
Kernels Methods in Machine Learning

Trabajo Fin de Grado

Dpto. de Estad́ıstica e Investigación Operativa

Universidad de Sevilla

Doble Grado en F́ısica y Matemáticas

24 de Junio 2022

Enrique Naranjo Bejarano

Tutor: Emilio J. Carrizosa Priego

CONTENTS 1

Contents

1 Introduction. Statistical Learning Theory. 2

1.1 Statistical Learning Theory . 3

1.1.1 The formal setup . 3

1.1.2 The VC Dimension . 6

1.1.3 Structural Risk Minimization and Regularization 8

1.1.4 Rademacher Complexity . 9

2 Introduction to Kernels 11

2.1 Reproducing Kernel Hilbert Space . 11

2.2 The Reproducing Kernel Feature Map and The Feature Space 16

2.3 Kernels in Rademacher Complexity Theory . 18

2.4 Construction of kernels . 20

2.4.1 Polynomial kernels . 21

2.4.2 Gaussian kernel . 22

3 Kernels in Supervised Learning 23

3.1 Support Vector Machine . 23

3.1.1 Hard-margin SVM . 24

3.1.2 Soft margin classifier . 27

3.1.3 ν-support vector machine . 29

3.1.4 2-norm soft margin SVM . 30

3.2 Support vector machines for regression . 31

3.2.1 ε-insensitive regression . 32

3.2.2 ν-support vector regression . 34

3.3 The perceptron . 35

4 Kernels in Unsupervised Learning 37

4.1 Kernel Principal Component Analysis . 37

4.1.1 Principal Component Analysis . 37

4.1.2 Kernel principal component analysis . 39

4.2 Kernel Cluster Analysis . 40

4.2.1 Greedy solutions: k-means . 43

4.2.2 Relaxed solution: spectral methods . 44

4.3 Data visualisation . 45

4.3.1 Multidimensional scaling . 46

5 Conclusions 48

References 50

Enrique Naranjo Bejarano

2

1 Introduction. Statistical Learning Theory.

In this final degree thesis, we are interested in understanding the role of positive-
definite kernels in the field of Machine Learning. First introduced by James Mercer
in 1909 [1] in the context of integral equations, the concept of a positive-definite ker-
nel would be further developed to become a central concept in Machine Learning.
It was not until 1995, when Vladimir Vapnik [12] introduced the Support Vector
Machine algorithm, that the theory of positive-definite kernels would be used in
practical applications. This breakthrough was possible due to the development be-
tween 1960 and 1990 of Statistical Learning Theory(SLT) by Vapnik [14]. This
framework is the most natural for introducing concepts that are central to Machine
Learning, such as loss function, regularization, and, most notably for this thesis,
kernels. Statistical Learning Theory tries to define the notion of learning by an
algorithm in a mathematical sense. Thus, its main focus is related to supervised
learning. Supervised learning is the collection of machine learning algorithms that
work with labeled data. They are concerned with classification and regression prob-
lems. The main difference between the two is that in classification problems, the
data we want to predict is discrete, and in regression, it is continuous. Although SLT
comprises a natural framework for understanding supervised learning algorithms, it
does not generalize well to unsupervised learning algorithms. Unsupervised learning
tries to find underlying relationships in data. Thus, this kind of algorithm does not
‘learn’ anything, but rather, they help the person working with the data to under-
stand it better. Although they are not the primary concern in machine learning,
unsupervised learning is a necessary tool in any machine learning project pipeline
as they help select the number of features that best fit the learning algorithm of
choice. For these reasons, the kernel method that was proven useful for supervised
learning algorithms was extended to unsupervised learning. We will see that any
machine learning algorithm that can be expressed only in terms of the dot products
of the data is suitable for a kernelized form.

During this thesis, we will follow a constructive approach. We begin by introducing
the main concepts of Statistical Learning Theory. This incremental process will help
us understand the main concepts underlying machine learning. After this, the notion
of a semi-positive kernel will come naturally. We will introduce the three main com-
ponents of the theory of semi-positive kernels: Reproducing kernel Hilbert Space,
Mercer’s Theorem, and the Representation Theorem. Once we have constructed a
working theory of semi-positive kernels in Machine Learning, we will be concerned
with how to implement algorithms that take advantage of this theory. Also, we will
want to construct a series of valuable kernels. Following a historical thread, we in-
troduce support-Vector Machines (SVM) for classification and regression problems.
Then, we introduce another powerful algorithm: perceptrons. The perceptron algo-
rithm is crucial because it is the foundation for Neural Networks, one of the most
popular algorithms nowadays. Then, we will follow by introducing some kernelized
algorithms in Unsupervised Learning. These algorithms are Kernel Principal Com-
ponent Analysis, Kernel Cluster Analysis, and Kernel Multidimensional Scaling. As

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 3

Machine Learning is more an applied field than a theoretical one, along with each
theoretical development of the algorithm, we will make comments about the com-
putational complexity of the algorithms. Along these lines, we will discover that the
main obstacle to implementing kernel methods is that they are not efficient enough
for large-scale applications. This inefficiency is why this method fell out of fashion
in the second half of the 00’. Although kernel methods are no longer considered to
be state-of-the-art, they are an essential piece in the field of Machine Learning, and
they still play a central role in many Machine Learning projects. Thus, this thesis
will help us get a fine grip on all the main concepts of Machine Learning, and along
the way, we will flawlessly define the concept of a kernel.

1.1 Statistical Learning Theory

In this section, we are interested in introducing the main concepts of Statistical
Learning Theory as they were first presented by Vapnik [14]. This abstract learn-
ing theory introduced more general ideas than those discussed in classical statistical
paradigms. The understanding of these new conditions helped in the development of
new algorithms. Once we have taken care of the underlying statistical nature of the
data, we will be more concerned with problems related to functional analysis. Thus,
Statistical Learning Theory comprises a framework that unifies the classical theories
of statistics and functional analysis. According to Vapnik [14], Fisher’s paradigm
to answer the learning question: “What must one know a priori about an unknown
functional dependency to estimate it based on observations” was very restrictive. As
suggested, one must know everything, i.e., understand the desired dependency up to
the values of a finite number of parameters. Vapnik’s new paradigm indicated that
it is sufficient to know some general properties of the set of functions to which the
unknown dependency belongs. To achieve this objective, Vapnik developed these
subjects in his theory: determination of the general conditions under which esti-
mating the unspecified dependence is possible, finding the inductive principles that
lead to finding the best approximation to the unknown dependency, and, once all
these steps are accomplished, developing algorithms for its implementation. Thus,
under this framework, we have a systematic method for developing algorithms such
as Support Vector Machines (SVM) and Neural Networks (NN). Furthermore, we
will see that the notion of kernel follows naturally.

1.1.1 The formal setup

In Supervised Learning we will work with an input space X and an output space
Y. Our main objective will be to estimate a functional relationship of the form
f : X → Y. Such a relationship f is called a classifier. The interesting part
is that we don’t have access to all the points in X × Y, but rather to a subset
of training points S = {(X1, Y1), . . . , (Xn, Yn)} ⊂ X × Y. Our goal is to find a
classification algorithm that produces a classifier f for our training data. If this

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 4

classifier f adjusts well enough (we will see what this exactly means later) to the
true underlying relationship, then we say the algorithm has generalized. Although
no assumption is made on the spaces X and Y, we will assume that each point
is generated independently from a joint probability distribution P on X and Y. It
is important to notice that the probability distribution also affects the labels Y.
Consequently, the labels Yi are not a deterministic function of the objects Xi. We
assume this to include the possibility that the labels are suggested to noise. Thus, we
consider that we may be training with incorrect labels. This is a somewhat realistic
assumption as the labeling process is usually made by hand and is prone to errors.
Nevertheless, we will always assume that this type of error is small. Another critical
case covered under this assumption is that of overlapping classes. For example, if
we want to find the gender of a person according to height, the height X = 1.80m
may correspond to a girl and a boy. In both cases, the essential condition to take
under consideration is the conditional likelihood of the labels:

η(x) := P (Y = 1|X = x).

In the case of slight little noise, the conditional probability will be close to 1. For
significant label noise, it will be close to 0.5. In the latter case, learning becomes
more complex, and it becomes unavoidable that the classifier makes a relatively
large number of errors.

Another essential assumption is that the samples are drawn independent and iden-
tically distributed (iid). Iid data is a relatively strong but necessary assumption.
Thus, the way the data get sampled is essential to satisfy this assumption. Getting
iid data will not always be possible, as is the case in active learning in which the
users get to select the points that they want to get labeled actively. Or the subject
of time series analysis. Analyzing data from a sample that is not iid is an unresolved
field of study and is heavily researched.

An essential difference between classical statistics and SLT is that SLT does not
make any assumption on P . Thus, statistical learning theory works in an agnos-
tic setting. This agnostic setting is different from classical statistics, which assume
that the probability distribution belongs to a probability distribution, and the goal
is to estimate the parameters of the distribution. Moreover, the distribution P is
unknown at the time of learning, which is one of the essential assumptions in SLT.
Learning would be trivial if we knew P as we could write a formula for the best
classifier. Writing these closed types of formulas is what the Statisticians in the
first half of the 20th century tried to achieve. However, as Vapnik noted in [14],
the density estimation problem is a hard and ill-posed problem. Then, we only have
access to P through the training points. The more training points we have, the more
prone the algorithm will be to generalize. Statistical Learning Theory allows us to
make formal statements about the rate of convergence of the learning algorithm.
Furthermore, it gives us bounds abound the number of observations the algorithm
needs to generalize. We will see an important trade-off between the ’complexity’ of
the classes of function that we choose to fit our data and the algorithm’s capacity

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 5

to generalize. Moreover, the distribution P will be fixed. Indeed, classical SLT does
not work with probability distributions that change over time. Thus, we will not be
able to work with time series data. This strong assumption leaves an increasingly
important set of problems behind.

In this way, learning consists on finding a classifier f : X→ Y from a sample data
set that approximates E[y|x]. We will look for such an estimator in a set of possible
candidates. This set is called the hypotheses space F . We also need an error criterion
to find the best possible candidate from the hypothesis space F , which is defined as
a risk functional I : F → R. This functional gives the expected risk :

I[f] =

∫∫
X×Y

V (y, f(x))p(x, y) dxdy, (1.1)

where V (y, f(x)) is called the loss function as it measures the error made when y is
predicted by f(x). Then, a critical step in the learning process is to define the error
function V (y, f(x)). Popular options for the loss function are:

1. The L2 norm or squared loss function: V (y, f(x)) = (y − f(x))2.

2. The L1 norm loss function: V (y, f(x)) = |y − f(x)|.

3. The Vapnik epsilon-insensitive loss function:

V (y, f(x)) =

{
|y − f(x)| if |y − f(x)| ≥ ε
0 if |y − f(x)| < ε

4. The soft margin loss function:

V (y, f(x)) =

{
y − f(x) if y ≥ f(x)
0 if y < f(x)

5. The Huber Loss function:

V (y, f(x)) =

{
ε|y − f(x)| − ε2

2
if |y − f(x)| ≥ ε

1
2
(y − f(x))2 if |y − f(x)| < ε

We will mainly use the squared loss function. Once the loss functions is specified,
we look for a classifier f ∈ F that minimizes the expected risk:

f ∗ = arg min
f∈F

I[f].

The minimized function f ∗ is called the target function. The joint probability P (x, y)
is unknown from our assumptions. And the only information available about joint
probability is the training set S. Then, we can not compute the expected risk
directly; consequently, we can not compute the target function. To overcome this

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 6

problem, Vapnik [14] proposed that it is enough to minimize the so-called empirical
risk :

Iemp[f,S] =
1

N

N∑
i=1

V (yi, f(xi)). (1.2)

Finding the optimal hypothesis that minimizes the functional over the hypothesis
space is called the empirical risk minimization. Vapnik proved [14] that the problem
of empirical risk minimization is statistically consistent with the minimization of
the expected risk. In order to be consistent, the following law of large numbers is a
necessary and sufficient condition:

lim
N→∞

P

(
sup
f∈F

(I[f]− Iemp[f,S]) > ε

)
= 0, ∀ε > 0. (1.3)

Thus, the objective now is to minimize the empirical risk. However, the only points
available to solve that minimization problem are the points from the training set.
We may find a function that minimizes the empirical risk but does not minimize the
expected risk. In this case, we say that the function overfit the data and that the
algorithm is not able to generalize. Then, the problem of empirical risk minimization
is ill-posed. To solve this, we limit the set of hypotheses F when minimizing the
empirical risk Iemp[f,S]. This restriction on the hypotheses spaces F is the key for
the theory of semi-positive kernels as we will force this set to be a bounded convex
subset of a Reproducing Kernel Hilbert Space H (RKHS). We will see later that this
RKHS can be represented by a kernel k. Thus, characterising the space in which we
are looking for a solution.

From the previous discussion, we have seen a constant trade-off between the num-
ber of points in the training set and the “capacity” of the functional space H where
the empirical risk is minimized. Statistical Learning Theory provides probabilistic
bounds between the expected and the empirical risk based on the size of the training
set N and the “capacity” h of the hypothesis space. These bounds give a combi-
natorial measure for the model complexity. The problem is how to measure the
capacity h of a hypothesis spaces. Vapnik introduced [14] the Vapnik-Chervonenkis
(VC) dimension as a way to measure the capacity of a functional space. The VC
dimension is one of the most general capacity measures but it is only defined for
spaces of binary functions. Several generalizations have been made for spaces of
non-binary functions. One of them is the Rademacher complexity. This measure
provides more insight into kernel methods that the VC dimension while providing
similar bounds. For this reason, we will use the Rademacher complexity during this
thesis. We begin by introducing the VC dimension.

1.1.2 The VC Dimension

In order to define the VC dimension of a binary classification model, we introduce
the VC dimension of a set family. For this purpose, the concept of a shattered set

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 7

is introduced.

Definition 1.1 (Shattered set [19]). Let be H a set of sets and C be a set. Their
intersection is defined as:

H ∩ C := {h ∩ C | h ∈ H}. (1.4)

We say that the C is shattered by H if H ∩ C contains all the subsets of C.

From this definition we can define the VC dimension of a set family as:

Definition 1.2 (VC dimension of a family set [19]). Let H be a family set. The
VC dimension D of H is the largest cardinality of sets shattered by H. If arbitrarily
large subsets can be shattered, the VC dimension is ∞.

Thus, we can define what it means for a binary classification model f(θ) to shatter
a set of data points.

Definition 1.3 (Model f shattering [19]). A binary classification model f(θ) that
depends of some parameter vector θ is said to shatter a set of data points S =
{x1, x2, . . . , xn} if, for all assignments of labels to those points, there exists a θ such
that the model f classify correctly all points in S.

Then, the VC dimension of a binary classification model is defined as:

Definition 1.4 (VC dimension of a model f(θ) [19]). The VC dimension of a model
f(θ) is the maximal cardinal D such that some data point set of cardinality D can
be shattered by f .

Then, for example, for a straight line classification model on points in a two-
dimensional plane. Its VC dimension is three, as any three points not in a line
can be classified with a line, but no line can shatter any set of four points. If we
have the set of linear functions but in Rd the VC-dimension is D = d + 1 since is
not possible to separate more that d+ 1 points by a linear hyperplane in Rd.

We call the VC dimension D of a classification model f(θ) the capacity h of the
model. For a given capacity h, the bound of the expected risk is given in general
with a probability of at least δ as:

I[f] ≤ Iemp[f,S] + η

(√
h

N
, δ

)
, (1.5)

where η is an increasing function. The second part in the right side of the inequality
is called the Structural risk. This relationship is vital in the theory of Statistical
Learning. From our previous discussion, the capacity h of a model gives a measure
of how well the model can adjust to a set of points. If the model has a high capacity,
it adjusts well to the data, and the empirical error is small. However, in this case,

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 8

the right hand of the previous expression increase as η is an increasing function of
h
N

. Then, the discrepancy between the empirical and expected risk increases. The
only way to reduce this discrepancy is to increase the number of data points N for
h
N

to decrease, but then, if the model is fixed, the empirical error increase. For
these reasons, there is a constant trade-off between the empirical risk, the number
of points N , and the hypothesis space’s capacity h.

1.1.3 Structural Risk Minimization and Regularization

To solve this problem, Vapnik [14] introduced the Structural Risk Minimization prin-
ciple. In order to control the capacity h of the hypotheses space, we will work with
a nested sequence of hypotheses spaces H1 ⊂ H2 ⊂ . . .Hq where each hypothesis
space Hp, p = 1, . . . , q has a finite capacity hp larger than all the previous spaces:
h1 ≤ h2 ≤ · · · ≤ hq. Then we can control the right side of (1.5) by choice of an ap-
propriate Hp. We are looking for an optimal trade-off between the empirical and the
structural risk. In the theory of kernel models, the spaces Hp are bounded convex
subsets of a Reproducing Kernel Hilbert Space H as induced by a kernel k. If we
denote by ‖·‖k the norm in the RKHS and supposing that all functions are bounded
by r ∈ R the empirical risk minimization is given by:

min
f∈H,‖f‖2k≤r2

1

N

N∑
i=1

V (yi, f(xi)). (1.6)

The fact that the space H is bounded results in a regularized empirical risk min-
imization known as Ivanov Regularization. If we take into account the Structural
Risk Minimization principle then we have to solve the following problem:

min
f∈H,‖f‖2k≤a2p

1

N

N∑
i=1

V (yi, f(xi)). (1.7)

where the sequence {ap}qp=1 ⊂ R is a monotonically increasing sequence of real
constants. It can be proven [14] that optimizing this formulation of the Ivanov
Regularization problem is equivalent to minimizing:

min
f∈H

1

N

N∑
i=1

V (yi, f(xi)) + γp
(
‖f‖2k − a

2
p

)
, (1.8)

with respect to f ∈ H and maximizing with respect to γp ≥ 0. Moreover, according
to the structural minimization principle, this should be done for each ap. However,
this is a computationally intensive task. For this reason, the problem is reformulated
in a relaxed form known as Tikhonov regularization problem:

min
f∈H

1

N

N∑
i=1

V (yi, f(xi)) +
1

2γ
‖f‖2k . (1.9)

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 9

Where γ is a regularization parameter, thus, the Tikhonov regularization proposes
a trade-off between the structural risk ‖f‖2k and the empirical risk. This parameter
is not known beforehand. To select one value of γ, various values γ are chosen, and
we pick the optimal one using a technique such as cross-validation. The parameter
γ is called an hyperparameter of the model.

1.1.4 Rademacher Complexity

Although the VC dimension provides an intuitive approach to defining the capacity
of a hypothesis space, it also comes with many theoretical limitations. For these rea-
sons, a more appropriate measure of the capacity was introduced: the Rademacher
Complexity. We begin by introducing the Rademacher distribution:

Definition 1.5 (Rademacher Distribution [19]). The Rademacher distribution is a
discrete probability distribution whose probability mass function is:

f(k) =

1/2 if k = −1
1/2 if k = +1
0 otherwise

(1.10)

Thus, if σ is a random variable drawn from a Rademacher distribution: P (σ =
−1) = P (σ = 1) = 0.5.

Given a space Z and a fixed distribution DZ , let S = {z1, . . . , zN} be a set of
examples drawn iid from DZ . Furthermore, let F be a class of functions f : Z → R.

Definition 1.6 (Empirical Rademacher complexity [19]). The empirical Rademacher
complexity of F is defined to be:

[[19]]R̂N(F) = Eσ

[
sup
f∈F

(
1

N

N∑
i=1

σif(zi)

)]
(1.11)

where σ1, . . . , σm are independent random variables over the Rademacher distribu-
tion.

Definition 1.7 (Rademacher complexity [19]). The Rademacher complexity of F
is defined as

RN(F) = ED[R̂N(F)] (1.12)

In this expression, the supremum measures, for a given set S and the Rademacher
vector σ, the maximum correlation between f(zi) and σi over all f ∈ F . After
taking the expectation over σ, the empirical Rademacher complexity measures the
ability of functions from F to fit random noise. Then, the Rademacher complexity
of F measures the expected noise-fitting-ability of F over all data sets S ∈ Zm that
could be drawn according to the distribution DZ .

We present a uniform convergence result for any class of (bounded) real-value func-
tions.

Enrique Naranjo Bejarano

1.1 Statistical Learning Theory 10

Theorem 1.8 ([18]). Fix distribution DZ and parameter σ ∈ (0, 1). If F ⊂ {f :
Z → [a, a + 1]} and S = {z1, . . . , zn} is draw iid from DZ then with probability
greater or equal than 1− δ over the draw of S, for every function f ∈ F ,

ED[f(z)] ≤ ÊS[f(z)] + 2RN(F) +

√
ln(1/δ)

N
.

In addition, with probability ≥ 1− δ, for every function f ∈ F ,

ED[f(z)] ≤ ÊS[f(z)] + 2R̂N(F) + 3

√
ln(2/δ)

N

Proof. [18]

At last, we present the following result that connects the loss function and the
expected and empirical risk. This bound depends on the class of function we are
working with, and we restrict our presentation to the class of linear functions.

Theorem 1.9 ([18]). Let X = Rd, Y = {−1, 1}, and Z = X × Y . For a concept
class H ⊂ {h : X → Y } we can let L(H) = {Vh | h ∈ H} where Vh : Z → R
is a loss function corresponding to the classifier h. If we let H be the class of
linear separators and L(H) be the corresponding class of 0 − 1 loss functions, i.e.
lh(z) = lh(x, y) = 1h(x)6=y for each h ∈ H, then:

ED[lh(z)] = I[h] (1.13)

and

ÊS[lh(z)] =
1

N

N∑
i=1

1h(xi)6=yi = Iemp(h) (1.14)

Taking F = L(H), then:

I[h] ≤ Iemp[h] + 2RN(L(H)) +

√
ln 1/δ

N
(1.15)

Moreover, the relationship RN(L(H)) = 1
2
RN(H) holds, and the above expression

can be written as:

I[h] ≤ Iemp[h] +RN(H) +

√
ln 1/δ

N
(1.16)

Proof. [18]

The above theorem gives a bound of the generalization error of a hypothesis in
terms of its empirical error and the Rademacher complexity of the class of loss
functions. After this result, we are ready to introduce the kernel concept. Once we
fully understand the concept of a kernel and its role in Statistical Learning Theory,
we will incorporate it into the Rademacher complexity theory.

Enrique Naranjo Bejarano

11

2 Introduction to Kernels

We are ready to introduce Kernel theory’s main ingredients: Reproducing Kernel
Hilbert Spaces (RKHS), Mercer Kernels, and the Reproducing theorem. As stated
in the previous section, we are looking for solutions in a hypothesis space H that, for
our convenience, will be an RKHS. We will see that an RKHS is uniquely determined
by a kernel and, thanks to Mercer’s theorem, a Mercer kernel defines an RKHS. We
will see how this is related to the implementation of the structural risk minimization
principle. Then, we will show that a definite positive kernel k uniquely determines a
so-called Reproducing Feature Space Fr. The Kernel k represents the inner product
between the elements of the feature space. Thus, a kernel can be seen as a function
that gives the inner product of data points in a Feature Space. This Feature Space
can be even infinite-dimensional. Thus, kernels allow us to calculate the inner prod-
uct of points in infinite-dimensional spaces computationally. This vision is the most
popular interpretation of kernels and the one we will use to derive the kernelized
versions of linear algorithms. For this reason, when implementing the kernelized
version on an algorithm, our objective will be to write it in a form such that only
the inner products between the data are needed. This condition is not restrictive at
all. When implementing an algorithm in data analysis, the only information that
we know of is the distance between the data points. Thus, it is natural to write an
algorithm that only depends on the distance of its points. When writing the algo-
rithm is written in this form, we will say that the algorithm is in dual form. The
dual version of an algorithm only depends on the inner products of the data points.
As we can express the inner products as a kernel, we can couple the algorithm with
any kernel function we choose. Thus, naturally restricting the hypotheses space.
Moreover, we have achieved a modularity design in which the choice of Kernel and
algorithms are separated. In this way, we can turn linear algorithms into non-linear
ones. Thanks to this vision, we can also write an Unsupervised learning algorithm
in kernel form. At last, we will show how the Rademacher complexity of a family of
functions depends on kernels.

2.1 Reproducing Kernel Hilbert Space

We begin this section by introducing the concept of a Reproducing Kernel Hilbert
Space:

Definition 2.1 (Reproducing Kernel Hilbert Space). Let H be a functional Hilbert
Space whose functions are defined over a bounded domain X ⊂ Rd. H is a Repro-
ducing Kernel Hilbert Space if the evaluation functional Fx, defined as:

Fx[f] = f(x), ∀f ∈ H, (2.1)

is continuous for every x ∈ X . This is equivalent to being a linear and bounded
operator in H, i.e. there exists some Mx > 0 such that

|Fx[f]| := |f(x)| ≤Mx ‖f‖H , ∀f ∈ H. (2.2)

Enrique Naranjo Bejarano

2.1 Reproducing Kernel Hilbert Space 12

Where ‖f‖H is the norm defined by the inner product 〈·, ·〉H in the Reproducing
Hilbert Space. By the Riesz representation theorem [11], it can be proven that for
each RKHS there exists an unique positive definite function k : X × X → R, such
that k(x, ·) ∈ H, ∀x ∈ X has the reproducing property :

f(x) = 〈f(·), k(x, ·)〉H (2.3)

Since k(x, ·) ∈ H:

k(x,y) = Fy[k(x, ·)] = 〈k(x, ·), k(y, ·)〉H (2.4)

Then k : X × X → R is called the reproducing kernel of H.

Definition 2.2 ((Strictly) Positive Definite Function). Let a1, a2, . . . , an ∈ R, and
x1,x2, . . . ,xn ∈ X . The function f : X × X → R is said to be positive definite if:

n∑
i,j=1

aiajf(xi,xj) ≥ 0. (2.5)

If this inequality is strictly positive, the function is called strictly positive definitive.

According to this definition the kernel k of a RKHS is positive definitive:

n∑
i,j=1

aiajk(xi,xj) =

〈
n∑
i=1

aik(xi, ·),
n∑
j=1

ajk(xj, ·)

〉
H

=

∥∥∥∥∥
n∑
i=1

aik(xi, ·)

∥∥∥∥∥
2

H

≥ 0. (2.6)

This property is an important one because, according to the Moore-Aronszajn the-
orem [3], every symmetric, positive definite kernel defines a unique Reproducing
Kernel Hilbert Space.

Theorem 2.3 ([3]). Suppose k is a symmetric, positive definite kernel on a set X .
Then there is a unique Hilbert space of function on X for which k is a reproducing
kernel.

In this way, a RKHS is uniquely determined by its reproducing kernel k.

Another important class of kernels are Mercer kernels which are defined using Mer-
cer’s theorem

Theorem 2.4 (Mercer’s theorem [1]). Let X be a compact subset of Rd. Suppose κ is
a continuous symmetric function such that the integral operator Tκ : L2(X)→ L2(X)

(TKf)(·) =

∫
X

κ(·,x)f(x)dx,

is positive, that is ∫
X×X

κ(x, z)f(x)f(z)dxdz ≥ 0,

Enrique Naranjo Bejarano

2.1 Reproducing Kernel Hilbert Space 13

for all f ∈ L2(X). Then, we can expand κ(x, z) in a uniformly convergent series
(on X × X) in terms of functions φj:

κ(x, z) =

dH∑
j=1

λjφj(x)φj(z).

where {φi}dHi=1 ∈ L2(X) is an orthogonal set of normalized eigenfunctions of the
integral operator Tk, i.e. ‖φi‖L2 = 1. Correspondingly, the {λi}dHi=1 are the posi-
tive associated eigenvalues of the integral operator Tk and dH, the dimension of the
Hilbert space, is either dH∈N or dH =∞. Furthermore, the series

∑∞
i=1 ‖φi‖

2
L2(X) is

convergent.

Proof. Page 64 [18].

The requirements defined in this theorem are called Mercer conditions, and the
kernel Mercer Kernel. Mercer Kernels and the reproducing kernel of a RKHS are
related. In the first place, it can be prove that Mercer Kernels are also positive
definite. Intuitively this can be seen by taking a weighting sum of delta functions
in the Mercer condition of the positiveness of the integral operator. Moreover, for
a given Mercer kernel k defined over the domain X ⊂ Rd, there exists an RKHS H
of functions defined over X for which k is the reproducing kernel.

Theorem 2.5 ([19]). Given a Mercer kernel k : X × X → R where X ⊆ R is
bounded. Then, there exists an RKHS H of functions defined over X for which the
Mercer Kernel k is the reproducing kernel.

Proof. We already now that the Mercer Kernel k is positive definite. Our aim is to
construct a RKHS where k is the reproducing kernel. Let H be a Hilbert Space of
functions of the form:

f(·) =

dH∑
i=1

ciφi(·), (2.7)

where {φi}dHi=1 and {λi}dHi are the eigenfunctions and eigenvalues of the integral
operator corresponding to the Mercerl Kernel. The coefficients ci ∈ R are arbitrary.

The inner product in this Hilbert space is defined to be:

〈f(·), g(·)〉H =

〈
dH∑
i=1

ciφi(·),
dH∑
i=1

diφi(·)

〉
:=

dH∑
i=1

cidi
λi

(2.8)

Enrique Naranjo Bejarano

2.1 Reproducing Kernel Hilbert Space 14

This Hilbert space is an RKHS with the reproducing kernel the Mercer kernel.

〈f, k(x, ·)〉H =

〈
dH∑
i=1

ciφi(·),
dH∑
j=1

λjφj(x)φj(·)

〉
H

=

dH∑
i=1

dH∑
j=1

ciλjφj(x) 〈φi(·), φj(·)〉H

=

dH∑
i=1

ciλiφi(x)

λi

= f(x).

(2.9)

From which follows that the Mercer kernel k is a reproducing kernel in this Hilbert
space.

The opposite is also true.

Theorem 2.6 ([19]). For a given RKHS H its corresponding reproducing kernel
is also a Mercer kernel with associate eigenfunctions and eigenvalues {φi}dHi=1 and
{λi}dHi .

Proof. See [15].

Then the concepts of a Mercer kernel and a reproducing kernel are equivalent:

RKHS H ⇐⇒ Mercer kernel ⇐⇒ Reproducing kernel (2.10)

Thus, for any RKHS there is a unique kernel k and corresponding λn and φn that
uniquely define the space. Moreover, the norm in that RKHS is given by:

‖f‖2k =

dH∑
i=1

c2i
λi
. (2.11)

where the notation ‖·‖k is used to stress the fact that the norm only depends on the
kernel k of the RKHS. As we introduced previously, our goal is to use the structural
risk minimization principle to derive learning machines. According to this principle,
we need to define a nested sequence of hypothesis spaces H1 ⊂ · · · ⊂ Hn with Hm

being the set of functions f in the RKHS H. It can be proven [16] that the capacity
of the set of functions {f ∈ H | ‖f‖2k ≤ a} depends on a ∈ R+. Therefore, it is
enough to search for functions such as:

‖f‖2k ≤ a2m, (2.12)

where am is a monotonically increasing sequence of positive constants. Then, for
each m we need to solve the following constrained minimization problem:

minf∈H
1
N

∑`
i=1 V (yi, f (xi))
‖f‖2K ≤ A2

m

(2.13)

Enrique Naranjo Bejarano

2.1 Reproducing Kernel Hilbert Space 15

This type of learning machines are called kernel machines. Learning using kernel
machines of this form leads to using the Lagrange multiplier λm and to minimizing:

1

N

N∑
i=1

V (yi, f(xi)) + λm(‖f‖2k − A
2
m), (2.14)

with respect to f ∈ H and maximizing with respect to λm ≥ 0 for each element of
the structure. We can choose the optimal m∗(N), and the associated λ∗(N), and
get the optimal solution f̂m∗(N).

This is the same solution we get if we solve the problem:

min
f∈H

1

N

N∑
i=1

V (yi, f(xi)) + λ∗(N) ‖f‖2k . (2.15)

Therefore, a kernel machine can also be defined as the solution of the following more
general problem:

min
f∈H

1

N

N∑
i=1

V (yi, f(xi)) + λ ‖f‖2k . (2.16)

The following theorem is called the Representer Theorem and it is the last important
theorem in the theory of kernels.

Theorem 2.7 (Representer Theorem [19]). Consider a positive definite real valued
kernel k : X × X → R on a non-empty bounded set X with a corresponding Re-
producing Kernel Hilbert Space Hk. Let V : X × Y → R be a differentiable loss
function. Then, the solution to the problem:

min
f∈H

1

N

N∑
i=1

V (yi, f(xi)) + λ ‖f‖2k , (2.17)

has the form:

f̂(x) =
N∑
i=1

cik(x,xi), (2.18)

with the coefficients ci found by solving the minimization problem.

Proof. [19].

Thus, in order to define a family of learning functions it is enough to specify the
loss function V . For example:

1. V (y, f(x)) = (y = f(x))2, the squared loss function, results in Regularization
Networks.

2. V (y, f(x)) = |y − f(x|ε, the Vapnil’s ε−insensitive loss function, results in
SVM regression.

Enrique Naranjo Bejarano

2.2 The Reproducing Kernel Feature Map and The Feature Space 16

3. V (y, f(x)) = |1 − yf(x)|+, the soft margin loss function, results in SVM
classification.

After defining the kernel function of a RKHS we are ready to introduce the Feature
Space.

2.2 The Reproducing Kernel Feature Map and The Feature
Space

Given a positive definite kernel k, it define a Reproducing Feature Space Fr. The
kernel k represents an inner product between its elements in this space. The Repro-
ducing Kernel Feature Map is defined as follows:

Definition 2.8 (The Reproducing Kernel Feature Map and The Feature Space [19]).
Given a positive definite kernel k, the Reproducing Kernel Feature Map is a function
Φr : X → Fr such that:

Φ(x) = k(·, x), (2.19)

the space Fr is called the Feature Space.

The feature space Fr is the image of the space X under the mapping Φr, and it is
equal to:

Fr = span({Φr(x) : x ∈ X}) = {f(·) =
n∑
i=1

aik(·,xi) : n ∈ N,x ∈ X , ai ∈ R}

(2.20)
For any two functions f(·) =

∑
i cik(·, ui) and g(·) =

∑
i dik(·, vi), the inner product

in this space is define as:

〈f, g〉Fr
=
∑
i,j

cidjk(ui, vj). (2.21)

It can be proven that this is in fact an inner product and that the space Fr equipped
with this product can be completed to be a Hilbert space. This Hilbert space has
the reproducing property:

〈f, k(·,x)〉 =
∑
i

cik(x,ui) = f(x) (2.22)

an the Hilbert Space is equal to:

Fr = span({k(·,x) : x ∈ X}) (2.23)

Therefore, it also holds that:

〈Φ(x),Φ(x′)〉Fr
= k(x,x′). (2.24)

Enrique Naranjo Bejarano

2.2 The Reproducing Kernel Feature Map and The Feature Space 17

In this feature space, Fr the reproducing kernel can be seen as an inner product of
the elements in the Hilbert space.

Another way to highlight the relation between kernels and inner products is through
the Mercer theorem. As was shown earlier, there is a set of orthogonal eigenfunctions
{φi}dHi=1 and eigenvalues {λi}dHi=1 associated to every positive definite kernel. Now,
we define the Mercer Kernel Map Φm : X ⊆ Rd → Fm where the target space Fm
is called the Mercer Kernel Feature Space as:

Φm(x) =
[√

λ1φ1(x), . . . ,
√
λHφdH(x)

]T
, (2.25)

where the dimension dH is the dimension of the feature space, and it is determined
by the choice of kernel. In the same way, an inner product can be defined in this
space:

〈Φm(x),Φm(x′)〉Fm
=

dH∑
i=1

λiφi(x)φi(x
′) = k(x,x′). (2.26)

It can be shown that the space Fm equipped with this inner product is a Hilbert
space. Moreover, the kernels reflect the inner product of the mapping of two vectors
in this feature space Fm. Thus, the positive definite kernel k can be interpreted as
an inner product in another vector space. The importance of this relation is that
in the feature space, the mapped data is of dimension dH, which can be infinite-
dimensional. Kernels allow us to compute the inner product of two mapped data
points φ(x) and φ(x)′ that reside in a space of any possible dimension. Thus, any
algorithm that only depends on inner products can be expressed in terms of kernels,
and this kernel represents the inner products of the points in a feature space.

It is important to notice that the Mercer Kernel Feature Space Fm and the Repro-
ducing Feature Space Fr are not the same space. However, it can be proven [17],
that there exists an isometric isomorphism β : Fm → Fr between the two spaces.
For this reason, we call such spaces the Feature Space.

We have shown how to construct a Feature space from a kernel. Now, we will show
how a mapping of the data, Φ : X → F , to a Feature space F also defines a kernel
k. This mapping can be done if the function is positive and definite.

Theorem 2.9 (Characterisation of kernels [18]). A function

κ : X × X → R,

which is either continuous or has a finite domain, can be decomposed

κ(x, z) = 〈φ(x), φ(z)〉

into a feature map Φ into a Hilbert space F applied to both its arguments followed
by the evaluation of the inner product in F if and only if it satisfies the positive
definite property.

Proof. Page 61 [18].

Enrique Naranjo Bejarano

2.3 Kernels in Rademacher Complexity Theory 18

Therefore, giving a positive definite kernel, it implicitly defines a feature space F
and an associated map Φ. Therefore, given a kernel, we can forget altogether about
the feature map Φ. This fact is known as the Kernel Trick [17]: “Given a model
or algorithm which is formulated in terms of a positive definite kernel k, one can
construct an alternative algorithm by replacing k by another positive definite ker-
nel k’. In this way, a algorithm working with the input data set x1, . . . ,xN ∈ X
with respect to a kernel k can be understood as operating on the mapped data
φ(x1), φ(x2), . . . , φ(xN) ∈ F1. If this kernel k is replaced by another kernel k′, this is
understood as working on another set of mapped vectorial data φ′(x1), . . . , φ

′(xN) ∈
F2. In this way, the more convenient way to think about kernels is a function that
defines a similarity measure between the data points. By changing the kernel, we
change how we measure the similarity between the data points. Moreover, by the
Representer Theorem any solution to the regularized empirical risk minimization
problem can be expressed in terms of the kernel. Thus, any algorithm we create will
only depend on the kernel between the points. For this reason, the Gram matrix or
kernel matrix is the matrix whose entries are equal to:

Gij = 〈φ(xi), φ(xj)〉 = κ(xi, xj). (2.27)

This matrix is symmetric and contains all pairs of inner products between the train-
ing data points. From our previous discussion, calculating the Gram matrix is the
first step for any kernel-based algorithm. Thus, the Gram matrix serves as an in-
formation bottleneck between the data set and the machine learning algorithm. For
this reason, kernel methods have a computational complexity of at least O(N2).
This complexity is one of the biggest inconveniences of kernel methods: they are
not scalable to large datasets. The other problem is the selection of the kernel. The
kernel must recognize the underlying structure of the data set. In order to make this
selection, we must encode our prior expectations about the possible functions we
may be expected to learn. Therefore, kernel methods are only valid if designed by a
person that already has an intuition about the underlying structure of the dataset.
Because of that, to use kernel methods, it is necessary to study the properties of
each kernel, how they are created, how they can be adapted, and how well they are
matched to the task being addressed. These inconveniences are the main reasons
kernel methods ceased to be popular in the mid 00’ and, instead, were replaced with
Neural Networks as the method of choice for machine learning experts.

At last, we will show how to include kernels in the Rademacher Complexity theory
and how to construct the most popular classes of kernels.

2.3 Kernels in Rademacher Complexity Theory

In this section we present the main results to include kernels methods in the the-
ory of the Rademacher Complexity. We will restrict our discussion to bounding
the Rademacher complexity of bounded linear functions in a kernel-defined feature

Enrique Naranjo Bejarano

2.3 Kernels in Rademacher Complexity Theory 19

space. {
N∑
i=1

αik(xi, ·)|α′Kα ≤ B2

}
⊆ {〈w, φ(·)〉| ‖w‖ ≤ B} = FB, (2.28)

where φ is the feature mapping corresponding to the kernel k and K is the kernel
matrix on the sample S. In this expression we have used that the function: f(x) =
〈w, φ(x)〉 =

∑N
i=1 αik(xi,x). Moreover:

‖w‖2 = 〈w,w〉 =

〈
n∑
i=1

αiφ(xi),
n∑
j=1

αjφ(xj)

〉

=
N∑

i,j=1

αiαj〈φ(xi), φ(xj)〉 =
N∑

i,j=1

αiαjk(xi,xj)

= α′Kα.

We present the following theorem that bound the empirical Rademacher complexity
of the class FB:

Theorem 2.10 ([18]). If k : X × X → R is a kernel, and S = {x1, . . . ,xl} is a
sample of points from X , then the empirical Rademacher complexity of the class FB
satisfies:

R̂l(FB) ≤ 2B

N

√√√√ N∑
i=1

k(xi,xi) =
2B

N

√
tr(K) (2.29)

Proof. Page 100 [18].

In order to perform a kernel machine learning algorithm, the dual representation
α of the weight vector is first obtained. The corresponding norm B of the weight
vector is then α′Kα where K is the kernel matrix. The quantity α′Kα is related
to the complexity of the corresponding functions class. By controlling its size, we
can control the capacity of the class of functions and hence improve the statistical
stability of the pattern.

At last, we present an example of an application of this bound. We choose the case
of classification. For this, we must first introduce the notion of the margin for a
binary classification problem. For this problem, the margin is the amount by which
the real value is on the right side of the threshold.

Definition 2.11 ((Functional) margin and slack variable [18]). For a function g :
X → R, we define its margin on an example (x, y) to be yg(x). The functional
margin of a training set S = {(x1, y1), . . . , (xN , yN)}, is defined to be

m(S, g) = min
1≤i≤N

yig(xi). (2.30)

Given a function g and a dedired margin γ we denote by ξi = ξ((xi, yi), γ, g) the
amount by which the function g fails to achieve the margin γ for the example (xi, yi).

Enrique Naranjo Bejarano

2.4 Construction of kernels 20

Using this definition, we can derive the following theorem.

Theorem 2.12 ([18]). Fix γ > 0 and let F be the class of functions mapping from
Z = X × Y to R given by f(x, y) = −yg(x), where g is a linear function in a
kernel-defined feature space with norm at most 1. Let

S = {(x1, y1), . . . , (xN , yN)} (2.31)

be drawn iid with respect to a prability distribution D and fix δ ∈ (0, 1)). Then with
probability at least 1− δ over samples of size N we have

I[f] = ED[H(−yg(x))] ≤ 1

Nγ

N∑
i=1

ξi +
4

Nγ

√
tr(K) + 3

√
ln 2/δ

2N
, (2.32)

where K is the kernel matrix for the training set, ξi = ξ((xi, yi), γ, g) and H(·)
is the Heaviside function that returns 1 if its argument is greater than 0 and zero
otherwise. The loss function can be expressed as:

V (y, f(x)) = H(−yf(x)) (2.33)

Proof. [18].

With this theorem, we have seen a typical bound of the risk with respect to the
kernel of the space. Now that we know how to work with kernels, we will present
some of the most used and important kernels.

2.4 Construction of kernels

Our objectives is to specify a working theory to construct kernels that generalize
well. Since we have fully characterized the kernel functions as functions that satisfy
the finitely positive definite property to generate new kernels from previous ones,
we have to find operations that preserve this property.

Proposition 2.13 (Closure properties [18]). Let κ1 and κ2 be kernels over X ×X,
X ⊆ Rn, a ∈ R+, f(·) a real-valued function on X, φ : X → RN with κ3 a kernel
over RN × RN , p(x) a polynomial with positive coefficients, and B a symmetric
positive semi-definite n× n matrix. Then the following functions are kernels:

1. κ(x, z) = κ1(x, z) + κ1(x, z).

2. κ(x, z) = aκ1(x, z).

3. κ(x, z) = κ1(x, z)κ2(x, z).

4. κ(x, z) = f(x)f(z).

5. κ(x, z) = κ3(φ(x), φ(z)).

6. κ(x, z) = xTBz.

Enrique Naranjo Bejarano

2.4 Construction of kernels 21

7. κ(x, z) = p(κ1(x, z)).

8. κ(x, z) = exp(κ1(x, z).

9. κ(x, z) = exp(−‖x− z‖2 /(2σ2)).

Proof. See page 75 [18].

The last kernel is known as the Gaussian kernel. It captures radial patterns in the
underlying data. Using this proposition we can create new kernels from existing
ones using a number of simple operations. Moreover, it is sufficient to verify that
the a function is finitely positive semi-definite to demonstrate that it is a kernel.
All these operations are performed on the kernel function, but we can also apply
operations to the kernel matrix as long as the kernel matrix keeps being positive,
semi-definite, and symmetric. Such operations are:

1. Adding a constant to all entries in the kernel matrix. This operation corre-
spond to adding an extra constant feature.

2. Adding a constant to the diagonal corresponds to enhancing the independence
of all the inputs.

3. Centering the data by moving the origin of the feature space to the center of
mass of the training examples.

4. Subspace projection. This can be an effective method of de-noising the data.

We explore in more detail two of the more important kernels: the polynomial kernel
and the gaussian kernel.

2.4.1 Polynomial kernels

We introduce the most basic kernel one can use: the polynomial kernel. We have
previously seen that the space of valid kernels is closed under applying polynomials
with positive coefficients. A polynomial kernel is defined as follows:

Definition 2.14. Polynomial kernels[[18]] The derived polynomial kernel for a ker-
nel κ1 is defined as

κ(x, z) = p(κ1(x, z)),

where p(·) is any polynomial with positive coefficients. Frequently, it also refers to
the special case

κd(x, z) = (〈x, z〉+R)d,

defined over a vector space X of dimension n, where R and d are parameters.

Now we would like to know the dimension of the feature space associated with
a polynomial kernel with the previous form. The following proposition gives the
response to this question.

Enrique Naranjo Bejarano

2.4 Construction of kernels 22

Proposition 2.15 ([18]). The dimension of the feature space for the polynomial
kernel κd(x, z) = (〈x, z〉+R)d is (

n+ d

d

)
.

Proof. [18].

Now if we expand the polynomial kernel we obtain

κd(x, z) =
d∑
s=0

(
d

s

)
Rd−s〈x, z〉s.

Hence we have obtained a reweighting of the features of the polynomial kernels

κ̂s(x, z) = 〈x, z〉s, for s = 0, . . . , d.

Moreover, the introduction of the parameter R grants of some controls of the relative
weightings of the different degree monomials as we can write

κd(x, z) =
d∑
s=0

(
d

s

)
Rd−sκ̂s(x, z) =

d∑
s=0

asκ̂s(x, z)

Therefore, increasing R decreases the relative weighting of the higher order polyno-
mials.

2.4.2 Gaussian kernel

The next most used type of kernel is the Gaussian kernel. We define the Gaussian
kernel as follows

Definition 2.16 (Gaussian kernel [18]). For σ > 0, the Gaussian kernel is defined
by

κ(x, z) = exp

(
−‖x− z‖2

2σ2

)
.

From the definition of the Gaussian kernel we deduce that all points have norm
1 in the resulting feature space as κ(x,x) = exp(0) = 1. Also, the parameter
σ controls the flexibility of the kernel similarly to the degree d in the polynomial
kernel. Small values of σ correspond to large values of d since they allow classifiers
to fit any label, risking overfitting. In such cases, the kernel matrix becomes close
to the identity matrix. On the other hand, large values of σ gradually reduce the
kernel to a constant function, making it impossible to learn any non-trivial classifier.
The feature space has infinite dimension for every value of σ, but the weight decays
very fast on the higher-order features for large values. In other words, although the
rank of the kernel matrix will be full for all practical purposes, the points lie in a
low-dimensional subspace of the feature space.

Enrique Naranjo Bejarano

23

3 Kernels in Supervised Learning

3.1 Support Vector Machine

Support Vector Machine (SVM) is a popular machine learning algorithm for clas-
sification and regression. It consists of finding a hyperplane that separate the two
types of points that we want to classify. The objective of the SVM algorithm is
to find the hyperplane that, to the best degree, separates data points of one class
from those of another. “Best” is the hyperplane with the most significant margin
between the two classes. Margin means the maximum slab width parallel to the
hyperplane with no interior data points. Only for linearly separable problems can
the algorithm find such a hyperplane; for most practical problems, the algorithm
maximizes the soft margin allowing a small number of misclassification. Training a
support vector machine corresponds to solving a quadratic optimization problem to
fit a hyperplane that minimizes the soft margin between the classes. The number
of support vectors determines the number of transformed features. Kernels enter
the complete picture to make SVMs more flexible, thus making them able to handle
nonlinear problems. In general, we want our algorithms to be robust and stable. In
order to check the robustness of the algorithm, the following bound on the expected
risk of a linear function g(x) with norm 1 in kernel-defined feature space for a binary
classification problem is given [18]:

I[f] = PD(y 6= g(x)) ≤ 1

Nγ

N∑
i=1

ξi +
4

Nγ

√
tr(K) + 3

√
ln 2/δ

2N
.

This bound is used to choose the linear function returned by the learning algorithm.
We will first introduce the hard-margin separating hyperplane. This algorithm does
not allow any point to cross the separating hyperplane, which is a very restrictive
condition. For this reason, we want to relax the conditions to find a solution that best
adjusts to the underlying data. The soft-margin algorithm and the v-soft algorithm
are introduced. Thanks to the framework we developed in the previous chapters,
we will see that adjusting to each algorithm is enough to select the appropriate loss
function and kernel. Once this is done, we will obtain the dual form of the algorithm.
Moreover, to fully understand SVM, we have to grasp the following concepts: (i)
the separating hyperplane, (ii) the maximum-margin hyperplane, and (iii) the soft
margin hyperplane. When developing a machine learning algorithm, two methods
can be used. First, we have to choose criteria to look up for a pattern function. In
our case, we will try to find a hyperplane that separates the two kinds of points. We
will say that the data points are separable when possible. Usually, this is not the
case as real-world data contain much noise. Therefore we will have to develop a soft-
margin approach in which not all data points are included in the separation. We will
use stability analysis of the corresponding task to find the desired pattern function.
All will come down to a convex optimization problem. We will use Lagrange’s
optimization theorem to derive the dual form of the pattern function. From this
point, we can write the necessary condition in dual form from which an application
of kernel functions will be natural.

Enrique Naranjo Bejarano

3.1 Support Vector Machine 24

3.1.1 Hard-margin SVM

We start by analyzing hard-margin SVM. This algorithm will try to find a hyperplane
that separates the two types of points that we want to classify. This separation will
not always be possible. Therefore, although it is a stable algorithm, it will not be
robust because any additional point can make the set non-separable.

We consider a given training set

S = {(x1, y1), . . . , (xN, yN)}

our objective is to find a norm 1 linear function function:

g(x) = 〈w, φ(xi)〉+ b

where w is a weight vector and b is the threshold. Furthermore, we look for a margin
γ > 0, such that no point is nearer to the hyperplane by that amount

ξi = (γ − yig(xi))+ = 0, 1 ≤ i ≤ N

It is important to notice that the expression yi(g(xi) = yi〈w, φ(xi)〉 + b) measures
how far is the point φ(xi) from the boundary hyperplane. Moreover, as ξi is the loss
function for this model, the empirical risk will be equal to zero. If we define the
margin to be

m(S, g) = min
1≤i≤N

yig(xi)

then it must satisfies that m(S, g) ≥ γ. A set will be called consistent if it correctly
classifies all of the training set. Therefore the computation problem that we want
to solve is the following:

Computation 3.1 (Hard margin SVM [18]). The Hard margin SVM is obtained
by solving the following optimisation problem:

max
w,b,γ

γ

subject to m(S, g) ≥ γ

‖w‖2 = 1

Now we want to arrive at the dual optimization problem. To do so, we will derive
a Lagrangian

L(w, b, γ, α, λ) = −γ −
N∑
i=1

αi (yi(〈w, φ(xi)〉+ b)− γ) + λ
(
‖w‖2 − 1

)
.

Now, we want to find the equilibrium points of this Lagragian with respect to their
parameters:

Enrique Naranjo Bejarano

3.1 Support Vector Machine 25

Figure 1: Hard SVM with margin γ and support vectors cicled.

∂L(w, b, γ, α, λ)

∂w
= −

N∑
i=1

αiyiφ(xi) + 2λw = 0,

∂L(w, b, γ, α, λ)

∂γ
= −1 +

N∑
i=1

αi = 0, and

∂L(w, b, γ, α, λ)

∂b
= −

N∑
i=1

αiyi = 0.

Substituting in the original expression, we can write the function as a function of
the kernel matrix

L(w, b, γ, α, λ) = − 1

4λ

l∑
i,j=1

αiαjyiyjκ(xi,xj)− λ.

To eliminate λ we optimise the function with respect to it, obtaining

λ =
1

2

(
N∑

i,j=1

αiαjyiyjκ(xi,xj)

)1/2

,

finally

L(α) = −

(
N∑

i,j=1

αiαjyiyjκ(xi,xj)

)1/2

,

this expression is called the dual Lagragian. We have the following algorithm:

Enrique Naranjo Bejarano

3.1 Support Vector Machine 26

Algorithm 3.2 (Hard Margin SVM [18]). The hard margin SVM is given by the
following algorithm.

Input training set S = (x1, y1), . . . , (xN, yN)
Process find α∗ as solution to the optimisation problem:

maximise W (α) = −
∑N

i,j=1 αiαjyiyjκ(xi,xj)

subject to
∑N

i=1 yiαi = 0,
∑N

i=1 αi = 1 and 0 ≤ αi, i = 1, · · · , N.
4 γ∗ =

√
−W (α∗)

5 choose i such that 0 < α∗i
6 b = yi(γ

∗)2 −
∑N

j=1 yjκ(xj,xi)

7 f(·) = sgn
(∑N

j=1 α
∗
jyjκ(xj, ·) + b

)
;

8 w =
∑N

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Table 1: Hard margin SVM algorithm [18]

The following theorem characterizes the output and stability of the algorithm.

Theorem 3.3 (SVM characterization [18]). Fix δ > 0. Suppose that a training
sample

S = {(x1, y1), . . . , (xN , yN)},

is drawn according to a distribution D is linearly separable in the feature space
implicitly defined by the kernel κ and suppose that the Hard margin SVM algorithm
outputs w, α∗.γ∗ and the function f . Then the function f realises the hard margin
support vector machine in the feature space defined by κ with geometric margin γ∗.
Furthermore, with probability 1−δ, the generalisation error of the resulting classifier
is bounded by

4

Nγ∗

√
tr(K) + 3

√
ln(2/δ)

2N

where K is the corresponding kernel matrix.

Proof. See page 216 [18].

It is important to notice that from The Karush-Kuhn-Tucker (KKT) complemen-
tary conditions [4][20] in convex programming the optimal solutions α∗, (w∗, b) must
satisfy

α∗i [yi(〈w∗, φ(xi)〉+ b∗)− γ∗] = 0, i = 1, . . . , N.

Which implies that only the xi that lie closest to the hyperplane have their corre-
sponding α∗i non-zero. For this reason the inputs with non-zero α∗i are called support
vectors.

Enrique Naranjo Bejarano

3.1 Support Vector Machine 27

Another important remark is concerning the convexity of the optimization problem.
The convexity of the function we want to optimize ensures that we do not fall
into local minima. We already know that the kernel matrix is convex from the
semi-definite positive property. Now, we want to check whether the matrix G =
(yiyjκ(xi,xj))

N
i,j=1 is also positive semi-definite

β′Gβ =
N∑

i,j=1

βiβjyiyjκ(xi,xj)

=

〈
N∑
i=1

βiyiφ(xi),
N∑
j=1

βjyjφ(xj)

〉
=

∥∥∥∥∥
N∑
i=1

βiyiφ(xi)

∥∥∥∥∥
2

≥ 0.

This equation shows an essential property of kernel methods. For the kernel to
define a feature space, it must be positive definite; this property ensures that we do
not fall into local minima and that a unique solution to the optimization problem
exists.

3.1.2 Soft margin classifier

Although the hard margin SVM is an important concept, its practical uses are
limited as, in most cases, the given data will not be naturally linearly separable in
the embedded space. This makes hard margin SVM a non-robust estimator. We
want to develop a more robust version that can adjust to noisy data and outliers in
the training data set. For that reason, we will allow some points to not be separated
by the hyperplane. Therefore not all components of

ξi = (γ − yig(xi))+

will be equal to zero. This give the following criterion.

Computation 3.4 (1-norm soft margin SVM [18]). The 1-norm soft margin SVM
is obtained by solving the following optimisation problem

min
w,b,γ,ξ

− γ + C

N∑
i=1

ξi

subject to yi(〈w, φ(xi) + b〉) ≥ γ − ξi, ξi ≥ 0,

i = 1, . . . , N, and ‖w‖2 = 1.

The parameter C controls the trade-off between the margin and the size of the slack
variables.

In the same way, as we did for the hard margin SVM, we will study the Lagrangian

Enrique Naranjo Bejarano

3.1 Support Vector Machine 28

corresponding to the 1-norm soft margin optimization problem.

L(w, b, γ,xi, α, β, γ) = −γ+C
N∑
i=1

ξi −
N∑
i=1

αi[yi(〈φ(xi)),w)− γ + ξi]

−
N∑
i=1

βiξi + λ
(
‖w‖2 − 1

)
with αi ≥ 0 and βi ≥ 0. That can be adapted to the dual objective function

L(α) = −

(
N∑

i,j=1

αiαjyiyjκ(xi,xj)

)1/2

.

Therefore, we have the algorithm for the soft margin SVM and the theorem that
characterize it.

Theorem 3.5 (1-norm soft margin support vector machine [18]). Fix δ > 0 and
C ∈ [1/N,∞). Suppose that a training sample

S = {(x1, y1), . . . , (xN , yN)}

is drawn according to a distribution D. The following algorithm outputs the weight
vector w, the dual solution α∗, margin γ∗ and function f implementing the decision
rule represented by the hyperplane.

Input training set S = (x1, y1), . . . , (xN, yN)
Process find α∗ as solution to the optimisation problem:

maximise W (α) = −
∑N

i,j=1 αiαjyiyjκ(xi,xj)

subject to
∑N

i=1 yiαi = 0,
∑N

i=1 αi = 1 and 0 ≤ αi ≤ C, i = 1, · · · , N.

4 λ∗ = 1
2

(∑N
i,j=1 yiyjα

∗
iα
∗
jκ(xi,xj)

)1/2
5 choose i, j such that −C < α∗i yi < 0 < α∗jyj < C

6 b∗ = −λ∗
(∑N

k=1 α
∗
kykκ(xk,xi) +

∑N
k=1 α

N
k=1α

∗
kykκ(xkxj)

)
7 2λ∗

∑N
k=1 α

∗
kykκ(xk,xj) + b∗

8 f(·) = sgn
(∑N

j=1 α
∗
jyjκ(xj, ·) + b∗

)
;

9 w =
∑N

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Table 2: 1-norm soft margin SVM [18].

Then the function f realises the 1-norm soft margin support vector machine in the
feature space defined by κ. Furthermore, with probability 1 − δ, the generalisation
error is bounded by

1

CN
−
√
−W (α∗)

CNγ∗
+

4

Nγ∗

√
tr(K) + 3

√
ln(2/δ)d

2N
,

where K is the corresponding kernel matrix.

Enrique Naranjo Bejarano

3.1 Support Vector Machine 29

Proof. See page 233 [18].

If we compare this algorithm to the Hard Margin SVM, we realize that we have to
solve the same optimization with the additional constraint that C bounds all the αi.
For this reason, this constrain is called the box constrain, and it limits the influence
of outliers. Moreover, an important problem is finding the parameter C that best
fits the data. This can be done with crossvalidation techniques [24].

3.1.3 ν-support vector machine

As the value of C must satisfy that C ≥ 1/N , this suggest using

C =
1

νN
, ν ∈ (0, 1]

as a way to have control over the number of outliers. This give rise to the ν-support
vector machine.

Theorem 3.6 (ν-support vector machine [18]). Fix δ > 0 and ν ∈ (0, 1]. Suppose
that a training sample

S = {(x1, y1), . . . , (xN , yN)}
is drawn according to a distribution D. he following algorithm outputs the weight
vector w, the dual solution α∗, margin γ∗ and function f implementing the decision
rule represented by the hyperplane.

Input training set S = (x1, y1), . . . , (xN, yN)
Process find α∗ as solution to the optimisation problem:

maximise W (α) = −
∑N

i,j=1 αiαjyiyjκ(xi,xj)

subject to
∑N

i=1 yiαi = 0,
∑N

i=1 αi = 1 and 0 ≤ αi ≤ 1/(νN), i = 1, · · · , N.

4 λ∗ = 1
2

(∑N
i,j=1 yiyjα

∗
iα
∗
jκ(xi,xj)

)1/2
5 choose i, j such that −1/(νN) < α∗i yi < 0 < α∗jyj < 1/(νN)

6 b∗ = −λ∗
(∑N

k=1 α
∗
kykκ(xk,xi) +

∑N
k=1 α

N
k=1α

∗
kykκ(xkxj)

)
7 2λ∗

∑N
k=1 α

∗
kykκ(xk,xj) + b∗

8 f(·) = sgn
(∑N

j=1 α
∗
jyjκ(xj, ·) + b∗

)
;

9 w =
∑N

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Table 3: ν-norm soft margin SVM.

Then the function f realises the 1-norm soft margin support vector machine in the
feature space defined by κ. Furthermore, with probability 1 − δ, the generalisation
error is bounded by

ν −
ν
√
−W (α∗)

γ∗
+

4

Nγ∗

√
tr(K) + 3

√
ln(2/δ

2N
,

Enrique Naranjo Bejarano

3.1 Support Vector Machine 30

where K is the corresponding kernel matrix. Furthermore, there are at most νN
training points that fail to achieve a margin γ∗, while at least νl of the training
points have margin at most γ∗.

Proof. See page 226 [18].

The parameter ν corresponds to the noise level inherent in the data. It imposes
a lower bound on the generalization error achievable by any learning algorithm.
Again, the parameter ν is an hyperparameter and must be specified by the user of
the algorithm or by using a technique such as crossvalidation [24].

3.1.4 2-norm soft margin SVM

Previously we have used the 1-norm regularization in the derivation of the SVM.
This norm is not the only choice for the norm of the regularization term. Depending
on the regularization term used, different results will be obtained. The 1-norm regu-
larization term, also known as L1 regularization or Lasso regularization. Allows the
less important feature’s coefficients to be zero. In this way, when we have many fea-
tures, it can be used as a feature selection technique. On the other hand, the 2-norm
regularization term, also known as the L2 regularization or Rigdge regularization,
only acts as a smoother of the features. The bigger the associated coefficients, the
smoother the result will be. We introduce the 2-norm soft margin SVM.

Computation 3.7 (2-norm soft margin SVM [18]). The 2-norm soft margin SVM
is obtained by solving the following optimisation problem

min
w,b,γ,ξ

− γ + C
N∑
i=1

ξ2i

subject to yi(〈w, φ(xi) + b〉) ≥ γ − ξi,
i = 1, . . . , N, and ‖w‖2 = 1.

Obtaining again the dual formulation of the optimization problem:

L(α, λ) = − 1

4C

N∑
i=1

α2
i −

(
N∑

i,j=1

αiαjyiyjk(xi,xj)

)1/2

. (3.4)

The 2-norm regularization of the primal problem corresponds to regularising the
dual with the 2-norm of the Lagrange multipliers. For a given C maximising the
above objective over α is equivalent to maximising:

W (α) = −µ
N∑
i=1

α2
i −

N∑
i,j=1

αiαjyiyjk(xi,xj)

= −
N∑

i,j=1

yiyjαiαj(k(xi,xj) + µδij),

Enrique Naranjo Bejarano

3.2 Support vector machines for regression 31

For a µ = µ(C). This is just the hard-margin algorithm but with the objective
function depending on (k(xi,xj) + µδij) instead of the kernel k(xi,xj).

Theorem 3.8 (2-norm soft margin SVM characterization [18]). The 2-norm soft
margin SVM is given by the following algorithm:

Input training set S = (x1, y1), . . . , (xN, yN)
Process find α∗ as solution to the optimisation problem:

maximise W (α) = −
∑N

i,j=1 αiαjyiyj(k(xi,xj) + µδij)

subject to
∑N

i=1 yiαi = 0,
∑N

i=1 αi = 1 and 0 ≤ αi, i = 1, · · · , N.
4 γ∗ =

√
−W (α∗)

5 choose i such that 0 < α∗i
6 b = yi(γ

∗)2 −
∑N

j=1 yjκ(xj,xi)

7 f(·) = sgn
(∑N

j=1 α
∗
jyj(k(xi,xj) + µδij) + b

)
;

8 w =
∑N

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Table 4: 2-norm soft-margin SVM algorithm [18]

Moreover, given δ > 0. Suppose that a training sample S = (x1, y1), . . . , (xN, yN)
drawn according to a distribution D in the feature space implicitly defined by the
kernel k and suppose that the 2-norm soft-margin SVM algorithm outputs w, α∗, γ∗

and the function f . Then the function f realises the hard margin support vector
machine in the feature space defined by (k(xi,xj) + µδij) with geometric margin γ∗.

This is equivalent to minimising the expression −γ+C
∑N

i=1 ξ
2
i involving the 2-norm

of the slack variable for some value of C. hence realising the 2-norm support vector
machine. Furthermore, with probability 1−δ, the generalisation error of the resulting
classifier is bounded by:

min

(
µ ‖α∗‖2

Nγ∗4
+

8
√
tr(K)

Nγ∗
+ 3

ln 4/δ

2N
,
4
√
tr(K) +Nµ

Nγ∗
+ 3

√
ln 4/δ

2N

)
(3.5)

Proof. See page 230 [18].

3.2 Support vector machines for regression

SVM as defined by Vapnik [12] can be implemented for regression problems. This
can be done by choosing an appropriate loss function. Regression consists of finding
a function that best fits the data. This will give rise to what we will call Support
Vector Regression (SVR). In order to derive the SVR algorithm, first, we will study
the ε-insensitive regression.

Enrique Naranjo Bejarano

3.2 Support vector machines for regression 32

3.2.1 ε-insensitive regression

We will develop a regression algorithm that ignores errors smaller than a certain
threshold ε > 0. This restriction will generate a band around the output, referred
to as a tube. This type of loss function is referred to as an ε-insensitive loss function.

Definition 3.9 (Linear and quadratic ε-insensitive loss function [18]). The linear
ε-insensitive loss function Lε(x, y, g) is defined by

Lε(x, y, g) = |y − g(x)|ε = max(0, |y − g(x)| − ε),

where g is a real-valued function on a domain X, x ∈ X and y ∈ R. Similarly the
quadratic ε-insensitive loss is given by

Lε2(x, y, g) = |y − g(x)|2ε.

The objective will be to optimize the sum of the quadratic ε-insensitive losses subject
to the constraint that the norm is bounded. We have, therefore, the following
algorithm.

Computation 3.10 (Quadratic ε-insensitive SVR [18]). The weight vector w and
the threshold b for the quadratic ε-insensitive support vector regression are chosen
to optimise the following problem

min
w,b,ξ,ξ̂

‖w‖2 + C
N∑
i=1

(ξ2i + ξ̂2i),

subject to (〈w, φ(xi)〉+ b)− yi ≤ ε+ ξi, i = 1, . . . , N,

yi − (〈w, φ(xi〉+ b) ≤ ε+ ξ̂i, i = 1, . . . , N.

Using again the Lagragian function method to derive the dual problem obtain the
following problem.

max
α,α̂

N∑
i=1

yi(α̂i − αi)− ε
N∑
i=1

(α̂i + αi)−
1

2

N∑
i,j=1

(α̂i − αi)(α̂i − αj)(κ(xi,xj) +
1

C
δij),

subject to
N∑
i=1

(α̂i − αi) = 0

α̂i ≥ 0, αi ≥ 0, i = 1, . . . , N.

And the corresponding KKT complementary conditions are

αi(〈w, φ(xi)〉+ b− yi − ε− ξi) = 0, i = 1, . . . , N,

α̂i

(
yi − 〈w, φ(xi)〉 − b− ε− ξ̂i

)
= 0, i = 1, . . . , N,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , N.

From which the following algorithm is obtained.

Enrique Naranjo Bejarano

3.2 Support vector machines for regression 33

Input training set S = (x1, y1), . . . , (xN, yN), C > 0
Process find α∗ as solution to the optimisation problem:

maximise W (α) =
∑N

i=1 yiαi − ε
∑N

i=1 |αi| −
1
2

∑N
i,j=1 αiαj(κ(xi,xj) + 1

C
δij)

subject to
∑N

i=1 αi = 0,

4 w =
∑N

j=1 α
∗
jφ(xj)

5 b∗ = −ε− (α∗i /C) + yi −
∑N

j=1 α
∗
jκ(xj,xi) for i with α∗i > 0.

6 f(x) =
∑N

j=1 α
∗
jκ(xj,x) + b∗,

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing 2-norm SVR.

Table 5: 2-norm support vector regression [18].

Algorithm 3.11 (2-norm support vector regression [18]). The following algorithm
implement the 2-norm support vector regression algorithm.

In the same manner we can implement the regression algorithm but with a linear
loss.

Computation 3.12 (Linear ε-insensitive SVR [18]). The weight vector w and the
threshold b for the linear ε-insensitive support vector regression are chosen to opti-
mise the following problem

min
w,b,ξ,ξ̂

‖w‖2 + C
N∑
i=1

(ξi + ξ̂i),

subject to (〈w, φ(xi)〉+ b)− yi ≤ ε+ ξi, i = 1, . . . , N,

yi − (〈w, φ(xi〉+ b) ≤ ε+ ξ̂i, i = 1, . . . , N,

ξi, ξ̂i ≥ 0, i = 1, . . . , N.

And the corresponding dual problem can be derived as always.

max
α,α̂

N∑
i=1

yi(α̂i − αi)− ε
N∑
i=1

(α̂i + αi)−
1

2

N∑
i,j=1

α̂i − αi)(α̂i − αj)(κ(xi,xj),

subject to
N∑
i=1

(α̂i − αi) = 0

0 ≥ α̂i, αi ≤ C, i = 1, . . . , N.

And the following algorithm is obtained:

Algorithm 3.13 (1-norm support vector regression [18]). The following algorithm
implement the 1-norm support vector regression algorithm.

The algorithm is called Support Vector Regression because if we take a band of
±ε around the function output by the learning algorithm, the points that are not
strictly inside the tube are called support vectors.

Enrique Naranjo Bejarano

3.2 Support vector machines for regression 34

Input training set S = (x1, y1), . . . , (xN, yN), C > 0
Process find α∗ as solution to the optimisation problem:

maximise W (α) =
∑N

i=1 yiαi − ε
∑N

i=1 |αi| −
1
2

∑N
i,j=1 αiαj(k(xi,xj)

subject to
∑N

i=1 αi = 0, −C ≤ αi ≤ C, i = 1, . . . , l.

4 w =
∑N

j=1 α
∗
jφ(xj)

5 b∗ = −ε+ yi −
∑N

j=1 α
∗
jκ(xj,xi) for i with 0 < α∗i < C.

6 f(x) =
∑N

j=1 α
∗
jκ(xj,x) + b∗,

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing 2-norm SVR.

Table 6: 1-norm support vector regression [18].

At last we can give a result about the generalization power of this algorithm.

Theorem 3.14 (Characterization of the ε-insensitive regression [18]). Fix B > 0
and δ ∈ (0, 1). Let FB be the class of linear functions with norm at most B, mapping
from a feature space defined by the kernel k over a space X . Let

S = {(x1, y1), . . . , (xN , yl)} (3.10)

be drawn iid according to a probability distribution D on X×R. Then with probability
at least 1− δ over the random draw of S, we have for all g ∈ FB

PD(|y − g(x)| > γ) ≤

∥∥∥ξ + ξ̂
∥∥∥
1

N(γ − ε)
+

4B
√
tr(K)

N(γ − ε)
+ 3

√
ln 2/γ

2N
(3.11)

where K is the kernel matrix of the training set S.

Proof. [18].

3.2.2 ν-support vector regression

In our derivation of the SVM, we obtained that in the ν-SVM the hyperparameter
ν represented the fraction of of support vectors. We can adopt the same approach
in what is known as the ν-support vector regression.

Computation 3.15 (ν- support vector regression [18]). The weight vector w and
threshold b for the ν-supprot vector regression are chosen to optimise the following
problem:

minw,b,ε,ξ,ξ̂
1
2
‖w‖2 + C

(
νε+ 1

N

∑N
i=1

(
ξi + ξ̂i

))
,

subject to (〈w, φ (xi)〉+ b)− yi ≤ ε+ ξi
yi − (〈w,φ (xi)〉+ b) ≤ ε+ ξ̂i,

ξi, ξ̂i ≥ 0, i = 1, . . . , N,

 (3.12)

Enrique Naranjo Bejarano

3.3 The perceptron 35

After the usual analysis the following algorithm is obtained.

Algorithm 3.16 (ν-support vector regression [18]). The ν-support vector regression
algorithm is implemented as:

Input training set S = (x1, y1), . . . , (xN, yN), C > 0
Process find α∗ as solution to the optimisation problem:

maximise W (α) =
∑N

i=1 yiαi − ε
∑N

i=1 |αi| −
1
2

∑N
i,j=1 αiαj(k(xi,xj)

subject to
∑N

i=1 αi = 0,
∑N

i=1 |αi| ≤ Cν, −C/N ≤ αi ≤ C/N, i = 1, . . . , l.

4 w =
∑N

j=1 α
∗
jφ(xj)

5 b∗ = −ε+ yi −
∑N

j=1 α
∗
jκ(xj,xi) for i with 0 < α∗i < C/N .

6 f(x) =
∑N

j=1 α
∗
jκ(xj,x) + b∗,

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing 2-norm SVR.

Table 7: ν-norm support vector regression [18].

In this algorithm, the parameter ν controls the fraction of training points that
fall outside the tube, i.e., there are at most νN training points outside the tube.
Moreover, at least νN of the training points are support vectors.

3.3 The perceptron

In this section we present the perceptron an online classification algorithms. Con-
trary to the previous algorithms trained in batches, the online algorithm processes
the data at the same time it is received. At each time, the algorithm predicts the
correct output. The true output is then made available, and the degree of mismatch
or loss is recorded. The learner then adjusts according to the feedback received.
The learner’s objective is to adjust to the underlying patterns of the data at quickly
as possible. The percepton was one of the first algorithms of this kind [5]. It was
designed to simulate a neuron of the brain. This algorithm is the start of the field
of Artificial Neural Networks (ANN) and Deep Learnin (DL) [23]. These are two of
the most successful techniques in contemporary machine learning and the object of
much research. However, although NN presents impressive empirical performance,
the theoretical basis of its success is still unknown. For historical reasons and to
introduce this field, we present the perceptron in this work.

The perceptron learns a threshold linear function:

h(x) = sgn(〈w, φ(x)〉). (3.13)

The algorithm make an update whenever a misclassified exampled is processed. The
updating rule is given by:

wt+1 = wt + yiφ(xi). (3.14)

Enrique Naranjo Bejarano

3.3 The perceptron 36

The corresponding dual update rule is given by:

αi = αi + 1, (3.15)

the weight vector is expressed as:

wt =
N∑
i=1

αiyiφ(xi). (3.16)

Then the corresponding algorithm is:

Algorithm 3.17 (Kernel perceptron [18]). The dual perceptron algorithm is im-
plemented as:

Input training sequence (x1, y1) , . . . , (xN , yN)
Process α = 0, i = 0, loss = 0

2 repeat
3 i = i+ 1

4 if sgn
(∑N

j=1 αjyjκ (xj,xi)
)
6= yi

5 αi = αi + 1
6 loss = loss +1
7 until finished

8 f(x) =
∑`

j=1 αjyjκ (xj,x)

Output dual variables α, loss and function f

(3.17)

In order to present a result of the algorithm’s performance, we must suppose that
the algorithm is trained in batches. In this case the following theorem about the
performance of the algorithm follows.

Theorem 3.18. Perceptron characterization [18] Fix δ > 0. Suppose the hard
margin support vector machine has margin γ on the training set:

S = {(x1, y1), . . . , (xN , yN)} (3.18)

drawn iid according to a distribution D and contained in a ball of radius R about
the origin. Then with probability at least 1− δ over the draw of the set S, the gen-
eralisation error of the function f(x) obtained by running the perceptron algorithm
on S in batch mode in bounded by:

PD(f(x) 6= y) ≤ 2

N

(
R2

γ2
lnN + ln

N

2δ

)
, (3.19)

provided
R2

γ2
≤ N

2
. (3.20)

This theorem follows from a classical result of Novikoff [6]. It states that the number
of updates that the perceptron algorithm needs to generalize is bounded by:

R2

γ2
(3.21)

With this result, we end the discussion about perceptrons as they were first intro-
duced by Rosenblatt [5].

Enrique Naranjo Bejarano

37

4 Kernels in Unsupervised Learning

Unsupervised learning consists in extracting valuable patterns from unlabeled data.
We will study algorithms to cluster data into categories and algorithms for visualiza-
tion purposes. Principal components analysis (PCA) algorithms try to find a set of
k directions in the embedding space containing the maximum amount of variance in
the data. We will also study how to find correlations between two different represen-
tations of the same data (canonical correlation analysis (CCA)). All these problems
can be reduced by performing an eigenvalue decomposition. Moreover, they can be
solved or approximated efficiently using several well-known techniques from com-
putational linear algebra. We will show how they can be solved in kernel-defined
feature space by writing the dual representation of the algorithms.

4.1 Kernel Principal Component Analysis

4.1.1 Principal Component Analysis

The goal of this section is to find a direction that maximises the variance in the
feature space. The first step in order to perform PCA is to center the data in
feature space. We show how to do this for illustration purposes. This operation
can be obtained implicitly by transforming the kernel matrix. The new feature map
after centering the data set is:

φ̂(x) = φ(x)− φS = φ(x)− 1

N

N∑
i=1

φ(xi). (4.1)

The new kernel for this space is:

k̂(x, z) =
〈
φ̂(x), φ̂(z)

〉
=

〈
φ(x)− 1

N

N∑
i=1

φ(xi), φ(z)− 1

N

N∑
i=1

φ(xi)

〉

= k(x, z)− 1

N

N∑
i=1

k(x,xi)−
1

N

N∑
i=1

k(z,xi) +
1

N2

N∑
i,j=1

k(xi,xj).

In terms of operations on the kernel matrix this can be written as:

K̂ = K− 1

N
jj′K− 1

N
Kjj′ +

1

N2
(j′Kj)jj′, (4.2)

where j represents the vector whose components are all 1.

If the data have been centred in the feature space then the variance of the projection

Enrique Naranjo Bejarano

4.1 Kernel Principal Component Analysis 38

into a normalised direction w can be obtained as follows

1

N

N∑
i=1

(Pw(φ(xi)))
2 = Ê[w′φ(x)φ(x)′w] = w′Ê[φ(x)φ(x)′]w

=
1

N
w′X′Xw = w′Cw,

where is C = 1
l
X′X is the covariance matrix of the data sample. The directions of

maximal variance can be found as follows.

Computation 4.1 (Maximising variance [18]). The direction that maximises the
variance can be found by solving the following problem

max
w

w′Cw,

subject to ‖w‖2 = 1.

This computation, combined with the Rayleigh theorem for eigenvectors, shows that
the mutually orthogonal directions of maximum variance in order of decreasing size
are given by the eigenvectors of C. Moreover, the corresponding eigenvalue’s size
equals the variance in the chosen direction. Now we will introduce the concept of
PCA.

Definition 4.2 (Principal components analysis). [18] Principal components analysis
(PCA) takes an initial subset of the principal axes of the training data and projects
the data (both training and test) into the space spanned by this set of eigenvectors.
We effectively prepossess a data set by projecting it into the subspace spanned by
the first k eigenvectors of the covariance matrix of the training set for some k < l.
The new coordinates are known as the principal coordinates with the eigenvectors
referred to as the principal axes.

With this definition, the principal component analysis algorithm performs the fol-
lowing computation:

Algorithm 4.3 (Primal principal components analysis [18]). The primal principal
components analysis performs the following computation:

Input Data S = {x1, . . . ,xN} ⊂ Rn, dimension k

process µ = 1
N

∑N
i=1 xi

C = 1
N

∑N
i=1(xi − µ)(xi − µ)′

[U,Λ] = eig(NC)
x̃i = U′kxi, i = 1, . . . , N .

Output Transformed data Ŝ = {x̃1, . . . , x̃N}.

Table 8: Primal PCA algorithm.

Enrique Naranjo Bejarano

4.1 Kernel Principal Component Analysis 39

4.1.2 Kernel principal component analysis

We now apply PCA into a kernel-defined feature space using the dual representation
of the algorithm to obtain the Kernel PCA. We already know how to compute
projections onto the feature space, using the dual representation computed from
the eigenvectors and eigenvalues of the kernel matrix. We also want to perform
a stability analysis to assess when the resulting projection captures a stable data
pattern. We denote by Uk the subspace spanned by the first k eigenvectors in the
feature space. The k-dimensional vector projection of new data into this subspace
is:

PUk
(φ(x)) = (u′jφ(x))kj=1 =

(∑
i=1

Nlαjiκ(xi,x)

)k

j=1

,

where
αj = λ

−1/2
j vj

is given in terms of the corresponding eigenvector and eigenvalue of the kernel matrix.
This is the basis of the Kernel PCA algorithm.

Algorithm 4.4 (Kernel PCA [18]). The kernel PCA algorithm performs the fol-
lowing computation:

Input Data S = {x1, . . . ,xN} ⊂ Rn, dimension k
process Kij = κ(xi,xj), i, j = 1, . . . , N

K− 1
N

jj′K− 1
N

Kjj′ + 1
N2 (j′Kj)jj′,

[V,Λ] = eig(K)

x̃i =
(∑N

i=1 α
j
iκ(xi,x)

)k
j=1

.

Output Transformed data Ŝ = {x̃1, . . . , x̃N}.

Table 9: Kernel PCA algorithm.

To assess the stability of the Kernel PCA Method we ask ourselves whether the
projections captures new data drawn according to the same distribution as the
training data. Therefore, we want that the average residual of the test data is not
much larger that the average residual of the training data. For this reason we use
the following function as our pattern function

f(x) =
∥∥P⊥Uk

(φ(x))
∥∥2 = ‖φ(x)− PUk

(φ(x))‖2 = ‖φ(x)‖2 − ‖PUk
(φ(x))‖2 ,

this is the squared norm of the orthogonal projections for the subspace Uk spanned
by the first k eigenvectors. We want the expected value of the pattern function to
be small

EX [f(x)] = EX
[∥∥P⊥Uk

(φ(x))
∥∥2] ≈ 0.

The following theorem gives a bound of this value

Enrique Naranjo Bejarano

4.2 Kernel Cluster Analysis 40

Theorem 4.5 (PCA Stability [18]). If we perform PCA in the feature space defined
by a kernel κ then with probability greater than 1−δ, for any 1 ≤ k ≤ l, if we project
new data onto the space Uk spanned by the first k eigenvectors in the feature space,
the expected squared residual is bounded by

E
[∥∥P⊥Uk

(φ(x)
∥∥2] ≤ min

1≤t≤k

1

l
λ>t(S) +

8

N

√√√√(t+ 1)
N∑
i=1

κ(xi,xi)2

+3R2

√
ln(2N/δ)

2N
,

(4.4)
where the support of the distribution is in a ball of radius R in the feature space.

This theorem tells us that the expected squared residual of a test point will be
small provided the residual eigenvalues are small for some value t ≤ k, which is
modest compared to l. The lesson is that we should use kernel PCA when the
eigenvalues become small early in the spectrum. Thus capturing a high proportion
of the variance of the data in many dimensions significantly smaller than the same
subspace will, with high probability, capture most of the variance of the test data.

4.2 Kernel Cluster Analysis

Another popular algorithm in unsupervised learning is cluster analysis. Cluster
analysis tries to discover the internal organization by finding structure within the
data in the form of clusters. We refer to clusters as subgroups of data that are“close”
together. We use cluster analysis because it helps us better understand the data by
breaking it into subsets that are significantly more uniform than the overall dataset.
It can also be used as a first step before another learning algorithm. For example,
before using a KSVM to classify a dataset, we first divide the data set into clusters
and then apply the KSVM within a single cluster. Each application suggests its
criterion to assess the quality of the clustering obtained. It typically involves some
measure of fit between a data item and the cluster to which it is assigned. Hence,
a stable clustering algorithm will give assurances about the expected value of this
fit for a new randomly drawn example. This assurance implies that the pattern of
clusters identified in the training set is not a random occurrence. However, instead,
it characterizes some underlying property of the distribution generating the data.
The most common choice for the measure assumes that each cluster has a center and
assesses the fit of a point by its squared distance from the cluster’s center to which
it is assigned. This division naturally creates a Voronoi diagram of regions, each
containing one of the cluster centers. We will adopt the squared distance criterion
for assessing the quality of clustering. We will use a kernel that will ensure that
the algorithms can be developed in full generality without specifying the particular
similarity measure being used.

To apply cluster analysis, we start with a set of unlabelled data

S = {x1, . . . ,xN},

Enrique Naranjo Bejarano

4.2 Kernel Cluster Analysis 41

we want to find an assignment of each point to one of a finite, but not necessarily
prespecified, number of N of classes, i.e., we seek a map

f : S → {1, 2, . . . , N}.

This partition of the data should be chosen among all possible assignments in such a
way as to solve the measure of clustering quality given in the following computation.

Computation 4.6 (Cluster Analysis [18]). The clustering function should be chosen
to optimise

f = arg min
f

∑
i,f :fi=f(xi)=f(xj)=fj

= ‖φ(xi)− φ(xj)‖2 ,

where we have as usual assumed a projection function φ into a feature space F , in
which the kernel κ computes the inner product

κ(xi,xj) = 〈φ(xi), φ(xj)〉.

From now on we will denote fi = f(xi). Although this is an interesting first approach
from which numerous interesting properties can be deduced, the criterion fails to
capture the between cluster separation and only takes into account the within-cluster
similarity. A more balanced criterion would be:

min
f

 ∑
i,j:fi,fj

‖φ(xi)− φ(xj)‖2 − λ
∑

i,f :fi 6=fj

‖φ(xi)− φ(xj)‖2
 .

But this expression can be written as:

∑
i,j:fi 6=fj

‖φ(xi)− φ(xj)‖2 =
l∑

i,j=1

‖φ(xi)− φ(xj)‖2 −
∑

i,j:fi=fj

‖φ(xi)− φ(xj)‖2

= A−
∑

i,j:fi=fj

‖φ(xi)− φ(xj)‖2 ,

where A is a constant that depends on the dataset. Therefore the minimisation
problem can be expressed as

min
f

(1 + λ)
∑

i,j:fi=fj

‖φ(xi)− φ(xj)‖2 − λA

 ,

from the two optimisation problems are the same. If we minimize within-cluster dis-
tances for a fixed number of clusters we are automatically maximizing the between
cluster distances.

Another attractive property of the optimization problem is that we can write the
expression as follows.

Enrique Naranjo Bejarano

4.2 Kernel Cluster Analysis 42

opt =
∑

i,j:fi=fj

‖φ(xi)− φ(xj)‖2

=
N∑
k=1

∑
i:fi=k

∑
j:fj=k

〈φ(xi)− φ(xj), φ(xi − φ(xj)〉

=
N∑
k=1

2

(
|f−1(k)|

∑
i:fi=k

κ(xi,xi)

)
−
∑
i:fi=k

∑
j:fj=k

κ(xi,xj)

=
N∑
k=1

2|f−1(k)|
∑
i:fi=k

‖φ(xi)− µk‖2 ,

where in the last line we have expressed

µk =
1

|f−1(k)|
∑

i∈f−1(k)

φ(xi)

as the centre of mass of the cluster k, a point that it is usually referred to as the
centroid of the cluster. Therefore the optimisation criterion is equivalent to

f = arg min
f

l∑
i=1

∥∥φ(xi)− µf(xi
)
∥∥2 ,

that seeks a clustering of points minimising the sum-squared distances to the centres
of mass of the clusters. The following theorem formalise this idea.

Theorem 4.7 (Clustering optimisation criterion [18]). The solution of the clustering
optimisation criterion

f = arg min
f

∑
i,j:fi=fj

‖φ(xi)− φ(xj)‖2

can be found in the form

f(xi) = arg min
1≤k≤N

‖φ(xi)− µk‖ ,

where µj is the centroid of the points assigned to cluster j.

Proof. See page 269 [18].

Therefore it is clear now how to assign data points to a cluster. Any clustering
algorithm must attempt to minimize the cost function. We can efficiently achieve
this by assigning points to a cluster and fixing several centers N , Then, we try
to find the center that minimizes the cost function. Thus, we have the following
optimization strategy.

Enrique Naranjo Bejarano

4.2 Kernel Cluster Analysis 43

Input Data S = {x1, . . . ,xl}, integer N

process µ = arg minµ
∑N

i=1 min1≤k≤N ‖φ(xi)− µk‖2

Output f(·) = arg min1≤k≤N ‖φ(·)− µk‖

Table 10: Cluster optimisation strategy algorithm.

Computation 4.8 (Clustering optimisation strategy [18]). The clustering optimi-
sation strategy is given by

An appropriate pattern function to assess the stability of this strategy would be

ED min
1≤k≤N

‖φ(x)− µk‖2 ;

the smaller the bound obtained the better the quality of the clustering achieved.

Although we have found an appropriate criterion to cluster the data, the related
optimization problem is not convex. Moreover, finding a solution with a value better
than some threshold turns out to be NP-complete. Therefore we have to develop
some heuristics to seek a local optimum of the cost function. Another way to tackle
this problem would be by relaxing the cost function to give an approximation that
can be globally optimized. The first method will lead to the k-means algorithm,
while the relaxation method gives the spectral clustering algorithm. The approaches
can be applied in kernel-defined feature space in both cases.

4.2.1 Greedy solutions: k-means

We have already deduced that the way to solve the clustering problem is by identify-
ing the centers of mass of the members of each cluster. The k-means algorithm tries
to do this. This algorithm keeps a set of the centroids of the clusters C1, . . . , CN
that are initialized randomly and then seeks to minimize the expression

l∑
i=1

∥∥φ(xi)− Cf(xi)

∥∥2 ,
by adapting both f and the centers. This method will converge to a solution in which
Ck is the center of mass of the points assigned to cluster k. The algorithm alternates
between updating f to adjust the assignment of points to clusters and updating the
Ck giving the position of the centers in a two-stages iterative procedure. In the first
stage of the algorithm, the points are moved to the cluster whose cluster center is
closest. Then in the second stage, the center of each cluster is positioned at the center
of mass of the points assigned to that cluster. In each of these states, the criteria
we seek to minimize reduces its value. Since the number of possible clustering is
finite, it follows that after a finite number of iterations, the algorithm will converge
to a stable clustering assignment provided ties are broken deterministically. In order
to implement the algorithm in the dual form, we must represent the clusters by an

Enrique Naranjo Bejarano

4.2 Kernel Cluster Analysis 44

indicator matrix A of dimension l × N containing a 1 to indicate the containment
of an example in a cluster.

Aik =

{
1, if xi is in cluster k;

0, otherwise.

And we say that the clustering is given by the matrix A. It is worth noticing the
each row of A contains exactly one 1, while the column sums give the number of
points assigned to the different clusters. This kind of matrices are known as cluster
matrices. The coordinates of the centroid Ck are obtained as the N columns of the
matrix

X′AD

where X contains the training example feature vectors as rows and D is a diagonal
N ×N matrix with diagonal entries the inverse of the column sums of A, indicating
the number of points ascribed to that cluster. The distances of a new test vector
φ(x) from the centroids is now given by

‖φ(x)− Ck‖2 = ‖φ(x)‖2 − 2〈φ(x, Ck)〉+ ‖Ck‖2

= κ(x,x)− 2(k′AD)k + (DA′XX′AD)kk,

where k is the vector of inner products between φ(x) and the training examples.
Hence, the cluster to which φ(x) should be assigned is given by

arg min
1≤k≤N

‖φ(x)− Ck‖2 = arg min
1≤k≤N

(DA′KAD)kk − 2(k′AD)k,

where K is the kernel matrix of the training set. This provides the rule for classifying
new data. The updated rule consists in reassigning the entries in the matrix A
according the the same rule in order to redefine the clusters. It is important to
notice that this algorithm is prone to local minima since the optimisation is not
convex. In order to solve this we will present a relaxed algorithms.

4.2.2 Relaxed solution: spectral methods

The goal of this subsection is to make a convex relaxation of the problem in order
to obtain a closed-form approximation.

Clustering into two classes. We consider only the classification in two clusters.
In this approximation the cluster assignment will be given by a vector y ∈ {−1,+1}l,
that associates to each point a {−1,+1} label. In this approximation the clustering
quality criterion will be minimised by maximising∑

yi 6=yj

‖φ(xi)− φ(xj)‖2 .

Enrique Naranjo Bejarano

4.3 Data visualisation 45

If we assume that the data is normalised and the sizes of the clusters are equal this
correspond to minimising the so-called cut cost

2
∑
yi 6=yj

κxi,xj =
N∑

i,j=1

κxi,xj −
N∑

i,j=1

yiyjκxi,xj,

since this criteria measures the kernel ”weight” between vertices in different clusters.
Hence, we must solve

max y′Ky,

subject to y ∈ {−1,+1}N .

And we can relax this optimisation by removing the restriction that y be a bi-
nary vector while controlling its norm. This is achieved by maximising the Raleigh
quotient

max
y′Ky

y′y

This is solved by the eigenvector of the matrix K corresponding to the largest
eigenvalue with the value of the quotient equal to the eigenvalue λ1. Hence, we
obtain a lower bound on the cut cost of

0.5

(
N∑

i,j=1

κ(xi,xj)− λ1

)
.

giving a corresponding lower bound on the value of the sum-squared criterion.

4.3 Data visualisation

Visualization refers to techniques that can present a dataset

S = {x1, . . . ,xN}

in such a way, it can reveal some underlying structure of the data that can be easily
understood or appreciated by a user. In this section, we aim to provide a two- or
three-dimensional ’mapping’ of the data to be later displayed as a graph. This set
of methods is significant in kernel methods as we typically embed the data into a
high-dimensional vector space. Although, at first glance, this may seem superficial,
visually displaying the data in the chosen feature space helps us get a ’feel’ for the
structure of the data, hence suggesting why certain points are outliers or what type
of relations can be found. PCA is one method we can already apply to visualize
data better; this algorithm will form the core of the classical multidimensional scaling
algorithm. During this section, we will assume that a proper kernel has already been
adapted to best capture the view of the data we are concerned about. Therefore
we will like to develop algorithms that can find low-dimensional representations of
high-dimensional data.

Enrique Naranjo Bejarano

4.3 Data visualisation 46

4.3.1 Multidimensional scaling

Multidimensional scaling (MDS) comprises a series of techniques directly aimed at
finding optimal low-dimensional data embedding primarily for visualization pur-
poses. To do MDS, we need to start with a matrix of distances or similarities rather
than a Gram matrix of inner products or even a Euclidean embedding. For this
reason, the first step of MDS is to convert the matrix of similarities into a matrix
of inner products. For metric MDS, it is assumed that the distances correspond to
embeddings in a Euclidean space, while for non-metric MDS, these similarities can
be measured in any way. The next step for the classical algorithm is to obtain the
first two or three eigenvectors of the eigendecomposition of the resulting Gram ma-
trix to define two or three-dimensional projections of the points for visualization. It
is crucial to notice that if we use a kernel-defined feature space, the first two stages
are no longer required, and MDS reduces to computing the first two or three kernel
PCA projections.

Algorithm 4.9 (MDS for kernel-embedded data [18]). The MDS algorithm for data
in a kernel-defined feature space is as follows:

Input Data S = {x1, . . . ,xN}, dimension k = 2, 3.
process Kij = κ(xi,xj), i, j = 1, . . . , l

K− 1
N

jj′K− 1
N

Kjj′ + 1
N2 (j′Kj)jj′,

[V,Λ] = eig(K)
αj = 1√

λj
vj, j = 1, . . . , k.

x̃i =
(∑N

i=1 α
j
iκ(xi,x)

)k
j=1

.

Output Transformed data Ŝ = {x̃1, . . . , x̃N}.

Table 11: MDS for kernel-embedded data algorithm [18].

Visualisation quality. We can chose another criteria to assess the quality of the
representation of the data. This will give rise to another method that it is strongly
related to MDS. The problem of visualisation can be stated as follow. Given a set
of points

S = {φ(xi), . . . , φ(xN)}

in a kernel-defined feature space F with

φ : X → F,

find a projection τ from X into Rk, for small k such that

‖τ(xi)− τ(xj)‖ ≈ ‖φ(xi)− φ(xj)‖ , for i, j = 1, . . . , N.

From now on, we will denote as τs the projection onto the sth component of τ . As
we have already deduced, the embedding determined by kernel PCA minimizes the

Enrique Naranjo Bejarano

4.3 Data visualisation 47

sum-squared residuals
N∑
i=1

‖τ(xi)− φ(xi)‖2 ,

where we make τ an embedding into a k-dimensional subspace of the feature space
F . The next method aims to directly control the relationship between the original
and projection distances by solving the following computation.

Computation 4.10 (Visualisation quality [18]). The quality of a visualisation can
be optimised as follows

min
τ

E(τ) =
N∑

i,j=1

κ(xi,xj) ‖τ(xi), τ(xj)‖2

subject to ‖τs‖ = 1, τs ⊥ j, s = 1, . . . , k,

τs ⊥ τt, s, t = 1, . . . , k.

It can be shown that solving this computation corresponds to minimizing

E(τ) = 2lk −
l∑

i,j=1

0.5 ‖φ(xi)− φ(xj)‖2 ‖τ(xi)− τ(xj)‖2 .

Therefore, it corresponds to optimizing the correlation between the original and
projected squared distances. The minimization problem aims to put large distances
between points with small inner products and small distances between points having
large inner products. The constraints ensure equal scaling in all dimensions centered
around the origin. The different dimensions must be mutually orthogonal to ensure
no structure is unnecessarily reproduced. Now we introduce the concept of the
Laplacian matrix.

Definition 4.11 (Laplacian matrix [18]). The Laplacian matrix L(K) of a kernel
matrix K is defined by

L(K) = D = K

where D is the diagonal matrix with entries

Dii =
N∑
j=1

Kij.

It is important to notice that if the kernel matrix has positive entries then the
Laplacina matrix L(K) is positive semi-definite. The following theorem charac-
terizes the above optimization solution using the Laplacian matrix’s eigenvectors.
This matrix can also be used in clustering as it frequently possesses more balanced
properties than the kernel matrix.

Theorem 4.12. Let
S = {x1, . . . ,xl}

Enrique Naranjo Bejarano

48

be a set of points with kernel matrix K. The visualisation problem is solved by com-
puting the eigenvectors v1,v2, · · · ,vl with corresponding eigenvalues 0 = λ1, λ2 ≤
· · · ≤ λl of the Laplacian matrix L(K). An optimal embedding τ is given by
τi = vi+1, i = 1, . . . , k and the minimal value of E(τ) is

2
k+1∑
l=2

λl. (4.7)

If λk+1 < λk+2 then the optimal embedding is unique up to orthonormal transforma-
tions in Rk.

This theorem provides a total characterization of the minimization problem.

5 Conclusions

In this thesis, we have characterized the notion of a kernel as it is used in contempo-
rary machine learning. Moreover, we have cemented some of the essential concepts
in statistical learning theory. In Statistical Learning Theory, learning is finding a
function that fits some data that comes from an unknown probability distribution.
The agnostic setting of SLT is the distinction factor with respect to more classical
learning theory. The discrepancy between the predicted data from the learned func-
tion and the actual data is known as the expected risk. This discrepancy is measured
by a loss function. The choice of loss function results in different algorithms. As
the probability distribution is unknown, we have to work with the empirical risk.
This minimization criterion is known as the empirical risk minimization principle.
However, the empirical risk is not the only measure of how well a function has been
learned. We can find a function that perfectly fits the known data but does not fit
the underlying distribution of the data. In this case, we say that the function overfit
the data. To solve this, the space in which the solution is searched is restricted. In
kernel theory, we choose this space as a Reproducing Kernel Hilbert Space. Then, a
measure of the capability of a function to fit the data is derived. This capacity of the
space will be added in the bound of the expected risk and is known as the structural
risk. The measure of the capacity of a functional space can be done in different ways.
In this work, we have introduced the VC dimension and the Rademacher complexity.
Thus, an analysis of the generalization capacities of any machine learning algorithm
will depend on the empirical risk and the structural risk. When searching for a
solution to the learning problem, we will look in nested spaces of functions with
increasing capacities. This method is computationally expensive; for this reason,
a regularization term is added to the empirical risk minimization problem. Thus,
in the empirical risk minimization setting, two things must be chosen to define the
problem: the loss function and the hypotheses space.

The hypotheses space in the theory of kernels in an RKHS. An RKHS is a Hilbert
space whose evaluation function is continuous. Given an RKHS, there exists a unique
kernel that characterizes the kernel. Moreover, kernels are characterized by Mercer’s

Enrique Naranjo Bejarano

49

theorem. In this second interpretation, kernels are positive definite functions that
accept a base of eigenfunctions. The Representer Theorem states that the solution
to the empirical minimization problem with a differentiable loss function can be
expressed as a linear combination of the kernel evaluated in each data point. In
this way, kernels represent a natural way to represent the hypotheses space in the
empirical risk minimization problem. Furthermore, we showed how the most natural
way to work with kernels is as being an inner product in a feature space. Thus, the
kernel method is interpreted as first sending the data points to a higher dimensional
space and then, through the kernel, calculating the inner product in that space. This
way, if a linear algorithm is applied to the points in the feature space, it corresponds
to a nonlinear algorithm in the original space.

Once we characterized the learning problem, we proceeded to develop the kernelized
version of different algorithms. In Supervised learning, it is sufficient to choose the
proper loss function to implement different algorithms. The algorithms are normally
first deduced in primal form, and the form of the algorithm that only depends on the
kernel is called the dual algorithm. For different choices of loss functions, we obtained
different algorithms. All the algorithms were proven to generalize by providing a
bound on the expected risk. In Unsupervised learning, we applied the vision of
the kernels being inner products in a feature space. In this way, we implemented
algorithms that only depended on the inner product of the data points.

After this discussion, we have shown how kernel methods allow for more powerful
machine learning algorithms. For this reason, in the following years after its imple-
mentation, a large amount of literature was produced to produce more specialized
kernels. However, soon the big drawbacks of the theory of kernels were discovered.
In order to implement any kernel algorithm, at least O(N2) operations are necessary
for obtaining the Gram matrix. This is incredibly expensive for large applications.
At the same time, neural networks started to show great generalization capabilities
correlated with the number of parameters and hidden layers in the NN. Great results
were produced in imaging processing and natural language processing. In this way
deeps neural networks substituted shallow kernel methods. Although the machine
learning community is now more centered on developing DNN, this does not mean
kernel methods are still not used. For simpler, less demanding applications, kernel
methods are still an excellent choice. Moreover, the theory begins that these meth-
ods may still be proven useful. In the last decade, the field of quantum computing
has developed to the point that quantum computers are closer to being a reality.
For this reason, there was a surge in the development of quantum machine learning
algorithms. At first, due to their empirical success, an effort was made to develop a
quantum version of neural networks, but it was found that there was no method to
do this naturally. Instead, kernel methods proposed an extremely natural framework
to translate classical machine learning algorithms to a quantum setting [26]. These
results may be a signal that the underlying theory of kernels may still be relevant
in the future.

Enrique Naranjo Bejarano

REFERENCES 50

References

[1] Mercer, J. (1909) Functions of positive and negative type and their connection
with the theory of integral equations. Philosophical Transactions of the Royal So-
ciety of London, Series A 209, pp. 415-446.

[2] Moore, E.H. (1916) On properly positive Hermitian matrices. Bull. Amer. Math.
Soc. 23(59).

[3] Aronszajn, N. (1950) Theory of Reproducing Kernels. Transactions of the Amer-
ican Mathematical Society.

[4] Kuhn, H. W., Tucker, A. W. (1951) Nonlinear programming. Proceedings of 2nd
Berkeley Symposium. Berkeley: University of California Press. pp. 481-491

[5] Rosenblatt, F. (1960). Perceptron simulation experiments. Proceedings of the
IRE, 48(3), 301-309.

[6] Novikoff, A. B. (1963) On convergence proofs for perceptrons. Stanford Research
Inst. Menlo Park, CA.

[7] Steward, J. (1976) Positive definite functions and generalizations, an historical
survey. Rocky Mountain J. Math., 6:409-434.

[8] Ivanov, V.V. (1976) The Theory of Approximate Methods and Their Application
to the Numerical Solution of Singular Integral Equations. Nordhoff International,
Leyden, 1976.

[9] Tikhonov, A.N., Arsenin, V. Y. (1977) Solutions of Ill-posed Problems. W. H.
Winston, Washington, D.C.

[10] Jolliffe, I. T. (1986) Principal Component Analysis. Springer Series in Statistics.
pp. 487.

[11] Rudin, W. (1991) Functional Analysis. International Series in Pure and Applied
Mathematics. Vol. 8 (Second ed.). New York, NY.

[12] Cortes,C., Vapnik, V. (1995) Support-vector networks. Mach Learn 20, 273-297

[13] Smola, A., Schölkopf. (1998) On a kernel-based method for pattern recognition,
regression, approximation and operator inversion. Algorithmica, 22:211 - 231.

[14] Vapnik, V. (2000) The Nature of Statistical Learning Theory. Springer New
York, NY.

[15] Shawe-Taylor, J., Cristianini N. (2000) An introduction to Support Vector Ma-
chines and other kernel-based learning methods. Cambridge University Press.

[16] Evgeniou, T. (2000) Learning with kernel machine architectures. PhD thesis,
Massachusetts Institute of Technology.

Enrique Naranjo Bejarano

REFERENCES 51

[17] Schölkopf, B., Smola, A.J. (2002) Learning with Kernels. MIT Press, Cam-
bridge, Ma.

[18] Shawe-Taylor, J., Cristianini N. (2004) Kernel Methods for Pattern Analysis.
Cambridge University Press.

[19] Hamers, B. (2004) Kernel Models for Large Scale Applications. PhD thesis.

[20] Nocedal, J., Wright, S. J. (2006) Numerical Optimization. New York. Springer.

[21] Luxburg, U., Schölkopf, B. (2008) Statistical Learning Theory: Models, Con-
cepts, and Results. https://arxiv.org/abs/0810.4752

[22] Hofmann, T., Schölkopf, B., and Smola, AJ. (2008) Kernel Methods in Machine
Learning. Annals of Statistics, 36:1171-1220.

[23] Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural
Networks. 61: 85-117.

[24] Hastie, T., Tibshirani, R., Friedman, J. (2019) The Elements of Statistical
Learning. Second Edition. Springer New York, NY.

[25] Schuld, M. (2021) Supervised quantum machine learning models are kernel
methods. https://arxiv.org/abs/2101.11020

[26] Schuld, M., Petruccione, F. (2021) Machine Learning with Quantum Comput-
ers. Springer Cham.

Enrique Naranjo Bejarano

