20 instances.

Value t RPD
niter_max 0.951 1.36e-09 0.996

niter_int_max 0.029 < 2e-16 0.969
T 0.278 0.683 0.990
r 0.294 0.963 0.999

Table 4.4: P-values of the ANOVA for the SA of (MC) with N80 instances.

For each set of instances, an ANOVA analysis is performed to measure whether
there is significant evidence between the different values of these parameters for each
of the variables. The individual p-values are shown in Tables 4.3 and 4.4 for N20
and N80, respectively. For N20, we observe that there is no significant evidence to
confirm that the different considered values of niter_max and r affect Value and that

https://github.com/Natividad13/SA_for_Network_Design
https://github.com/Natividad13/SA_for_Network_Design
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there is significant evidence to accept that the different considered values of T and
niter_int_max affect this variable. For N80, there is significant evidence to accept that
the different considered values of niter_int_max affect Value. There is no significant
evidence to confirm that the different considered values of niter_max, T and r affect
this variable. With respect to variable t, for both sets of instances, there is significant
evidence to accept that the different levels of niter_max and niter_int_max affect it.
Besides, for N20 there is significant evidence to accept that the different levels of the
temperature also affect t. By last, for RPD, there is significant evidence to accept
that the different levels of niter_int_max, T and r affect it with the set of instances
N20. The same cannot be obtained for N80, for which there is no evidence to accept
that the different levels of the four factors considered affect RPD.

Increase in coverage Figures 4.2 and 4.3 show the mean values of variable
Value for N20 and N80 considering the specified combinations of the parameters
in each case. That is, each point of these line graphs has associated a 4-tuple
(niter_max, niter_int_max, T, r).

Figure 4.2: Mean values of the overall percentage increase in coverage for all the 720
combinations of the parameters of SA over the GRASP for (MC), using N20. Red
points highlight the best configurations.

We can see that for both sets of instances N20 and N80, all the configurations
improve the solution obtained from the GRASP, being the small improvement of
14.97% for N20 and 5.73% for N80. Intuitively, for N20, the best configurations
of these parameters could be (5, 40, 500, 0.8), (10, 40, 500, 0.7), (20, 10, 1000, 0.7) and
(40, 40, 200, 0.6), with an improvement of 57.88%, 57.77%, 58.28% and 57.49%, res-
pectively. For N80, the best configurations are (5, 10, 800, 0.6) and (5, 20, 1600, 0.9),
with an increase in coverage from the GRASP of 22.37% and 22.88%, respectively.
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Figure 4.3: Mean values of the overall percentage increase in coverage for all the 125
combinations of the parameters of SA over the GRASP for (MC), using N80. Red
points highlight the best configurations.

Figure 4.4: Mean values of the overall percentage increase in coverage according to
the variation of the number of interior iterations and temperature parameters of SA
over the GRASP for (MC) using N20.

Figure 4.5: Mean values of the overall percentage increase in coverage according to
the variation of the number of interior iterations and temperature parameters of SA
over the GRASP for (MC) using N80.

With respect to obtaining some conclusions about the effect of the different levels
of the parameters on the increase in coverage, some observations can be stated from
Figures 4.4 and 4.5. Factors analyzed and drawn are the only ones that have evidence
of affect in the previous ANOVAs executed. For N80, we observe that the increase in
coverage is greater as the iterations and the temperature increase, for the majority
of the cases. For N20, this feature does not seem to be so obvious.
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Quality of solutions For N80, none of the instances was solved to optimality
using the BD_CW routine. Observing the collected data for this study, if we compare
the best solution found in 1 hour by the BD_CW routine with the solutions found by
the different configurations of SA (whose time is less than 1 hour), it turns out that,
for 59.6% of the cases, the metaheuristic achieves better results (considering the set
of all instances used).

Figure 4.6: Mean values of the overall RPD for all the 720 combinations of parameters
of SA for (MC) using N20. Red points highlight the best configurations.

Figure 4.7: Mean values of the overall RPD for all the 125 combinations of parameters
of SA for (MC) with N80.

In terms of deviation with respect to the solution obtained by the BD_CW routine,
the SA algorithm with configurations (40, 40, 2000, 0.5) and (20, 40, 1000, 0.8) yields
the best results for N20, as shown in Figure 4.6. These configurations find solutions
only 6.19% and 6.68% different from the optimal solutions. The previous ANOVA
described shows that there is significant evidence to accept that the different values
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of the parameters, except niter_max, affect RPD. Nevertheless, for N80, there is no
significant evidence to accept that the different values considered for its case affect
RPD. We observe in Figure 4.7 that the solutions found by SA are at least 60.65%

different from the best solution found by the BD_CW routine after 1 hour. Working
with the collected data, we get that this situation is positive for 59.6% of the cases
since for them the solution found by SA is better than that reached by using the
BD_CW routine during 1 hour. This situation is negative for 40.4% of the cases. Thus,
we consider two sets. On the one hand, cases in which SA gets better results, being
configuration (10, 10, 800, 0.7) the best one. On the other hand, cases for which SA
has got a solution worse than that achieved by the BD_CW routine. For this situation,
(5, 20, 400, 0.6) is the best configuration.

CPU time Finally, we analyze the computational effort of the SA algorithm pre-
sented. The average CPU time for all of the combinations tested are collected in
the supplementary material. Combinations with a small value of niter_int_max are
those which present a significative short computational time compared with the rest
of them. By fixing the value of niter_int_max, there is no significant difference in the
computational time. For N20, the average CPU time of the BD_CW routine is 53.05s.
Roughly speaking, the SA algorithm gets solutions that are on average 6.4% (taking
into account the best configurations) different from the MILP solution (see Figure
4.6) and in a fifth of the BD_CW routine time. The previous ANOVA described shows
that niter_max, niter_int_max and T significantly affect t. For N80, the BD_CW routine
was executed for 1 hour. The average CPU time for all the combinations tested for
the SA is shown. That is, the average CPU time of SA is 1502.41s. Thus, in less
than half an hour, for 59.6% of the cases, the SA algorithm gets solutions which are
on average 71.26% better than the solution obtained by the BD_CW routine. However,
in less than half an hour, for 40.4% of the cases, the SA algorithm gets solutions
which are on average 71.26% worse than that of the BD_CW routine. As for N20, the
previous ANOVA described shows that niter_max, niter_int_max and T significantly
affect t using N80 instances.

Summary of results Table 4.5 shows, for each of the variables studied, the best
combinations of SA algorithm factors in N20 and N80 instances. As we noted before,
not all the factors are individually significant for each variable studied.

Note that having a large increase in coverage may be due to the fact that the
GRASP solution from which SA starts is not good. On the other hand, having a
RPD close to 0 means that the solution provided by the metaheuristic routine is quite
good. This may be due to the fact that the GRASP solution from which SA starts
is also quite good and, in this case, the increase in coverage with respect to the
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GRASP solution is small. This is exactly what happens for N20 if we observe Table
4.6. Anyway, for Value there is dominance for the combinations (10, 40, 500, 0.7) and
(20, 10, 1000, 0.7) over the rest of them. They are characterized by a large value of T
and a small value of niter_int_max, or vice versa. For RPD, the best configuration is
(40, 40, 2000, 0.6), which is featured by large values of niter_max, niter_int_max and
T . Similar conclusions are obtained for N80. Combinations characterized by these
previous conclusions are the ones that will be tested later in Subsection 4.6.6 with a
large instance.

Variable Best combinations for N20 Best combinations for N80

Value
(5, 40, 500, 0.8), (10, 40, 500, 0.7),
(20, 10, 1000, 0.7), (40, 40, 200, 0.6)

(5, 10, 800, 0.6), (5, 20, 1600, 0.9)

t
All the combinations with
niter_int_max = 5

All the combinations with
niter_int_max = 5

RPD (40, 40, 2000, 0.6), (20, 40, 1000, 0.8)
(10, 10, 800, 0.7) if ZSA ≥ ZBD_CW,
(5, 20, 400, 0.6) if ZSA < ZBD_CW

Table 4.5: Best combinations of SA algorithm factors.

Variable Combination Value RPD

Value

(5, 40, 500, 0.8) 57.88% 10.04%

(10, 40, 500, 0.7) 57.77% 9.16%

(20, 10, 1000, 0.7) 58.28% 9.87%

(40, 40, 200, 0.6) 57.49% 12.69%

t
All the combinations with
niter_int_max = 5

around 30.69% around 15.51%

RPD
(40, 40, 2000, 0.6) 40.45% 6.19%

(20, 40, 1000, 0.8) 35.68% 6.68%

Table 4.6: Analysis of the best combinations of SA algorithm factors using N20.

4.6.4 Preliminary experiments for ALNS

The proposed ALNS algorithm 4.4 is controlled by quite a few parameters. To mea-
sure the quality of the solutions obtained by ALNS, we have conducted a sensitivity
analysis for the sets of random instances N20 and N80. We have fixed α = 0.4. For
N20, all the possible combinations of the following values considered for each of the
parameters are tried.

• Number of edges to delete to form neighbors: ndel ∈ {1, 2}

• The stopping criteria: niter_max ∈ {5, 10, 20, 40}
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• Length of a segment: s ∈ {2, 3, 5}

• The reaction factor: κ ∈ {0.25, 0.5, 0.75}

• Weight adjustment. Three configurations have been tested:

– Configuration 1: σ1 = 8, σ2 = 4 and σ3 = 2

– Configuration 2: σ1 = 10, σ2 = 5 and σ3 = 2

– Configuration 3: σ1 = 12, σ2 = 6 and σ3 = 2

• The start temperature control parameter: ρ ∈ {0.05, 0.1, 0.2}

• The reduction factor (cooling rate factor): r ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

Therefore, each of the 20 random instances of N20 was solved by the ALNS with
each of the possible 2 ·34 ·4 ·5 = 3240 combinations of the parameters, having in total
3240 · 20 = 64800 executions of the ALNS for the (MC) problem. After analyzing
this experiment, a similar one was done for N80. Due to the size of the networks of
N80 and some conclusions obtained from the first experiment, some different values
for the parameters of ALNS were tested for the second experiment.

• Number of edges to delete to form neighbors: ndel ∈ {1, 2}

• The stopping criteria: niter_max = 5

• Length of a segment: s ∈ {2, 3, 5}

• The reaction factor: κ = 0.25

• Weight adjustment: (σ1, σ2, σ3) = (8, 4, 2)

• The start temperature control parameter: ρ ∈ {0.05, 0.1, 0.2}

• The reduction factor (cooling rate factor): r = 0.997.

For N80, each of the 20 random instances was solved for the 2 · 32 = 18 possible
combinations of the parameters. The computational results of this experiment are
added as supplementary material in https://github.com/Natividad13/ALNS_for_

Network_Design.
For each set of instances, an ANOVA analysis is performed to measure whether

there is significant evidence between the different levels of the seven parameters
considered for each of the variables. Note that for N80, niter_max, κ, (σ1, σ2, σ3)

and r are not factors for the ANOVA analysis since they do not get different levels.
The individual p-values obtained are shown in Tables 4.7 and 4.8. For N20, it is
observed that there exists significant evidence to confirm that the different levels

https://github.com/Natividad13/ALNS_for_Network_Design
https://github.com/Natividad13/ALNS_for_Network_Design
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of ndel, niter_max, s and ρ affect variables Value and RPD. For N80, there is no
significant evidence to accept that neither of the factors considered affect Value nor
RPD, as shown in Table 4.8. With respect to t, for N20, all of the factors, except r
and κ, are significant for it. However, for N80, the only significant factor is ρ.

Value t RPD
ndel 4.96e-12 <2e-16 <2e-16

niter_max <2e-16 <2e-16 <2e-16
s 0.0042 <2e-16 0.0426
κ 0.5153 0.1008 0.2805

(σ1, σ2, σ3) 0.6245 0.0014 0.2596
ρ <2e-16 <2e-16 4.57e-12
r 0.9057 0.4345 0.9252

Table 4.7: P-values of the ANOVA for the ALNS of (MC) using N20 instances.

Value t RPD
ndel 0.342 0.718 0.999
s 0.332 0.157 0.969
ρ 0.767 7.03e-09 0.914

Table 4.8: P-values of the ANOVA for the ALNS of (MC) using N80 instances.

Figure 4.8: Mean values of the overall percentage increase in coverage for all the
3240 combinations of parameters of ALNS over the GRASP for (MC) using N20.

Increase in coverage Figures 4.8 and 4.9 show the mean values of variable Value
for N20 and N80 considering all the possible combinations of the parameters in
each case. That is, for N20, each point in this line graph has an associated 7-tuple
(ndel, niter_max, κ, s, (σ1, σ2, σ3), ρ, r). For N80, each point has an associate 3-tuple
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(ndel, s, ρ). We see that for both sets of instances, all the configurations improve the
solution obtained from the GRASP. Intuitively, for N20 the best configurations of
these parameters could be (1, 20, 0.5, 5, 2, 0.05, 0.6), (1, 20, 0.75, 3, 3, 0.05, 0.6), (1, 40, 0.25, 5, 1, 0.1, 0.8),
(1, 40, 0.5, 2, 2, 0.05, 0.5) and
(2, 20, 0.25, 3, 2, 0.05, 0.6) with an improvement of 36.83%, 36.72%, 37.69%, 36.94%,
and 37%, respectively. For N80, the best configuration is (2, 2, 0.05), with an im-
provement of 6.76%.

Figure 4.9: Mean values of the overall percentage increase in coverage for all the 216
combinations of parameters of ALNS over the GRASP for (MC) using N80.

Figure 4.10: Mean values of the overall percentage increase in coverage according
to the variation of number of edges removed, number of iterations, length of the
segment and reduction factor of ALNS over the GRASP for (MC) using N20.

With respect to obtaining some conclusions about the effect of the different levels
of the parameters on the increase in coverage, some observations can be stated from
Figure 4.10. Factors analyzed and drawn are the only ones that provide evidence
of affect in the previous ANOVAs executed. For N20, we observe that the larger
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niter_max or the shorter ρ, the larger the increase in coverage. Besides, we observe a
slightly larger increase for s = 5 and ndel = 1 for the majority of the cases. Since we
observe that niter_max positively influences the larger its value, we fixed it for the
experiment with N80. Parameters κ, (σ1, σ2, σ3) and r were also fixed due to their
large p-values. In this way, we restricted the analysis to the rest of the parameters, for
which there was not enough accentuated trend. Anyway, going back to the ANOVA
analysis, none of the factors considered significantly affect Value.

Quality of solutions For N80, none of the instances was solved to optimality
using the BD_CW routine. Observing the collected data for this study, if we compare
the best solution found in 1 hour by the BD_CW routine with the solutions found by
the different configurations of ALNS (whose overall time is less than half an hour),
it turns out that, for 53.70% of the cases, the metaheuristic achieves better results
(considering the set of all instances used).

Figure 4.11: Mean values of the overall RPD for all the 3240 combinations of param-
eters of ALNS for (MC) with N20.

In terms of deviation with respect to the solution obtained by the BD_CW rou-
tine, the ALNS with configuration (1, 40, 0.5, 1, 2, 0.05, 0.5) yields the best results for
N20, as shown in Figure 4.11. This configuration finds solutions 9.33% far from the
optimal solutions. The previous ANOVA described shows that there is significant
evidence to accept that the different values of more than half of the factors affect
RPD. Nevertheless, for N80, there is no significant evidence to accept that the differ-
ent values considered for the parameters affect RPD. Besides, we observe in Figure
4.12 that the solutions found by ALNS are at least 61.08% far from the best solution
found by the BD_CW routine after 1 hour. Working with the collected data, we get
that this situation is positive for 53.70% of the cases of N80, since for them the solu-
tion found by ALNS is better than that reached by using the BD_CW routine during 1
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hour. This situation is negative for 46.30% of the cases. Thus, we consider two sets.
On the one hand, in cases in which ALNS gets better results, being configuration
(1, 5, 0.05) the best one. On the other hand, cases for which ALNS has got a solution
worse than that achieved by the BD_CW routine. For this situation, (2, 5, 0.1) is the
best configuration.

Figure 4.12: Mean values of the overall RPD for all the 18 combinations of parameters
of ALNS for (MC) with N80.

CPU time Finally, we analyze the computational effort of the ALNS algorithm
presented. The average CPU time for all of the combinations tested for the ALNS al-
gorithm are collected in the supplementary material https://github.com/Natividad13/
ALNS_for_Network_Design. Combinations with a small value of niter_max and a
large value of ρ are those which present a significative short computational time
compared with the rest of them. For N20, the average CPU time of the BD_CW rou-
tine is 53.04s. Roughly speaking, the ALNS algorithm gets solutions which are on
average 9.33% (taking into account the best configuration) far from the MILP (Fig-
ure 4.11), in a seventh of the BD_CW routine time. The previous ANOVA described
shows that more than half of the factors significantly affect the CPU time variable t.
For N80, the BD_CW routine was executing during 1 hour. Taking into account all the
combinations tested for ALNS, the average CPU time is 1694s. Thus, in less than
half an hour, for 53.70% of the cases, the ALNS algorithm gets solutions that are on
average 67.18% better than the solution obtained by the BD_CW routine. However,
in half an hour, for 46.30% of the cases, the ALNS algorithm gets solutions which
are on average 67.18% worse than that of the BD_CW routine. Observing the ANOVA
analysis, only the values considered for the factor ρ affect significantly variable t

using N80 instances.

https://github.com/Natividad13/ALNS_for_Network_Design
https://github.com/Natividad13/ALNS_for_Network_Design
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Summary of results Table 4.9 shows, for the variables studied, the best combi-
nations of ALNS algorithm factors in N20 and N80 instances. As we noted before,
not all the factors are individually significant for each variable studied.

Variable Best combinations for N20 Best combinations for N80

Value

(1, 20, 0.5, 5, 2, 0.05, 0.6),
(1, 20, 0.75, 3, 3, 0.05, 0.6),
(1, 40, 0.25, 5, 1, 0.1, 0.8),
(1, 40, 0.5, 2, 2, 0.05, 0.5),
(2, 20, 0.25, 3, 2, 0.05, 0.6)

(2, 2, 0.05)

t
All the combinations with
niter_max = 5 and ρ = 0.2

All the combinations with
niter_max = 5 and ρ = 0.2

RPD (1, 40, 0.5, 2, 2, 0.05, 0.5)
(1, 5, 0.05), if ZALNS ≥ ZBD_CW,
(2, 5, 0.1), if ZALNS < ZBD_CW

Table 4.9: Best combinations of ALNS algorithm factors.

Just as we mentioned before, having a large increase in coverage may be due to
the fact that the GRASP solution from which ALNS starts is not good. On the other
hand, having a RPD close to 0 means that the solution provided by the metaheuristic
routine is quite good. This may be due to the fact that the GRASP solution from
which ALNS starts is also quite good and, in this case, the increase in coverage with
respect to the GRASP solution is small. This is exactly what happens for some
configurations using N20 instances (see Table 4.10). We determine how the best
quality solutions are obtained when a large number of iterations and short values
of ρ and s are considered. The good behaviour when considering a short value for
ρ could be justified as there are more chances of generating a good initial solution
with GRASP. Besides, considering ndel = 1 seems to be slightly better than setting
ndel = 2. This may be because when setting ndel = 2, too much variability could
be occurring in a small network. Some different conclusions have been obtained for
N80, having the best combinations of RPD dominance over the rest of them. Note
that neither of the factors is significant for Value or RPD. Nevertheless, for these big
instances, as well as for N20, it seems to be better to consider small values of ρ.
Besides, large values of s go to better solutions. This difference compared to N20
could be justified by the size of the networks. For small networks, considering short
values of s could generate networks very similar to the initial one. With respect to
ndel there are no clear conclusions nor trends about it. These featured combinations
are the ones that will be tested later in Subsection 4.6.6 with a large instance.
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Variable Combination Value RPD

Value

(1, 20, 0.5, 5, 2, 0.05, 0.6) 36.83% 12.75%

(1, 20, 0.75, 3, 3, 0.05, 0.6) 36.72% 15.91%

(1, 40, 0.25, 5, 1, 0.1, 0.8) 37.69% 12.72%

(1, 40, 0.5, 2, 2, 0.05, 0.5) 36.94% 9.33%

(2, 20, 0.25, 3, 2, 0.05, 0.6) 37% 15.61%

t
All the combinations with
niter_max = 5 and ρ = 0.2

around 12.76% around 20.24%

RPD (1, 40, 0.5, 2, 2, 0.05, 0.5) 36.94% 9.33%

Table 4.10: Analysis of the best combinations of ALNS algorithm factors using N20.

4.6.5 Preliminary experiments for GA

In the experiments of the GA exposed in Perea et al. (2020), the neighborhood
structure of the GRASP is tested in three different ways: allow only connected
graphs, allow only non-connected graphs and random generation of graphs. In the
experiments described in this chapter, the neighborhood structure corresponds to the
last form of those named above, i.e., it is composed of connected and non-connected
graphs, as explained in Subsection 4.2.

To analyse the performance of GA, we have elaborated a sensitivity analysis for
its parameters using instances N20 and N80. We fixed α = 0.4. For N20, all the
possible combinations of the following chosen values for each of the parameters are
tested.

• The stopping criteria: niter_max ∈ {20, 40, 80, 160}

• Size of the population: |S| = {5, 10, 20, 40}

• Number of crossover points: ncross = {0, 1, 2}

• pm ∈ {0, 0.25, 0.5, 0.75}

Therefore, each of the 20 random instances of N20 was solved by the GA with
all the possible 43 · 3 − 42 = 176 combinations of the parameters, regardless of
the case in which the crossover and mutation operators are not executed. Then,
there are 176 · 20 = 3520 executions in total. After observing the results, a similar
sensitivity analysis was done for N80. Due to the size of the networks N80 and to
some conclusions of the first experiment, some different values for the parameters of
GA were tested for the second one.

• The stopping criteria: niter_max = 5

• Size of the population: |S| = 5
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• Number of crossover points: ncross = {0, 1, 2}

• pm ∈ {0, 0.25, 0.5, 0.75}

For N80, each of the 20 random instances was solved with each of the possible
4 · 3 − 1 = 11 combinations of the parameters, having in total 220 executions of
the GA for the (MC) problem. For N80, for bigger values of niter_max or |S| than
those considered, the execution time is larger than 1 hour for some of the instances.
Thus, for the analysis, we have considered only the combinations of the parameters
in which the computation time is smaller than or equal to 1 hour for all the instances
of N80. The computational results of this experiment are added as supplementary
material in https://github.com/Natividad13/GA_for_Network_Design.

Value t RPD Population_Value
niter_max <2e-16 <2e-16 <2e-16 0.689
|S| <2e-16 <2e-16 <2e-16 0.152

ncross <2e-16 <2e-16 <2e-16 0.991
pm 0.000164 0.165 0.000621 0.899

Table 4.11: P-values of the ANOVA for the GA of (MC) using N20 instances.

Value t RPD Population_Value
ncross 0.0015 0.542 0.999 0.659
pm 0.1611 0.978 0.999 0.391

Table 4.12: P-values of the ANOVA for the GA of (MC) using N80 instances.

For each set of instances, an ANOVA analysis is performed to measure whether
there is significant evidence between the different levels of the number of iterations
niter_max, size of the population |S|, number of crossover points ncross and proba-
bility of mutation pm for each of the variables. Note that for N80, niter_max and
|S| are not factors for the ANOVA analysis since they do not get different levels.
The individual p-values obtained are shown in Tables 4.11 and 4.12. For N20, it is
observed that there exists significant evidence to confirm that the different levels of
these four parameters affect variables Value and RPD. With respect to t, the different
levels of factors niter_max, |S| and ncross affect it using N20. For N80, none of the
factors considered affect it significantly. For N80, there is significant evidence to
accept that factor ncross affects Value. However, there is no significant evidence to
accept that the different levels of pm affect Value. Besides, none of the factors affect
RPD nor t. Finally, there is no significant evidence to confirm that any of the factors
affect Population_Value for either of the two sets of instances.

https://github.com/Natividad13/GA_for_Network_Design
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Figure 4.13: Mean values of the overall percentage increase in coverage for all the
176 combinations of parameters of GA over the GRASP for (MC) using N20.

Figure 4.14: Mean values of the overall percentage increase in coverage for all the 11
combinations of parameters of GA over the GRASP for (MC) using N80.

Increase in coverage Figures 4.13 and 4.14 show the mean values of Value for
N20 and N80 considering all the possible combinations of the parameters in each
case. That is, for N20, each point of this line graph has an associated 4-tuple
(niter_max, |S|, ncross, pm). For N80, each point has an associated 2-tuple (ncross, pm),
since niter_max = 5 and |S| = 5. We can see that for both sets of instances, almost
all of the configurations improve the solution obtained from the GRASP. Intuitively,
for N20, the best configuration of these parameters could be (40, 5, 1, 0.75) with an
improvement of 16.48%. For N80, the best configurations are (1, 0.5) and (1, 0.75),
with an improvement of 6.25% and 7.41%, respectively.
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Figure 4.15: Mean values of the overall percentage increase in coverage according
to the variation of number of iterations, size of the population and crossover and
mutation operators of GA over the GRASP for (MC) using N20.

Figure 4.16: Mean values of the overall percentage increase in coverage according to
the variation of crossover and mutation operators of GA over the GRASP for (MC)
using N80.

By observing Figures 4.15 and 4.16, we obtain some conclusions about the effect
of the different levels of the parameters on the increase in coverage. From Figure 4.15,
using N20 instances, we observe that fixing |S|, pm and ncross, the larger niter_max,
the larger the increase in coverage, in general. Besides, it is observed clearly that
the larger |S|, the less the increase in coverage. Moreover, we observe larger values
for the increase in coverage for pm ≥ 0.5 and ncross 6= 0, for the majority of the
cases. Going back to the best configuration highlighted in Figure 4.13, note that
it exactly corresponds with these previous conclusions. Using N80, it is observed a
major improvement if ncross = 1 for the majority of the cases. Moreover, it seems
that if pm ∈ {0.5, 0.75} the increase in coverage is larger compared with the situation
in which this operator is not applied or has a small pm assigned, even though the
previous ANOVA analysis has not determined significant evidence to accept that
the different levels considered of pm affect Value. Looking at the data, we see that
the combination which gets null improvement in coverage is characterized by not
performing the crossover operator (ncross = 0) and pm = 0.25.
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Quality of solutions For N80, none of the instances was solved to optimality
using the BD_CW routine. Observing the collected data for this study, if we compare
the best solution found in 1 hour by the BD_CW routine with the solutions found by
the different configurations of GA (whose time is less than 1 hour), it turns out that,
for 55.55% of the cases, the metaheuristic achieves better results (considering the
set of all instances used). Remember that similar results are obtained for SA, with
59.6% of the cases in favor of it.

Figure 4.17: Mean values of the overall RPD for all the 176 combinations of parameters
of GA for (MC) using N20.

Figure 4.18: Mean values of the overall RPD for all the 22 combinations of parameters
of GA for (MC) using N80.

In terms of deviation with respect to the solution obtained by the BD_CW routine,
the GA with configurations (40, 20, 1, 0.25) and (40, 40, 1, 0.25) yields the best results
using N20, as shown in Figure 4.17. These configurations find solutions only around
7.14% different from the optimal solutions. The previous ANOVA described shows
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that there is significant evidence to accept that the different values of all the factors
affect RPD. Nevertheless, for N80, there is no significant evidence to accept that the
different values considered for none of the factors affect RPD. Besides, we observe in
Figure 4.18 that at least the solutions found by GA are 66.66% different from the
best solution found by the BD_CW routine after 1 hour. Working with the collected
data, we get that this situation is positive for 55.55% of the cases of N80, since
for them the solution found by GA is better than that reached by using the BD_CW

routine during 1 hour. This situation is negative for 44.45% of the cases. Thus, we
consider two sets. On the one hand, cases in which GA gets better results, being
configuration (2, 0) the best one. On the other hand, cases for which GA has got
a solution worse than that achieved by the BD_CW routine. For this situation, (2, 0)

and (2, 0.75) are the best configurations.

CPU time Finally, we analyze the computational effort of the GA presented. The
average CPU time for all the combinations tested for the GA are shown in the
collected data. Combinations with a small value of |S| are those which present a
significative short computational time compared with the rest of them. Fixing |S|,
there is no significant difference in the computational time. For N20, the average
CPU time of the BD_CW routine is 53.04s. Roughly speaking, the GA gets solutions
which are on average 7.14% (taking into account the best configuration) far from the
MILP solution (Figure 4.17), in a quarter of the BD_CW routine time. The previous
ANOVA described shows that niter_max, |S| and ncross significantly affect variable t.
For the set N80, the BD_CW routine was executing during 1 hour. Taking into account
all the combinations tested for GA, the average CPU time is 2219s. Thus, in a little
more than half an hour, for 55.55% of the cases, the GA gets solutions which are on
average 70.25% better than the solution obtained by the BD_CW routine. However, in
a little more than half an hour, for 44.45% of the cases, the GA gets solutions which
are on average 70.25% worse than that of the BD_CW routine.

Summary of results Table 4.13 shows, for the variables studied, the best combi-
nations of GA factors using N20 and N80 instances. As we noted before, not all the
factors are individually significant for each variable studied.

Just as we mentioned before, having a large increase in coverage may be due to the
fact that the GRASP solution from which GA starts is not good. On the other hand,
having a RPD close to 0 means that the solution provided by the metaheuristic routine
is quite good. This may be due to the fact that the GRASP solution from which GA
starts is also quite good and, in this case, the increase in coverage with respect to the
GRASP solution is small. This is exactly what happens using N20 if we observe Table
4.14. We observe how the best quality solutions are obtained when a large number of
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iterations and population are considered, ncross fixed to 1 and pm ∈ {0.25, 0.75}. The
good behaviour considering large value for |S| could be justified as there are more
chances of generating good initial solutions with GRASP. Different conclusions are
obtained for N80. For these instances it seems to be better considering ncross = 2.
Nevertheless, there are no clear conclusions about the probability of the mutation
operator to fix, so the logical recommendation is to always try the three levels of
it. These featured combinations are the ones that will be tested later in Subsection
4.6.6 with a large instance.

Variable Best combinations for N20 Best combinations for N80
Value (40, 5, 1, 0.75) (1, 0.5), (1, 0.75)

t
All the combinations with
|S| = 5

All the combinations with
|S| = 5

RPD (40, 20, 1, 0.25), (40, 40, 1, 0.25)
(2, 0) if ZGA ≥ ZBD_CW,
(2, 0), (2, 0.75) if ZGA < ZBD_CW

Table 4.13: Best combinations of GA factors.

Variable Combination Value RPD
Value (40, 5, 1, 0.75) 16.48% 9.91%

t
All the combinations with
|S| = 5

around 7.26% around 14.78%

RPD
(40, 20, 1, 0.25) 8% 7.14%

(40, 40, 1, 0.25) 5.24% 7.14%

Table 4.14: Analysis of the best combinations of GA factors using N20.

4.6.6 Comparative of the metaheuristics on benchmark instances

In this subsection, we have the purpose of comparing the performance of the three
metaheuristics analyzed. For that, we use an instance with 100 nodes and 128 edges
randomly generated as those described in Subsection 4.6.1. We have elaborated a
computational experience according to the change in the value of α.

Firstly, we study the performance of the BD_CW approach in Table 4.15, where
v(BD_CW) represents the best value found by the BD_CW procedure in 1 hour. We
observe that small values of α make it more difficult to get the optimal solution, or
at least a solution, since for α ∈ {0.2, 0.4} none were found. We tried to improve these
two situations by providing the BD_CW procedure with an initial solution generated
with the GRASP, situation that is reflected in the table. We observe that gap is very
large. Let us remember that gap refers to the size of the best bound as a function of
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the objective value of the best solution found (in 1 hour, in this case). For α = 0.6,
the instance was solved to optimality.

α t gap v(BD_CW) cuts
0.2 3600 700449.48 133 21752
0.4 3600 667690.43 212 67412
0.6 448.76 0.001 1472095 18736

Table 4.15: Computational performance of BD_CW with a time limit of 1 hour using
an instance with 100 nodes and 128 edges.

α Algorithm Configuration Value

0.2
SA (1,40,200,0.997) 301165

ALNS (2,1,0.1,0.5,0.997) 275817
GA (3,0.5) 366822

0.4
SA (1,40,200,0.997) 830083

ALNS (2,1,0.1,0.5,0.997) 772061
GA (1,0.5) 725811

Table 4.16: Comparative of the best combinations of SA, ALNS and GA algorithms
for (MC) with a randomly generated instance with 100 nodes and 181 edges.

Secondly, the best configurations of the three metaheuristics have been tested.
The stopping criteria is the same for all of them. Each metaheuristic has been
computing during 1 hour. Each configuration of the selected ones has been computed
10 times. Table 4.16 shows average results for some selected ones. Note that in all
the cases presented, the solution obtained by the metaheuristic is better than the one
reached with BD_CW. Nevertheless, for larger values of α, the BD_CW procedure gets
the optimal solution network in less than half an hour, which is not competitive with
the use of any of the metaheuristics studied. Furthermore, we observe that for small
values of α (α = 0.2), the GA gets better results than the other two procedures,
being ALNS the worst of them. Nevertheless, for bigger values of α (α = 0.4) it
seems that SA has the best behavior and GA comes in third place. As the value
of α increases, the number of feasible solutions increases. It seems that for a high
combinatorial component SA gets better solution networks. For larger values of α
than 0.6 it is better to use the Benders decomposition approach.

4.7 Conclusions

In this chapter, two well-known metaheuristic techniques have been adapted to the
(MC) problem studied in Chapter 2. One of them is a Simulated Annealing algo-
rithm and the other is an Adaptive Large Neighborhood Search procedure. The main
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difference between them is that the second one works with a larger neighborhood. An
extensive sensitivity analysis has been carried out for both using randomly generated
medium size instances. In addition, we have added to this computational study the
Genetic Algorithm exposed in Perea et al. (2020). The goal has been to observe the
behavior of the parameters and to find the best parameter settings in each case. The
ANOVA analysis done for each of the metaheuristic showed that not all the param-
eters are individually significant to the quality of the solutions obtained, according
to the set of values considered for such parameters. As a final task, we have added a
computational comparison between them using such best configurations for a large
instance.
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This chapter extends the classical notion of λ-cent-dian and generalized-center
from Facility Location Theory to the much more complex Network Design area. For
that, we consider the problems of building a network under a budget constraint
to serve a set of origin/destination pairs instead of single points. Such problems
minimize a convex combination and the difference composed of the center and median
functions, respectively.

The λ-cent-dian concept aims at studying the trade-off between efficiency and
equity. We investigate the properties of the λ-cent-dian and generalized-center solu-
tion networks under the lens of equity, efficiency, and Pareto-optimality with respect
to the bicriteria center/median problem. We provide a mathematical formulation for
λ ≥ 0. Besides, we discuss the bilevel structure of this problem for λ > 1. Moreover,
we describe a procedure to give a complete parametrization of the Pareto-optimality
set based on solving two linear formulations. For that, we introduce the new con-
cept of maximum λ-cent-dian. Furthermore, we evaluate the quality of the different
solution concepts using some inequality measures, not only from the point of view
of efficiency and equity. Finally, we develop and test an branch-and-Benders-cut
procedure and a metaheuristic algorithm.

5.1 Introduction

Center and Median problems in graphs and extensions
Center and Median problems in graphs and Euclidean spaces constitutes the

core of Location Science in the late 50s and 60s of the past century. Whereas median
problems aim at maximizing the efficiency of the system, center ones try to maxi-
mize the effectiveness or fairness. Given a set of points (demands, customers), either
in a graph or in a continuous space with associated weights, the median problem
consists in finding one or several points (facilities), so that the normalized sum of
the weighted distances from the demand points to the closest facility is minimized.
On the other hand, the center problem consists in finding one or several points so
that the largest distance from a demand point to the closest facility is minimized.
The median notion fits well with problems in which the goal consists of minimizing
the cost or maximizing the profit of the system. The goal of the center problems is
to minimize the maximum distance. Thus it fits better to locate emergency facilities
where the farthest point must be as close as possible to the facility. However, con-
sidered isolated, these objectives do not allow to attack many problems in which a
balance between both of them is desirable.

In Halpern (1976), the term λ-cent-dian was first introduced for location problems
whose objective is to minimize a linear convex combination of center and median
objectives, denoted by Fc and Fm, respectively. In other words, the λ-cent-dian
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objective is Hλ = λFc + (1 − λ)Fm. Subsequently, in Halpern (1978), the author
proved that the λ-cent-dian of a graph lies on a path connecting the center and
the median. To overcome the drawback of fixing the value of the parameter, and
then solving the λ-cent-dian problem, Halpern provided a procedure to find the λ-
cent-dians for all possible combinations. A new algorithm to find all λ-cent-dian
points is proposed by Hansen et al. (1991). If N = (N,E) is a graph, then the
algorithm finds all the λ-cent-dian points for all λ ≥ 0 in O(|N ||E| log(|E||N |)).
Moreover, they also introduced the concept of generalized-center as the minimizer of
the difference function between the center and the median. In fact, when λ → ∞,
the ratio Hλ(x)

λ tends to the generalized-center. Thus, the generalized-center is in
some way an equality measure but it could lead to an uninteresting facility location
for all the given points. Subsequently, Ogryczak (1997) realized a drawback of the
generalized-center and proposed the Chebyshev λ-cent-dian notion.

The λ-cent-dian objective has also been considered in extensive facility location
problems. A facility is called extensive if it is too large regarding its environment to
be represented by points (see Mesa and Boffey (1996), Puerto et al. (2018)). The first
time that research on λ-cent-dian extensive facilities was published was in López-de-
los Mozos and Mesa (1992), in which some properties for the λ-cent-dian path in a
tree network were derived. The paper Averbakh and Berman (1999) deals with three
problems of path location in trees: minimization of a convex combination of the
maximal and average distances, and minimizing one objective subject to an upper
bound of the value of the other objective. All the problems are solved in O(n) time
by the application of some dynamic programming ideas. For more information on
path and tree λ-cent-dian problems we refer to Puerto et al. (2009).

The importance of the λ-cent-dian criterion keeps weight to, in some way, con-
tradicting criteria. Thus, the decision-maker chooses the weight to allocate to the
center criterion and to the median criterion. In this chapter, such as in all the pre-
vious ones, we consider that the demand is given by a set of origin/destination pairs
(called O/D pairs), instead of single demand points, for which the selected network
is used for connecting them. In Schmidt and Schöbel (2014), the authors present a
problem similar to ours for the particular case λ = 1. That is, the center problem
for Network Design.

Most of the Network Design problems already researched have used the cost or
the profit as objective functions. These objective functions are surrogates of that of
the classical median problems: the sum of the (weighted) distances to the facility
since the cost depends on the distance. However, in some cases, it is important
that the origins and destinations be not too far away. For example, commuters in a
metropolitan area are reluctant to spend daily a lot of time reaching their working
places from their homes. This waste of time is also a proxy for distance. Another
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example happens in electricity distribution generated by (solar, hydro, or wind)
mini-power facilities in rural areas. In these cases, the electricity is provided at low
voltage and power losses increase with the distance. Thus, in these contexts, the
center objective must be considered in combination with the median one.

Bilevel Optimization
Bilevel Optimization is an area of Mathematical Programming constituted by

problems which contain a second embedded (nested) problem. That is, some vari-
ables are subject to the solution of another optimization problem. The outer opti-
mization task is the so-called upper-level problem, and the inner optimization task
is the so-called lower-level problem. These problems involve two kinds of variables.

The general form of a bilevel optimization problem is

min
x∈X,y

F1(x, y) (5.1)

s.t. F2(x, y) ≥ 0, (5.2)

y ∈ S(x), (5.3)

being S(x) the set of optimal solutions of the x-parameterized problem

min
y∈Y

f1(x, y) (5.4)

s.t. f2(x, y) ≥ 0. (5.5)

Formulations (5.1)-(5.3) and (5.4)-(5.5) represent the upper-level and lower-level
problems, respectively. Moreover, x ∈ Rn1 and y ∈ Rn2 are the upper-level and
lower-level variables. The objective functions are given by F1, f1 : Rn1 × Rn2 → R

and the set of constraints by F2 : Rn1×Rn2 → Rm1 as well as f2 : Rn1×Rn2 → Rm2 .
Sets X and Y denote the integrality constraints.

In our problem, two tasks can be identified. If λ ∈ [0, 1], the objective consists
of designing a network that minimizes the λ-cent-dian function, which is composed
of a sum of travel times of a set of O/D pairs W . Then, implicitly the shortest
path for each O/D pair w ∈ W is identified in the network designed. As we will
see later in the chapter, both these objectives are not contrary for the formulation
presented with λ ∈ [0, 1]. However, if λ > 1, there is a need to enforce the choice of
the shortest path for each w ∈W because otherwise we get altered objective values
or even disturbed solutions. Thus, for λ > 1, the proposed λ-cent-dian formulation
requires the Bilevel Optimization Theory.

There has been a remarkable growth in the interest of computational Bilevel Op-
timization over the past decade. Dempe and Zemkoho (2020) and Kleinert et al.
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(2021) summarize well the theory and applications to real-world problems.

Structure of this chapter
The structure of the chapter is as follows. In Section 5.2, we extend the notions

related to the center and median in Network Design. We prove and show that
situations similar to those presented in Ogryczak (1997) occur when trying to solve
the much more complex problem of designing a network instead of locating a facility.
In Section 5.3, we develop mathematical formulation for λ ≥ 0. Besides, we discuss
the bilevel structure of this problem for λ > 1 and we readapt the formulation for
this case. Then, we describe a procedure to give a complete parametrization of the
Pareto-optimality set based on solving two linear formulations. In Section 5.4, we
study two different approaches to solve the problem for the case λ ∈ [0, 1]. On the
one hand, we tackle the problem using a Benders decomposition implementation
together with the ideas exposed in Conforti and Wolsey (2019). On the other hand,
we have designed a GRASP algorithm. We present a computational study in Section
5.5 where we investigate the efficiency of the algorithmic tools developed in this work.
Besides, this section includes a numerical illustration to discuss the quality of the
different solutions concepts developed using some inequality measures, not only from
the point of view of the center and median functions. Finally, our conclusions are
presented in Section 5.6.

5.2 Problem definition

According to the elements defined in Section 1.2.1, given a graphN , we are interested
in subgraphs S = (NS , ES) of it, S ⊆ N , with ES ⊆ E ∩ (NS × NS), that can be
constructed respecting a budget constraint. We represent this budget as a fraction α
of the total cost of building the potential graph N , noted by Ctotal. In other words,
a subgraph S is feasible if

∑
i∈NS

bi +
∑
e∈ES

ce ≤ α

(∑
i∈N

bi +
∑
e∈E

ce

)
= αCtotal. (5.6)

We denote by N α the set of all subgraphs of N satisfying (5.6).
For a given subgraph S and an O/D pair w ∈ W , dS(w) represents the length

of the shortest path from ws to wt in the subgraph S. If a pair w ∈ W cannot be
connected within S, we assume that dS(w) = +∞. Note that each pair w has an
associated utility uw which represents the length/distance in the alternative existing
network. Taking this into account, each user will travel from its origin to its desti-
nation in path of length `S(w) = min{dS(w), uw}. Then if dS(w) ≤ uw, we say that
the O/D pair w is covered or served by S.
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Remark 11. Note that for problems in this chapter, we are assuming that each O/D
pair w ∈W is always covered by one of the two existing modes which are competing
between them. This is a difference with respect to the covering problems studied in the
previous chapter. For those problems, only the demand that is covered by the newly
designed network is known. The demand that is not covered by the new network may
or may not be covered by the existing network.

Regarding the notation, the notions and properties that are going to be developed
in this chapter are supported by network examples in which the couple labeling the
edges represents building cost and length, respectively. Also, each node has a label
associated with its building cost.

In order to evaluate a solution subgraph S, we now extend two solution concepts
coming from Location Science which are the central topic of this work: the center
and the median.

The average-weighted-O/D-distance (median value to abbreviate) for a set of
O/D pairs W in a subnetwork S ⊆ N is given by

Fm(S) =
1

Gtotal

∑
w∈W

gw`S(w). (5.7)

Thus, given a potential network N and a bound α ∈ (0, 1), a subgraph S ∈ N α

minimizing Fm( · ) is called an α-Network-Design-median-graph, median to abbre-
viate, and denoted by Sm. Then, the problem of minimizing Fm( · ) consists of
finding a subnetwork Sm = (NSm , ESm) ∈ N α such that for every subnetwork
S = (NS , ES) ∈N α,

ρN ≡
1

Gtotal

∑
w∈W

gw`S(w) ≤ 1

Gtotal

∑
w∈W

gw`S(w) ≡ ρS .

It is the so-called α-ND-median-graph problem (median problem to abbreviate).
The maximum-O/D-distance (center value to abbreviate) for a set of O/D pairs

W in a subnetwork S is denoted by

Fc(S) = max
w∈W

`S(w). (5.8)

Thus, in a potential network N , a subgraph S ∈ N α minimizing Fc( · ) is called
an α-ND-center-graph, center to abbreviate, and denoted by Sc. That is, given a
potential network N = (N,E) and the bound α ∈ (0, 1), the problem of minimizing
Fc( · ) consists of finding a subnetwork Sc = (NSc , ESc) ∈ N α, such that for every
subnetwork S = (NS , ES) ∈N α,

σN ≡ max
w∈W

`S(w) ≤ max
w∈W

`S(w) ≡ σS .
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It is the so-called α-ND-center-graph problem (center problem to abbreviate).
Related to the center value, it can be considered the weighted-center value de-

noted by

FGc (S) =
max
w∈W

{gw`S(w)}

gw0
, w0 = arg max

w∈W
{gw`S(w)} .

Thus, in the same way, we use the concept and the problem of α-ND-weighted-
center-graph, weighted-center problem to abbreviate, whose optimal solution network
is denoted by SGc .

Definition 3. Given two subnetworks S1,S2 ⊆ N , it is said that:

• S1 is more efficient than S2 iff Fm(S1) < Fm(S2).

• S1 is less eccentric than S2 iff Fc(S1) < Fc(S2).

• S1 is less weighted-eccentric than S2 iff FGc (S1) < FGc (S2).

Given that the center minimizes the maximum travel time, it often leads to ineffi-
cient solutions. This inefficiency is produced by not considering feasible subgraphs in
which travel time decreases for some users maintaining the center objective function
value. We depict this situation in Example 1.

Example 1. Given the bound αCtotal = 90 and the following potential network,
we want to minimize the median and the center values.

Origin Destination uw gw

1 6 92 200
2 5 92 50
4 1 92 50

Table 5.1: Data in Example 1.
We consider αCtotal = 90.

v1

v2

v3

v4

v5

v65

10

10

5

5

10

(20, 30)

(10, 20)

(10, 10)

(20, 30)

(40, 60)

(20, 10)

(10, 30)

(20, 30)

(30, 70)

Figure 5.1: Network in Example 1.

We observe that with the given bound on the total cost it is not possible to
serve the three O/D pairs at the same time. Hence, the objective value for the
center is Fc(S) = 92. Note that the empty subgraph, S0 = ∅, has a center value
Fc(S0) = 92 and it is thus an optimal solution for the center problem. In other words,
not building anything can be optimal for the center problem. For this solution, the
median objective has also a value of Fm(S0) = 92. Now let us consider the following
two solutions:
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• S1 composed of node setN1 = {v1, v2, v4, v6} and edge setE1 = {(v1, v2), (v2, v4),

(v4, v6)} such that O/D pairs (1, 6) and (4, 1) are served; and

• S2 with N2 = {v1, v2, v4, v5} and E2 = {(v1, v2), (v2, v4), (v4, v5)} such that
O/D pairs (2, 5) and (4, 1) are served.

Observe that both solutions have a center value of Fc(S1) = Fc(S2) = 92, but
the median objective value changes. Indeed, these values are Fm(S1) u 85.33 and
Fm(S2) u 81.33 respectively.

Example 1 shows the necessity of having a finer conceptualization to consider
solutions that are not dominated.

Since the median approach is based on averaging, it often provides solutions in
which the O/D pairs with too long shortest path and low-demand are discriminated
against in terms of accessibility to public networks, as compared with those that
have its nodes closer and with high-demand. On the other hand, generating the
center could lead to a substantial loss in efficiency. These observations are shown in
Example 2.

Example 2 Consider the network and its data summarized in Table 5.2 and Figure
5.2. In this example minimizing the median function does not serve the most distant
pairs or those which have a low demand. Besides, minimizing the center function
entails an increase in the median value.

Origin Destination uw gw

1 6 92 5
2 3 40 65
4 1 50 50

Table 5.2: Data in Example 2.
We consider αCtotal = 90.
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(20, 30)

(10, 30)

(30, 70)

(30, 20)

Figure 5.2: Network in Example 2.

We observe that the optimal median and the center, being αCtotal = 90, are the
ones depicted below.

v1

v2

v3

v4

Sm

v1

v3 v5

v6

Sc
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Median and center values for each subnetwork are:

Fm(Sm) =
1

120
(5 · 92 + 65 · 20 + 50 · 45) =

4010

120
u 38.19, Fc(Sm) = 92,

Fm(Sc) =
1

120
(5 · 80 + 65 · 40 + 50 · 50) =

5500

120
u 52.38, Fc(Sc) = 80.

Even if we consider the weighted case of the center function, the loss in efficiency
could be preserved, as in this particular situation. That is, the optimal weighted-
center is just Sc with FGc (Sc) = 40.

Example 2 shows that there is a need to capture the trade-off between both
solution concepts.

While the median tends to favor users concentrated in the center of the network
to the detriment of users in extreme zones, the center favors users in extreme zones
regardless of the efficiency of the design. In order to get solutions that balance these
two criteria, researchers in Location Science have studied since the 70s the concept of
λ-cent-dian, that is, a convex combination of the center and median objectives (see
Halpern (1976)). Besides, authors in Hansen et al. (1991), introduce the generalized-
center in the context of Facility Location to reduce as many as possible discrepancies
in accessibility among users. Below, the extended concepts α-ND-generalized-center-
graph and (α, λ)-ND-cent-dian-graph are presented.

On the one hand, the generalized-maximum-O/D-distance (generalized-center
value to abbreviate) for a set of O/D pairs W in a subnetwork S is denoted by

Fgc(S) = Fc(S)− Fm(S). (5.9)

Given a potential network N , a subgraph S ∈ N α minimizing Fgc( · ) is called an
α-ND-generalized-center-graph, generalized-center to abbreviate. If we use function
FGc (S) instead of function Fc(S), an α-ND-generalized-weighted-center-graph is a
subgraph S ∈N α minimizing

FGgc(S) = |FGc (S)− Fm(S)|. (5.10)

In the context of efficiency, the optimal solution to the generalized-center problem
could be identified as an unreasonable network design with respect to the distance
of the paths (see Example 3 of Subsection 5.2.1). To avoid such solution networks,
the optimal solution is restricted to the set of solution networks so-called as Pareto-
optimal with respect to the distances.

Definition 4. A subnetwork S ∈ N α is Pareto-optimal with respect to the distance
of the shortest paths if there does not exist another subnetwork S ′ ∈N α for which
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min{dS′(w), uw} ≤ min{dS(w), uw} for all w ∈W,

where at least one of the inequalities is strictly satisfied.

The set of subnetworks S ∈ N α that are Pareto-optimal with respect to the
distance of the shortest paths is named as POα. Thus, the generalized-center of a
given network N is redefined as an optimal solution to the problem

min{Fc(S)− Fm(S) : S ∈ POα}. (5.11)

However, Example 4 of the next subsection shows that this reduction in the set
of solution networks is not enough to get the most efficient network.

On the other hand, a linear combination of Fm( · ) and Fc( · ) can be taken into
account:

Hλ(S) = λFc(S) + (1− λ)Fm(S) with λ ≥ 0, (5.12)

named as the λ-cent-dian-distance in S. A subgraph S ∈ N α minimizing Hλ( · )
is called an (α, λ)-ND-cent-dian-graph, λ-cent-dian to abbreviate. In this way, for
λ ∈ [0, 1], a convex combination is minimized. Depending on the weight assigned
to each part of the objective function, more importance will be given to minimizing
the length of the worst path or to minimizing the average length of the paths. Par-
ticularly, if λ = 0 the λ-cent-dian is a median network and if λ = 1 it is a center
network.

For λ ∈ (0, 1), the λ-cent-dian solution concept may be viewed as the weighting
approach to the bicriteria center/median model

min{[Fc(S), Fm(S)] : S ∈N α} (5.13)

where both, Fc( · ) and Fm( · ), have to be minimized.

Definition 5. Given a network N , a subnetwork S ∈ N α is a Pareto-optimal net-
work with respect to the bicriteria center/median problem if there does not exist an-
other subnetwork S ′ ∈N α, for which

Fc(S ′) ≤ Fc(S) and Fm(S ′) ≤ Fm(S),

where at least one of the inequalities is strictly satisfied.

The set of subnetworks S ⊆ N α Pareto-optimal with respect to the bicriteria
center/median problem is named as POα

2 . Proposition 5 relates POα and POα
2 .

For λ > 1, the solution concept heavily depends on the minimization of the
difference Fc(S)−Fm(S), since Hλ(S) can be written as Hλ(S) = Fm(S)+λ (Fc(S)−
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Fm(S)) (see Hansen et al. (1991)).

Proposition 5. Given a bound α and a potential network N , POα
2 ⊆ POα.

Proof. Let us prove by Reductio ad absurdum. Let S ∈ POα
2 and S /∈ POα. Then,

• @S ′ ∈ POα
2 such that Fc(S ′) ≤ Fc(S) and Fm(S ′) ≤ Fm(S), where at least

one of the inequalities is satisfied strictly, and

• ∃w′ ∈ W and ∃S ′′ ∈ N α such that `S′′(w′) < `S(w′) and `S′′(w) ≤ `S(w),
w ∈W \ {w′}.

Thus, by construction of functions Fc( · ) and Fm( · ), Fc(S ′′) ≤ Fc(S) and
Fm(S ′′) ≤ Fm(S). That is, S /∈ POα

2 , which is a contradiction.

5.2.1 The generalized-center problem

In this subsection, we analyze the solution concepts of generalized-center and λ-cent-
dian associated with λ > 1, given a general network. In order to avoid “unreasonable”
network designs when minimizing these functions (see Example 3), the solution net-
work is restricted to the set POα. Anyway, both these solution concepts depend on
the minimization of the difference Fc( · )−Fm( · ) which, in general, does not comply
with the bicriteria minimization model (5.13), as shown in Example 4.

Example 3 Let us consider the following network and its associated data described
in Table 5.3 and Figure 5.3. It shows that minimizing the generalized-center function
carries out unreasonable solutions with respect to the notion of efficiency if the
optimal solution is not restricted to the set POα.

Origin Destination uw gw

1 2 92 50
2 6 100 5
4 1 92 50

Table 5.3: Data in Example 3.
We consider αCtotal = 90.

v1

v2

v3

v4

v5

v65

10

10

5

5

10

(20, 30)

(10, 20)

(10, 20)

(20, 10)

(70, 60)

(5, 10)

(10, 30)

(20, 10)

(10, 30)

Figure 5.3: Network in Example 3.

The generalized-center, Sgc, in this case is:

v2

v3

v4

v5

v6
Fc(Sgc)−Fm(Sgc) = 92− 1

105(50 ·92+5 ·70+50 ·92) u
92− 90.95.
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Nevertheless, there exists a network, S1, more efficient (in terms of the distances
of the shortest paths) than Sgc:

v1

v2 v4

v6

Fc(S1)−Fm(S1) = 40− 1
105(50 · 30 + 5 · 20 + 50 · 40) u

40− 34.28

In fact, S1 is simultaneously the center and the median solution network. Even if
we minimize FGgc( · ), instead of Fgc( · ), the optimal solution does not change, which
is Sgc. Network S1 is Pareto-optimal with respect to the distances; but Sgc is not.
Even more, each of the O/D pairs has its shortest path shorter in S1 than in Sgc.
Locating Sgc can worsen the center and median values.

However, even if the problem of the generalized-center is restricted to the set
POα, very inefficient solution graphs can be obtained as optimal solutions, as we
show in Example 4. Having the minimization of the difference Fc( · ) − Fm( · ) and
several possible solution networks with the same value Fc( · ), the one with the worst
value of Fm( · ) will be selected among them.

Example 4 Given the potential network N summarized in Table 5.4 and Figure
5.4, in this example we show a situation in which minimizing the generalized-center
function over the set POα results in a not very efficient solution.

Origin Destination uw gw

1 2 35 50
2 4 35 30
3 1 35 30
4 3 35 20

Table 5.4: Data in Example 4.
We consider αCtotal = 50.

v1

v3

v2

v4

5

5

5

5
(10, 10)

(10, 10)

(10, 10)

(10, 10)

Figure 5.4: Network in Example 4.

The set POα consists of:

v1

v3

v2

v4

S1
Fc(S1)−Fm(S1) = 30− 1

130(50·10+30·30+30·10+20·10) =

30− 1900
130 u 15.38
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v1

v3

v2

v4

S2
Fc(S2)−Fm(S2) = 30− 1

130(50·30+30·10+30·10+20·10) =

30− 2300
130 u 12.30

v1

v3

v2

v4

S3
Fc(S3)−Fm(S3) = 30− 1

130(50·10+30·10+30·30+20·10) =

30− 1900
130 u 15.38

v1

v3

v2

v4

S4
Fc(S4)−Fm(S4) = 30− 1

130(50·10+30·10+30·10+20·30) =

30− 1430
130 u 19

These four solution networks are in POα and all of them are centers. Network
S2 is the generalized-center, but S4 is the most efficient network. One may think the
presented flaws in the problem are resolved if we consider the weighted function, but
it is not so. The generalized-weighted-center is also S2:

∣∣FGc (S1)− Fm(S1)
∣∣ =

∣∣∣∣30− 1

130
(50 · 10 + 30 · 30 + 30 · 10 + 20 · 10)

∣∣∣∣ =

∣∣∣∣30− 1900

130

∣∣∣∣ = 15.38,

∣∣FGc (S2)− Fm(S2)
∣∣ =

∣∣∣∣30− 1

130
(50 · 30 + 30 · 10 + 30 · 10 + 20 · 10)

∣∣∣∣ =

∣∣∣∣30− 2300

130

∣∣∣∣ u 12.30,

∣∣FGc (S3)− Fm(S3)
∣∣ =

∣∣∣∣30− 1

130
(50 · 10 + 30 · 10 + 30 · 30 + 20 · 10)

∣∣∣∣ =

∣∣∣∣30− 1900

130

∣∣∣∣ = 15.38,

∣∣FGc (S4)− Fm(S4)
∣∣ =

∣∣∣∣30− 1

130
(50 · 10 + 30 · 10 + 30 · 10 + 20 · 30)

∣∣∣∣ =

∣∣∣∣30− 1430

130

∣∣∣∣ u 19.

Regarding the efficiency, let us define the α-ND-restricted-generalized-center-
graph (restricted-generalized-center to abbreviate) as an optimal solution to the prob-
lem

min{Fc(S)− Fm(S) : S ∈ POα
2 }. (5.14)

Similarly to the case of the restricted-generalized-center, we introduce the (α, λ)-
ND-restricted-cent-dian-graph (λ-restricted-cent-dian to abbreviate) defined as an
optimal solution to the problem

min{Hλ(S) : S ∈ POα
2 }. (5.15)

For λ ∈ (0, 1), the corresponding λ-cent-dian always belongs to the set POα
2 .

This can be easily proved by Reductio ad absurdum. Thus, in this case, the
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λ-restricted-cent-dian is simply a λ-cent-dian.
The above is not true for λ ≥ 1, specifically, for the limiting case λ → ∞. As

shown in Example 4, the generalized-center does not belong to the set POα
2 in

general. Besides, we will show that for all λ ≥ 1, including the limiting case of
the restricted-generalized-center, the corresponding λ-restricted-cent-dian is always
a center. Note that, given a bound α, the center of a general network N may be
non-unique and, in such case, not all centers belong to POα

2 . This issue is shown
in Example 4. We know that POα = {S1,S2,S3,S4}, but S1,S2,S3 /∈ POα

2 . To
belong to POα

2 , the center must be unique or it must be the center with the best
value of Fm( · ). Thus, the center belonging to POα

2 is an optimal solution to the
following lexicographic (two-level) problem

lexmin{[Fc(S), Fm(S)] : S ∈N α}. (5.16)

The lexicographic minimization in (5.16) means that first, we minimize Fc( · ) on
the set N α, and then we minimize Fm( · ) on the optimal subnetworks set of function
Fc( · ). The second minimization is only carried out when the optimal solution of
Fc( · ) is not unique. We call the optimal solution of (5.16) a lexicographic cent-
dian. Note that the lexicographic cent-dian is a center and the unique center is the
lexicographic cent-dian.

Proposition 6. Given a bound α, on any network N , the restricted-generalized-
center, as well as any λ-restricted-cent-dian for λ ≥ 1, is a lexicographic cent-dian.
Conversely, any lexicographic cent-dian is a restricted-generalized-center, as well as
a λ-restricted-cent-dian for any λ ≥ 1.

Proof. Let S be the lexicographic cent-dian. That is, Fc(S) ≤ Fc(S ′) for any
S ′ ∈N α. Besides, if it turns out that ∃S ′ ∈ N α such that Fc(S) = Fc(S ′),
then Fm(S) ≤ Fm(S ′). Firstly, observe that S ∈ POα

2 . To continue, we consider
S ′ ∈ N α a solution network of POα

2 . If S ′ is not a lexicographic cent-dian, then
Fc(S) < Fc(S ′) or, if Fc(S) = Fc(S ′) then Fm(S) < Fm(S ′). This second situation
is not possible since S ′ ∈ POα

2 . Hence, being in POα
2 , S ′ has to satisfy inequalities

Fc(S) < Fc(S ′) and Fm(S) > Fm(S ′).

Thus, Fc(S ′)−Fm(S ′) > Fc(S)−Fm(S), which means that the restricted-generalized-
center is a lexicographic cent-dian. Moreover, for λ ≥ 1, this property holds:

Hλ(S ′) = Fc(S ′)+(λ−1)(Fc(S ′)−Fm(S ′)) > Fc(S)+(λ−1)(Fc(S)−Fm(S)) = Hλ(S),

which proves that the corresponding λ-restricted-cent-dian is a lexicographic cent-
dian. To finish the proof, since all lexicographic cent-dians have the same center
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value and also the same median value, they are all restricted-generalized-centers, as
well as λ-restricted-cent-dians with λ > 1.

Proposition 6 provides us with a very simple characteristic of the λ-restricted-
cent-dians for λ ≥ 1. From this, we conclude that the λ-restricted-cent-dians for
λ ≥ 1 are simply the centers with the best median value. On the other hand, it
means that the solution concept of the restricted-generalized-center does not provide
us with any compromise between the median value and center value.

5.2.2 Compromise on λ-cent-dians

In order to provide some compromise between spatial efficiency (median value) and
spatial equity (center value) the extended concept λ-cent-dian is introduced as the
solution network of minimization of (5.12), being λ ∈ (0, 1). In the case of considering
a tree network, such compromise is given only for two networks.

In the following example we observe that in a general network there are subnet-
works belonging to POα

2 different from Sc and Sm. Besides, this example shows
us that it could happen that for some of these subnetworks there does not exist
0 ≤ λ ≤ 1 such that S is the corresponding λ-cent-dian.

Example 5 Given the potential network N and its associated data of Table 5.5
and Figure 5.5, this example shows that minimizing Hλ( · ) does not give us any
compromise between Fc( · ) and Fm( · ).

Origin Destination uw gw

1 2 70 90
3 4 55 20
5 6 92 5

Table 5.5: Data in Example 5.
We consider αCtotal = 70.

v1

v2

v3

v4

v5

v65

10

10

5

5

10

(55, 10)

(5, 20)

(5, 40)

(50, 10)

(5, 35)

(50, 10)

(5, 40)

(5, 40)

(55, 20)

Figure 5.5: Network in Example 5.

The median Sm is

v1

v2 Fm(Sm) = 1
115(90 · 10 + 20 · 55 + 5 · 92) = 2460

115 u 21.39

Fc(Sm) = 92

The network has a unique center Sc with the subnetwork
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v5

v6 Fm(Sc) = 1
115(90 · 70 + 20 · 55 + 5 · 20) = 6600

115 u 65.21

Fc(Sc) = 70

There is another subnetwork belonging to POα
2 . The following network S1 has

a better value for the average of the shortest paths than Sc and its center value is
lower than that of Sm.

v1

v2

v3

v4

v5

v6
Fm(S1) = 1

115(90 · 60 + 20 · 35 + 5 · 80) = 6425
115 u 56.52

Fc(S1) = 80

Therefore, for any 0 ≤ λ ≤ 1, Hλ(Sm) < Hλ(S1) or Hλ(Sc) < Hλ(S1). That is,
even though S1 ∈ POα

2 , it cannot be a λ-cent-dian for any 0 ≤ λ ≤ 1.
Even if we use the weighted function FGc ( · ) the flaw remains. We obtain that

the weighted-center coincides with Sm, since FGc (Sm) = 55, FGc (Sc) = 70 and
FGc (S1) = 60. The same solution is obtained whatever the value of the parame-
ter is in the interval [0, 1]. It does not result in any compromise between the value
of the parameter λ and the functions used. That is, the solution does not change
according to the different values that the parameter λ takes.

The situation exposed in Example 5 is not possible if we are considering a tree
network, as proven in Proposition 7. Without loss of generality, in Proposition 7 we
mean by Sc (resp. Sm) the unique center (resp. median) or the center (resp. median)
with the best value of Fm( · ) (resp. Fc( · )).

Proposition 7. Given a bound α, on a tree network T , the set POα
2 is composed

only by Sm and Sc.

Proof. Let w0 ∈W be the O/D pair which satisfies that w0 = arg max
w∈W
{min{dT (w), uw}}.

We will assume that dT (w0) < uw and (Ñw0 , Ẽw0) ∈ T α. Let us prove by Reductio
ad absurdum. Thus, let us suppose that there exists S ∈ POα

2 such that S 6= Sc
and S 6= Sm. Therefore, Fm(Sm) < Fm(S) < Fm(Sc) and Fc(Sc) < Fc(S) < Fc(Sm),
since if Fm(S) = Fm(Sc) or Fc(S) = Fc(Sm) then S /∈ POα

2 . With regard to
Fc(Sc) < Fc(S) < Fc(Sm), it means that

min{dSc(w0), uw0} < min{dS(w0), uw0} < min{dSm(w0), uw0}.

In order to satisfy the previous inequality, we have to set

min{dSc(w0), uw0} = dSc(w0) and min{dS(w0), uw0} = dS(w0).
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Then,
dT (w0) ≤ dSc(w0) < dS(w0) < min{dSm(w0), uw0},

which is not possible since in a tree network the path for each O/D pair w ∈ W

is unique, since there are no cycles. Note that if dT (w0) ≥ uw, then Fc(Sc) =

Fc(S) = Fc(Sm) = uw0 . Besides, since Fm(Sm) < Fm(S) and Fm(Sm) < Fm(Sc),
then S,Sc /∈ POα

2 .

As in Ogryczak (1997), with the purpose of identifying some compromise λ-
cent-dians on a general network, we need a solution concept different from the one
discussed so far, which is an extension of the Halpern’s λ-cent-dian concept in Lo-
cation Theory (see Halpern (1978)). As explained for the case of a non-convex
problem in Location Theory (see Steuer (1986)), the set of Pareto-optimality with
respect to the bicriteria center/median objective can be completely parameterized
with minimization of the weighted Chebychev norm. In the Network Design area,
the Pareto-optimality set POα

2 can be completely parameterized with minimization
of the weighted function

H̄λ(S) = max{λFc(S), (1− λ)Fm(S)}. (5.17)

In the case of a non-unique optimal solution, this optimization has to be subject
to some refinement. Thus, we call a subgraph S ∈N α a maximum λ-cent-dian if it
is an optimal solution to the following lexicographic (two-level) problem

lexmin{[H̄λ(S), Hλ(S)] : S ∈N α}. (5.18)

The lexicographic minimization in (5.18) means that first we minimize H̄λ( · ) on
set N α, and then we minimize Hλ( · ) on the optimal subnetworks set of function
H̄λ( · ). Thus, function Hλ( · ), defined as the linear convex combination (5.12), is
minimized only for regulation purposes, in the case of a nonunique minimum solution
for the main function H̄λ( · ). If the optimal solution is not unique, this regularization
is necessary to guarantee that the maximum λ-cent-dian always belongs to POα

2 .
Besides, each subgraph S ∈ POα

2 can be found as a maximum λ-cent-dian with
0 ≤ λ ≤ 1. The proofs of these last two statements are detailed below in Propositions
8 and 9. By construction of the functions used, they are similar to the ones exposed
for Propositions 3 and 4 in Ogryczak (1997) for Location Theory.

Proposition 8. On any network N , for each λ ∈ (0, 1), the corresponding maximum
λ-cent-dian belongs to POα

2 .

Proof. Let S ∈ N α be a maximum λ-cent-dian for some λ ∈ (0, 1). Let us prove
by Reductio ad absurdum. That is, suppose that S /∈ POα

2 . This means that there
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exists S ′ ∈N α such that

Fc(S ′) ≤ Fc(S) and Fm(S ′) ≤ Fm(S),

where at least one of the inequalities is satisfied strictly. Hence, since λ ∈ (0, 1),

H̄λ(S ′) ≤ H̄λ(S) and Hλ(S ′) ≤ Hλ(S),

which contradicts the fact that S is a maximum λ-cent-dian. Thus, a maximum
λ-cent-dian solution network always belongs to POα

2 .

Proposition 9. On any network N , for each S ∈ POα
2 there exists λ ∈ (0, 1) such

that S is the corresponding maximum λ-cent-dian.

Proof. Let us consider S ∈ POα
2 and λ = Fm(S)/(Fc(S) + Fm(S)). Observe that

λ ∈ (0, 1) and 1− λ = Fc(S)/(Fc(S) + Fm(S)). Then,

H̄λ(S) = Fc(S)Fm(S)/(Fc(S) + Fm(S)) = λFc(S) = (1− λ)Fm(S). (5.19)

Let us prove it by Reductio ad absurdum. Let us suppose that S is not the corres-
ponding maximum λ-cent-dian. This means that there exists S ′ ∈N α such that

H̄λ(S ′) ≤ H̄λ(S) and Hλ(S ′) ≤ Hλ(S),

where at least one of the inequalities is satisfied strictly. That is,

λFc(S ′) ≤ H̄λ(S) and (1− λ)Fm(S ′) ≤ H̄λ(S), (5.20)

where at least one of the inequalities has to be satisfied strictly. By equation (5.19),
it would mean that S /∈ POα

2 . Thus, S has to be the corresponding maximum
λ-cent-dian.

Regarding Example 5, we have shown that the subnetwork S1 cannot be a λ-
cent-dian for any 0 ≤ λ ≤ 1 since Hλ(Sm) < Hλ(S1) or Hλ(Sc) < Hλ(S1). Note
that H̄λ(S1) = max{80λ, 56.52 (1 − λ)}, H̄λ(Sc) = max{70λ, 65.21 (1 − λ)} and
H̄λ(Sm) = max{92λ, 21.39 (1−λ)}. Hence, H̄λ(S1) < H̄λ(Sc) and H̄λ(S1) < H̄λ(Sm)

for any 0.4467 < λ < 0.4491. In fact, subnetwork S1 is the maximum λ-cent-dian as
long as 0.4467 < λ < 0.4491.

As a conclusion, similar to the λ-cent-dian concept, the maximum λ-cent-dian
generates the solution network depending on the value of λ ∈ (0, 1). As proven in
Propositions 8 and 9, the difference between both concepts is that the maximum
λ-cent-dian allows us to model all rational existing compromises between Fc( · ) and
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Fm( · ). In the following example, we identify the POα
2 set for a given network.

Anyway, we have seen that getting the set POα
2 has a high computational burden.

Example 5 cont Regarding the instance of Example 5 but considering αCtotal =

90 we have generated the whole set of Nα. Each point in Figure 5.6 represents
a feasible solution from Nα. That is, solutions whose construction cost is less or
equal to αCtotal. We have highlighted in red the only three solutions that are not
dominated. They form the POα2 set. Their construction cost is larger than or equal
to the ones that are dominated. They are the corresponding maximum λ-cent-dians
for λ ∈ [0.0001, 0.3805], λ ∈ [0.3806, 0.4354] and λ ∈ [0.4355, 0.9999].

Figure 5.6: Identification of Pareto-optimal solutions for a given network.

Observing the whole set of feasible solutions we identify that solutions labeled 2
and 7 are both center solutions. The difference is that in solution 2 we are requiring
a little percentage of efficiency with constraint (5.21). As this percentage grows,
we will consequently obtain solution points 3, 6, 10 and 4. With respect to median
solutions, point 4 is the most efficient one. Point 10 corresponds to a median solution
when the budget is strictly less than 4. Regarding the generalized-center solution,
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point 7 corresponds to the solution that has the smallest difference between the
values of the center and the median. In this case, the generalized-center corresponds
with the less efficient center. We can require also a percentage of efficiency for the
generalized-center solution. As this percentage grows, we will consequently obtain
solutions points 2, 3, 6, 10 and 4. The rest of the points are solution networks for
the three concepts studied when the budget is strictly less than the available budget.

5.2.3 Adding efficiency to the generalized-center problem. Evalua-
ting some other inequality measures

We have already seen why the solutions of the generalized-center are cataloged as
“weird” concerning the center and median functions. Furthermore, if we restrict the
search of the generalized-center to the POα2 set, it coincides with the least efficient
center network. Anyway, if we want to “improve” the generalized-center solution with
respect to the notion of efficiency, we can consider adding the constraint

Fm(S) ≤ (1 + ∆)Fm(Sm), with ∆ ∈ [0, 1]. (5.21)

If we fix ∆ = 0 we are demanding that the median objective value in S has exactly
the same value as in Sm. Remember that by definition, Fm(Sm) ≤ Fm(S),∀S ∈N α.
If ∆ ∈ (0, 1), we are giving up a percentage of efficiency. That is, the median objective
value in the optimal solution network is allowed to be a certain percentage greater
than that in the median network. Finally, if ∆ = 1, there is no requirement for the
optimal solution related to efficiency.

Until now, to measure the quality of the solutions and to form the Pareto-
optimality set, we have used the two most popular measures in the literature: the
center and the median values. There exist inequality measures, such as the mean
absolute difference, the mean absolute deviation and the Gini coefficient useful to
evaluate the quality of a solution (see Mesa et al. (2003)). Taking them into ac-
count, the generalized-center solution subject to constraint (5.21) is not necessarily
dominated by any λ-cent-dian solution with λ ∈ [0, 1].

We illustrate the impact of adding constraint (5.21) on the quality of the solution
and the consideration of other inequality measures in Section 5.5.2.

5.3 Problem formulations

Problems in this chapter are NP-hard. Extensive Facility Location problems can
be viewed as particular cases of Network Design where only the distance from the
origin ws of each O/D pair to the facility is considered (the distance through the
subnetwork and the distance from the subnetwork to the destination wt are zero).
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In Puerto et al. (2018), it is explained that the search of the λ-cent-dian subtree
on a tree network is NP-hard, considering that tips of the subtree are nodes of the
underlying network, as in our case. Furthermore, in Schmidt and Schöbel (2014),
the authors present a problem, in which, given a network, a set of O/D pairs and a
factor α ∈ [0, 1), the goal is to design a length/budget-constrained subnetwork along
which the travel costs are reduced by α, minimizing the worst case (center objective)
cost of all routing requests. They proved that this problem, which is a similar case
of the λ-cent-dian problem described in this chapter with λ = 1, is NP-hard. Hence,
problems in this work are NP-hard.

In this section, we present mixed-integer linear formulations for the λ-cent-dian
problem defined in the previous section as the minimization of equation (5.12). First,
we present a mixed-integer formulation for the specific case λ ∈ [0, 1]. Then, we cast
the general case as a bilevel problem formulation. This bilevel formulation is useful
and necessary only for λ > 1. In particular, this bilevel formulation takes into account
the case λ → ∞, which corresponds with a valid formulation for the generalized-
center problem (5.11). Using standard linearization techniques we transform the
bilevel formulation into a single-level formulation. Furthermore, the condition to
add efficiency to the generalized-center problem of equation (5.21) is considered in
our proposed formulations. The generalized-center solution concept has not been
discarded since, as explained above and shown in Section 5.5.2, the generalized-
center solution is not dominated by the λ-cent-dian solutions, with λ ∈ [0, 1] if
different measures from the center and median functions are used to measure the
quality. Finally, we also describe a procedure to get the set POα2 based on solving
two linear formulations.

According to the elements defined in Subsection 1.2.1, for both mixed-integer
linear formulations presented in this chapter, almost the same binary variables than
for Covering problems in Chapter 2 are used (see Section 2.2).

• Node selection variables. For each i ∈ N , yi is a binary variable to decide
whether or not node i is built.

• Edge selection variables. For each e ∈ E, xe is a binary variable to decide
whether or not edge e is built.

• Flow variables. For each w ∈W , they are used to model a path from ws to wt

in the network to build, if possible. Variable fwa , a ∈ A takes value 1 if arc a
belongs to such path for w.

• For each w ∈ W , we consider an extra artificial arc r = (ws, wt) and its
corresponding flow variable fwr to model the alternative mode. Variable fwr
takes value 1 if the shortest path from ws to wt in the designed subgraph is
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larger than uw and 0 otherwise. In other words, fwr = 1 represents the binary
decision of the demand taking the alternative mode. This extra flow variable
represents a situation closely linked to that of variable zw used in (MC) and
(PC) formulations.

• Maximum distance path variable. The continuous variable γmax takes the value
of the maximum distance of any O/D pair in the solution network.

5.3.1 Mixed-Integer Linear formulation for λ ∈ [0, 1]

We show a formulation of the λ-cent-dian problem for the case λ ∈ [0, 1], named as
(CD).

(CD) min λγmax + (1− λ)
1

Gtotal

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
(5.22)

s.t.
∑
e∈E

ce xe +
∑
i∈N

bi yi ≤ αCtotal, (5.23)

xe ≤ yi, e ∈ E, i ∈ e, (5.24)

∑
a∈δ+w (i)

fwa −
∑

a∈δ−w (i)

fwa =

1, if i = ws,

0, otherwise,
w ∈W, i ∈ N, (5.25)

fwa + fwâ ≤ xe, w ∈W, a = (i, j) ∈ Aw : e = {i, j}, (5.26)∑
a∈A

da f
w
a + uw fwr ≤ γmax, w ∈W, (5.27)

xe, yi, i ∈ N, e ∈ E, (5.28)

fwa ∈ {0, 1}, w ∈W, a ∈ Aw ∪ {r}, (5.29)

γmax ≥ 0. (5.30)

The objective function (5.22) to be minimized represents a convex combination
between the center and the median objectives. Constraint (5.23) limits the total
construction cost, being α ∈ (0, 1]. If we consider α = 0 the optimal solution
network is to construct nothing, no O/D pair is served. Constraint (5.24) ensures
that if an edge is constructed, then its terminal nodes are constructed as well. For
each pair w, expressions (5.25), (5.26) and (5.27) guarantee demand conservation
and link flow variables fwa with the extra flow variable fwr , the maximum distance
path variable γmax and design variables xe. Constraints (5.26) are named capacity
constraints and they force each edge to be used in at most one direction by each
O/D pair. Constraints (5.27), referenced as maximum distance constraints, put an
upper bound on the length of the path for each pair w = (ws, wt). The form of
the objective function ensures variable fwr to take value 0 only if there exists a path
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between ws and wt with length at most uw in the prospective network. This path is
represented by variables fwa . Then, γmax represents the largest `S(w) within set W .
Finally, constraints (5.28), (5.29) and (5.30) state that variables are binary, except
for variable γmax.

Remark 12. Constraints (5.26) can be replaced by

fwa ≤ xe, w ∈W, a = (i, j) ∈ A : e = {i, j},

but the first one is stronger.

Remark 13. Note that if α = 1, there is not a limit of budget to invest. Then, the
problem is a searching of shortest paths.

For λ ∈ [0, 1), the objective function of the above formulation is composed of two
positive coefficients (λ and (1−λ)) that multiply increasing functions of travel times.
In consequence, at any optimal solution, the demand always chooses the shortest path
without the necessity of enforcing this condition. That is, optimal solution vectors
fw correspond to shortest paths in the solution network. When λ = 1, this property
does not hold, but the optimal solutions of the formulation are indeed centers. That
is, the formulation above is still valid to compute center networks.

For the case λ > 1, the formulation (CD) is not valid anymore. Given that the
term (1− λ) is negative, each pair w will take the longest path between ws to wt in
the designed network. We illustrate this situation in Example 6.

Example 6 Let us consider same potential network and its associated data from
Example 3. Then, for αCtotal = 100 and λ = 50 ·104, one of the optimal λ-cent-dian
solution networks for formulation (CD) is

v1

v2

v3

v4

v5

v6

with the flow vector fwr = 1, w ∈ {(1, 2), (4, 1)} and fwr = 0, w ∈ {(2, 6)}. The
path selected for w = (2, 6) is [2, 1, 3, 5, 6] but the path [2, 3, 5, 6] is shorter than the
selected one. Besides, this solution does not assign the pairs (1, 2) and (4, 1) to the
existing paths in the network although they are shorter than the utilities u(1,2) = 92

and u(4,1) = 92.

5.3.2 Bilevel formulation for λ > 1. General problem formulation

We present the following bilevel formulation to impose that each w ∈ W takes the
shortest path in the solution network for any value of λ ≥ 0. We call it the bilevel
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λ-cent-dian formulation which is denoted as (BCD).

(BCD) minλγmax + (1− λ)
1

Gtotal

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
(5.31)

s.t.
∑
e∈E

ce xe +
∑
i∈N

bi yi ≤ αCtotal, (5.32)

xe ≤ yi, e ∈ E, i ∈ e, (5.33)∑
a∈A

da f
w
a + uw fwr ≤ γmax, w ∈W, (5.34)

fw ∈ (F )w, w ∈W, (5.35)

xe, yi, f
w
a ∈ {0, 1}, i ∈ N, e ∈ E, a ∈ A ∪ {r}, w ∈W, (5.36)

γmax ≥ 0, (5.37)

where

(F )w = arg min
h


(∑
a∈Aw

da h
w
a + uw hwr

)
: s.t.


const.(5.25)− (5.26),

hwa ∈ {0, 1},

a ∈ A ∪ {r}


 . (5.38)

The bilevel formulation (BCD) consists of an upper-level task that minimizes the
λ-cent-dian function, which is composed of travel times of set W , and a lower-level
task per each O/D pair w ∈ W , which is a search of the shortest path between ws

and wt in the designed network. These lower-level problems are stated in equation
(5.38), named (F )w.

We reformulate the bilevel problem (BCD) as a single-level problem by imposing
the optimality conditions of each problem (F )w. To do so, we consider the dual of
each problem (F )w, denoted by (DF )w.

(DF )w max
φ,σ,υ

φws −
∑
e∈E

xe σe (5.39)

s.t. φi − φj − σe ≤ da, a = (i, j) ∈ A : e = {i, j}, (5.40)

φws ≤ u, (5.41)

σe ≥ 0, e ∈ E. (5.42)

As it is clear from the context, we omit the index w. Variables φi, i ∈ N , are the
dual variables related to the flow constraints (5.25) and σe, e ∈ E, are the dual
variables corresponding to the capacity constraints (5.26). Given that the set of flow
constraints contains one linear dependent constraint, we set φwt = 0.

By strong duality, a feasible vector fw for (F )w is optimal if and only if there
exist feasible vectors φ and σ for (DF )w such that:
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∑
a∈A

da fa + u fr = φws −
∑
e∈E

xe σe.

Then, (BCD) can be cast as a single-level non-linear optimization problem

(BCD) minλγmax + (1− λ)
1

G

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
(5.43)

s.t.
∑
e∈E

ce xe +
∑
i∈N

bi yi ≤ αCtotal, (5.44)

xe ≤ yi, e ∈ E, i ∈ e, (5.45)∑
a∈A

da f
w
a + uw fwr ≤ γmax, w ∈W, (5.46)

∑
a∈δ+w (i)

fwa −
∑

a∈δ−w (i)

fwa =

1, if i = ws,

0, if i /∈ {ws, wt},
w ∈W, i ∈ N, (5.47)

fwa + fwâ ≤ xe, w ∈W, e = {i, j} ∈ Ew : a = (i, j), (5.48)

φwi − φwj − σwe ≤ da, w ∈W, a = (i, j) ∈ Aw : e = {i, j}, (5.49)

φwws ≤ uw, w ∈W, (5.50)∑
a∈Aw

da f
w
a + uw fwr = φwws −

∑
e∈Ew

xe σ
w
e , w ∈W, (5.51)

xe, yi, f
w
a ∈ {0, 1}, i ∈ N, e ∈ E, a ∈ A ∪ {r}, w ∈W, (5.52)

σwe ≥ 0, e ∈ E, w ∈W, (5.53)

γmax ≥ 0. (5.54)

To obtain a linear model we get rid of the products of variables present in (5.51).
We introduce the set of variables ξwe , representing the product xe σwe and we linearize
them by using the following McCormick inequalities (see McCormick (1976)):

ξe ≤ xeΣe, (5.55)

ξe ≤ σe, (5.56)

ξe ≥ σe − Σe(1− xe), (5.57)

ξe ≥ 0. (5.58)

where Σe is an upper bound of σe.
In the following, we consider the assumption that for each w ∈W , dN (w) ≤ uw.

This is not a restrictive assumption since a pair not satisfying this condition will
always prefer the private mode and can be eliminated from the analysis.

Proposition 10. Given a potential network N (N,E), for every O/D pair w ∈ W
and every edge e ∈ E, Σe = uw − dN (w) is a valid bound for variable σwe in (BCD).
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Proof. For each w ∈W , rewriting (5.51), we have that

∑
e∈Ew

xe σ
w
e = φwws −

(∑
a∈Aw

da f
w
a + uw fwr

)
.

Using (5.50) and that
∑
a∈Aw

da f
w
a + uw fwr ≥ dN (w), then

∑
e∈Ew

xe σ
w
e ≤ uw − dN (w).

Thus, we can conclude that σwe ≤ uw − dN (w).

Proposition 11. The bound given in Proposition 10 for each variable σwe , w ∈ W ,
e ∈ E, of (BCD) formulation is the best one.

Proof. Let us fix a pair w ∈W and consider the particular situation for which there
exists e = {ws, wt} ∈ Ew ⊆ E and dN (w) = d(ws,wt). Let us suppose that there exists
a better bound for σw{ws,wt} than < uw−dN (w). That is, σw{ws,wt} ≤ u

w−dN (w)− ε.
By (5.49), φwws ≤ da + σw{ws,wt} ≤ u

w − ε. Then, according to (5.51),

φwws =
∑
a∈Aw

da f
w
a + uw fwr +

∑
e∈Ew

xe σ
w
e ≤ uw − ε. (5.59)

In order to satisfy the previous inequality, fwr has to be set to 0, which forces a
solution network to have a path for w (the corresponding flow variables take value
equal to 1). This situation can result in an infeasible solution by (5.38) if the length
of the assigned path is larger than its uw or even there is no path.
Let us show it with a small example. Let N be the following potential network.

Origin Destination uw gw

1 2 24 181
1 4 34 168
2 4 20 43
3 2 32 121

v1

v3

v2

v4

10

8

8

7
(12, 12)

(14, 14)
(17, 17)

(10, 10)

(6, 6)

Being λ = 20 and αCtotal = 63, the optimal solution for (Bilevel-CD) is

v1

v3

v2

v4
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which means that x{1,2} = 0. By Proposition 11, it is set f (1,2)
r = 0, which forces to

assign w to the solution network. This solution network contains a path for w but
it is larger than its uw, which results in an infeasibility by (5.38) for not taking the
optimal mode.

Finally, as we have already explained, the generalized-center is a very inefficient
solution and does not have to be a center network. In Section 5.2.3, we proposed a
way to add efficiency to the generalized-center solution. That is, for λ > 1, we add
to the proposed formulation (BCD) the constraint

1

Gtotal

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
≤ (1 + ∆)Fm(Sm), (5.60)

being Fm(Sm) the median objective value for the median network. That is, the
objective value for (CD) with λ = 0.

5.3.3 Problem formulation to get the Pareto-optimal set

Subsection 5.2.2 proves that the set POα2 can be completely parametrized as a func-
tion of λ ∈ (0, 1) with minimization of the weighted function H̄λ( · ). In the case
of a non-unique optimal solution, we select the one that has minimum Hλ( · ) value.
That is, firstly, to minimize H̄λ( · ) we solve the problem

min µ (5.61)

s.t. µ ≥ λFc(S), (5.62)

µ ≥ (1− λ)Fm(S), (5.63)

S ∈ Nα, (5.64)

µ ≥ 0. (5.65)

Then, being v∗ the objective value of the problem formulation (5.61)-(5.65), the
following second problem is solved for regulation purposes:

min λFc(S) + (1− λ)Fm(S) (5.66)

s.t. λFc(S) ≤ v∗, (5.67)

(1− λ)Fm(S) ≤ v∗, (5.68)

S ∈ Nα. (5.69)

In terms of sets N , E and W , the previous formulations are equivalent to the fol-
lowing ones.
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(MCD-1) min µ (5.70)

s.t. µ ≥ λ

(∑
a∈Aw

da f
w
a + uw fwr

)
, w ∈W, (5.71)

µ ≥ (1− λ)
1

Gtotal

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
, (5.72)

µ ≥ 0, (5.73)

constraints (5.23), (5.24), (5.25), (5.26), (5.28). (5.74)

(MCD-2) min λ

( ∑
a∈Aw

da f
w
a + uw fwr

)
+ (1− λ) 1

Gtotal

∑
w∈W

gw
( ∑
a∈Aw

da f
w
a + uwfwr

)
(5.75)

s.t. 0 ≤ v∗ − λ

(∑
a∈Aw

da f
w
a + uw fwr

)
, w ∈W, (5.76)

0 ≤ v∗ − (1− λ)
1

Gtotal

∑
w∈W

gw

(∑
a∈Aw

da f
w
a + uw fwr

)
, (5.77)

µ ≥ 0, (5.78)

constraints (5.23), (5.24), (5.25), (5.26), (5.28). (5.79)

5.4 Algorithmic discussion for λ ∈ [0, 1]

Due to the NP-hardness of the λ-cent-dian problem, decomposition methods and
metaheuristic approaches are developed and tested. Firstly, for λ ∈ [0, 1], we apply
the same Benders decomposition approach than in Chapter 2 for covering problems,
Subsection 2.3.3. It is based on the ideas of Conforti and Wolsey (2019) to generate
facet-defining Benders cuts. Secondly, we present a GRASP algorithm, using the
same ideas like the one designed for (MC) in García-Archilla et al. (2013). In
Section 4.2, the GRASP procedure is detailed.

A preprocessing similar to that in Chapters 2 and 4 is suitable and fits well in
this context, as justified below.

5.4.1 Preprocessing methods

A preprocessing similar to that for covering problems is appropriate in this context.
Formulations (CD) and (BCD) do not have a set of mode choice constraints as (MC)
and (PC), but due to the nature of their objective functions an analogous situation
happens: for each w, the minimum value of {dS(w), uw} will be selected, being S
the subnetwork designed from the potential network N . Then, the first part consists
in building for each pair w ∈W a subgraph Nw composed solely of those nodes and
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edges that belong to any path from ws to wt shorter than or equal to uw. Next,
on the second part, we identify the set of O/D pairs which are too expensive to be
served. That means, those pairs which do not have a path from ws to wt in Nw

satisfying: i) its building cost is less than αCtotal; and ii) its length is less than uw,
are identified. This set is referenced as W̄ and its decision about the mode choice is
fixed, fwr = 1.

5.4.2 Benders decomposition for (CD) with λ ∈ [0, 1]

Formulation (CD) involves a huge number of flow variables when the set of O/D
pairs is large. Firstly, to circumvent this drawback with the procedure of Benders
decomposition in an efficient way, we present some properties. Then, we describe
the procedure to generate Benders cuts for (CD) based on the ideas exposed in
Conforti and Wolsey (2019), as was done for (MC) and (PC) in Chapter 2. This
implementation is used as a subroutine in the branch-and-Benders-cut scheme.

Proposition 12 shows that we can relax the integrality constraints on the flow
variables fwa and fwr . Let (CD_R) denote the formulation (CD) in which constraints
fwa ∈ {0, 1}, w ∈W,a ∈ A ∪ {r} are replaced by non-negativity constraints, i.e.

fwa ≥ 0, w ∈W,a ∈ A ∪ {r}. (5.80)

By Definition 1, the following proposition states.

Proposition 12. The projections of (CD) and (CD_R) onto the f -space coincide.

Projx,y,γmax(F(CD)) = Projx,y,γmax(F(CD_R)).

Proof. First, F(CD) ⊆ F(CD_R) implies Projx,y,γmax(F(CD)) ⊆ Projx,y,γmax(F(CD_R)).
Second, let (x,y,γmax) be a point belonging to Projx,y,γmax(F(CD_R)). Due to
the structure of the objective function, every O/D pair will select one of the two
modes, the shortest one. That is, fwr will take the value of 0 or 1. If fwr = 1 then
fw = 0. In the case where fwr = 0, there exists a flow fwa ≥ 0 satisfying (5.25) and
(5.26) that can be decomposed into a convex combination of flows on paths from ws

to wt and cycles, in the case that these paths have the same length. Given that the
flow fwa also satisfies (5.27), then a flow of value 1 on one of the paths in the convex
combination must satisfy this constraint. Hence, by taking fwa equal to 1 for the arcs
belonging to this path and to 0 otherwise, we show that (x,y,γmax) also belongs
to Projx,y,γmax(F(CD)).

Based on Proposition 12, we propose a Benders decomposition where variables
fwa and fwr are projected out from the model and replaced by Benders facet-defining
cuts. Following the Benders decomposition Theory, since flow variables appear in
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the objective function of (CD), we have introduced an incumbent variable ζw for
each O/D pair w ∈ W to denote the expression

∑
a∈Aw da f

w
a + uw fwr . Then, the

master problem that we solve is

(M_CD) min λγmax + (1− λ)
1

Gtotal

∑
w∈W

gwζw (5.81)

s.t.
∑
e∈E

ce xe +
∑
i∈N

ci yi ≤ αCtotal, (5.82)

xe ≤ yi, e ∈ E, i ∈ {es, et}, (5.83)

ζw ≤ γmax, w ∈W, (5.84)

xe, yi ∈ {0, 1}, γmax, ζw ≥ 0, i ∈ N, e ∈ E, w ∈W, (5.85)

To generate facet-defining Benders cuts it is necessary to get an interior point of
the convex hull of Projx,y,γmax(F(CD_R)). This convex hull is the same as for the
projection which considers the incumbent variables ζw, Projx,y,γmax,ζ(F(CD_R)).
Then, Proposition 13 gives us a way to get such interior point.

Proposition 13. After preprocessing, the convex hull of Projx,y,γmax,ζ(F(CD_R))

is full-dimensional.

Proof. To prove the result, we exhibit |N |+|E|+|W |+2 affinely independent feasible
points:

• yi = 0, i ∈ N , xe = 0, e ∈ E, ζw = uw, w ∈W , γmax = max
w∈W
{ζw}.

• yi = 0, i ∈ N , xe = 0, e ∈ E, ζw = uw, w ∈W , γmax = 2 max
w∈W
{ζw}.

• For each i ∈ N , the points:

yi = 1, yi′ = 0, i′ ∈ N \ {i}, xe = 0, e ∈ E, γw = uw, w ∈W,

γmax = max
w∈W
{ζw}.

• For each e ∈ E, the point:

yk = 1, k ∈ e, yk = 0, k ∈ N \ {i, j}, xe = 1, xe′ = 0, e′ ∈ E \ {e},

ζw = uw, w ∈W, γmax = max
w∈W
{ζw}.

• For each w ∈W , the point:

yi = 1, i ∈ Ñw, yi = 0, i ∈ N \ Ñw, xe = 1, e ∈ Ẽw, xe = 0, e ∈ E \ Ẽw,

ζw = 2uw, ζw
′

= uw, w′ ∈W \ {w}, γmax = max
w∈W
{ζw}.
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Then, we write them as rows of a matrix of dimension (|N |+ |E|+ |W |+ 2)× (|N |+ |E|+ |W |+ 1).

y1 y2 . . . . . . yN x1 x2 . . . . . . xM ζ1 ζ2 . . . . . . ζW γmax



p0 0 0 . . . . . . 0 0 0 . . . . . . 0 uw1 uw2 . . . . . . uwW a1

p1 0 0 . . . . . . 0 0 0 . . . . . . 0 uw1 uw2 . . . . . . uwW 2 a1

pi1 1 0 . . . . . . 0 0 0 . . . . . . 0 uw1 uw2 . . . . . . uwW a1

pi2 0 1 . . . . . . 0 0 0 . . . . . . 0 uw1 uw2 . . . . . . uwW a1
...

...
...

. . .
...

...
... . . . . . .

...
...

... . . . . . .
...

...
...

...
...

. . .
...

...
... . . . . . .

...
...

... . . . . . .
...

...
piN 0 0 . . . . . . 1 0 0 . . . . . . 0 uw1 uw2 . . . . . . uwW a1

pe1 1 0 . . . . . . 0 uw1 uw2 . . . . . . uwW a1

pe2 0 1 . . . . . . 0 uw1 uw2 . . . . . . uwW a1
...

...
...

. . .
...

...
... . . . . . .

...
...

...
...

...
. . .

...
...

... . . . . . .
...

...
peM 0 0 . . . . . . 1 uw1 uw2 . . . . . . uwW a1

pw1 2uw1 uw2 . . . . . . uwW a2

pw2 uw1 2uw2 . . . . . . uwW a3
...

...
...

. . .
...

...
...

...
...

. . .
...

...
pwW uw1 uw2 . . . . . . 2uwW aW

To prove that they are affinely independent one of them is selected, p0, and we prove
that vectors p1− p0, pi1 − p0, pi2 − p0, . . . , piN − p0, pe1 − p0, pe2 − p0, . . . , peM − p0,
pw1 − p0, pw2 − p0, . . . , pwW − p0 are linearly independent.

y1 y2 . . . . . . yN x1 x2 . . . . . . xM ζ1 ζ2 . . . . . . ζW γmax



p1 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0 a1

pi1 1 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0 0

pi2 0 1 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0 0
...

...
...

. . .
...

...
... . . . . . .

...
...

... . . . . . .
...

...
...

...
...

. . .
...

...
... . . . . . .

...
...

... . . . . . .
...

...
piN 0 0 . . . . . . 1 0 0 . . . . . . 0 0 0 . . . . . . 0 0

pe1 1 0 . . . . . . 0 0 0 . . . . . . 0 0

pe2 0 1 . . . . . . 0 0 0 . . . . . . 0 0
...

...
...

. . .
...

...
... . . . . . .

...
...

...
...

...
. . .

...
...

... . . . . . .
...

...
peM 0 0 . . . . . . 1 0 0 . . . . . . 0 0

pw1 uw1 0 . . . . . . 0 a2 − a1
pw2 0 uw2 . . . . . . 0 a3 − a1
...

...
...

. . .
...

...
...

...
...

. . .
...

...
pwW 0 0 . . . . . . uwW aW − a1
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It is easy to see that by elementary row operations using p1 as pivot row a lower
echelon form is obtained. Then, vectors are linearly independent.

The proof of Proposition 13 gives us a way to compute an interior point of the
convex hull of Projx,y,γmax,ζ(F(CD_R)). The average of these |N |+ |E|+ |W |+ 2

points, is indeed such an interior point.
Given an interior point (xin,yin,γmaxin, ζin) of the convex hull of feasible solu-

tions and an exterior point (xout,yout,γmaxout, ζout), that is a solution to the LP re-
laxation of the current restricted master problem, a cut that induces a facet or an im-
proper face of the polyhedron defined by the LP relaxation of Projx,y,γmax,ζF(CD)

is generated. We denote the difference xout − xin by ∆x. We define ∆y, ∆γmax

and ∆ζ analogously. The idea is to find the furthest point from the core point,
feasible to the LP-relaxation of Projx,y,γmax,ζF(CD) and lying on the segment
line between the interior point and the exterior point. This point is of the form
(xsep,ysep,γmaxsep, ζsep) = (xout,yout,γmaxout, ζout) − λ(∆x,∆y,∆γmax,∆ζ).
The problem of generating such a cut reads as follows:

(SP )w min
f ,µ

µ (5.86)

s.t.
∑

a∈δ+(i)

fa −
∑

a∈δ−(i)

fa =

1, if i = ws,

0, otherwise,
i ∈ N, (5.87)

fa + fa′ ≤ xoute − µ∆xe, e = {i, j} ∈ E : a = (i, j), a′ = (j, i), (5.88)∑
a∈Aw

da fa + u fr ≤ ζout − µ∆ζ, (5.89)

0 ≤ µ ≤ 1, (5.90)

fa ≥ 0, a ∈ A ∪ {r}. (5.91)

In order to obtain the Benders feasibility cut we solve its associated dual:

(DSP )w max
φ,σ,υ

φws −
∑
e∈E

xoute σe − ζout υ (5.92)

s.t. −
∑
e∈E

∆xe σe −∆ζ υ ≤ 1, (5.93)

φi − φj − σe − da υ ≤ 0, a = (i, j) ∈ A : e = {i, j}, (5.94)

φws − u υ ≤ 0, (5.95)

σe ≥ 0, υ ≥ 0, e ∈ E. (5.96)

Given that (SP )w is always feasible (µ = 1 is feasible) and that its optimal value
is lower bounded by 0, then, both (SP )w and (DSP )w have always finite optimal
solutions. Whenever the optimal value of µ is 0, (xout,yout,γmaxout, ζout) is feasible.
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A cut is added if the optimal value of (DSP )w is strictly greater than 0. The new
cut has the form

−
∑
e∈E

σe xe − υ ζ ≤ −φws . (5.97)

Finally, a set of valid inequalities is proposed in Remark 14

Remark 14. By projecting out variables f, information regarding the lower bound of
variables ζw is lost. To deal with that, we use the following set of valid inequalities

ζw ≥
∑
e∈Ẽw

de xe if dN (w) ≤ uw, w ∈W. (5.98)

5.4.3 GRASP for (CD) with λ ∈ [0, 1)

We consider the metaheuristic proposed by García-Archilla et al. (2013) in the con-
text of covering network design problems, where the authors considered a GRASP
(Greedy Randomized Adaptive Search Procedure) to find good quality solutions.
Here we adapt these ideas to the λ-cent-dian objective.

Algorithm 10: Construction Phase
Initialization: N̄ = (N̄ , Ē) with N̄ = ∅ and Ē = ∅, W̄ = ∅, C = 0.
Compute FE = {e = {i, j} ∈ E \ Ē | ce + bi + bj

1 ≤ αCtotal − C}
while FE 6= ∅ do

if |FE| > k then
Determine a set SE = {e1, . . . , ek} consisting of the k edges on FE
that generate the minimum λ-cent-dian-distance value when they
are individually added to Ē.

else
Set SE = FE

end
Randomly choose one edge e∗ = {i∗, j∗} ∈ SE to be added to N̄ .
Update N̄ , FE, C.

end
for w ∈W do

Compute the shortest path for w in N̄ = (N̄ , Ē).
if its length is equal to or shorter than uw then

W̄ = W̄ ∪ {w}
end

end
return N̄ , W̄

1Cost ci′ (respectively cj′) is taken into account if i′ /∈ N̄ .



5.4. Algorithmic discussion for λ ∈ [0, 1] 147

The GRASP procedure works as follows. First, a construction phase is executed,
in which an initial solution is built from scratch. Then an improvement phase is
computed to improve this initial solution. This randomized Local Search scheme is
applied niter_max times and the best solution network is picked.

The construction phase consists of adding one edge per iteration to an empty
initial graph respecting the budget constraint until no more edges can be added. At
each iteration, the set of feasible edges is updated. An edge is said to be a feasible
edge if it has not been built previously and its cost is equal to or lower than the
remaining available budget. Next, from this set, the k ≥ 2 edges that contribute the
greatest minimization to the objective value when they are individually added to the
network under construction are selected. Then, one of them is randomly chosen to
be added to the network under construction. This procedure is repeated until the
set of feasible edges is empty at some iteration reached. This routine is described in
Algorithm 10.
Algorithm 11: Improvement phase
Initialization: N̄ = (N̄ , Ē), W̄ = ∅, Cimp = C.
Compute ĒC = E \ Ē.
for ē ∈ Ē do

Define N̄ē = (N̄ , Ē \ {ē})
Bē = αCtotal − Cimp − cē − bī − bj̄2

Compute FEē = {e = {i, j} ∈ ĒC \ Ē | ce + bi + bj
2 ≤ Bē}

while FEē 6= ∅ do
Determine the edge ẽ = {̃i, j̃} ∈ FEē that gives the largest
improvement in the objective function when added to Nē.
Update N̄ē, FEē, Bē.

end

end
Set N̄ ∗ the network that gives the largest improvement in Hλ( · ) among all
N̄ē, ē ∈ Ē.
for w ∈W do

Compute the shortest path for w in N̄ ∗.
if its length is equal to or shorter than uw then

W̄ = W̄ ∪ {w}
end

end
return N̄ ∗, W̄

The improvement phase works as follows. For each edge e in the current solution
network, a new network is built by replacing e with a set of feasible non-built edges.

2Cost bi (respectively bj) is taken into account if i /∈ N̄ (respectively j /∈ N̄).
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These edges are added using the same criterion of the construction phase. The
iteration finishes by picking the best solution obtained and comparing it with the
solution obtained in the construction phase. This procedure is depicted in Algorithm
11.

In Subsection 5.5.4, a computational study is dedicated to this GRASP.

5.5 Computational experiments

In this section, we evaluate the quality of the solutions for the different solution
concepts described in Section 5.2 using some inequality measures. Besides, we tested
the performance of the two techniques proposed in Section 5.4 to solve the problem
of (CD) for the case λ ∈ [0, 1].

We perform these computational experiments on a computer equipped with an
Intel Core i5-7300 CPU processor, with 2.50 gigahertz 4-core, and 16 gigabytes of
RAM. The operating system is 64-bit Windows 10. We implement our codes in
Python 3.8. We carried out these experiments through CPLEX 12.10 solver, named
CPLEX, using its Python interface. CPLEX parameters were set to their default values
and the models were optimized in a single-threaded mode. All the experiments have
been performed with a limit of one hour of CPU time. Besides, the different statistical
analyzes have been done through the use of R. For such experiments and analyzes, t
denotes the average value for solution times given in seconds, gap denotes the average
of relative optimality gaps in percent (the relative percent difference between the
best solution and the best bound obtained within the time limit), Value denotes the
best value for GRASP and cuts is the average of number of cuts generated by the
branch-and-Benders-cut implementations.

5.5.1 Data sets: benchmark networks and random instances

The tested instances for the algorithms exposed in this chapter are also divided into
two groups, such as in previous chapters: benchmark networks and random instances.

On the one hand, there are three benchmark networks considered and for all of
them α is set to 0.5. The Seville city network instance (referenced as Seville) is
used in the same manner as previously, with the exception that for each w ∈ W its
utility uw is set to twice the Euclidean distance. For the Sioux Falls city network
instance (referenced as Sioux Falls), the topology of the network is described by 24

nodes and 38 edges. Set W is also formed by all possible O/D pairs (38 · 37 = 1406).
The parameters have been chosen in the same manner as for the random instances.
Finally, we also tested our algorithms on the benchmark instance Ta2 from SNDLib
(http://sndlib.zib.de/). From Ta2 instance we have only used the topology of the
underlying network, the cost vector for the set of arcs and the demand matrix. Its

http://sndlib.zib.de/


5.5. Computational experiments 149

O/D pairs set has 61% of them with zero demand. The rest of the parameters have
been chosen in the same manner as for the random instances used in this chapter.

On the other hand, the random instances are generated in the same manner as
in the previous chapters with some different points. For this experiment, we use
random instances of size n = 60 nodes, named as N60 in what follows. There are 10
underlying networks of this size. The underlying planar graph of each instance has
been generated with higher density. That is, their edges are deleted with probability
0.2. The budget αCtotal is equal to 50% of the cost of building the whole underlying
graph considered, which means that α = 0.5. Besides, to build the set of O/D pairs
W , all possible ones are taken into account. Thus, set W is composed of n(n − 1)

elements. For each w ∈ W , parameter uw is set to 2 times the Euclidean length
between ws and wt. The rest of the parameters of the instance are chosen as in the
previous chapter.

5.5.2 Quality of the solutions with a numerical illustration

In this subsection, we evaluate the quality of the solutions for the different solution
concepts described in Section 5.2 using some inequality measures.

The instance used in this part has been generated in the same random manner
than those described in the previous subsection. For this numerical illustration, we
have consider a network of size n = 20 nodes. We have set αCtotal equal to 40% of
the cost of building the whole underlying network considered. Then, α = 0.4. The
rest of the parameters are chosen as previously.

The quality of the solutions of λ-cent-dian and generalized-center problems is
studied as a function of λ and ∆, using some inequality measures. We first solve
the λ-cent-dian for λ ∈ {0, 0.25, 0.5, 0.75}. Then we consider the center problem
(λ = 1) and the approximation of the generalized-center with λ = 500. For them,
the effect of adding the efficiency constraint (5.21) with ∆ ∈ {0%, 3%, 5%, 10%, 15%}
is taken into account. Note that if we fix λ = 1 and ∆ = 0, we are solving the inverse
lexicographic problem to that of (5.16). To all these cases, we add the solution found
by the lexicographic problem (5.16). To get these solution networks, we have solved
formulations (CD) and (BCD) exposed in Section 5.3 with the direct use of CPLEX.

We analyze the quality of the different solutions by comparing their minimum
travel time (Min in what follows), maximum travel time (Max), and average travel
time (Average), as well as the mean absolute difference (M.A.Difference) of their
travel times. We relate the average travel time with the efficiency notion (median
value) and the maximum travel time with the fairness one (center value). The
percentage of O/D pairs served is also computed. These results are shown in Table
5.6. To these results, we add the solution of the lexicographic problem (5.16) whose
minimum and maximum travel times are 4 and 96, respectively. Its average travel
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time, mean absolute difference between the travel times and the percentage of the
demand covered are 47.149, 12.376 and 27.149, respectively.

By observing Table 5.6, we obtain some conclusions about the effect of the diffe-
rent values given to λ and ∆. First, note that there are only two different solutions
obtained by solving the problem for λ ∈ (0, 1). Note that these solutions belong to
the set POα2 . We observe that for λ ∈ [0, 0.75], the larger it is, the larger the average
of travel times and the smaller the maximum travel time and the percentage of O/D
pairs served. For λ ∈ {1, 500} and ∆ = 0, the formulation consists of searching the
median solution with the minimum center and generalized-center value, respectively.
If ∆ > 0, it is observed that the average of travel times is increasing, bigger than in
the median solution (obviously) and smaller than in the generalized-center solution.
Besides, using the efficiency constraint causes more O/D pairs to be served than in
the case where it is not used, as long as parameter ∆ is not too large. Moreover, for
a fixed value of ∆, the percentage of the O/D pairs served by the generalized-center
solution is bigger than or equal to the center solution. With respect to the mean
absolute difference, we conclude that there is no clear trend. We observe that in this
case, the center solution is the one with the lowest value of this measure.

λ ∆ (%) Min Max Average M.A.Difference O/D pairs served (%)
0 - 4 100 45.037 12.351 28.187

0.25 - 4 100 45.037 12.351 28.187
0.5 - 4 96 47.149 12.375 27.516
0.75 - 4 96 47.149 12.375 27.516
1 - 4 96 47.383 12.187 6.375
1 0 4 100 45.037 12.351 28.187
1 3 4 100 45.981 12.322 24.832
1 5 4 96 47.149 12.375 23.154
1 10 4 96 47.383 12.187 8.389
1 15 4 96 47.383 12.187 8.389
500 - 4 96 48.655 12.535 21.476
500 0 4 100 45.037 12.351 28.187
500 3 5 100 46.386 12.279 24.832
500 5 4 96 47.283 12.859 26.174
500 10 4 96 48.655 12.535 21.476
500 15 4 96 48.655 12.535 21.476

Table 5.6: Quality of solutions for λ-cent-dian and generalized-center problems using
a random instance from N20 with α = 0.4.

Besides, we observe that comparing the center solutions between them, there are
some dominated ones. More specifically, the center solution without the efficiency
constraint is the one that is completely dominated by the one in which this constraint



5.5. Computational experiments 151

is used with ∆ = 15. On the other hand, comparing the generalized-centers between
them, a similar situation occurs.

Making a general comparison, we highlight that there are some generalized-center
solutions non-dominated by the rest. The generalized-center solution with ∆ = 3 has
smaller values of M.A.D than any of λ-cent-dian solutions with λ < 1. If we compare
it with the center solutions, we see that for some of the cases, the center solution has
a smaller M.A.D value but a bigger Average value and a lower percentage of demand
covered. If this does not happen, the center has a worse M.A.D value but has better
values for the rest of inequality measures.

5.5.3 Branch-and-Benders-cut performance

Our preliminary experiments show that including cuts only at integer nodes of the
branch-and-bound tree is more efficient than including them in nodes with frac-
tional solutions. Thus, in our experiments, we only separate integer solutions un-
less we specify the opposite. We used the LazyConstraintCallback function of
CPLEX to separate integer solutions. Fractional solutions were separated using the
UserCutCallback function. We study the implementation of B&BC (branch-and-
Benders-cut algorithm) proposed in Subsection 5.4.2. As in Chapter 2, we will use
the nomenclature of BD_CW to refer to the B&BC algorithm which generates cuts in
the form of equation (5.97).

We compare our BD_CW implementation with the direct use of CPLEX and with the
automatic Benders procedure proposed by CPLEX, noted by Auto_BD. The latter has
been used in the option in which CPLEX attempts to decompose the model strictly
according to the decomposition provided by the user. Besides, equations (5.98) are
added in Auto_BD and BD_CW.

As for covering problems studied in Chapter 2, we observe that our BD_CW im-
plementation for (CD) formulation appears to be competitive against Auto_BD whe-
never the size of the network is considerably large. Tables 5.7 and 5.8 show results
for some benchmark instances, varying the values of the parameters α and λ. We
highlight the best configuration in each case. Considering as a medium size instance
Seville network, with 49 nodes, we see that in some cases Auto_BD is faster than
our BD_CW implementation. However, for instances with more than 60 nodes, BD_CW
is competitive against Auto_BD, such as shown for the instance Ta2.

For instances smaller than the Seville network, neither Auto_BD nor BD_CW are
competitive with the direct use of CPLEX. For that, see Table C.1 in Appendix C, for
which the Sioux Falls instance has been used. Furthermore, we observe that the
tighter the budget, the lower the computation time t and the gap. With respect to
λ parameter, it seems that it is easier to solve the problem for λ = 1.



152 Chapter 5. On λ-Cent-Dians and Generalized-Center for Network Design

CPLEX Auto_BD BD_CW
α λ t gap t gap cuts t gap cuts

0.15

0 3600 1.277 1107.906 0.007 3805 3600 1.585 34774
0.25 3600 3.492 3600 0.187 12009 3600 2.189 23604
0.5 3600 5.513 3600 2.749 13305 3600 0.849 18392
0.75 3600 7.24 3600 2.421 8441 3600 0.385 18429
1 1263.11 0 156.234 0 660 186.484 0 22360

0.25

0 3600 2.039 1333.359 0.01 4460 3600 1.344 38008
0.25 3600 10.125 3518.875 0.010 16048 3600 1.043 39937
0.5 3600 16.758 3600 2.088 19590 3600 1.201 47348
0.75 3600 20.496 3600 2.379 10705 3600 0.107 51078
1 578.75 0 263.297 0 521 398.047 0 40293

0.4

0 3600 2.988 1920.234 0.010 11273 3600 2.539 33993
0.25 3600 16.990 3600 10.494 21984 3600 5.982 25338
0.5 3600 25.952 3600 3.235 14064 3600 8.681 31368
0.75 3600 30.282 3600 21.454 16537 3600 8.899 35231
1 3600 6.136 521.625 0 884 1812.359 0.007 89470

Table 5.7: Sensitivity analysis of BD_CW implementation for formulation (CD) with
Seville instance.

CPLEX Auto_BD BD_CW
α λ t gap t gap cuts t gap cuts

0.15

0 659.109 0 242.422 0 1809 210.109 0 18012
0.25 1430.906 0 357.328 0 3687 323.844 0 26442
0.5 1527.859 0 526.344 0 3932 187.172 0 15877
0.75 2184.25 0 508.234 0 4146 338.297 0 31347
1 433.75 0 315.984 0 314 131.688 0 25011

0.25

0 536.75 0 669.484 0 1980 227.016 0 25224
0.25 3217.172 0 367.313 0 3508 287.516 0 24061
0.5 3329.797 0 541.063 0 3867 390.891 0 26097
0.75 2745.969 0 1024.344 0 5085 328.719 0 31378
1 255.797 0 453.859 0 496 145 0 26937

0.4

0 735.031 0 318.078 0 2220 247.813 0 32694
0.25 1424.563 0 445.359 0 3707 340.156 0 24374
0.5 1804.578 0 946.453 0 4319 553.156 0 32843
0.75 3600 0.807 3600 0.182 8796 658.484 0 35272
1 488.547 0 555.563 0 883 197.297 0 33306

Table 5.8: Sensitivity analysis of BD_CW implementation for formulation (CD) with
the Ta2 instance.
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5.5.4 GRASP performance

To measure the quality of the solutions obtained by GRASP, we carried out a sen-
sitivity analysis for the set of random instances N60 described in Subsection 5.5.1.
The explored variables for this computational study are:

• Value: The overall normalized objective value of the solution. We divide the
objective value obtained with the GRASP algorithm by the objective value in
the situation where nothing is built.

• t: The overall execution time.

• RPD: The average relative percent deviation with respect to the best solution
found by the BD_CW implementation after 1 hour. It is computed by the fol-
lowing formula:

RPD = 100
ZBD_CW − Z ′

ZBD_CW
, (5.99)

being Z ′ and ZBD_CW the values of the solutions obtained by the GRASP algo-
rithm and the BD_CW implementation, respectively.

For this analysis, we consider all the possible combinations of the following values
for each parameter on N60 instances.

• The stopping criteria: niter_max ∈ {5, 10, 20}

• Cardinality of the set of feasible edges to select from:
k ∈ {1, n/20, n/10, n}

We fix niter_max equal to 1 whenever the value for k is 1 since there is not a
random component in the metaheuristic. We do not consider values niter_max larger
than 20 because GRASP takes more than 1 hour to get a solution.

We present the optimality gap for the BD_CW implementation after 1 hour in Table
5.9. The greater the weight given to the center objective, the more difficult it is to
solve the problem. In Table 5.10, we report averages for solution time and normalized
objective value of GRASP for the different values of the parameters niter_max and
k. Besides, the RPD is shown. Moreover, Table 5.11 collects the best situation for
which there is no random component in GRASP (k = 1).

λ

0 0.25 0.5 0.75
4.87 24.96 26.52 29.70

Table 5.9: BD_CW implementation gap for N60 after 1 hour.
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λ k

niter_max

5 10 20
t Value RPD t Value RPD t Value RPD

0
2 1108.196 0.842 -3.516 2191.655 0.843 -3.708 3600 0.841 -3.401
15 916.186 0.891 -9.605 1947.392 0.882 -8.589 3600 0.872 -7.189
60 715.623 0.934 -14.899 1317.576 0.916 -12.706 2604.273 0.911 -12.105

0.25
2 1097.559 0.867 12.132 2180.521 0.878 11.015 3600 0.877 11.147
15 952.412 0.936 5.176 1962.145 0.933 5.539 3491.957 0.923 6.481
60 659.205 0.953 3.522 1441.212 0.951 3.715 2749.176 0.951 3.730

0.5
2 973.519 0.884 8.763 1900.333 0.886 8.502 3600 0.893 7.783
15 866.206 0.965 0.588 1683.167 0.965 0.588 3367.439 0.962 0.867
60 611.566 0.979 -0.950 1210.309 0.976 -0.599 2372.271 0.964 0.680

0.75
2 970.249 0.913 7.364 1947.587 0.911 7.512 3586.308 0.903 8.355
15 830.585 0.987 -0.083 1691.112 0.986 -0.043 3309.959 0.973 1.341
60 596.434 0.990 -0.436 1231.166 0.988 -0.236 2372.576 0.989 -0.331

Table 5.10: Sensitivity analysis for GRASP for (CD) using N60 instances.

λ

0 0.25 0.5 0.75
t 218.11 210.16 186.95 184.47

Value 0.86 0.89 0.92 0.93
RPD -0.06 0.09 0.05 0.06

Table 5.11: Sensitivity analysis for GRASP without random component for (CD)
using N60 instances.

Value t RPD

λ

0
k 6.16e-08 <2e-16 1.46e-08

niter_max 0.390 <2e-16 0.355

0.25
k 3.11e-05 <2e-16 1.46e-08

niter_max 0.971 <2e-16 0.355

0.5
k 0.0001 <2e-16 1.46e-08

niter_max 0.983 <2e-16 0.355

0.75
k 0.002 <2e-16 1.46e-08

niter_max 0.920 <2e-16 0.355

Table 5.12: P-values of the ANOVA for the GRASP algorithm for (CD) with N60
instances.

For λ ∈ {0, 0.25, 0.5, 0.75}, we perform an ANOVA test to measure whether there
is significant evidence between the impact of the different values of niter_max and k
on Value, t and RPD. Table 5.12 presents the individual p-values. For both variables
Value and RPD, there exists significant evidence to confirm that the different levels



5.5. Computational experiments 155

of parameter k affect them. We sketch the RPD for the different cases in Figure 5.7.
For variable t, there exists significant evidence to confirm that the different levels of
these two parameters affect it.

Figure 5.7: Sensitivity analysis for GRASP algorithm for (CD) for fixed values of λ
using N60 instances.

By observing Table 5.10, in terms of RPD, GRASP always gets better results,
except for the case λ = 0. Anyway, in all the cases, we observe that GRASP with
values of parameter k close to 2 gets better solutions than in cases where it is large
or it is fixed to 1. Besides, if parameter niter_max is set with large values, slightly
better solutions are obtained in some cases, despite the fact that there is no significant
evidence of it according to the ANOVA analysis.

The average CPU times for all of the combinations tested for GRASP are pre-
sented in Table 5.10. Combinations with large values of niter_max and small values of
k take more time. Roughly speaking, for λ ∈ {0.25, 0.5, 0.75}, GRASP gets solutions
which are on average 11.1%, 8.5% and 8.3%, respectively, (taking into account the
best configuration, k = 2) better than the BD_CW solution in less than 1 hour. For
λ = 0, in less than 1 hour GRASP gets solutions which are on average 3% (taking
into account the best configuration) different from the BD_CW solution found.

We found that GRASP has a poor performance for λ ≥ 1. This may be since,
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in the first iterations of Algorithm 10, the randomly selected edges do not minimize
the objective function of the center problem. In other words, adding individual good
edges does not necessarily minimize the maximum shortest path in the network.

5.6 Conclusions

In this chapter, we have introduced and studied for the first time the λ-cent-dian and
the generalized-center problems for Network Design when the demand is given by
pairs of points instead of single points. These problems minimize a linear combination
of the maximum and average traveled distances. While the λ-cent-dian problem, with
λ ∈ [0, 1], minimizes a convex combination of both objectives, the generalized-center
minimizes the difference between them. We have studied these concepts under two
versions of Pareto-optimality: the first considers the shortest paths of each O/D pair,
and the second one deals with both objective functions. With respect to the second
one, we have checked that for generating the whole set of Pareto-optimal solutions
the new concept of maximum λ-cent-dian has to be introduced.

The generalized-center solutions are often not reasonable in terms of efficiency
since the median value is increased artificially. Hence, we add to this problem an
efficiency constraint that ensures that the median value is not too far from the
median function value of the median network. This constrained generalized-center
can be seen as analogous to performing a lexicographic optimization of the median
and generalized-center objectives.

Given the hardness of these problems, for the case λ ∈ [0, 1] we have studied and
formulated both: a branch-and-Benders-cut method; and a GRASP to find good
solutions in reasonable computational time. Our computational results show that
our branch-and-Benders-cut approach for (CD) is: i) competitive against the one
proposed by CPLEX for instances with more than 60 nodes, and ii) non-dominated by
the GRASP procedure for instances with 60 nodes.

Finally, we have evaluated the λ-cent-dian, with λ ∈ [0, 1], and generalized-center
solutions using some inequality measures. In this situation, taking into account
the efficiency constraint, we have verified that the generalized-center solution is not
always dominated.



Chapter 6

Conclusions and future research
lines

157





159

This thesis deals with Network Design problems with covering and λ-cent-dian
objectives. All of them have been approached from the Mathematical Programming
point of view. We have proposed MILP formulations which have been analyzed and
properties obtained. After that, we have developed some techniques to solve them.

Next, we briefly summarize the major achievements of each chapter and discuss
possible further research lines.

In Chapter 2, two variants of the Covering Network Design Problem have been
studied: Maximal-Covering Network Design problem and Partial-Covering Network
Design problem. The first maximizes the demand covered under a budget constraint.
The latter minimizes the total constructing cost subject to a lower bound on the de-
mand covered. For solving them, mixed-integer linear programming formulations
have been proposed, which are stronger than the existing ones. Besides, with the
aim of maximizing the coverage and minimizing the cost, we have proposed a se-
quential procedure based on the formulations studied. Moreover, some polyhedral
properties of these formulations are provided, which are useful for the algorithmic
techniques used to solve the problems. We have developed exact methods based on
Benders decomposition. We also discuss some preprocessing procedures to scale up
the instances solved. With these preprocessing techniques we obtain information
about the instances, which is useful to derive a better algorithmic performance. Our
computational results show that the techniques developed in this chapter are com-
petitive against the ones existing in the literature since they allow obtaining better
solutions in less time. Further research on this topic is focused on the synergy of
sophisticated heuristics to find good feasible solutions and decomposition methods,
such as the ones presented in this chapter, to get better bounds and close the op-
timality gap. This further research has been started for one of the two problems
presented. In Chapter 4, we have designed some sophisticated heuristics. Finally,
we remark that objectives of (MC) and (PC) can be included in a bi-criteria opti-
mization model. An interesting extension is to exploit the decomposition methods
described in this chapter to the multiobjective setting.

Motivated by real-life applications, in Chapter 3 we have presented a formulation
which locates a rapid transit line and modifies the old route of a slow transit line si-
multaneously with the purpose of maximizing the demand covered. We have focused
on the case study in which a single transfer station is allowed and the end-points of
the lines do not coincide. In addition, it is shown in an example with the Seville

network instance that the design of both lines in an integrated way obtains greater
coverage than that of sequentially designing (first the rapid transit line is designed
and then the slow line is re-located). To solve this problem, we have developed a
branch-and-Benders-cut scheme specifically for the formulation discussed. Using the
Seville network instance, we have obtained that the Benders approach that uses
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the ideas of Conforti and Wolsey (2019) is competitive against the standard decom-
position of Benders (Subsection 3.3.1), the Benders procedure existing in CPLEX and
that of directly using CPLEX. Possible further research will go in the direction of con-
sidering the design of more than one rapid transit line as well as the re-location of
more than one slow transit line in an integrated way. It will be interesting to explore
the solution depending on the presence or not of cycles between the set of lines and
the maximum number of transfer stations to be considered. Furthermore, it could
be adequate to separate the real-case studies (large metropolitan areas or cities) into
sectors to take into account and consider their features, such as the topology. Finally,
developing a Benders decomposition to generate facet-defining Benders cuts for this
much more complex case could be also efficient and advantageous.

In Chapter 4, two well-known metaheuristic techniques have been adapted to the
Maximal-Covering Network Design problem studied in Chapter 2. One of them is
a Simulated Annealing algorithm and the other is an Adaptive Large Neighborhood
Search procedure. The main difference between them is that the second one works
with a larger neighborhood. An extensive sensitivity analysis has been carried out
for both using randomly generated medium size instances. In addition, we have
added to this computational study the Genetic Algorithm provided in Perea et al.
(2020). The goal has been to observe the behavior of the parameters and to find
the best parameter settings in each case. The ANOVA analysis done for each of
the metaheuristic showed that not all the parameters are individually significant
to the quality of the solutions obtained, according to the set of values considered
for such parameters. Another important conclusion is that the solutions obtained
by these metaheuristics could be better than those obtained by other procedures
based on exact methods, as the BD_CW implementation developed, if the instance
in question is considerably large. As a final task, we have added a computational
comparison between them using such best configurations for a large instance. As
further research, it would be interesting to develop some ideas related to matheuristic
routines, which take advantage of both, exact and metaheuristic procedures. The
difficult part is solved with some heuristic approach and the easiest one is solved
using exact methods.

In Chapter 5, we have introduced and studied for the first time the λ-cent-dian
and the generalized-center problems for Network Design when the demand is given by
pairs of points instead of single points. These problems minimize a linear combination
of the maximum and average traveled distances. While the λ-cent-dian problem, with
λ ∈ [0, 1], minimizes a convex combination of both objectives, the generalized-center
minimizes the difference between them. We have studied these concepts under two
versions of Pareto-optimality: the first considers the shortest paths of each O/D
pair, and the second one deals with both objective functions. With respect to the
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second one, we have checked that for generating the whole set of Pareto-optimal
solutions the new concept of maximum λ-cent-dian has to be introduced. On the
other hand, the generalized-center solutions are often not reasonable in terms of
efficiency since the median value is increased artificially. Hence, we add to this
problem an efficiency constraint that ensures that the median value is not too far
from the median function value of the median network. This constrained generalized-
center can be seen as analogous to performing a lexicographic optimization of the
median and generalized-center objectives. Given the hardness of these problems, for
the case λ ∈ [0, 1] we have studied and formulated both: a branch-and-Benders-
cut method, and a GRASP to find good solutions in reasonable computational time.
Our computational results show that our branch-and-Benders-cut approach for the λ-
cent-dian formulation, with λ ∈ [0, 1], is: i) competitive against the one proposed by
CPLEX for instances with more than 60 nodes, and ii) non-dominated by the GRASP
procedure for instances with 60 nodes. Finally, we have evaluated the λ-cent-dian,
with λ ∈ [0, 1], and generalized-center solutions using some inequality measures. In
this situation, taking into account the efficiency constraint, we have verified that the
generalized-center solution is not always dominated. Further research of this work
could be adding to the formulations a coverage constraint to ensure that at least a
certain percentage of demand is covered by the prospective network to be designed.
Besides, it would be interesting to consider bi-objective functions composed by the
center or the median together with a coverage or cost function.

Finally, note that a common characteristic in all the problems studied is that
of the existence of an alternative mode/network to satisfy the demand flows. This
situation has been modeled using binary variables. That is, the flow cannot be shared
between both modes, which does not represent reality. We emphasize that the goal
has been to develop good resolution methods, and then use the achievements to
solve more realistic models. Therefore, a future line of research, and common in
all chapters, is to model the flows using approximated random utility models, e.g.
piecewise linear approximations of logit functions.
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En esta tesis se estudian problemas de Diseño de Redes con objetivos relacionados
con el cubrimiento de demanda y con las nociones de centro y mediana (λ-cent-
dian). Todos ellos han sido enfocados desde el punto de vista de la Programación
Matemática. Hemos propuesto formulaciones lineales entero-mixtas, las cuáles han
sido analizadas y algunas propiedades obtenidas. Después de esto, hemos desarro-
llado algunas técnicas para resolver tales problemas.

A continuación, explicamos brevemente los logros más relevantes de cada capítulo
y exponemos posibles líneas de investigación futuras.

En el Capítulo 2 se estudian dos variantes del Problema de Cubrimiento para el
Diseño de Redes: el problema de Cubrimiento-Máximo para el Diseño de Redes y
el problema de Cubrimiento-Parcial para el Diseño de Redes. El primero maximiza
la demanda a cubrir bajo una restricción de presupuesto. El segundo minimiza el
coste total de construcción sujeto a una restricción que acota inferiormente la de-
manda a cubrir. Para resolverlos, se han propuesto formulaciones de programación
lineal entero-mixtas, las cuáles son más fuertes que las ya existentes en la literatura.
Además, con el objetivo de maximizar el cubrimiento y minimizar el coste, hemos
propuesto un procedimiento secuencial basado en las formulaciones estudiadas. Tam-
bién, hemos proporcionado algunas propiedades poliédricas de estas formulaciones,
útiles para las técnicas algorítmicas utilizadas para resolver los problemas. Hemos
desarrollado métodos exactos basados en la descomposición de Benders. También
hemos propuesto algunos procedimientos de preprocesamiento para escalar las ins-
tancias resueltas. Con estas técnicas de preprocesamiento obtenemos información
sobre las instancias, la cuál es útil para conseguir un mejor comportamiento algorít-
mico. Nuestros resultados computacionales muestran que las técnicas desarrolladas
en este capítulo son competitivas con las ya existentes en la literatura, ya que con ellas
se obtienen mejores soluciones con un menor tiempo de cómputo. Investigaciones
futuras relacionadas con este tema pueden centrarse en la sinergia de heurísticas
sofisticadas para encontrar buenas soluciones y métodos de descomposición, tales
como los presentados en este capítulo, para conseguir mejores cotas y acercarnos
más a la solución óptima. El trabajo desarrollado en el Capítulo 4 puede ser con-
siderado como el comienzo de esta propuesta de trabajo futura para uno de los dos
problemas presentados. Esto es, en el Capítulo 4, hemos diseñado algunas heurísticas
más sofisticadas para el problema de Cubrimiento-Máximo. Finalmente, remarcamos
que los objetivos de los problemas de Cubrimiento-Máximo y Cubrimiento-Parcial
pueden ser incluidos en un modelo de optimización con una función bi-criterio. Una
extensión interesante puede ser la de aplicar los métodos de descomposición descritos
en este capítulo al caso de la optimización multiobjetivo utilizando tales funciones.

Motivados por aplicaciones a la vida real, en el Capítulo 3 hemos presentado
una formulación que localiza una línea de tránsito rápido y modifica una línea de
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tránsito lento de manera simultánea, con el objetivo de maximizar la demanda a
cubrir. Nos hemos centrado en el caso de estudio en el que solo se permite construir
una estación de transbordo y en el que los puntos iniciales y finales de las líneas
no son coincidentes. Además, utilizando la ciudad de Sevilla como ejemplo, se ha
mostrado que con el diseño de manera integrada se consigue un mayor cubrimiento
que con el diseño secuencial (primero localizar la red de tránsito rápido y luego
relocalizar la red de tránsito lento). Para resolver este problema, hemos desarrollado,
específicamente para la formulación discutida, un esquema de Ramificación-y-Corte
que genera cortes de Benders. Utilizando la ciudad de Sevilla como ejemplo, hemos
obtenido que el enfoque propuesto que utiliza las ideas de Conforti and Wolsey (2019)
es competitivo contra la descomposición estándar de Benders (Subsección 3.3.1),
contra el procedimiento de Benders existente en CPLEX y contra el uso directo de
CPLEX. Posibles líneas de investigación futuras pueden ir en la dirección de considerar
el diseño de más de una línea de tránsito rápido, así como la relocalización de más
de una línea de tránsito lento de manera simultánea. Sería interesante analizar la
solución conforme a la presencia o no de ciclos entre el conjunto de líneas y conforme
al máximo número de estaciones de transbordo a considerar. Además, podría ser
adecuado separar los casos de estudio reales (ciudades o áreas metropolitanas de
gran tamaño) en sectores, para tener en cuenta características particulares, tales
como la topología de la zona. Finalmente, también podría ser ventajoso y eficiente
desarrollar una descomposición de Benders para generar cortes que definan facetas
para este caso de estudio mucho más complejo.

En el Capítulo 4, dos técnicas metaheurísticas muy conocidas han sido adap-
tadas para el problema de Cubrimiento-Máximo en el Diseño de Redes estudiado en
el Capítulo 2. Una de ellas es el algoritmo del Recocido Simulado y la otra es un pro-
cedimiento de Búsqueda Adaptativa considerando vecindarios de gran tamaño. La
principal diferencia entre ellas es que la segunda trabaja con un vecindario más am-
plio. Par ambos algoritmos se ha hecho un análisis de sensibilidad extenso, utilizando
instancias de tamaño medio generadas aleatoriamente. Además, hemos añadido a
este estudio computacional el algoritmo genético propuesto en Perea et al. (2020). El
objetivo ha sido observar el comportamiento de los parámetros y encontrar la mejor
configuración de ellos en cada caso. El análisis ANOVA realizado para cada una de las
metaheurísticas dio como resultado que no todos los parámetros son individualmente
significativos para la calidad de las soluciones obtenidas, según el conjunto de valores
considerados para tales parámetros. Otra conclusión importante es que las soluciones
obtenidas por estas metaheurísticas podrían ser mejores que las obtenidas por otros
procedimientos basados en métodos exactos, como la implementación desarrollada
de BD_CW, si la instancia en cuestión es considerablemente grande. Como tarea final,
hemos agregado una comparación computacional entre ellos utilizando las mejores
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configuraciones para una instancia grande. Como investigación futura, sería intere-
sante desarrollar algunas ideas relacionadas con procedimientos mateheurísticos, que
toman ventaja tanto de los procedimientos exactos como de los metaheurísticos. La
parte difícil se resuelve con algún enfoque heurístico y la más fácil se resuelve usando
métodos exactos.

En el Capítulo 5 presentamos y estudiamos por primera vez los problemas de
λ-cent-dian y del centro-generalizado para el diseño de redes cuando la demanda
está dada por pares de puntos en lugar de puntos individuales. Estos problemas
minimizan una combinación lineal de la distancia máxima (funciín centro) y la dis-
tancia media (función mediana) recorrida. Mientras que el problema λ-cent-dian,
con λ ∈ [0, 1], minimiza una combinación convexa de ambos objetivos, el centro-
generalizado minimiza la diferencia entre ellos. Hemos estudiado estos conceptos
bajo dos versiones de la optimización de Pareto: la primera considera los caminos
más cortos de cada par O/D, y la segunda se ocupa de ambas funciones objetivo. Con
respecto a la segunda, hemos comprobado que para generar todo el conjunto de solu-
ciones Pareto-óptimas se ha de introducir el nuevo concepto de λ-cent-dian máximo.
Por otro lado, las soluciones del centro-generalizado a menudo no son razonables en
términos de eficiencia, ya que la distancia media se incrementa artificialmente. Por
lo tanto, agregamos a este problema una restricción de eficiencia que asegura que el
valor de la mediana no se aleje demasiado del valor de la función mediana en la red
mediana. Este problema de centro-generalizado restringido puede verse como aná-
logo al problema de realizar una optimización lexicográfica tomando los objetivos de
la mediana y del centro-generalizado. Dada la dureza de estos problemas, para el caso
λ ∈ [0, 1] hemos estudiado y formulado ambos: un método de Ramificación-y-Corte
que utiliza la teoría de Benders, y un GRASP para encontrar buenas soluciones en
un tiempo computacional razonable. Nuestros resultados computacionales muestran
que nuestra propuesta de algoritmo de Ramificación-y-Corte con la teoría de Ben-
ders es: i) competitivo frente al existente en CPLEX para instancias con más de 60
nodos, y ii) no está dominado por el procedimiento GRASP para instancias con 60
nodos. Finalmente, hemos evaluado las soluciones del λ-cent-dian, con λ ∈ [0, 1], y
del centro-generalizado usando algunas medidas de desigualdad. En esta situación,
teniendo en cuenta la restricción de eficiencia, hemos comprobado que la solución de
centro-generalizado no siempre está dominada. La investigación futura para este tra-
bajo podría agregar a las formulaciones una restricción de cobertura para garantizar
que al menos un cierto porcentaje de la demanda sea cubierto por la red prospectiva
a diseñar. Además, sería interesante considerar funciones bi-objetivo compuestas por
el centro o la mediana junto con una función de cobertura o costo.

Finalmente, nótese que una característica común en todos los problemas estudia-
dos es la existencia de un modo/red alternativo para satisfacer los flujos de demanda.
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Esta situación ha sido modelada utilizando variables binarias. Es decir, el flujo no
se puede compartir entre ambos modos, lo cuál no representa la realidad. Hacemos
hincapié en que el objetivo ha sido desarrollar buenos métodos de resolución, para
luego utilizar los logros obtenidos para resolver modelos más realistas. Por tanto,
una futura línea de investigación, y común en todos los capítulos, sería la de mo-
delar los flujos utilizando modelos aproximados de utilidad aleatoria, por ejemplo,
aproximaciones lineales a trozos de funciones logit.
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In this appendix we provide the pseudo-codes to determine an initial feasible
solution for the (MC) and (PC) formulations described in Section 2.2.4. We denote
by Ns and Es the sets of nodes and edges to design at the end of each algorithm.
Besides, the set Ws refers to the mode choice variables set to 1 once the algorithm
is done.

Algorithm 12: Initial Feasible Solution for (MC)

Initialization: Set Ns = ∅, Es = ∅ and Ws = ∅ and IC = 0.
Compute ratio rw = gw

C(Pathw)
:

for w ∈W in decreasing order of rw do
C̄ = C(Pathw)−

∑
e∈Es∩Ẽw ce −

∑
i∈Ns∩Ñw bi.

if IC + C̄ ≤ Cmax then
Ws ←Ws ∪ {w}
Es ← Es ∪ Ẽw

Ns ← Ns ∪ Ñw

IC ← IC + C̄
end

end
xe = 1 for e ∈ Es, 0 otherwise.
yi = 1 for i ∈ Ns, 0 otherwise.
zw = 1 for w ∈Ws, 0 otherwise.
Return: (x,y, z)

Algorithm 13: Initial Feasible Solution for (PC)

Initialization: Set W̄s = W and Gs = Gtotal.
Compute ratio rw = gw

C(Pathw)
:

for w ∈W in decreasing order of rw do
if Gs − gw ≥ β Gtotal then

Ws ←Ws \ {w}
Gs ← Gs − gw

end

end
xe = 1 if e ∈

⋃
w∈Ws

Ẽw, 0 otherwise.
yi = 1 if i ∈

⋃
w∈Ws

Ñw, 0 otherwise.
zw = 1 for w ∈Ws, 0 otherwise.
Return: (x,y, z)
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These figures show some results of a sensitivity analysis done for the BD_CW im-
plementation developed in Chapter 2 using the benchmark instance of Sioux Falls.

Underlying Network α = 0.5, u = 2 dN

Ctotal = 4171, Gtotal = 84437 t = 22.85, cuts = 3496

cost = 2070, v(ILP) = 75488

α = 0.3, u = 2 dN α = 0.7, u = 2 dN

t= 458.84, cuts = 3056 t = 2.73, cuts = 801

cost = 1237, v(ILP) = 35039 cost = 2870, v(ILP) = 82699

α = 0.5, u = 1.5 dN α = 0.5, u = 3 dN

t= 60.31, cuts = 3460 t = 14.17, cuts = 2641

cost = 2080, v(ILP) = 68227 cost = 2070, v(ILP) = 75488

Figure B.1: Sensitivity analysis for (MC) using Sioux Falls instance.
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Underlying Network β = 0.5, u = 2 dN

Ctotal = 4171, Gtotal = 84437 t = 429.85, cuts = 3306
Gcov = 44112, v(ILP) = 1411

β = 0.3, u = 2 dN β = 0.7, u = 2 dN

t = 925.68, cuts = 2783 t = 136.06, cuts = 3674
Gcov = 24588, v(ILP) = 1058 Gcov = 60276, v(ILP) = 1726

β = 0.5, u = 1.5 dN β = 0.5, u = 3 dN

t = 1471.84, cuts = 3793 t = 1149.26, cuts = 3128
Gcov = 43599, v(ILP) = 1491 Gcov = 42331, v(ILP) = 1411

Figure B.2: Sensitivity analysis for (PC) using Sioux Falls instance.
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CPLEX Auto_BD BD_CW

α λ t gap t gap cuts t gap cuts

0.15

0 3.7812 0 4.4219 0 699 10.25 0 2716
0.25 4.75 0 5.1094 0 835 17.9688 0 3391
0.5 2.6562 0 2.875 0 754 6.0781 0 1306
0.75 0.78 0 2.56 0 712 2.54 0 1206
1 0.26 0 0.96 0 132 0.78 0 630

0.25

0 151.51 0 259.25 0 1648 799.72 0 9201
0.25 196.20 0 206.09 0 2517 578.84 0 8358
0.5 175.90 0 327.54 0 2925 507.54 0 12261
0.75 625.51 0 725.87 0 2474 734.08 0 10275
1 4.11 0 6.75 0 189 12.20 0 5757

0.4

0 388.65 0 302.15 0 3295 1192.15 0 7095
0.25 168.73 0 81.29 0 3071 85.18 0 6273
0.5 76.09 0 53.61 0 2247 108.26 0 5065
0.75 125.28 0 70.44 0 2571 114.90 0 5703
1 15.45 0 8.89 0 315 23.41 0 4642

Table C.1: Sensitivity analysis of BD_CW implementation for (CD) formulation with
Sioux Falls instance.
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Set Model Description
N all Potential graph to consider.
S chapter 5 Represent a subgraph of N .
R, S chapter 3 Rapid and slow transit lines to design.
N all The set of nodes of graph N .
E all The set of edges of graph N .

NR, NS chapter 3 The set of nodes of line graphs R and S.
Ntrans chapter 3 Set of transfer stations.
ES chapter 5 The set of edges of subgraph S.

ER, ES chapter 3 The set of edges of line graphs R and S.
A all The set of arcs of graph N .
AS chapter 5 The set of arcs of subgraph S.

AR, AS chapter 3 The set of arcs of line graphs R and S.
W all The demand set of origin/destination pairs.
Nw chapters 2,3,5 Feasible subgraph of the origin/destination pair w.
Nw chapters 2,3,5 The set of nodes of subgraph Nw.
Ew chapters 2,3,5 The set of edges of subgraph Nw.

OR, OS chapter 3 The set of possible starting points of lines R and S, respectively.
DR, DS chapter 3 The set of possible end points of lines R and S, respectively.

δ(i) all
The set of edges incident to node i. In chapter 3, it refers to the set of
edges of ER incident to node i.

δw(i) all
The set of edges incident to node i in the subgraph Nw. In chapter 3,
it refers to the set of edges of ER incident to node i in graph Nw.

δw−(i) all
The set of arcs going in of node i in the subgraph Nw. In chapter 5, it
refers to the set of arcs of AR going in of node i ∈ Nw.

δw+(i) all
The set of arcs going out of node i in the subgraph Nw. In chapter 5,
it refers to The set of arcs of AS going out of node i ∈ Nw.

ϑ(i) chapter 3 The set of edges of ES incident to node i.
ϑw(i) chapter 3 The set of edges of ES incident to node i in the graph Nw.
ϑw−(i) chapter 3 The set of arcs of AS going in of node i ∈ Nw.
ϑw+(i) chapter 3 The set of arcs of AS going out of node i ∈ Nw.

POα chapter 5
The set of Pareto-optimal solution networks with respect to the distance
of the shortest paths.

POα
2 chapter 5

The set of Pareto-optimal solution networks with respect to the bicri-
teria center/median problem.

Table 1: List of notation for the sets of elements used in the problems studied.
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Element Model Description
i, j, k all Nodes

e = {i, j} all Edge
a = (as, at) all Arc going out of node as and going in at.
w = (ws, wt) all Origin-destination pair.

Table 2: List of notation for the elements used in the problems studied.

Parameters Model Description
bi chapters 2,4,5 Construction cost of node i.
ce chapters 2,4,5 Construction cost of edge e.

Ctotal chapters 2,4,5 Construction cost of the whole potential network N .
de, da all Weight assigned to an edge, arc, respectively.
gw all Demand associated to the origin/destination pair w.
Gtotal chapters 2, 5 Total demand.

uw all
Length associated to an unknown predefined path in an alternative
existing network.

dS(w) chapter 5 Length of the shortest path from ws to wt in the network S.
`S(w) chapter 5 Minimum value between dS(w) and uw for a given dmand pair w.
α, β chapters 2,4,5 Proportion of Ctotal to consider.
β chapter 2 Proportion of Gtotal to consider.

EmaxR , EmaxS chapter 3 Maximum number of edges to be constructed in R and S.
EidS chapter 3 Minimum number of edges to be coincident with the old design of S.
vSe chapter 3 Current path of the slow line S.

tRa , t
S
a chapter 3 Cost of traversing arc a in the rapid and slow mode, respectively.

tRSk , tSRk chapter 3 Transfer costs at station k from R to S and from S to R.
tRstop, t

S
stop chapter 3 Dwell time costs.

twait chapter 3 Waiting time at stations.

Table 3: List of notation for the parameters used in the problems studied.
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Černỳ, V. (1985). Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications,
45(1):41–51.

Chou, H., Premkumar, G., and Chu, C.-H. (2001). Genetic algorithms for commu-
nications network design-an empirical study of the factors that influence perfor-
mance. IEEE Transactions on Evolutionary Computation, 5(3):236–249.

Chouman, M. and Crainic, T. G. (2015). Cutting-plane matheuristic for service net-
work design with design-balanced requirements. Transportation Science, 49(1):99–
113.

Church, R. and ReVelle, C. (1974). The maximal covering location problem. In
Papers of the Regional Science Association, volume 32, pages 101–118. Springer-
Verlag.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2012). The inventory-routing prob-
lem with transshipment. Computers & Operations Research, 39(11):2537–2548.



References 191

Conforti, M. and Wolsey, L. A. (2019). “Facet” separation with one linear program.
Mathematical Programming, 178(1):361–380.

Contreras, I. (2021). Hub network design. In Crainic, T. G., Gendreau, M., and Gen-
dron, B., eds., Network Design with Applications to Transportation and Logistics,
pages 567–598. Springer.

Contreras, I. and Fernández, E. (2012). General network design: A unified view of
combined location and network design problems. European Journal of Operational
Research, 219(3):680–697.

Cordeau, J.-F., Furini, F., and Ljubić, I. (2019). Benders decomposition for very
large scale partial set covering and maximal covering location problems. European
Journal of Operational Research, 275(3):882–896.

Costa, A. M., Cordeau, J.-F., and Gendron, B. (2009). Benders, metric and cut-
set inequalities for multicommodity capacitated network design. Computational
Optimization and Applications, 42(3):371–392.

Crainic, T. G., Gendreau, M., and Gendron, B. (2021). Network Design with Appli-
cations to Transportation and Logistics. Springer, Canada.

Dempe, S. and Zemkoho, A. (2020). Bilevel optimization. In Springer optimization
and its applications. Vol. 161. Springer.

Deng, L., Gao, W., Zhou, W., and Lai, T. (2013). Optimal design of feeder-bus
network related to urban rail line based on transfer system. Procedia-Social and
Behavioral Sciences, 96:2383–2394.

Desrochers, M. (1986). An algorithm for the shortest path problem with resource con-
straints, volume 421. Université de Montréal, Centre de recherche sur les trans-
ports, Canada.

Eglese, R. W. (1990). Simulated annealing: a tool for operational research. European
Journal of Operational Research, 46(3):271–281.

Fan, W. and Machemehl, R. B. (2006). Using a simulated annealing algorithm
to solve the transit route network design problem. Journal of Transportation
Engineering, 132(2):122–132.

Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., Tian, G., and Li, Z. (2020). An
adaptive lagrangian relaxation-based algorithm for a coordinated water supply and
wastewater collection network design problem. Information Sciences, 512:1335–
1359.



192 References

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algorithm
for the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks: An International Journal, 44(3):216–
229.

Fischetti, M., Salvagnin, D., and Zanette, A. (2010). A note on the selection of
Benders’ cuts. Mathematical Programming, 124(1-2):175–182.

Forsgren, A. and Prytz, M. (2008). Telecommunications Networks Design, pages
269–290. Springer Science & Business Media, U S A.

Fortz, B., Gouveia, L., and Moura, P. (2021). A comparison of node-based and arc-
based hop-indexed formulations for the steiner tree problem with hop constraints.
Technical report, Université libre de Bruxelles.

Fortz, B. and Poss, M. (2009). An improved benders decomposition applied to a
multi-layer network design problem. Operations Research Letters, 37(5):359 – 364.

García, S. and Marín, A. (2020). Covering location problems. In Laporte, G., Stefan,
N., and Saldanha da Gama, F., eds., Location Science, pages 99–119. Springer.

García-Archilla, B., Lozano, A. J., Mesa, J. A., and Perea, F. (2013). Grasp al-
gorithms for the robust railway network design problem. Journal of Heuristics,
19(2):399–422.

Girgis, M. R., Mahmoud, T. M., Abdullatif, B. A., and Rabie, A. M. (2014). Solving
the wireless mesh network design problem using genetic algorithm and simulated
annealing optimization methods. International Journal of Computer Applications,
96(11).

González-Blanco, N., Lozano, A. J., Marianov, V., and Mesa, J. A. (2021). An in-
tegrated model for rapid and slow transit network design (short paper). In 21st
Symposium on Algorithmic Approaches for Transportation Modelling, Optimiza-
tion, and Systems (ATMOS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik.

Guignard, M. (2003). Lagrangean relaxation. TOP, 11(2):151–200.

Guihaire, V. and Hao, J.-K. (2008). Transit network design and scheduling: A global
review. Transportation Research Part A: Policy and Practice, 42(10):1251–1273.

Hakimi, S. L. (1965). Optimum distribution of switching centers in a communica-
tion network and some related graph theoretic problems. Operations Research,
13(3):462–475.



References 193

Hakimi, S. L., Schmeichel, E. F., and Labbé, M. (1993). On locating path-or tree-
shaped facilities on networks. Networks, 23(6):543–555.

Halpern, J. (1976). The location of a center-median convex combination on an
undirected tree. Journal of Regional Science, 16(2):237–245.

Halpern, J. (1978). Finding minimal center-median convex combination (cent-dian)
of a graph. Management Science, 24(5):535–544.

Hansen, P., Labbé, M., and Thisse, J.-F. (1991). From the median to the generalized
center. RAIRO-Operations Research-Recherche Opérationnelle, 25(1):73–86.

Hellman, F. (2013). Sioux falls variants for network design. http://www.bgu.ac.

il/~bargera/tntp/SiouxFalls_CNDP/SiouxFallsVariantsForNetworkDesign.

html. Accessed November 24th, 2022.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Univertity of
Michigan Press, Ann Arbor, Mich.

Hutson, V. A. and ReVelle, C. S. (1989). Maximal direct covering tree problems.
Transportation Science, 23(4):288–299.

Ji, W., Chen, Y., Chen, M., Chen, B.-W., Chen, Y., and Kung, S.-Y. (2015). Profit
maximization through online advertising scheduling for a wireless video broadcast
network. IEEE Transactions on Mobile Computing, 15(8):2064–2079.

Johnson, D. S. and Garey, M. R. (1979). Computers and intractability: A guide to
the theory of NP-completeness. WH Freeman, U S A.

Johnson, D. S., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1978). The complexity
of the network design problem. Networks, 8(4):279–285.

Kermansshahi, S., Shafahi, M., Mollanejad, Y., and Zangui, M. (2010). Rapid transit
network design using simulated annealing. 12th WCTR, pages 1–15.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

Kleinert, T., Labbé, M., Ljubić, I., and Schmidt, M. (2021). A survey on mixed-
integer programming techniques in bilevel optimization. EURO Journal on Com-
putational Optimization, 9:100007.

Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a
review. Location Science, 6(1-4):307–335.

http://www.bgu.ac.il/~bargera/tntp/SiouxFalls_CNDP/SiouxFallsVariantsForNetworkDesign.html
http://www.bgu.ac.il/~bargera/tntp/SiouxFalls_CNDP/SiouxFallsVariantsForNetworkDesign.html
http://www.bgu.ac.il/~bargera/tntp/SiouxFalls_CNDP/SiouxFallsVariantsForNetworkDesign.html


194 References

Koster, A., Phan, T. K., and Tieves, M. (2013). Extended cutset inequalities for the
network power consumption problem. Electronic Notes in Discrete Mathematics,
41:69–76.

Król, A. and Król, M. (2019). The design of a metro network using a genetic algo-
rithm. Applied Sciences, 9(3):433.

Laporte, G. and Mesa, J. A. (2020). The design of rapid transit networks. In Laporte,
G., Nickel, S., and Saldanha da Gama, F., eds., Location Science, chapter 24, pages
685–701. Springer.

Lee, K. Y. and El-Sharkawi, M. A. (2008). Modern heuristic optimization techniques:
theory and applications to power systems, volume 39. John Wiley & Sons, New
Jersey (U S A).

Ljubić, I., Mouaci, A., Perrot, N., and Gourdin, É. (2019). Benders decomposition
for a node-capacitated virtual network functions placement and routing problem.

Ljubić, I., Putz, P., and Salazar-González, J.-J. (2012). Exact approaches to the
single-source network loading problem. Networks, 59(1):89–106.

López-de-los Mozos, M. and Mesa, J. (1992). Location of cent-dian paths in tree
graphs. In Proceedings of the VI Meeting of the Euro Working Group on Locational
Analysis, pages 135–145.

Magnanti, T. L., Mireault, P., and Wong, R. T. (1986). Tailoring Benders decom-
position for uncapacitated network design. In Netflow at Pisa, pages 112–154.
Springer.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders decomposition: Algo-
rithmic enhancement and model selection criteria. Annals of Operations Research,
29(3):464–484.

Magnanti, T. L. and Wong, R. T. (1984). Network design and transportation plan-
ning: Models and algorithms. Transportation Science, (18):1–55.

Mahéo, A. et al. (2020). Benders and its sub-problems.

Marín, Á. G. and Jaramillo, P. (2009). Urban rapid transit network design: acceler-
ated Benders decomposition. Annals of Operations Research, 169(1):35–53.

Martin, R. K. (2012). Large scale linear and integer optimization: a unified approach.
Springer Science & Business Media, New York (U S A).



References 195

Martins de Sá, E., Contreras, I., Cordeau, J.-F., Saraiva de Camargo, R., and
de Miranda, G. (2015). The hub line location problem. Transportation Science,
49(3):500–518.

Mauttone, A., Cancela, H., and Urquhart, M. E. (2021). Public transportation.
In Crainic, T. G., Gendreau, M., and Gendron, B., eds., Network Design with
Applications to Transportation and Logistics, pages 539–565. Springer.

Maya Duque, P. and Sörensen, K. (2011). A grasp metaheuristic to improve acces-
sibility after a disaster. OR Spectrum, 33(3):525–542.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems. Mathematical Programming,
10(1):147–175.

Mehta, D., O’Sullivan, B., Ozturk, C., and Quesada, L. (2015). An adaptive large
neighbourhood search for designing transparent optical core network. In 2015 13th
International Conference on Telecommunications (ConTEL), pages 1–8. IEEE.

Melkote, S. and Daskin, M. S. (2001). An integrated model of facility location
and transportation network design. Transportation Research Part A: Policy and
Practice, 35(6):515–538.

Mesa, J. A. (2018). Comments: on extensive facility location problems on networks:
an updated review 1. TOP, 6(2):227–228.

Mesa, J. A. and Boffey, T. B. (1996). A review of extensive facility location in
networks. European Journal of Operational Research, 95(3):592–603.

Mesa, J. A., Puerto, J., and Tamir, A. (2003). Improved algorithms for several
network location problems with equality measures. Discrete Applied Mathematics,
130(3):437–448.

Monticelli, A. J., Romero, R., and Nobuhiro Asada, E. (2008). Fundamentals of
simulated annealing. In Lee, K. Y. and El-Sharkawi, M. A., eds., Modern Heuristic
Optimization Techniques, pages 123–146. John Wiley & Sons.

Norman, R. Z. and Rabin, M. O. (1959). An algorithm for a minimum cover of a
graph. Proceedings of the American Mathematical Society, 10(2):315–319.

Ogryczak, W. (1997). On cent-dians of general networks. Location Science, 5(1):15–
28.

O’Kelly, M. E. and Miller, H. J. (1994). The hub network design problem: a review
and synthesis. Journal of Transport Geography, 2(1):31–40.



196 References

Pedersen, M. B., Crainic, T. G., and Madsen, O. B. (2009). Models and tabu
search metaheuristics for service network design with asset-balance requirements.
Transportation Science, 43(2):158–177.

Perea, F., Menezes, M. B., Mesa, J. A., and Rubio-Del-Rey, F. (2020). Transporta-
tion infrastructure network design in the presence of modal competition: compu-
tational complexity classification and a genetic algorithm. TOP, 28:442–474.

Potvin, J.-Y. and Gendreau, M. (2019). Handbook of Metaheuristics. Springer, New
York (U S A).

Puerto, J., Ricca, F., and Scozzari, A. (2009). Extensive facility location problems on
networks with equity measures. Discrete Applied Mathematics, 157(5):1069–1085.

Puerto, J., Ricca, F., and Scozzari, A. (2018). Extensive facility location problems
on networks: an updated review. TOP, 26(2):187–226.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The Benders
decomposition algorithm: A literature review. European Journal of Operational
Research, 259(3):801–817.

Risso, C. and Robledo, F. (2013). Using grasp for designing a layered network: a
real ip/mpls over dwdm application case. International Journal of Metaheuristics,
2(4):392–414.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,
40(4):455–472.

Schmidt, M. and Schöbel, A. (2014). Location of speed-up subnetworks. Annals of
Operations Research, 223(1):379–401.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record
breaking optimization results using the ruin and recreate principle. Journal of
Computational Physics, 159(2):139–171.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to
vehicle routing problems. APES Group, Dept of Computer Science, University of
Strathclyde, Glasgow, Scotland, UK, 46.

Sinnl, M. and Ljubić, I. (2016). A node-based layered graph approach for the steiner
tree problem with revenues, budget and hop-constraints. Mathematical Program-
ming Computation, 8(4):461–490.



References 197

Smith, J. and Winter, P. (1991). Topological Network Design, Proceedings of the
NATO Advanced Research Workshop, Copenhagen 1989, Annals of Operations Re-
search 33. J.C. Baltzer AG.

Steuer, R. E. (1986). Multiple criteria optimization. Theory, Computation and
Applications.

Toregas, C., Swain, R., ReVelle, C., and Bergman, L. (1971). The location of emer-
gency service facilities. Operations Research, 19(6):1363–1373.

Wong, R. T. (2021). Telecommunications network design: Technology impacts and
future directions. Networks, 77(2):205–224.

Wu, X., Lü, Z., and Glover, F. (2020). A matheuristic for a telecommunication
network design problem with traffic grooming. Omega, 90:102003.

Xu, J., Chiu, S. Y., and Glover, F. (1996). Probabilistic tabu search for telecom-
munications network design. Combinatorial Optimization: Theory and Practice,
1(1):69–94.

Yaman, H. (2006). Concentrator location in telecommunications networks, volume 16.
Springer Science & Business Media, New York (U S A).

Zhang, Y., Atasoy, B., and Negenborn, R. R. (2022). Preference-based multi-
objective optimization for synchromodal transport using adaptive large neighbor-
hood search. Transportation Research Record, 2676(3):71–87.


	Resumen
	Abstract
	Introduction
	Facility Location Problems
	Extensive Facility Location and Network Design Problems
	Description and notation for the elements in Network Design problems

	Decomposition Methods
	Metaheuristic solution algorithms
	Contributions of this thesis

	Benders Decomposition for Network Design Covering Problems
	Introduction
	Problem formulations and some properties
	Mixed-Integer Linear Formulations
	Preprocessing methods
	Polyhedral properties
	Setting an initial solution
	Relation between (MC) and (PC)

	Benders decomposition implementations
	LP feasibility cuts
	Normalized Benders cuts
	Facet-defining Benders cuts
	Cut-set inequalities

	Computational experiments
	Data sets: benchmark networks and random instances
	Preliminary experiments
	Branch-and-Benders-cuts performance
	Branch-and-Benders-cuts performance on random instances
	Branch-and-Benders-cuts performance on benchmark instances

	Conclusions

	Integrated Model with Rapid and Slow Transit Lines Design
	Introduction
	Problem formulation
	Benders decomposition implementation
	LP feasibility cuts
	Facet-defining Benders cuts

	Computational experiments
	Conclusions

	Metaheuristic approaches for the Maximal-Covering Network Design Problem
	Introduction
	Determination of an initial solution with a GRASP
	Simulated Annealing
	Algorithmic routine of SA
	Cooling schedule
	Neighborhood structure

	Adaptive Large Neighborhood Search
	Algorithmic routine of ALNS
	Neighborhood structure and Operators

	Genetic Algorithms
	Algorithmic routine of GAs
	Neighborhood structure and Operators

	Computational experiments
	Data sets: random instances
	Preliminary experiments for GRASP
	Preliminary experiments for SA
	Preliminary experiments for ALNS
	Preliminary experiments for GA
	Comparative of the metaheuristics on benchmark instances

	Conclusions

	On -Cent-Dians and Generalized-Center for Network Design
	Introduction
	Problem definition
	The generalized-center problem
	Compromise on -cent-dians
	Adding efficiency to the generalized-center problem. Evaluating some other inequality measures

	Problem formulations
	Mixed-Integer Linear formulation for 
	Bilevel formulation for >1. General problem formulation
	Problem formulation to get the Pareto-optimal set

	Algorithmic discussion for [0,1]
	Preprocessing methods
	Benders decomposition for (CD) with [0,1]
	GRASP for (CD) with [0,1)

	Computational experiments
	Data sets: benchmark networks and random instances
	Quality of the solutions with a numerical illustration
	Branch-and-Benders-cut performance
	GRASP performance

	Conclusions

	Conclusions and future research lines
	Conclusiones y líneas de investigación futuras
	Pseudo-code for initial feasible solutions for (MC) and (PC)
	Results for Sioux Falls city network for (MC) and (PC)
	Results for Sioux Falls city networks for (CD)
	List of Figures
	List of Tables
	Notation
	References

