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Abstract

In the present paper, we obtain the two-scale limit system of a sequence of linear elliptic periodic problems with varying coefficients.
We show that this system has not the same structure than the classical one, obtained when the coefficients are fixed. This is due to
the apparition of nonlocal effects. Our results give an example showing that the homogenization of elliptic problems with varying
coefficients, depending on one parameter, gives in general a nonlocal limit problem.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known (see [10,8]) that given a bounded open subset � ⊂ RN and a sequence of matrices A� ∈ L∞(�)N×N ,
which are uniformly elliptic and bounded, there exist a matrix A (homogenized matrix) in the same conditions that A�,
and a subsequence of �, still denoted by �, such that for every f� which converges strongly in H−1(�) to a distribution
f, and every u� which converges in H 1

0 (�) and satisfies

−div A�∇u� = f� in �, (1)

the limit of u� is a solution of the analogue equation, where A� is substituted by A, and f� by f. The aim of the present
paper is to show that the analogue of this result is not true when the matrices A� measurably depend on a parameter,
i.e., when at the place of (1), we have

−divy A�(x, y)∇yu�(x, y) = f�(x, y) in � a.e. x ∈ �, (2)

where (�, �, �) is a given space of measure. Indeed, for this type of problems the limit operator is in general nonlocal
in y. This is due to the fact that the set of solutions of (2) is not compact in general in L2

�(�; L2(�)).
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The homogenization problem (2) appears, for example, in the study of the asymptotic behavior of partial differential
problems with varying coefficients, which depend on an aleatory parameter x ∈ � (stochastic homogenization prob-
lems). Another interesting situation is the study of some systems which usually appear in periodic homogenization.
In this way, let us consider in the present paper the homogenization problem

−div
(
A�

(
x,

x

�

)
∇u� − G

(
x,

x

�

))
= 0 in �, u� = 0 on ��, (3)

where as above � is a bounded open subset of RN , A� and G are, respectively, continuous matrices and vectorial
functions in � × RN , which are periodic in the second variable, of period YN , Y = (− 1

2 , 1
2 ). The matrices A� are

uniformly elliptic and bounded. We remark that (3) is not a particular case of (1) because −div G(x, x
� ) does not

converges strongly, in general, in H−1(�) (it converges in W−1,∞(�)N weakly-∗). When A� is a constant matrix
A, the two-scale convergence theory of Nguetseng and Allaire (see e.g. [1,9]) shows that denoting by u0 ∈ H 1

0 (�),
u1 ∈ L2(�; H 1(YN)/R) the solutions of

−divx

∫
YN

(A(x, y)(∇xu0(x) + ∇yu1(x, y)) − G(x, y)) dy = 0 in �, (4)

−divy(A(x, y)(∇xu0(x) + ∇yu1(x, y)) − G(x, y)) = 0 in RN a.e. x ∈ �, (5)

then the solutions of (3) converge weakly in H 1
0 (�) to u0, while ∇u� two-scale converges to ∇xu0 + ∇yu1 (the idea

is to approximate u�(x) of the type u0(x) + �u1(x, x/�), which is better than to approximate u� just by u). When
divy G(x, y)= 0, Eq. (5) permits to calculate u1 from u0 and then, substituting in (4) we get the homogenized problem
(see e.g. [1,9]) for u0. When this condition is not satisfied we can still calculate u1 from u0 and then to obtain an
equation which only contains u0, but their coefficients depend on G and thus, it is better to remain with the system
(4), (5). In the present paper, given u� the solution of (3), let us search for the system satisfied by the limit of u� in
H 1

0 (�) and the two-scale limit of ∇u�. Clearly, this must contain in particular the limit of a system like (4), (5), where
the second equation has a structure similar to (2). As we announced above, we will obtain a nonlocal limit system
(see Theorem 4 and Proposition 5). In particular there does not exist in general a matrix A such that the corresponding
system is (4), (5), as it happens when A� is constant. Related results have been obtained in [4] for a different problem,
the asymptotic behavior of thin structures. Other results, about the apparition of nonlocal terms in the homogenization
of linear elliptic problems, can be found by using the theory of Dirichlet forms (see [7]), where it is assumed strong
convergence in L2, which as we said above does not hold in our context.

2. Homogenization of periodic problems

We take Y = (− 1
2 , 1

2 ), and � ⊂ RN a bounded open subset of RN .
L(L2(YN)N , L2(YN)N) is the space of lineal continuous functions from L2(YN)N into itself.
As it is usual, we use the index � to mean periodicity. For example, L

p
� (YN) is the space of functions of L

p
loc(R

N)

which are periodic, of period YN .
For a sequence of matrices A� ∈ C0(�̄; C0

� (YN))N×N , such that there exist �, � > 0, with

A�(x, y)		� min{�|	|2, �|A�(x, y)	|2} ∀	 ∈ RN ∀(x, y) ∈ � × RN , (6)

let us study the homogenization of (3), with G ∈ C0(�̄; C0
� (YN))N .

Remark 1. We recall (see [8]) that (6) is equivalent to the existence of �, 
 > 0, such that

A�(x, y)		��|	|2, |A�(x, y)	|�
|	| ∀	 ∈ RN ∀(x, y) ∈ � × RN . (7)

To study the asymptotic behavior of u�, let us apply the Arbogast et al. method’s [2], strongly related to the two-scale
theory (see [1,3,5,6,9]). For this purpose, we define � : RN → ZN by the following rule: assuming RN decomposed as
the union of the cubes k+YN , with k ∈ ZN , then, for a.e. x ∈ RN , �(x) gives the center k of the cube which contains x.
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We remark that if we decompose RN as the union of the cubes �k + �YN , with k ∈ ZN , then the center of the cube
which contains x is ��(x/�).

For the proof of the following theorem we refer to [2,5,6].

Theorem 2. Consider a sequence u� which is bounded in H 1
0 (�) and define û� ∈ L2(RN ; H 1(YN)) by (u� is extended

by zero outside of �)

û�(x, y) = u�

(
��

(x

�

)
+ �y

)
, a.e. (x, y) ∈ RN × YN . (8)

then there exists a subsequence of �, still denoted by �, and there exist u0 ∈ H 1
0 (�), u1 ∈ L2(�; H 1

� (YN)/R), such that

u� ⇀ u in H 1
0 (�), (9)

1

�
∇yû� ⇀ ∇xu0 + ∇yu1 in L2(RN × YN). (10)

Remark 3. For k ∈ ZN , û�(x, y) restricted to (�k + �YN) × YN does not depend on x, and as a function of y, it is
obtained from u� by using the change of variables y = (x − �k)/� which transforms the small cube �k + �YN on YN .
Statement (10) is equivalent to ∇u� two-scale converges to ∇xu0 + ∇yu1.

The homogenization of (3) is given by the following theorem. Its proof is based on the one of the classical result of
F. Murat and L. Tartar for the compactness of the H-convergence [8].

Theorem 4. There exist a subsequence of �, still denoted by �, and an operatorA ∈ L∞(�;L(L2(YN)N , L2(YN)N))

such that:
For every 	 ∈ RN , every w ∈ H 1(RN) and a.e. x ∈ �, we have∫

YN

A(x)(	 + ∇w) · (	 + ∇w) dy

� min

{
�

(
|	|2 +

∫
YN

|∇w|2 dy

)
, �

∫
YN

|A(x)(	 + ∇w)|2 dy

}
. (11)

For every G ∈ C0(�̄; C0
� (YN))N , the solution u� of (3) satisfies (9) and (10), where û� is given by (8) and u0 ∈ H 1

0 (�),

u1 ∈ L2(�; H 1
� (YN)/R) are the unique solutions of

−divx

(∫
YN

(A(x)(∇xu0(x) + ∇yu1(x, .)) − G) dy

)
= 0 in �, (12)

−divy(A(x)(∇xu0(x) + ∇yu1(x, .)) − G) = 0 in RN a.e. x ∈ �. (13)

Proof. We divide the proof in several steps:
Step 1: For G ∈ C0(�̄; C0

� (YN))N , the solutions u� of (3) are bounded in H 1
0 (�). So, by Theorem 2, up to a

subsequence, there exist u0 ∈ H 1
0 (�), u1 ∈ L2(�; H 1(YN)/R) such that (9) and (10) hold. Moreover, using that Â�

defined by (take an extension of A� outside of �)

Â�(x, y) = A�

(
��

(x

�

)
+ �y, y

)
a.e. (x, y) ∈ RN × YN (14)

is bounded in L∞(�×YN)N×N and that (1/�)∇yû� is bounded in L2(�×YN)N , we can also assume that there exists
� ∈ L2(� × YN)N , such that

1

�
Â�∇yû� ⇀ � in L2(� × YN)N . (15)
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For �0, �1 ∈ C1
0(�),  ∈ C1

� (Y ), we take v�(x) = �0(x) + �(x/�)�1(x) as test function in (3). Decomposing RN as

the union of the cubes �k + �YN , k ∈ ZN and using in each cube the change of variables y = (x − �k)/�, we get

0 = lim
�→0

∫
�

(
A�

(
x,

x

�

)
∇u� − G

(
x,

x

�

))
· ∇v� dx

= lim
�→0

∫
�×YN

(
Â�

1

�
∇yû� − G

)
· (∇x�0(x) + �1(x)∇y(y)) dx dy

=
∫
�×YN

(� − G) · (∇x�0(x) + �1(x)∇y(y)) dx dy.

Since �0, �1,  are arbitrary, this means that � satisfies the equations

−divx

(∫
Y

(�(x, y) − G(x, y)) dy

)
= 0 a.e. in �, (16)

−divy (�(x, y) − G(x, y)) = 0 in RN a.e. x ∈ �. (17)

For � ∈ C1
0(�), we take u�� as test function in (3), using then the Rellich–Kondrachov compactness theorem, (16)

and (17), we get

lim
�→0

∫
�

A�

(
x,

x

�

)
∇u� · ∇u�� dx

= − lim
�→0

∫
�

(
A�

(
x,

x

�

)
∇u� · ∇�u� − G

(
x,

x

�

)
· (∇u�� + u�∇�)

)
dx

= − lim
�→0

∫
�×YN

(
Â�

1

�
∇yû� · ∇x�u0 − G ·

(
1

�
∇yû�� + u0∇x�

))
dx dy

= −
∫
�×YN

(� · ∇x�u0 − G · ((∇xu0 + ∇yu1)� + u0∇x�)) dx dy

=
∫
�×YN

� · (∇xu0 + ∇yu1)� dx dy. (18)

On the other hand, from (6) and the lower semicontinuity of the weak convergence, we have

lim
�→0

∫
�

A�

(
x,

x

�

)
∇u� · ∇u�� dx� lim inf

�→0

∫
�

min
{
�|∇u�|2, �|A�

(
x,

x

�

)
∇u�|2

}
� dx

= lim inf
�→0

∫
�×YN

min

{
�

∣∣∣∣1

�
∇yû�

∣∣∣∣
2

, �

∣∣∣∣1

�
Â�∇yû�

∣∣∣∣
2
}

� dx dy

�
∫
�×YN

min{�|∇xu0 + ∇yu1|2, �|�|2}� dx dy.

Thus, from (18) and � arbitrary, for a.e. x ∈ � we get∫
YN

�(∇xu0 + ∇yu1) dy�
∫

YN

min{�|∇xu0 + ∇yu1|2, �|�|2} dy. (19)

Step 2: We consider a countable subset D of C1
0(�)×C1

0(�; C1
� (YN)) which is dense in H 1

0 (�)×L2(�; H 1
� (YN)/R).

By a diagonal argument, there exists a subsequence of �, still denoted by � (this will be the subsequence which appears
in the statement of Theorem 4) such that for every (w0, w1) ∈ Span(D), the solution u� of (3), with G=∇xw0 +∇yw1,
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is such that there exist u0 ∈ H 1
0 (�), u1 ∈ L2(�; H 1

� (YN)/R), � ∈ L2(� × YN)N such that (9), (10), (15)–(19) hold.
From (19), (16) and (17), we have

�

(∫
�

|∇xu0|2 dx +
∫
�×YN

|∇yu1|2 dx dy

)

��
∫
�×YN

|∇xu0 + ∇yu1|2 dx dy

�
∫
�×YN

� · (∇xu0 + ∇yu1) dx dy

=
∫
�×YN

(∇xw0 + ∇yw1) · (∇xu0 + ∇yu1) dx dy (20)

and thus, we deduce

�‖(u0, u1)‖H 1
0 (�)×L2(�;H 1

� (YN )/R) �‖(w0, w1)‖H 1
0 (�)×L2(�;H 1

� (YN )/R). (21)

The two first lines of (20) also show

�‖(u0, u1)‖H 1
0 (�)×L2(�;H 1

� (YN )/R) �‖�‖L2(�×YN )N , (22)

while from (16) and (17), we have∫
�

|∇xw0|2 dx +
∫
�×YN

|∇yw1|2 dx dy =
∫
�×YN

� · (∇xw0 + ∇yw1) dx dy. (23)

So, taking into account (19) and (22) we get

‖(w0, w1)‖H 1
0 (�)×L2(�;H 1

� (YN )/R) �
1

�2 ‖(u0, u1)‖H 1
0 (�)×L2(�;H 1

� (YN )/R). (24)

Following (21) and (24) we can extend the linear application (w0, w1) ∈ D 
→ (u0, u1), to a linear application Q
on H 1

0 (�) × L2(�; H 1
� (YN)/R) which still satisfies (21), (24). From Lax–Milgram’s theorem, Q is bijective and

has a continuous inverse. From (19) and (21) we can also extend the linear application (w0, w1) ∈ D 
→ � to a
continuous application R from H 1

0 (�)×L2(�; H 1
� (YN)/R) into L2(�×YN)N . In particular, we can define S=RQ−1 :

H 1
0 (�) × L2(�; H 1

� (YN)/R) → L2(� × YN)N , which extends the application (u0, u1) ∈ QD 
→ �.
Now, given an increasing sequence of compact subsets Kn of � such that

⋃
n∈N Kn = �, K0 = ∅, we consider

n ∈ C1
0(�), such that n(x) = x, for every x ∈ Kn. Then, we define A ∈ L∞(�;L(L2(YN)N , L2(YN)N)) by

A(x)(g) = S

(∫
YN

g(y) dy · n, w

)
, (25)

∀g ∈ L2(YN)N , a.e. x ∈ Kn\Kn−1, with w ∈ H 1
� (YN)/R, −�w = −div g in RN . From (19), A satisfies (11).

Step 3: Let us take G ∈ C0(�̄; C0
� (YN))N , and define u� as the solution of (3) (with � the subsequence of � given

by the previous step). By Theorem 2, and Step 1, there exist a subsequence of �, still denoted by �, and u0 ∈ H 1
0 (�),

u1 ∈ L2(�; H 1
� (YN)/R), � ∈ L2(� × YN)N such that (9), (10), (15) hold. Let us prove that u0, u1 satisfy (12),

(13), and then, by uniqueness that there is not necessary to extract any subsequence. Applying Step 1 to G replaced by
G − ∇xw0 − ∇yw1, (w0, w1) ∈ Span(D), we deduce from (19)

�2
∫

YN

|� − R(w0, w1)|2 dy�
∫

YN

|∇xu0 + ∇yu1 − Q(w0, w1)| dy a.e. in �.
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By density this holds for every (w0, w1) ∈ H 1
0 (�) × L2(�; H 1

� (YN)/R). Taking (w0, w1) = Q−1(	 · n, ∇yw), with

	 ∈ RN , w ∈ H 1
� (YN)/R) we get

�2
∫

YN

|� − A(x)(	 + ∇yw)|2 dy�
∫

YN

|∇xu0 − 	 + ∇y(u1 − w)|2 dy

a.e. in Kn, and then in �. Thus, � = A(x)(∇xu0(x) + ∇yu1) a.e. in �, which by (16) and (17) proves (12), (13). �

The question now is if effectively there is some example with a nonlocal term. If N =1, it is possible to show that the
homogenized problem of (3) is local. For N = 2, the following result gives an example where a nonlocal term appears.

Proposition 5. Let be � ∈ C0
� (Y ) a sequence which converges almost everywhere to the function =∑

l∈Z �(l−(1/2),l),
and it is such that 0��1 in R. Given

A1 =
(

1 0
0 1

2

)
, A2 =

(
1 0
0 3

2

)
,

we define the sequence of matrices A� ∈ C0(R2; C0
� (Y 2))2×2 by A�(x, y) = A1(x1/

√
�) + A2(1 − (x1/

√
�)),

x = (x1, x2) ∈ �, y = (y1, y2) ∈ R2.

Then, for every bounded open set � ⊂ R2 and every G ∈ C0(�̄; C0
� (Y 2))2, the solution u� of (3) is such that (9),

(10) are satisfied, where u0 ∈ H 1
0 (�), u1 ∈ L2(�; H 1

� (Y 2)/R) are the solutions of

−�u0 = −divx

∫
Y 2

G(x, y) dy in �, (26)

−�yu1 + 1

4

�

�y2
R

(
�u1

�y2

)
= −divy G in R2 a.e. in �, (27)

where R : L2
�(Y

2) → L2
�(Y

2) is the nonlocal operator given by R(z) = �w/�y2, for every z ∈ L2
�(Y

2), with w ∈
H 1

� (Y 2)/R, −�w = −�z/�y2 in R2.

Proof. An easy application of the two-scale convergence theory shows that (9) and (10) hold, where taking A ∈
L∞(Y )2×2 as A1�(−1/2,0) + A2�(0,1/2), there exist û0 ∈ L2(�, H 1

� (Y )/R), û1 ∈ L2(�; L2
�(Y ; H 1

� (Y 2)/R)) such that
(u0, û0, û1) satisfy the variational problem∫

�×Y×Y 2

(
A(t)

(
∇xu0 + dû0

dt
e1 + ∇yû1

)
− G

) (
∇xv0 + dv̂0

dt
e1 + ∇y v̂1

)
dx dt dy = 0

∀(v0, v̂0, v̂1) ∈ H 1
0 (�) × L2(�, H 1

� (Y )/R) × L2(�; L2
�(Y ; H 1

� (Y 2)/R)),

where e1 is the first vector of the usual basis of R2 and u1 is given by

u1(x, y) =
∫

Y

û1(x, t, y) dt a.e. (x, y) ∈ � × RN . (28)

Taking v0 = v̂0 = 0, we deduce û1(x, t, y) = �1(x, y)�(− 1
2 ,0)(t) + �2(x, y)�(0, 1

2 )(t), with �i ∈ L2(�; H 1
� (Y 2)/R),

−divy (Ai∇y�i − G) = 0 and RN , a.e. x ∈ �, i = 1, 2. From (28), we have u1 = (�1 + �2)/2 and then, using
A1 + A2 = 2I , we get −�y�i = −divy Aj∇yu1 and RN , for a.e. x ∈ �, where i, j ∈ {1, 2}, i = j . Denoting by
Υ ∈ L2(�; H 1

� (Y 2)/R) the solution of −�yΥ =−�2u1/�y2
2 in RN , for a.e. x ∈ �, we have that �i =u1+(−1)i+1Υ/2,

i = 1, 2, and then, using the equations satisfied by �i , we conclude that u1 satisfies (27). �
Taking in the variational equation v0 = v̂1 = 0, we now get û0 = 0, and then using v̂0 = v̂1 = 0 we conclude that u0

is the solution of (26).
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