
Modelling the unfolding pathway of
biomolecules: theoretical approach and
experimental prospect

Carlos A. Plata and Antonio Prados

Abstract We analyse the unfolding pathway of biomolecules comprising several in-
dependent modules in pulling experiments. In a recently proposed model, a critical
velocity vc has been predicted, such that for pulling speeds v > vc it is the module
at the pulled end that opens first, whereas for v < vc it is the weakest. Here, we in-
troduce a variant of the model that is closer to the experimental setup, and discuss
the robustness of the emergence of the critical velocity and of its dependence on the
model parameters. We also propose a possible experiment to test the theoretical pre-
dictions of the model, which seems feasible with state-of-art molecular engineering
techniques.
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1 Introduction

The development of the so-called single-molecule experiments in the last decades
has made it possible to carry out research at the molecular level. Biophysics is, un-
doubtedly, one of the fields where these techniques have had a bigger impact, trig-
gering a whole new area of investigation on the elastic properties of biomolecules.
Recent accounts of the current development of this enticing field can be found in
Refs. [1–4].
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Atomic force microscopy (AFM) stands out because of its extensive use. In par-
ticular, the role played by AFM in the study of modular proteins is crucial [5–7].
Figure 1 shows a sketch of the experimental setup in a pulling experiment of a
molecule comprising several modules. The biomolecule is stretched between the
platform and the tip of the cantilever. The spring constant of the cantilever is kc,
which is usually in the range of 100 pN/nm. Here, we consider the simplest situ-
ation, in which the total length of the system ∆Zp = ∆Zc +X is controlled. The
stretching of the molecule makes the cantilever bend by ∆Zc, and then the force can
be recorded as F = kc∆Zc.

The outcome of the above described experiment is a force-extension curve, simi-
lar to panel b) in Fig. 1. This force-extension curve provides a fingerprint of the elas-
tomechanical properties of the molecule under study. When molecules composed of
several structural units, such as modular polyproteins, are pulled, a sawtooth pat-
tern comes about in the force-extension curve [5–7]. At certain values of the length,
there are almost vertical “force rips”: each force rip marks the unfolding of one
module. Interestingly, these force rips already appear when the molecule is quasi-
statically pulled, a limit that can be explained by means of an equilibrium statistical
mechanics description [8]. When the molecule is pulled at a finite rate, the appear-
ance of these force rips can still be explained by the system partially sweeping the
metastable region of the equilibrium branches [9].

The unfolding pathway is, roughly, the order and the way in which the struc-
tural units of the system unravel. It has been recently found out that the unfolding
pathway depends on the pulling velocity and the pulling direction [7, 10–12]. Par-
ticularly, in [11], different unfolding pathways are observed in SMD simulations on
the Maltose Binding Protein. The authors reported that for low pulling speeds the
first unit to unfold is the least stable, whereas for high pulling speed it is the closest
to the pulled end, regardless of their relative stability.

Very recently, a toy-like model has been proposed to qualitatively understand the
above experimental framework [13]. Specifically, each module is represented by a
nonlinear spring, characterised by a bistable free energy that depends on the mod-
ule extension. Therein, the two basins represent its folded and unfolded states. The
spatial structure of the system is retained in its simplest way: each module extends
from the end point of the previous one to its own endpoint (which coincides with
the start point of the next). Moreover, each module endpoint obeys an overdamped
Langevin equation with forces stemming from the bistable free energies and white
noise forces with amplitudes verifying the fluctuation-dissipation theorem.

In the above model, the unfolding pathway was found to depend on the pulling
velocity. In the simplest non-trivial case, there is only one module that is different
from the rest, which is also the furthest from the pulled end. In this situation, only
one critical velocity vc shows up: for pulling velocities vp > vc, it is the weakest
module that opens first but for vp > vc it is the module at the pulled end. In addi-
tion, analytical results were derived for this critical velocity by introducing some
approximations: mainly two, (i) perfect length control and (ii) the deterministic ap-
proximation, that is, our neglecting of the stochastic forces. This was done by means
of a perturbative solution of the deterministic equations in both the pulling velocity
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Fig. 1 a: Sketch of the experimental setup in an AFM experiment with a modular protein. The
position of the platform is shifted ∆Zp from 1 to 2, producing an elongation of X over the molecule
and bending the cantilever a magnitude ∆Zc. From 2 to 3 the force is almost relaxed because of
the unravelling of one of the modules. b: Force-extension curve in a typical lenght-control AFM
experiment with a polyprotein. Each rip in the force accounts for the unfolding of a module. Taken
from [3].

and an asymmetry parameter, which measures how different the potentials of the
modules are.

The main aim of this work is twofold. First, we would like to refine the above
theoretical framework, making it closer to the experimental setup in AFM. In par-
ticular, we would like to look into the effect of a more realistic modelling of the
length-control device. Instead of considering perfect length-control, we consider a
device with a finite value of the stiffness, both at the end of the one-dimensional
chain (as originally depicted in Ref. [13]) and at the start point thereof, which is
where it is usually situated in the AFM experiments, see Fig. 1. Second, we would
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like to discuss how our theory could be checked in a real experiment with modular
proteins.

This chapter is structured as follows. First, we introduce the original model and
discuss its most relevant results in section 2. In section 3, we study the role played
by the location of the restoring spring and the finite value of its spring constant.
We provide some details about the free energy modelling employed for each of the
modules in section 4. Section 5 is devoted to discuss a possible AFM experiment
in order to test our theory. Finally, we wrap up the main conclusions which emerge
from our work.

2 Revision of the model and previous results

Here, we briefly review the model that was originally put forward in Ref. [13].
We consider a polyprotein comprising N modules. When the molecule is stretched,
the simplest description is to portray it as a one-dimensional chain. We define the
coordinates qi, (i = 0, . . . ,N) in such a way that the i-th unit extends from qi−1 to
qi, the extension of the i-th unit is xi = qi−qi−1. Moreover, as shown in Fig. 2, the
pulling device is assumed to be connected to the right (pulled) end of the chain.

Fig. 2 Sketch of the model for a molecule comprising four units. Therein, the units are denoted
by rectangles and have potentials Ui(xi), with xi being the extension of the i-th unit’s. The unit
endpoints qi are represented by the beads, and the extensions are thus xi = qi−qi−1 (by definition,
q0 = 0). The spring stands for the length-controlling device attached to the pulled end q4, whose
contribution to the system free energy is assumed to be harmonic with stiffness kc.

We assume Langevin dynamics for the qi coordinates (q0 = 0),

γ q̇i =−
∂

∂qi
A(q0, . . . ,qN)+ζi i > 0, (1)

in which the ζi are Gaussian white noise forces, such that

〈ζi(t)〉= 0, 〈ζi(t)ζ j(t ′)〉= 2γkBT δi jδ (t− t ′), (2)

with kB being the Boltzmann constant, and γ and T being the friction coefficient
(assumed to be common for all the units) and the temperature of the fluid in which
the protein is immersed, respectively. The global free energy function of the system
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is1

A(q0, . . . ,qN) =
N

∑
i=1

Ui(qi−qi−1)+
1
2

kc(L−qN)
2. (3)

In the previous equation, we have considered an elastic term due to the finite stiff-
ness kc of the controlling device, which is located at the pulling end as shown in
Fig. 2. Finally, L stands for the desired length program and Ui(xi) is the single unit
contribution, which only depends on the extension, to A. Consequently, the force ex-
erted over the biomolecule is kc(L−qN). We consider length-controlled experiments
at constant pulling velocity, that is, L̇ = vp.

When kc→∞, the control over the length is perfect and qN→ L in such a way that
kc(L−qN)→F , being F a Lagrange multiplier. That is, the perfect length-controlled
situation is the same that a force-controlled one but with F the force needed to
maintain a total length equal to L. Note that there is no contribution to the free energy
coming from the pulling device in this limit, since kc(L−qN)

2/2 = F2/(2kc)→ 0.
The approach in Ref. [13] tries to keep things as simple as possible. Then, the

evolution equations for the extensions are written by assuming (i) perfect length
control and (ii) the deterministic approximation, obtained by neglecting the noise
terms. Note that the evolution equations in the latter approximation are sometimes
called the macroscopic equations [14], which are

γ ẋ1 =−U ′1(x1)+U ′2(x2), (4a)
γ ẋi =−2U ′i (xi)+U ′i+1(xi+1)+U ′i−1(xi−1), 1 < i < N, (4b)

γ ẋN =−2U ′N(xN)+U ′N−1(xN−1)+F, (4c)
F = γvp +U ′N(xN). (4d)

So far, nothing has been said about the shape of the single-unit contributions Ui
to the free energy. In order to maintain a general approach, we only request the
functions Ui(x)−Fx to become a double well for some interval of forces. Each well
stands for the folded and the unfolded basins of each module. Now, we separate
these functions in a main part common to all units and a separation from this main
part weighted by an asymmetry parameter ξ ,

Ui(x) =U(x)+ξ δUi(x), U ′i (x) =U ′(x)+ξ δ fi(x). (5)

We have done the same separation in the derivative, by defining δ fi(x) = δU ′i (x).
It is possible to solve the system (4) by means of a perturbative expansion in

the pulling velocity vp and the asymmetry ξ . Indeed, if we retain only linear order
terms in vp and ξ , the corrections due to finite pulling rate and asymmetry are not
coupled. This perturbative solution, when the system starts from an initial condition
in which all the units are folded, is shown to be [13]

1 In Ref. [13], this free energy was denoted by G. Here, we have preferred to employ A because
the relevant potential in length-controlled situations is the Hemlholtz-like free energy, and G is
usually the notation reserved for the Gibbs-like potential G = A−FL, which is the relevant one in
force-controlled experiments [8, 9].
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xi = `+
ξ δ f − vpγ

N2−1
6N

U ′′(`)
+

vpγ
i(i−1)

2N
−ξ δ fi(`)

U ′′(`)
, (6)

where ` = L/N stands for the specific length per module and the over-bar means
average over the units. Note that, if all the free energies are equal (ξ = 0) and we are
not pulling (vp = 0), the total length will be reasonably equally distributed among
all the units. Moreover, it is worth emphasising that this solution is approximate, it
diverges when U ′′(`)→ 0. This shows that this perturbative solution breaks down
when the average length per module ` reaches the stability threshold `b, such that
U ′′(`b) = 0.

We are interested in a criterion that allows us to discern which unit is the first
to unfold and we hope that our perturbative solution is good enough in this regard.
Since the folded state ceases to exist when x reaches `b, it is reasonable to assume
that the first module to unfold is precisely the one for which xi = `b is attained for the
shortest time. In Eq. (6), we can see that the finite pulling term favours the unfolding
of modules that are nearer to the pulled end, whereas the asymmetry term favours
the unfolding of the weaker units (those with the lowest values of δ fi).

We can compute the pulling velocities vi( j) for which each couple of modules
(i, j), j > i, reach simultaneously the stability threshold. They are determined by the
condition

xi(`c) = x j(`c) = `b, (7)

which gives both the value of `c (or time tc) at which the stability threshold is
reached and the relationship between vp and ξ . Then, in a specific system with
known δ fi’s we can predict what are the critical velocities that separate regions in-
side which the first unit to unfold is different. In Ref. [13], some examples of the
use of this theory are provided, which show a good agreement with simulations of
the Langevin dynamics (1).

The simplest configuration in which a critical velocity arises is the following.
Let us consider a chain of N units, all of them with the same contribution to the free
energy, except the first one (the furthest to the pulled end). Therefore, δ fi(x) = 0,
i 6= 1, δ f1(x) 6= 0. Moreover we will assume that δ f1(`b)< 0, that is, the first module
is weaker than the rest. For such a configuration, there appears only one critical
velocity, which is given by [13]

γvc

ξ
=−δ f1(`b)

N−1
. (8)

For vp < vc, the first module to unfold is the weakest one, whereas for vp > vc
the unfolding starts from the pulled end. In Ref. [13], a more general situation is
investigated but, here, we restrict ourselves to this configuration.



Modelling the unfolding pathway of biomolecules 7

3 Relevance of the stiffness

In a real AFM experiment, the stiffness is finite and, as a result, the control over
the length is not perfect. Furthermore, the position that is externally controlled is,
usually, that of the platform and the main elastic force stems from the bending of the
tip of the cantilever, as depicted in Fig. 1. Thus, it seems more reasonable to model
the pulling of the biomolecule in the way sketched in Fig. 3.

Fig. 3 Sketch of the model for a protein with four units. It is identical toFig. 2, except for the
position of the length-controlling device, which is now located at the fixed end.

Some authors [15] have used other elastic reactions that reflect the attachment by
means of flexible linkers among the platform and the pulled end qN , and between
consecutive modules. Here, we will consider a perfect absorption, in order to keep
the model as simple as possible. In the next two subsections, we study the effect of
the finite value of the stiffness kc and the location of the spring, respectively, on the
unfolding pathway.

3.1 Finite stiffness

Here, we still consider the model depicted in Fig. 2, that is, the spring is situated at
the end of the chain, but with a finite value of the stiffness kc. Also, we consider the
macroscopic equations (zero noise), which are

γ ẋ1 =−U ′1(x1)+U ′2(x2), (9a)
γ ẋi =−2U ′i (xi)+U ′i+1(xi+1)+U ′i−1(xi−1), 1 < i < N, (9b)

γ ẋN =−2U ′N(xN)+U ′N−1(xN−1)+ kc

(
L−

N

∑
k=1

xk

)
. (9c)

This system differs from that in Eq. (4) because in the last equation the Lagrange
multiplier F is substituted by the harmonic force kc(L−∑

N
k=1 xk). As in the previous

case, this system is analytically solvable by means of a perturbative expansion in vp
and ξ . The approximate solution for the extension xi is
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xi = ` +

ξ Nkcδ f (`)− vpγkc
[3U ′′(`)+ kc(N−1)]N(N +1)

6[Nkc +U ′′(`)]
U ′′(`)[Nkc +U ′′(`)]

+
vpγkci(i−1)−2ξ [Nkc +U ′′(`)]δ fi(`)

2U ′′(`)[Nkc +U ′′(`)]
. (10)

Here ` 6= L/N, it stems from the relation

U ′(`) = kc(L−N`). (11)

We can see easily how we reobtain (6) taking the limit kc→∞ in (10), as it should be.
Although the solution is slightly different, it still breaks down when U ′′(`) vanishes,
that is, when `→ `b. Therefore, to the lowest order, again we have to seek a solution
of (7), with the extensions given by (10), and substitute `c ' `b therein. This leads
to the same critical velocities found for the infinite stiffness limit.

3.2 Location of the elastic reaction

As depicted in Fig. 1, in an AFM experiment the distance between the moving plat-
form and the fixed cantilever is the controlled quantity. Then, the model sketched in
Fig. 3 is closer to the experimental setup: the left end corresponds to the fixed can-
tilever, with q0 standing for ∆Zc, and the right end represents the moving platform.
Thus, the free energy of this setup is given by

A(q0, . . . ,qN) =
N

∑
i=1

Ui(qi−qi−1)+
1
2

kcq2
0 . (12)

From the free energy (12), we derive the Langevin equations by making use of
Eq. (1). The macroscopic equations (zero noise) read

γ ẋ1 =−2U ′1(x1)+U ′2(x2)+ kc

(
L−

N

∑
k=1

xk

)
, (13a)

γ ẋi =−2U ′i (xi)+U ′i+1(xi+1)+U ′i−1(xi−1), 1 < i < N, (13b)
γ ẋN =−U ′N(xN)+U ′N−1(xN−1)+ vp. (13c)

In the infinite stiffness limit, kc → ∞, the harmonic contribution tends to a new
Lagrange multiplier F such that ∑xi = L. Therefrom, it is obtained that F =U ′1(x1)
and the resulting system is exactly equal to that in Eq. (4). This is logical: if the
spring is totally stiff and then the control over the length is perfect, the two models
are identical.2

2 It is worth emphasising that the two variants of the model, with the spring at either the fixed or
moving end, have the same number of degrees of freedom. In Fig. 2, q0 = 0 and our degrees of
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The system (13) can be solved in an analogous way, by means of a perturbative
expansion in the asymmetry ξ and the pulling velocity vp. The result is

xi = ` +

ξ Nkcδ f (`)− vpγkc
[3U ′′(`)+ kc(N−1)]N(N +1)

6[Nkc +U ′′(`)]
U ′′(`)[Nkc +U ′′(`)]

+

vpγkci
(

i−1+
2U ′′(`)

kc

)
−2ξ [Nkc +U ′′(`)]δ fi(`)

2U ′′(`)[Nkc +U ′′(`)]
. (14)

Again, we can reobtain (6) taking the infinite stiffness limit in (14). Although the
final solution for the extension is different from the previous one, when we look for
the critical velocities and make the approximation `c' `b we get the same analytical
results for them.

Our main conclusion is that the existence of a set of critical velocities, setting
apart regions where the first unit to unfold is different, is not an artificial effect of
the limit kc→ ∞. Indeed, at the lowest order, all the versions of the studied model,
independently of the value of the stiffness and the location of the spring, give the
same critical velocities. This robustness is an appealing feature of the theory, and
makes it reasonable to seek this phenomenology in real experiments.

4 Shape of the bistable potentials

Different shapes for the double-well potentials have been considered in the litera-
ture, mainly simple Landau-like quartic potentials to understand the basic mecha-
nisms underlying the observed behaviours [8, 9, 11] and more complex potentials
when trying to obtain a more detailed, closer to quantitative, description of the ex-
periments [9, 16–18]. For the sake of concreteness, we restrict ourselves to the pro-
posal made by Berkovich et al. [16, 17]. Therein, the free energy of a module is
represented by the sum of a Morse potential, which mimics the enthalpic minimum
of the folded state, and a worm-like-chain (WLC) term [19], which accounts for
the entropic contribution to the elasticity of the unfolded state. Specifically, the free
energy is written as

U(x) =U0

[(
1− e−2b x−Rc

Rc

)2
−1
]
+

kBT
4P

Lc

(
1

1− x
Lc

−1− x
Lc

+
2x2

L2
c

)
. (15)

This shape has shown to be useful for some pulling experiments with actual pro-
teins as titin I27 or ubiquitin [16, 17]. Therein, each parameter has a physical in-

freedom are qi, i = 1, . . . ,N, whereas in Fig. 3 we have the dynamical constraint qN = L and the
degrees of freedom are qi, i = 0, . . . ,N−1. In the limit as kc→∞, we have both constraints, q0 = 0
and qN = L, in both models, making it obvious that they are identical.
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terpretation. First, in the WLC part, we have: (i) the contour length Lc, which is
the maximum length for a totally extended protein, and (ii) the persistence length
P, which measures the characteristic length over which the chain is flexible. Both
of them, Lc and P, can be measured in terms of the number of amino acids in the
chain. Second, for the Morse contribution, we have: (iii) Rc, which gives the loca-
tion of the enthalpic minimum and (iv) U0 and b, which measure the depth and the
width (in a non-trivial form) of the folded basin. The stability threshold `b cannot
be provided as an explicit function of the parameters in Berkovich et al.’s potential.
However, we can always estimate it numerically, solving U ′′(`b) = 0 for a specific
set of parameters.

As we anticipated in section 2, here we will focus in a very specific configuration
where only the first module is different from the rest. Consistently, we use U(x) to
represent the free energy of each of the identical modules, and U1(x) for that of the
first one. In particular, we consider that the first unit has a slightly different contour
length, Lc +∆ . Therefore, we can linearise U1(x) around U(x), using the natural
asymmetry parameter ξ = ∆/Lc� 1. Therefore,

U ′1(x;Lc +∆)'U ′(x;Lc)+ξ δ f1(x;Lc), (16)

where

δ f1(x;Lc)≡ Lc
∂U ′(x;Lc)

∂Lc
=−kBT

2P

 x
Lc(

1− x
Lc

)3 +
2x
Lc

 . (17)

This linearisation is useful for the direct application of our theory to some engi-
neered systems, see the next section.

5 Experimental prospect

In the experiments, the observation of the unfolding pathway is not trivial at all. The
typical outcome of AFM experiments is a force-extension curve (FEC) in which the
identification of the unfolding events is, in principle, not possible when the modules
are identical. Thus, in order to test our theory, molecular engineering techniques
that manipulate proteins adding some extra structures, such as coiled-coil [20] or
Glycine [21] probes, come in handy. For instance, a polyprotein in which all the
modules except one have the same contour length may be constructed in this way. A
reasonable model for this situation is a chain with modules described by Berkovich
et al. potentials with the same parameters for all the modules, with the exception
of the contour length of one of them. According to our theory, a critical velocity
emerges (8) and it may be observed because the unfolding of the unit which is
different can be easily identified in the FEC, see below.

Let us consider an example of a possible real experiment for a polyprotein with
N = 10 modules. We characterise the modules by Berkovich et al. potentials with
parameters,
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P = 0.4 nm, Lc = 30 nm, Rc = 4 nm, (18a)
b = 2, U0 = 100 pN nm, kBT = 4.2 pN nm, (18b)

and the friction coefficient γ = 0.0028pNnm−1s [16]. We call this system M10: since
all the modules are equal in M10, it is not a very interesting system from the point
of view of our theory. Nevertheless, we can consider a mutant species M′10 that is
identical to M10 except for the module located in the first position (the fixed end),
which has an insertion adding ∆ to its contour length. Our theory gives an estimate
for the critical velocity vc by using (8).

In Fig. 4, we compare the theoretical estimate for the critical velocity with the
actual critical velocity obtained by integration of the dynamical system (13). Specif-
ically, we have considered a system with spring constant kc = 100pN/nm. The nu-
merical strategy to determine vc has been the following: starting from a completely
folded state we let the system evolve obeying (13), with a “high” value of vp (well
above the critical velocity), up to the first unfolding. We tune vp down until it is
observed that the first module that unfolds is the weakest one: this marks the ac-
tual critical velocity. There are two theoretical lines: the solid line stems from the
rigorous application of (8), with δ f1 given by (17), and vc is a linear function of
ξ , whereas the dashed line corresponds to the substitution in (8) of ξ δ f1(x) by
U ′1(x;Lc +∆)−U ′(x;Lc), without linearising in the asymmetry ξ . Note the good
agreement between theory and numerics, specially in the “complete” theory where,
for the range of plotted values, the relative error never exceeds 5%. Interestingly,
the computed values of the critical velocity lie in the range of typical AFM pulling
speeds, from 10 nm/s to 104 nm/s [22].

Below vc, it is always the weakest unit that unfolds first. Above vc, the unit that
unfolds first is the pulled one. For the sake of concreteness, from now we consider
an specific molecule M′10 fixing ∆ = 2 nm. Using the linear estimation (17) in (8),
we get a critical velocity vc ' 16 nm/s that, as stated above, is in the range of the
typical pulling speeds in AFM experiments.

In Fig. 5, we plot the extension of each unit vs the total extension qN − q0 in
our notation (X in Fig. 1), which is a good reaction coordinate [23]. We have nu-
merically integrated Eqs. (13) for two values of vp: one below and one above vc,
namely vp = 10 nm/s and vp = 22 nm/s. The red trace stands for the weakest unit
extension whereas the blue one corresponds to the pulled module. We can see that,
for vp = 10 nm/s < vc, the first unit that unfolds is the weakest one, whereas for
vp = 22 nm/s > vc that is no longer the case. Specifically, the first unit that unfolds
is the pulled one, and the weakest unfolds in the 4-th place.

The plots in Fig. 5 are the most useful in order to detect the unfolding pathway of
the polyprotein. Unfortunately, they are not accessible in the real experiments, for
which the typical output is the FEC. Thus, we have also plotted the FEC in order
to bring to light the expected outcome of a real experiment. In Fig. 6, we show the
FEC for the two considered velocities in the same graph (solid line for the lower
speed and dashed line for the higher one).

The FECS in Fig. 6 are superimposed until the first force rip, which corresponds
to the first unfolding event (that of the mutant module for the slower velocity and that
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Fig. 4 Critical velocities for M′10 systems. The parameter ∆ stands for the additional contour
length of the first module. Numerical values (circles) are compared with two theoretical estimates:
“complete” (dashed line) and linear (solid line).

of the pulled unit for the faster one). As the mutant unit has a longer contour length
than the rest, a shift between the curves in the next three pikes is found, because
the effective contour length of the polyprotein has an extra contribution of 2 nm.
Reasonably, for the higher velocity, this shift disappears when the mutant module
unfolds, and the curves are once again superimposed. This plot clearly shows how
the existence of a critical velocity in a real experiment could be sought.

6 Conclusions

We have provided a useful theoretical framework in the context of modular pro-
teins or, in general, of biomolecules comprising several units that unfold (almost)
independently. Therein, according to our theory, it should be possible to find the
emergence of a set of critical velocities which separate regions where the first mod-
ule that unfolds is different. Although we focus on the biophysical application of
the theory, it is worth highlighting that similar models are used in other fields. Many
physical systems are also “modular”, since they comprise several units [24], and
thus a similar phenomenology may emerge. Some examples can be found in studies
of plasticity [25, 26], lithium-ion batteries [27, 28] or ferromagnetic alloys [29].

The development of our theory has shown that the position and value of the elas-
tic constant kc of the length-controlled device is roughly irrelevant for the existence
and value of the critical velocities. The derived expressions for the critical velocities
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Fig. 5 Evolution of the extensions of the different units as a function of the length of the system
qN − q0 in a pulling experiment. The potential parameters are given in Eq. (18), and the pulling
speeds are vp = 10 nm/s < vc (top) and vp = 22 nm/s > vc (bottom). The stiffness is kc = 100
pN/nm, which lies in the range of typical AFM values. The red line corresponds to the weakest
unit and the blue line to the pulled one.
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Fig. 6 Top: FEC for the pulling experiment in Fig. 5. Two pulling speeds are considered, specifi-
cally vp = 10 nm/s (subcritical, solid) and vp = 22 nm/s (supercritical, dashed). Bottom: zoom of
the region of interest, showing the shift between the peaks stemming from the increased contour
length of the mutant module.
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are, to the lowest order, independent of the spring position and stiffness. Notwith-
standing, our theory completely neglects the noise contributions and thus the units
unfold when they reach their limit of stability, that is, at the force for which the
folded basin disappears. This is expected to be relevant for biomolecules that follow
the maximum hysteresis path, using the same terminology as in [9, 24], completely
sweeping the metastable part of the intermediate branches of the FEC.

The numerical integration of the evolution equations for a realistic potential point
out that our proposal for an experiment is, in principle, completely feasible. There-
fore, our work encourages and motivates new experiments, in which the predicted
features about the unfolding pathway of modular biomolecules could be observed.
Finally, the discussion in the previous paragraph on the relevance of thermal noise
makes it clear that an adequate choice of the biomolecule is a key point when trying
to test our theory.
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