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Abstract

Today, manufacturing systems face new global challenges that require flexibility
and quick reactions. To remain competitive, companies must also focus on the
minimisation of time, as it leads to cost reductions, shorter delivery times, and a
more agile and flexible response. In this context, improving the scheduling is of
great importance. This is why, in this doctoral thesis, different ways to improve the
scheduling of the considered problem are discussed in this thesis.

More specifically, we address the 2-stage assembly scheduling problem. This
problem consists of two stages: the components of the product are processed in the
first stage and then assembled in the second stage. In the first stage, we consider
dedicated parallel machines and, in the second stage, one or several parallel assembly
machines. The purpose of this thesis is to make several contributions in different
aspects of the problem. First, we review in detail the problem under consideration.
Second, there are some less studied variants of the problem that remain unanalysed
and are considered in this thesis. Furthermore, there is no a common set of instances
in which the different optimization methods developed to solve the problem can be
evaluated and compared. Finally, additional constraints are also considered for the
2-stage assembly scheduling problem, as they have never been addressed.
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Chapter 1

Introduction

1.1 Motivation for the thesis

Global competition that makes the market more competitive and dynamic requires
manufacturing companies to be flexible and react quickly to a constantly changing
market (Sanchez, 1995; Manzini et al., 2004). To survive in this environment, com-
panies do not have to focus only on the quality of their products, since there is another
key factor in many environments. Consider how important time is in many industries
regarding its minimisation in transportation, manufacturing, services, or communi-
cations, among others. For a company involving these procedures, time is of great
importance if it wants to gain a competitive advantage with respect to competitors.
Basically, time reduction is important for two reasons: on the one hand, it usually
leads to cost reductions for the company and, on the other hand, it allows both shorter
delivery times to customers and a more agile and flexible response. In this regard,
production management is a managerial process in which a large number of decisions
are made over time to ensure the delivery of goods with the highest quality, the lowest
cost, and the lowest lead time (Framinan et al., 2014). These decisions differ, among
other issues, in their impact on the company, their scope, and the time period for taking
them. They range from strategic, high-impact, long-range decisions, such as deciding
if a new product is manufactured in a certain factory or not, to short-term, low-level,
small-impact decisions, such as the order in which a product will be manufactured in
a certain machine in the shop floor. Among these decisions, the scheduling process
plays an important role in the operational phase of manufacturing systems in terms of
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16 Chapter 1. Introduction

rapid response to the dynamic market and the improvement of system performance
(Alemão et al., 2021).

Manufacturing scheduling establishes the schedules of the resources along the
horizon under consideration in order to fulfil the customers’ requests. Scheduling
is carried out as a part of a more complex process. On the one hand, it uses as
input the results of a planning plan, where the set of products to be manufactured
by the company along with their real (or expected) demand, among other issues, are
included. On the other hand, the execution of a schedule may need to be reviewed or
modified due to the often highly variable conditions on the shop floor. Consequently,
manufacturing scheduling is integrated into a set of managerial decisions known as
production management.

In real manufacturing scenarios, the difficulty of scheduling problems becomes
extremely complex, since schedulers must consider the specific constraint and the
objective of the shop when determining the best schedule for the shop floor (Framinan
et al., 2014). Another important aspect is that most scheduling decisions must be made
in short time intervals due to the rapid response required by the manufacturing system.
Thus, the development of fast and efficient procedures is of great importance in solving
this manufacturing scheduling problem.

In fact, industries adopt several processing layouts to manufacture their products,
such as e.g., parallel machines, flowshop, jobshop, etc. Among the different layouts,
in this thesis, we address the 2-stage Assembly Scheduling Problem (2-ASP in the
following), where many products made up of several components are manufactured,
the components have to be produced in the previous stages and then assembled in a
later stage. This problem is receiving an increasing attention from researchers due to
different reasons: First, the 2-stage assembly layout has many applications in industry
(Sheikh et al., 2018), such as personal computer manufacturing (Potts et al., 1995), fire
engine assembly plants (Lee et al., 1993), circuit board production (Cheng and Wang,
1999), food and fertilizer production (Hwang and Lin, 2012), car assembly industry
(Fattahi et al., 2013), motor assembly industry (Liao et al., 2015), or plastic industry
(Allahverdi and Aydilek, 2015). Other examples can also be found in services/IT,
including distributed database systems (Allahverdi and Al-Anzi, 2006; Al-Anzi and
Allahverdi, 2006b, 2007), or multi-page invoice printing systems (Zhang et al., 2010).
Second, while the two-stage assembly problem with only one machine in the second
stage has been widely discussed in the literature (see the recent review on the topic by
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Framinan et al., 2019), to the best of our knowledge, the problem considering several
identical assembly machines is common in companies, although it has not received
attention so far. Therefore, the state-of-the-art regarding solution methods for the
problem under consideration is either at an early stage or very scarce, and efficient
approximate algorithms for this problem need to be found.

After addressing both problems presented above, we also focus on a quite com-
mon unavailability constraint, where all machines stop periodically after a given time
interval and jobs cannot be processed during these periods in which the machines
are not available. In many companies, we can find that resources are not continu-
ously available due to different causes (see, e.g., Ji et al., 2007; Low et al., 2010b;
Perez-Gonzalez et al., 2020; Yu et al., 2014), such as end of shifts, hours/days off,
periodic maintenance activities, etc. Due to the importance of this constraint in real
manufacturing, it has been widely studied for different layouts, e.g., single machine
scheduling problem (see e.g., Ángel-Bello et al., 2011; Yazdani et al., 2018; Perez-
Gonzalez and Framinan, 2018); parallel machines scheduling problem (see e.g. Kaabi
and Harrath, 2019); and flowshop scheduling problem (see e.g. Perez-Gonzalez et al.,
2020), among others.

Due to the reasons introduced above and the analysis of the state-of-the-art for
the problem under consideration (see Chapter 4), there is an opportunity to improve
the current state-of-the-art in the problems addressed in this thesis by designing a
standard and representative benchmark to test the different algorithms; proposing
new approximate solution procedures for the most common objectives and comparing
them with the state-of-the-art algorithms; and, finally, considering different scheduling
constraints to capture more realistic situations.

Therefore, in an attempt to accomplish the previous objectives, in this thesis, we
focus on the following scheduling problems:

• The 2-stage assembly scheduling problem (or 2-ASP) with total completion
time objective (i.e., the sum of the completion time of all jobs).

• The 2-stage assembly scheduling problem with periodic maintenance (or 2-
ASP-pm) with makespan (i.e., the maximum completion time) and total com-
pletion time objective.
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1.2 Objectives and outline of the thesis

As stated in the previous section, the goal of this thesis is to provide further insights
into the 2-ASP. After reviewing the literature related to the 2-ASP, we can identify
different weaknesses and areas for improvement. First, we can find an extensive
literature related to the problem with only one assembly machine in the second stage;
however, to the best of our knowledge, there are very few works where the problem
with several machines in the second stage is addressed. Furthermore, with respect to
the objectives, the makespan is the most common objective considered in this layout,
remaining unanalysed others such as the total completion time. Second, there is no
a common set of instances in which the different algorithms developed to solve the
problem can be evaluated and compared. And finally, the 2-ASP with additional
constraints has not yet been addressed, specially, the problem where resources are not
continuously available. To make different contributions in these areas, the following
general research objectives are defined:

GO1 To review the 2-ASP literature in order to identify the problems addressed in
this thesis, the most relevant objectives, and the most interesting constraints.

GO2 To design a new benchmark of hard and exhaustive instances for testing the
efficient approximate algorithms in the literature.

GO3 To propose faster and more efficient approximate algorithms to solve the 2-ASP
with total completion time objective, based on the conclusions obtained from
GO1.

GO4 To demonstrate the efficiency and good performance of the solution procedures
developed in GO3.

GO5 To extend the goals GO3 and GO4 to some constrained 2-ASP based on real
manufacturing environments.

To achieve these objectives, the structure of the thesis, graphically summarised in
Figure 1.1, is organised in four parts as follows:

• Part I: Preliminaries. This part is divided into three chapters. In Chapter 1, we
introduce this thesis, describe its main objectives, and discuss its main contribu-
tions. In Chapter 2, we state the problems under consideration and present their
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Final 
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Figure 1.1: Structure of the thesis.

mathematical models, and in Chapter 3, we discuss the performance indicators
used to evaluate the solution procedures, the experimental conditions, and the
different sets of instances used in the computational experiments to compare
the solution procedures presented throughout this thesis.

• Part II: Analysis. In this part, we analyse the problem in detail in two chapters.
In Chapter 4, handling GO1, the main contributions in the literature are re-
viewed for the traditional problem (the 2-ASP) and for the 2-ASP with periodic
maintenance (2-ASP-pm). In Chapter 5, we analyse the relationship between
the 2-ASP and other related scheduling problems and propose a comprehensive
benchmark for the 2-ASP addressing GO2.

• Part III: Solution Procedures. Here, we propose new efficient algorithms to
solve 2-ASP with various objectives, as well as with other scheduling con-
straints. This part is divided into three chapters and deals with the general
objectives GO3, GO4, and GO5. More specifically, in Chapter 6, we propose
two efficient constructive heuristics to minimise the total completion time. In
Chapter 7, we address the problem with periodic maintenance and the objective
of minimising the makespan by proposing several efficient constructive and
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composite heuristics.

• Part IV: Conclusions. Finally, in this part, we discuss the conclusions and
results obtained and present future research lines.



Chapter 2

Problem statement

2.1 Introduction

In this chapter, we define and model the problems under study and also explain the
different layouts related to the problems addressed in this thesis. More specifically,
in Section 2.2 we describe the problem under consideration and analyse its different
variants. Additionally, we present the notation for the assembly problems. Then, in
Section 2.3 we present the mathematical models for the 2-ASP with one assembly
machine and several machines in the second stage. Finally, in Section 2.4, we present
the mathematical model for the 2-ASP-pm with one assembly machine in the second
stage.

2.2 Problem description and notation

Among the different assembly scheduling problems, in this thesis, we first focus on the
so-called 2-stage assembly scheduling problem (2-ASP). In this problem, there are𝑚1

(𝑚1 > 1, fixed) dedicated parallel machines (𝐷𝑃𝑚1) in the first stage (to manufacture
each operation of job 𝑗 on machine 𝑖, denoted by {𝑂1

𝑖 𝑗
}) and 𝑚2 (𝑚2 ≥ 1, fixed)

parallel assembly machines (to assemble each assembly operation of job 𝑗 , denoted
by {𝑂2

𝑗
}) in the second stage. A job 𝑗 has a processing time 𝑝𝑖 𝑗 on machine 𝑖 in the first

stage and an assembly processing time 𝑎𝑡 𝑗 in the second stage. According to Framinan
et al. (2019), this layout is denoted by 𝐷𝑃𝑚1 → 1, when there is one single assembly
machine, or by 𝐷𝑃𝑚1− > 𝑃𝑚2, when there are 𝑚2 identical parallel machines in

21



22 Chapter 2. Problem statement

the assembly stage. These assembly layouts are related to several traditional layouts
from the literature as follows: (1) the layout of customer order with dedicated parallel
machines, denoted by 𝐷𝑃𝑚 → 0, is tantamount to the one under consideration if the
processing times of the jobs in the assembly stage are zero; (2) the single machine
layout is similar to 𝐷𝑃𝑚 → 1 if the processing times in the second stage are much
higher than those in the first stage; (3) similarly, the layout of traditional parallel
machines is connected to 𝐷𝑃𝑚 → 𝑃𝑚; (4) finally, the 2-machine flowshop layout,
denoted 𝐹2 is a particular case of the 2-ASP problem if 𝑚1 = 1 and 𝑚2 = 1. The
layouts of the problems under study and related problems are shown in Figures 2.1
and 2.2.

. . . 

Dedicated

parallel machines

Assembly 

machine

{ !,"
! }

{ !,"
! }

{ #,"
! }

{ "
$}

(a)

Dedicated

parallel machines

Assembly          

parallel machines

. . . 

. . . 

{ !,"
! }

{ !,"
! }

{ #,"
! }

{ "
$}

(b)

Figure 2.1: Layouts of the considered problems. Figure 2.1a: 𝐷𝑃𝑚 → 1 layout. Figure 2.1b:
𝐷𝑃𝑚1 → 𝑃𝑚2 layout.

In this thesis, among the objectives addressed in the 2-stage assembly scheduling
problems, we consider that with the objective of minimising the total completion time.
The decision problem consists on scheduling the jobs in the two stages, so the sum
of the completion times of the jobs is minimised. The problem with one assembly
machine (labelled as 𝑆𝐴 in the following) is denoted as 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 by Graham
et al. (1979) and Framinan et al. (2019). The problem with several identical parallel
machines in the last stage is denoted as 𝐷𝑃𝑚1 → 𝑃𝑚2 | |

∑
𝐶 𝑗 , and is referred as 𝑀𝐴

(from Multi machine Assembly) in the following.
After addressing both problems presented above, we also consider the 2-stage

assembly scheduling problem with periodic maintenance constraint and the objective
of minimising the makespan. This constraint is defined in the related literature as
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Assembly 
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parallel machines
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Zero processing time
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"} { !

#}

(d)

Figure 2.2: Layouts of the related problems. Figure 2.2a: 𝐷𝑃𝑚 → 0 layout. Figure 2.2b: 1
layout. Figure 2.2c: 𝑃𝑚 layout. Figure 2.2d: 𝐹2 layout.

periodic maintenance (see, e.g., Perez-Gonzalez and Framinan, 2018; Perez-Gonzalez
et al., 2020). Regarding the periodic maintenance constraint, we consider that jobs
are non resumable (nr), i.e., preemption is not allowed and then a job must be
completely processed in a unique availability period, being this feature simply denoted
by nr-pm (see e.g., Low et al., 2010a; Perez-Gonzalez et al., 2020). Following the
notation by Graham et al. (1979), the problem under consideration can be denoted by
𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max.

The 𝐷𝑃𝑚 → 1|𝑛𝑟−𝑝𝑚 |𝐶max problem consists of scheduling 𝑛 jobs in a two-stage
layout. The scheduling horizon is formed by availability periods, denoted by bins1,
of length 𝑇 , where jobs are sequenced, and in the non-availability periods of 𝑡 time

1In the literature, the availability periods are traditionally denoted by batches, blocks, working shifts
or bins.
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units where the machines are not available to process any job. Each job has 𝑚 +
1 non-resumable operations. In the first stage, there are 𝑚 (𝑖 = 1, ..., 𝑚) dedicated
parallel machines, in which the first 𝑚 operations are carried out. Every job has to
be processed in every machine 𝑖, being 𝑝𝑖 𝑗 the processing time of job 𝑗 in machine 𝑖.
In the assembly stage, there is one machine that executes the last (𝑚 + 1)𝑡ℎ operation
and whose processing time is denoted by 𝑎𝑡 𝑗 .

As mentioned previously, the problems under study, the 2-ASP and 2-ASP-pm,
have never been addressed so far. Therefore, it is necessary to review the literature on
related problems (see Chapter 4), considering the related layouts explained above.

For the 2-ASP (𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 or 𝑆𝐴 and 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 or 𝑀𝐴), the
following related problems are identified:

• the 𝐷𝑃𝑚 → 0| |∑𝐶 𝑗 problem, denoted 𝐶𝑂, is tantamount to the 𝑆𝐴/𝑀𝐴
problem.

• the 1| |∑𝐶 𝑗 and the 𝑃𝑚 | |∑𝐶 𝑗 problem, denoted 𝑆𝑀 and 𝑃𝑀 , respectively,
are similar to the 𝑆𝐴 and 𝑀𝐴 problems, respectively.

• the 𝐹2| |∑𝐶 𝑗 problem, denoted 𝐹2, is a particular case of the 𝑆𝐴 problem if
𝑚1 = 1 and 𝑚2 = 1. Additionally, since the 𝐹2| |∑𝐶 𝑗 problem is strongly
NP-hard (Garey et al., 1976), the problem under consideration is also strongly
NP-hard.

For the 2-ASP-pm (𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max), we identify the following related
problems:

• the 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem is a special case of the 2-ASP-pm when 𝑚 = 0.
Since this problem is NP-hard (Lee, 1996), the 2-ASP-pm can also be classified
as NP-hard.

• the 𝐷𝑃𝑚 → 1| |𝐶max problem is equivalent to the 2-ASP-pm if the availability
period is high enough.

• the 𝐹2|𝑛𝑟 − 𝑝𝑚 |𝐶max problem, to which our problem can be reduced when
𝑚 = 1.

In Table 2.1, the different problems considered in this thesis, their contributions,
and the sections where they are addressed are shown. Now, let us introduce a common
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Problem Benchmark Exact methods Approximate
methods

Computational
evaluation

𝐷𝑃𝑚1 → 1| |∑𝐶 𝑗 Section 5.3 Section 2.3 Section 6.2 and 6.3 Section 6.5
𝐷𝑃𝑚1 → 𝑃𝑚2 | |

∑
𝐶 𝑗 Section 5.3 Section 2.3 Section 6.2 and 6.3 Section 6.5

𝐷𝑃𝑚1 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max - Section 2.4 Section 7.4 and 7.5 Section 7.6

Table 2.1: Summary of the problems addressed in this thesis and their contributions.

𝑗 𝑝1 𝑗 𝑝2 𝑗 𝑝3 𝑗 𝑎𝑡 𝑗

1 12 13 14 14
2 12 13 10 11
3 9 11 18 13
4 3 12 9 14

Table 2.2: Processing times of the jobs in both stages.

example to explain the three scheduling problems under study. In Table 2.2 we show
the processing times of four jobs in a layout composed of three dedicated parallel
machines in the first stage and one assembly machine. In Figure 2.3, a Gantt chart is
shown, where four jobs are scheduled in a layout 𝐷𝑃𝑚 → 1. It also indicates how
the makespan and total completion time objectives are calculated, where 𝐶1, 𝐶2, 𝐶3

and𝐶4 are the completion times of each job (see Equation 2.3). The case with several
assembly machines in the second stage (𝑚2 ≥ 2) is shown in Figure 2.4. It can
be observed that, as there is an additional assembly machine, jobs 2 and 4 can be
assembled earlier. In Figure 2.5, the four jobs are scheduled in 𝐷𝑃𝑚 → 1 with
periodic maintenance. It can be seen that each job that does not fit in the current bin,
it is assigned to a new bin.

2.3 Mathematical model of the 2-ASP with total completion
time objective

A solution for this problem can be given by a sequence of jobs indicating the order in
which the jobs are processed (see e.g., Al-Anzi and Allahverdi, 2006a and Al-Anzi
and Allahverdi, 2012). Therefore, given a sequence, let [ 𝑗] denote the job processed
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Figure 2.3: Gantt chart of 𝐷𝑃𝑚→ 1 layout with different objectives.
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Figure 2.5: Gantt chart of 𝐷𝑃𝑚→ 1 layout with periodic maintenance and different objectives.

in position 𝑗 in the sequence. The maximum completion time of job in position 𝑗 in
the first stage, denoted by 𝐶1 𝑗 , can be computed as follows:

𝐶1 𝑗 = max
𝑖=1,...,𝑚1

{
𝑗∑︁
𝑘=1
𝑝𝑖 [𝑘 ]

}
(2.1)

The completion time of each job in position 𝑗 is recursively computed by Equation
(2.2) for each assembly machine 𝑖 = 1, . . . , 𝑚2, using the variable 𝐶𝑖, 𝑗−1 to denote
the completion time in machine 𝑖 of the jobs in the sequence until job in position 𝑗 :

𝐶𝑖 𝑗 =


max{𝐶𝑖∗, 𝑗−1, 𝐶1 𝑗 + 𝑎𝑡 [ 𝑗 ]} if 𝑖 = 𝑖∗ with 𝑖∗ = arg min𝑖=1,...,𝑚2

{𝐶𝑖, 𝑗−1}
𝐶𝑖, 𝑗−1 otherwise

(2.2)
where 𝐶𝑖,0 = 0, ∀𝑖 = 1, . . . , 𝑚2. Then, 𝐶 𝑗 the completion time of the job processed
in position 𝑗 of the sequence can be computed by Equation (2.3).

𝐶 𝑗 = 𝐶𝑖∗, 𝑗 if 𝑖 = 𝑖∗ with 𝑖∗ = arg min
𝑖=1,...,𝑚2

{𝐶𝑖, 𝑗−1} (2.3)

The mathematical model of the 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 (𝑆𝐴) variant is presented below
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and the notation is shown in Table 2.3. The objective function and constraints can be
written as follows:

Indexes Definition

𝑗 Index for jobs: 𝑗 ∈ {1, . . . , 𝑛}.
𝑘 Index for the position in the sequence: 𝑘 ∈ {1, . . . , 𝑛}.
𝑖 Index for machines in the first stage: 𝑖 ∈ {1, . . . 𝑚1}.

Parameters Definition

𝑝𝑖 𝑗 Processing time of job 𝑗 in machine 𝑖 ∈ {1, . . . , 𝑚}.
𝑎𝑡 𝑗 Processing time of job 𝑗 in machine 𝑚 + 1.

Variables Definition

𝑋 𝑗𝑘 1 if job 𝑗 is placed in position 𝑘 of the sequence at the first stage; 0, otherwise.
𝐶1𝑖𝑘 Completion time in machine 𝑖 of the first stage of job in position 𝑘 .
𝐶1𝑘 Completion time at the first stage of job in position 𝑘 .
𝐶𝑘 Job completion time, i.e., the time at which job in position 𝑘 leaves the second stage.

Table 2.3: Notation of the 𝐷𝑃𝑚→ 1 | | ∑𝐶 𝑗 problem.

Min
∑︁

𝐶 𝑗

subject to:

𝑛∑︁
𝑘=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑗 ≤ 𝑛 (2.4)

𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑘 ≤ 𝑛 (2.5)

𝐶1𝑖,1 =

𝑛∑︁
𝑗=1

𝑋 𝑗 ,1𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚1 (2.6)

𝐶1𝑖𝑘 = 𝐶1𝑖,𝑘−1 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚1, 2 ≤ 𝑘 ≤ 𝑛 (2.7)

𝐶1𝑘 ≥ 𝐶1𝑖𝑘 , 1 ≤ 𝑖 ≤ 𝑚1, 1 ≤ 𝑘 ≤ 𝑛 (2.8)

𝐶1 = 𝐶11 +
𝑛∑︁
𝑗=1

𝑋 𝑗 ,1𝑎𝑡 𝑗 (2.9)
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𝐶𝑘 ≥ 𝐶𝑘−1 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘𝑎𝑡 𝑗 , 2 ≤ 𝑘 ≤ 𝑛 (2.10)

𝐶𝑘 ≥ 𝐶1𝑘 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘𝑎𝑡 𝑗 , 2 ≤ 𝑘 ≤ 𝑛 (2.11)

𝑋 𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 (2.12)

𝐶1𝑖 𝑗 , 𝐶1 𝑗 , 𝐶 𝑗 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚1, 1 ≤ 𝑗 ≤ 𝑛 (2.13)

Constraints (2.4) guarantee that each job is only placed in one position at the first
stage and constraints (2.5) ensure that each position at the first stage is occupied by
only one job. Constraints 2.6 and 2.7 calculate the completion time of each component
of the job in position 𝑘 at each machine 𝑖 in the first stage, while constraints (2.8)
compute the completion time of each job in position 𝑗 at the first stage. Constraints
(2.9) are used to obtain the completion time of the job scheduled in the first position
in the second stage. The sets of constraints (2.10) and (2.11) calculate the completion
time of each job in position 𝑘 in the second stage. The set of constraints (2.12)
guarantees that 𝑋 𝑗𝑘 is a binary variable and, finally, constraints (2.13) assures that all
variables are non-negatives.

The mathematical model of the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 (𝑀𝐴) variant is presented
below, and the notation is shown in Tables 2.3 and 2.4. The objective function and
constraints can be written as follows:

Min
∑︁

𝐶 𝑗

subject to:

𝑛∑︁
𝑘=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑗 ≤ 𝑛 (2.14)

𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑘 ≤ 𝑛 (2.15)

𝑚2∑︁
𝑞=1

𝑍𝑘𝑞 = 1, 1 ≤ 𝑘 ≤ 𝑛 (2.16)
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Indexes Definition

ℎ Index for jobs: ℎ ∈ {1, . . . , 𝑛}.
𝑖 Index for machines in the first stage: 𝑖 ∈ {1, . . . , 𝑚1}.
𝑞 Index for machines in the second stage: 𝑞 ∈ {1, . . . , 𝑚2}.

Parameters Definition

𝑝𝑖 𝑗 Processing time of job 𝑗 in machine 𝑖 ∈ {1, . . . , 𝑚1}.
𝑎𝑡 𝑗 Processing time of job 𝑗 in the second stage.

Variables Definition

𝑍𝑞𝑘 1 if job in position 𝑘 in the first stage is assigned to machine 𝑞 in the second stage. It is
equals zero if the job is not assigned to assembly machine 𝑞.

𝐶2𝑞𝑘 Completion time of job in position 𝑘 in the first stage on machine 𝑞 at the second stage. It
is equals zero if the job is not assigned to assembly machine 𝑞.

𝐶𝑇𝑞𝑘 Completion time of the last job before job in position 𝑘 , which has been assigned on
assembly machine 𝑞. Note that the last job assigned to machine 𝑞 is not necessarily the
job in position 𝑘 − 1.

Table 2.4: Notation of the 𝐷𝑃𝑚1 → 𝑃𝑚2 | |
∑
𝐶 𝑗 problem. See also Table 2.3.

𝐶1𝑖,1 ≥
𝑛∑︁
𝑗=1

𝑋 𝑗 ,1 · 𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚1 (2.17)

𝐶1𝑖𝑘 ≥ 𝐶1𝑖,𝑘−1 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚1, 2 ≤ 𝑘 ≤ 𝑛 (2.18)

𝐶1𝑘 ≥ 𝐶1𝑖𝑘 , 1 ≤ 𝑖 ≤ 𝑚1, 1 ≤ 𝑘 ≤ 𝑛 (2.19)

𝐶𝑇𝑞𝑘 ≥ 𝐶2𝑞 (ℎ−1) , 1 ≤ 𝑞 ≤ 𝑚2, 2 ≤ 𝑘 ≤ 𝑛, 2 ≤ ℎ ≤ 𝑘 (2.20)

𝐶2𝑞,1 ≥ 𝑍𝑞,1 · (𝐶11 +
𝑛∑︁
𝑗=1

𝑋 𝑗 ,1 · 𝑎𝑡 𝑗), 1 ≤ 𝑞 ≤ 𝑚2 (2.21)

𝐶2𝑞𝑘 ≥ 𝑍𝑞𝑘 · (𝐶1𝑘 +
𝑛∑︁
𝑗=1

𝑋 𝑗 ,𝑘 · 𝑎𝑡 𝑗), 1 ≤ 𝑞 ≤ 𝑚2, 2 ≤ 𝑘 ≤ 𝑛 (2.22)

𝐶2𝑞𝑘 ≥ 𝑍𝑞𝑘 · (𝐶𝑇𝑞𝑘 +
𝑛∑︁
𝑗=1

𝑋 𝑗 ,𝑘 · 𝑎𝑡 𝑗), 1 ≤ 𝑞 ≤ 𝑚2, 2 ≤ 𝑘 ≤ 𝑛 (2.23)
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𝑋 𝑗𝑘 , 𝑍𝑞𝑘 ∈ {0, 1}, 1 ≤ 𝑞 ≤ 𝑚2, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 (2.24)

𝐶1𝑖 𝑗 , 𝐶1 𝑗 , 𝐶𝑞𝑘 , 𝐶2𝑞𝑘 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚1, 1 ≤ 𝑞 ≤ 𝑚2, 1 ≤ 𝑗 ≤ 𝑛 (2.25)

Constraints (2.14) guarantee that each job is only placed in one position at the
first stage and constraints (2.15) ensure that each position at the first stage is occupied
by only one job. Similarly, constraints (2.16) ensure that every job is assigned to
exactly one machine in the second stage. Constraints (2.17) and (2.18) calculate the
completion time of each job in position 𝑘 at each machine 𝑖 in the first stage and
constraints (2.19) compute the completion time of each job in position 𝑘 at the first
stage. Constraints (2.20) assure that each job in position 𝑘 can be assembled on
machine 𝑞 only when the previous job processed in that machine has finished. The
sets of non-linear constraints (2.21), (2.22) and (2.23) compute the final completion
time of the job in position 𝑘 assembled on machine 𝑞 in the second stage. Constraints
(2.24) state that 𝑋 𝑗𝑘 and 𝑍 𝑗𝑞 are binary variables and, finally, constraints (2.25) assure
that all variables are non-negatives values.

To transform this problem into a MILP, constraint (2.21) should be replaced with
constraints 2.13a-2.13h, and (2.22) and (2.23) with constraints 2.14a-2.14j:
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𝐶2𝑞,1 = 𝑑𝑑𝑞,1 + 𝑒𝑒𝑞,1 (2.13a)

𝑑𝑑𝑞,1 ≥ 𝑀 · 𝑍𝑞,1 +𝐶11 −𝑀 (2.13b)

𝑑𝑑𝑞,1 ≤ 𝐶11 (2.13c)

𝑑𝑑𝑞,1 ≤ 𝑀 · 𝑍𝑞,1 (2.13d)

𝑒𝑒𝑞,1 ≥ 𝑀 · 𝑍𝑞,1 +
𝑛∑︁
𝑗=1

𝑋1,𝑘 · 𝑎𝑡1 − 𝑀

(2.13e)

𝑒𝑒𝑞,1 ≤
𝑛∑︁
𝑗=1

𝑋1,𝑘 · 𝑎𝑡1 (2.13f)

𝑒𝑒𝑞,1 ≤ 𝑀 · 𝑍𝑞,1 (2.13g)

𝑑𝑑𝑞,1, 𝑒𝑒𝑞,1 ≥ 0 (2.13h)

𝐶2𝑞𝑘 = 𝑑𝑑𝑞𝑘 + 𝑒𝑒𝑞𝑘 (2.14a)

𝑑𝑑𝑞𝑘 ≥ 𝑀 · 𝑍𝑞𝑘 + 𝐶1𝑘 − 𝑀 (2.14b)

𝑑𝑑𝑞𝑘 ≥ 𝑀 · 𝑍𝑞𝑘 +𝐶𝑇𝑞𝑘 −𝑀 (2.14c)

𝑑𝑑𝑞𝑘 ≤ 𝐶1𝑘 (2.14d)

𝑑𝑑𝑞𝑘 ≤ 𝐶𝑇𝑞𝑘 (2.14e)

𝑑𝑑𝑞𝑘 ≤ 𝑀 · 𝑍𝑞𝑘 (2.14f)

𝑒𝑒𝑞𝑘 ≥ 𝑀 · 𝑍𝑞𝑘 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑎𝑡 𝑗 − 𝑀

(2.14g)

𝑒𝑒𝑞𝑘 ≤
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑎𝑡 𝑗 (2.14h)

𝑒𝑒𝑞𝑘 ≤ 𝑀 · 𝑍𝑞𝑘 (2.14i)

𝑑𝑑𝑞𝑘 , 𝑒𝑒𝑞𝑘 ≥ 0 (2.14j)
Note that in above, 𝑀 represents a huge positive number and 𝑑𝑑𝑞𝑘 and 𝑒𝑒𝑞𝑘 can

be defined as auxiliar variables.

2.4 Mathematical model of the 2-ASP-pm with makespan
objective

The mathematical model of the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |∑𝐶max problem is presented
below and the notation is shown in Table 2.5. The objective function and constraints
can be written as follows:
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Indexes Definition

𝑗 Index for jobs: 𝑗 ∈ {1, . . . , 𝑛}.
𝑘 Index for the position in the sequence: 𝑘 ∈ {1, . . . , 𝑛}.
𝑖 Index for machines: 𝑖 ∈ {1, . . . , 𝑚 + 1}.
𝑧 Index for bins: 𝑧 ∈ {1, . . . , 𝑍}.

Parameters Definition

𝑇 Availability period or length of the bins.
𝑡 Unavailability period.
𝑝𝑖 𝑗 Processing time of job 𝑗 in machine 𝑖 ∈ {1, . . . , 𝑚}.
𝑎𝑡 𝑗 Processing time of job 𝑗 in machine 𝑚 + 1.
𝑀 Big number. It can be computed as 𝑀 =

∑𝑛
𝑗=1 (

∑𝑚
𝑖=1 𝑝𝑖 𝑗 ) + 𝑎𝑡 𝑗 .

𝐿 Maximal number of bins.

Variables Definition

𝑋 𝑗𝑘 1 if job 𝑗 is placed in position 𝑘 of the sequence at the first stage; 0, otherwise.
𝛽𝑖𝑘𝑧 1 if job in position 𝑘 is assigned to bin 𝑧 in machine 𝑖; 0, otherwise.
𝐶1𝑖𝑘 Completion time in machine 𝑖 of the first stage of job in position 𝑘 .
𝐶1𝑘 Completion time at the first stage of job in position 𝑘 .
𝐶𝑘 Job completion time, i.e., the time at which job in position 𝑘 leaves the second stage.
𝐶max Completion time of the last job in the second stage or maximum completion time.

Table 2.5: Notation of the 𝐷𝑃𝑚→ 1 |𝑛𝑟 − 𝑝𝑚 |𝐶max problem.

Min 𝐶max

subject to:
𝑛∑︁
𝑘=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑗 ≤ 𝑛 (2.15)

𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 = 1, 1 ≤ 𝑘 ≤ 𝑛 (2.16)

𝐶1𝑖,1 ≥
𝑛∑︁
𝑗=1

𝑋 𝑗 ,1 · 𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚 (2.17)

𝐶1𝑖𝑘 ≥ 𝐶1𝑖,𝑘−1 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑝𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 2 ≤ 𝑘 ≤ 𝑛 (2.18)

𝐶1𝑘 ≥ 𝐶1𝑖𝑘 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛 (2.19)
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𝐶1 ≥ 𝐶11 +
𝑛∑︁
𝑗=1

𝑋 𝑗 ,1 · 𝑎𝑡 𝑗 (2.20)

𝐶𝑘 ≥ 𝐶𝑘−1 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑎𝑡 𝑗 , 2 ≤ 𝑘 ≤ 𝑛 (2.21)

𝐶𝑘 ≥ 𝐶1𝑘 +
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑎𝑡 𝑗 , 2 ≤ 𝑘 ≤ 𝑛 (2.22)

𝐶1𝑖𝑘 − 𝑧𝑇 ≤ 𝑀 (1 − 𝛽𝑖𝑘𝑧), 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑧 ≤ 𝑍 (2.23)

𝐶1𝑖𝑘 −
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑝𝑖 𝑗 + 𝑀 (1 − 𝛽𝑖𝑘𝑧) ≥ 𝑇 (𝑧 − 1), 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑧 ≤ 𝑍

(2.24)

𝐶𝑘 − 𝑧𝑇 ≤ 𝑀 (1 − 𝛽𝑚+1,𝑘,𝑧), 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑧 ≤ 𝑍 (2.25)

𝐶𝑘 −
𝑛∑︁
𝑗=1

𝑋 𝑗𝑘 · 𝑎𝑡 𝑗 + 𝑀 (1 − 𝛽𝑚+1,𝑘,𝑧) ≥ 𝑇 (𝑧 − 1), 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑧 ≤ 𝑍 (2.26)

𝑍∑︁
𝑧=1

𝛽𝑖𝑘𝑧 = 1, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛 (2.27)

𝐶max ≥ 𝐶 𝑗 , 1 ≤ 𝑗 ≤ 𝑛 (2.28)

𝑋 𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 (2.29)

𝐶1𝑖 𝑗 , 𝐶1 𝑗 , 𝐶 𝑗 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 (2.30)

Constraints (2.15) guarantee that each job is only placed in one position at the
first stage and constraints (2.16) ensure that each position at the first stage is occupied
by only one job. Constraints 2.17 and 2.18 calculate the completion time of each
component of the job in position 𝑘 at each machine 𝑖 in the first stage, while constraint
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(2.19) compute the completion time of each job in position 𝑗 at the first stage.
Constraints (2.20) are used to obtain the completion time of the job scheduled in the
first position in the second stage. The set of constraints (2.21) and (2.22) calculates the
completion time of each job in position 𝑘 in the second stage. The set of constraints
(2.23) and (2.24) controls that each operation starting in a bin also finishes within
this bin in the first stage, while constraints (2.25) and (2.26) control the operation in
the second stage. Constraints (2.27) ensure that each operation is scheduled in only
one bin and constraints (2.28) state that the makespan is the maximum completion
time. The set of constraints (2.29) guarantees that 𝑋 𝑗𝑘 is binary variable and, finally,
constraints (2.30) assures that all variables are non negatives.
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Chapter 3

Conditions and characteristics for
the evaluation of algorithms

3.1 Introduction

In this chapter, we introduce the characteristics and conditions of the different com-
putational evaluations performed throughout this thesis. As explained in the general
research objectives, several resolution methods are proposed to solve the problems
under study throughout the thesis. Therefore, in the next chapters, common informa-
tion is needed, such as the indicators used to measure the performance of the methods
and the set of instances used to test the methods. For this reason, it has been decided
to include this information in this chapter, which will make the following chapters
easier to read. More specifically, in Section 3.2 we explain the performance indicators
used to compare the different algorithms. Then, in Section 3.3, the sets of instances
used to compare the different algorithms are presented. Finally, in Section 3.4, the
experimental conditions that must be met are presented.

3.2 Performance indicators

When different approximate algorithms are evaluated, a trade-off between two aspects
is needed: the quality of the solutions and the computational time required by the
algorithm to get them. To select an algorithm from the set of algorithms available for
the problem, both aspects should be weighted, and different decision intervals may
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be required and different qualities of the solution can be accepted. However, in most
cases, the decision maker has no knowledge of the precise trade-off. Therefore, in this
thesis, we follow the idea of representing the algorithms along the above mentioned
criteria (quality of solution and computational time) and obtain a set of efficient
algorithms.

In this section, we present the performance indicators employed to represent the
algorithms and compare the different results obtained from the different computational
evaluations carried out in this thesis. Firstly, we use the Average Relative Percentage
Deviation (𝐴𝑅𝑃𝐷) to measure the quality of the solutions of the different methods
according to Equation 3.1:

𝐴𝑅𝑃𝐷ℎ =

∑
∀𝑠 𝑅𝑃𝐷ℎ𝑠

𝑆
, ∀ 𝑠 = 1, · · · , 𝑆 (3.1)

where 𝑆 is the total number of instances and 𝑅𝑃𝐷ℎ𝑠 computed as:

𝑅𝑃𝐷ℎ𝑠 =
𝑂𝐹ℎ𝑠 − 𝑀𝐼𝑁

𝑀𝐼𝑁
· 100 (3.2)

with 𝑂𝐹ℎ𝑠 the value of the objective function (makespan or total completion
time) obtained by method ℎ (ℎ = 1, · · · , 𝐻) in instance 𝑠 (𝑠 = 1, . . . , 𝑆) and 𝑀𝐼𝑁 the
minimum known solution for each instance 𝑠. The computational effort is measured
by means of the Average CPU (𝐴𝐶𝑃𝑈) time:

𝐴𝐶𝑃𝑈ℎ =

∑
∀𝑠 𝑇ℎ𝑠
𝑆

(3.3)

where 𝑇ℎ𝑠 is the time (in seconds) required by method ℎ to obtain a solution
for instance 𝑠. Furthermore, since the 𝐴𝐶𝑃𝑈 indicator presents some problems if
it is used to compare heuristics with different stopping criteria (Fernandez-Viagas
and Framinan, 2015a), the Relative Percentage computation Time (labelled 𝑅𝑃𝑇) is
computed, as indicated in Equation (3.4), in order to evaluate methods with different
number of steps in their procedures.

𝑅𝑃𝑇ℎ𝑠 =
𝑇ℎ𝑠

𝐴𝐶𝑃𝑈𝑠
(3.4)

where 𝐴𝐶𝑃𝑈𝑠 is the average CPU time obtained for instance 𝑠 and is computed
according to Equation 3.5:

𝐴𝐶𝑃𝑈𝑠 =

∑
∀ℎ 𝑇ℎ𝑠
𝐻

(3.5)
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Finally, the Average 𝑅𝑃𝑇 (𝐴𝑅𝑃𝑇) can be defined as follows:

𝐴𝑅𝑃𝑇ℎ =

𝑆∑︁
𝑠=1

𝑅𝑃𝑇ℎ𝑠

𝑆
(3.6)

3.3 Benchmarks

In this section, and for the reader’s convenience, we present the characteristics of the
sets of instances employed in this thesis. First, we present a set of instances adapted
from the literature and used in Section 6.5.2 and 6.5.3. Then, after reviewing the
literature in Section 4.2, we identify the need for a common benchmark. Therefore,
in this section, the new benchmarks B1 and B2 are described, and, in Chapter 5,
the generation process carried out to obtain them is detailed. These benchmarks are
used in Part III to compare the new proposals with the existing algorithms and, thus,
determine the state-of-the-art in a common framework.

As reviewed in Section 4.2, in the related literature, different sets of instances
(see those from Al-Anzi and Allahverdi, 2006b, 2007; Allahverdi and Al-Anzi, 2009;
Al-Anzi and Allahverdi, 2012, among others) are used for the problem under study
and for related problems. In these testbeds, the processing times are generated in
the same way, but each testbed has a different number of jobs and machines in the
first stage. From the testbeds found in the literature, the following benchmarks are
generated in order to evaluate and compare the different solution procedures:

• Benchmark B0: This testbed is generated following the procedure by Al-
Anzi and Allahverdi (2012). We adapt it in order to consider the parameter
𝑚2. Thus, the proposed testbed consists of 30 instances generated for each
combination of 𝑛,𝑚1 and𝑚2. More specifically, the problem data are generated
for 𝑛 ∈ {30, 40, 50, 60, 70}, 𝑚1 ∈ {2, 4, 6, 8}, and 𝑚2 ∈ {2, 4, 6, 8}. The
processing times of the jobs in the machines in the first stage are drawn from
a 𝑈 ∈ [1, 100] distribution, while in the second stage the processing times are
drawn from a 𝑈 ∈ [1, 𝑚2 · 100] distribution to balance both stages and have
different scenarios regarding the relative processing times in each stage. In
total, 2,400 instances are generated.

• Benchmark B1: This benchmark is generated, after an exhaustive study, in
Chapter 5 for the 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 problem. It consists of 10 instances for
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each combination of 𝑛 ∈ {50, 100, 150, 200, 250, 300} and 𝑚1 ∈ {2, 4, 6, 8}.
The procedure followed to generate the processing times is explained in the
referred chapter. In total, this benchmark has 240 instances.

• Benchmark B2: This benchmark is generated, after an exhaustive study, in
Chapter 5 for the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 problem. It consists of 10 instances for
each combination of 𝑛 ∈ {50, 100, 150, 200, 250, 300}, 𝑚1 ∈ {2, 4, 6, 8}, and
𝑚2 ∈ {2, 4, 6, 8}. The procedure followed to generate the processing times is
explained in the referred chapter. In total, this benchmark has 960 instances.

• BenchmarkB3: This benchmark is generated to the mathematical model pre-
sented in Section 2.4. It consists of 10 instances for each combination of
𝑛 ∈ {10, 20, 30, 40}, 𝑚1 ∈ {2, 4, 6, 8}, and 𝑇 ∈ {200, 300, 400, 500}. In total,
this benchmark has 640 instances.

• Benchmark B4: This benchmark is generated following the characteristics
of benchmark B1 for the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem. It consists
of 10 instances for each combination of 𝑛 ∈ {50, 100, 150, 200, 250, 300},
𝑚1 ∈ {2, 4, 6, 8}, and 𝑇 ∈ {200, 300, 400, 500}. In total, this benchmark has
960 instances.

Furthermore, the sets of instances used to evaluate the algorithms have to be
different from those used to calibrate the parameters of the proposed algorithms to
avoid an over-calibration. The calibration testbeds are as follows:

• Calibration benchmarkB𝐶0: 10 instances have been generated for 𝑛 ∈ {30, 40,
50, 60, 70}, 𝑚1 ∈ {2, 4, 6, 8}, and 𝑚2 ∈ {2, 4, 6, 8}. The processing times in
the first stage are generated according to 𝑝𝑖 𝑗 ∈ 𝑈 [1, 100], while in the second
stage, 𝑎𝑡 𝑗 ∈ 𝑈 [1, 𝑚2 · 100].

• Calibration benchmarkB𝐶1: 10 instances have been generated for 𝑛 ∈ {50, 100,
150, 200, 25, 300}, 𝑚1 ∈ {2, 4, 6, 8} and 𝑚2 = 1. The processing times of the
jobs are drawn from a uniform distribution 𝑈 [1, 100] for the machines of the
first stage, and from a 𝑈 [1, 𝛼100] distribution, with 𝛼 = 2 in the second stage
(following the procedure designed in Chapter 5).

• Calibration benchmarkB𝐶3: 10 instances have been generated for 𝑛 ∈ {50, 100,
150, 200, 25, 300},𝑚1 ∈ {2, 4, 6, 8},𝑚2 = 1 and𝑇 ∈ {200, 300, 400, 500}. The
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processing times of the jobs are drawn from a uniform distribution 𝑈 [1, 100]
for the machines of the first stage, and from a𝑈 [1, 2 · 𝑚2 · 100] distribution in
the second stage.

3.4 Experimental conditions

In this thesis, several approximate methods are proposed and compared with other
algorithms from the literature. To have a fair comparison among all methods, all
selected algorithms in this thesis are again fully re-coded in C# and tested under the
same conditions, which means:

• Using the same computer, which means the same processor speed, bus speed,
memory speed, and size. More specifically, a cluster of 12 Intel Core i7-3770
PC with 3.4 GHz and 16 GB RAM is used.

• Using the same programming language (C# under Visual Studio 2019) and
compiler.

• Using the same operating system.

• Using the same libraries and common functions.

• Using the same set of instances in each comparison.

Furthermore, for each instance, five runs are carried out to better fit the compu-
tational time of each heuristic. Then, the average values of the indicators (quality of
the solutions and computational effort) are computed.
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Chapter 4

State of the art

4.1 Introduction

In this chapter, we perform a comprehensive review of the literature for the problems
under consideration to fulfill Objective GO1. The structure of this chapter, shown in
Figure 4.1, is organised as follows.

In Section 4.2, we review and analyse the sets of instances used in the literature
to test the solution methods applied to the considered problem. We also incorporate
in the analysis the related scheduling problems (i.e., with slightly different constraints
or objective functions), which can be easily adapted to the problem under study.

Section 4.3 analyses the literature related to the 2-ASP. Despite its applicability
in real life, there are few references that address the variant with several identical
machines in the second stage (𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 or 𝑀𝐴). In this section, we review
the existing solution procedures for the 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 variant (or 𝑆𝐴) and for
other related scheduling problems, namely the Customer Order scheduling problem
(𝐷𝑃𝑚 → 0| |∑𝐶 𝑗).

Finally, in Section 4.4, we review the literature related to the periodic maintenance
constraint (2-ASP-pm). Due to the importance of this constraint in real manufactur-
ing, it has been widely studied for different layouts, e.g., single machine scheduling
problem; parallel machines scheduling problem; and flowshop scheduling problem,
among others. However, to the best of our knowledge, this is the first time that the
𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem is addressed. Therefore, we review the literature
of the related problems, more specifically, 1|𝑛𝑟 − 𝑝𝑚 |𝐶max, 𝐹2|𝑛𝑟 − 𝑝𝑚 |𝐶max and
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𝐷𝑃𝑚 → 1| |𝐶max.

State-of-the-art
(Chapter 4)

Existing 
sets of  instances

(Section 4.2)

Introduction
(Section 4.1)

2-ASP
(Section 4.3)

2-ASP-PM
(Section 4.4)

Figure 4.1: Structure of the Chapter 4.

4.2 Existing sets of instances

In this section, we review the literature related to the sets of instances used in the
literature to test the different methods for solving the problem considered in this
thesis. As introduced before, existing testbeds from related scheduling problems are
also incorporated into the analysis, as they could be easily adapted to the problem
under study.

In Table 4.1, we summarise the characteristics of the different sets of instances.
The table is organised as follows: the first column indicates the problem for which the
set of instances is designed, and the second column indicates the paper in which the
set of instances is tested. The number of instances is shown in the third column, and
the number of jobs, 𝑛, is considered in the fourth column. The number of machines
in the first stage, 𝑚1, and in the second stage, 𝑚2, are shown in the fifth and sixth
columns, respectively. Finally, the last two columns show the different distributions
adopted to generate the processing times in the first stage, 𝑝𝑖 𝑗 , and in the second stage,
𝑎𝑡 𝑗 .

Some observations about the characteristics of the different sets of instances can
be made:

• Regarding the number of jobs, 𝑛, some papers (see Sung and Kim, 2008 and
Lee, 2018) consider a number of jobs smaller than 15, while others (see Leung
et al., 2005; Al-Anzi and Allahverdi, 2006a; Lin et al., 2008) consider a higher
number of jobs, being 120, 200 and 500 the maxima, respectively. For the
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most commonly used testbeds (Al-Anzi and Allahverdi, 2006a; Allahverdi and
Al-Anzi, 2012), the maximum number of jobs considered are 120 and 70,
respectively. There are other cases using higher values of the number of jobs
(e.g., Leung et al., 2005; Blocher and Chhajed, 2008; Shi et al., 2018), but these
sets of instances have been scarcely used.

• Concerning the number of machines in both stages, there are some papers which
consider only one level of 𝑚1, such as Sung and Yoon (1998), Wu et al. (2018)
and Sung and Kim (2008) with 𝑚1=2 or Lee (2018) with 𝑚1=5. However, the
rest of the works consider different levels of 𝑚1. Regarding the SA variant, the
most used testbeds are those by Al-Anzi and Allahverdi (2006a) and Allahverdi
and Al-Anzi (2012), where 𝑚1 ∈ {2, 4, 6, 8}. With respect to the number of
machines in the second stage, Allahverdi and Al-Anzi (2009) and Tozkapan
et al. (2003) consider one assembly machine. There are also papers which
consider different levels of 𝑚2 (see Nejati et al., 2016; Mozdgir et al., 2013).

• Regarding the processing times, some papers (see Leung et al., 2005 or Al-Anzi
and Allahverdi, 2006a) follow a uniform distribution 𝑈 [1, 100] in both stages.
Other works (see Sung and Yoon, 1998; Tozkapan et al., 2003; Sung and Kim,
2008) generate separately the processing times in different classes (see Table
4.2) in order to incorporate what the respective authors consider as dominance
between the two stages 1. In Sung and Yoon (1998), the first class represents
the balance between the stages. In the second class, the workload in the first
stage is slightly higher than that in the second stage. Finally, the third class
represents the extremely unbalanced case. Tozkapan et al. (2003) represents
the non-dominance case between the stages in the first class; in the second class
the second stage dominates the first one, while in the third case, the opposite
occurs. Sung and Kim (2008) represents the balance between the stages in the
first class and in the second class, the case in which the workload in the second
stage is higher than that in the first stage.

• There are some papers proposing two sets of instances with different sizes to
test both exact and approximate methods, e.g., two sets with 900 instances each

1In the cited works it can be checked that no study has carried out to ensure that the generated
instances are representative of the different classes.
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Class 1 Class 2 Class 3

Paper Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Sung and Yoon (1998) U[1,30] U[1,30] U[5,30] U[1,25] U[10,30] U[1,20]
Tozkapan et al. (2003) U[1,100] U[1,100] U[1,80] U[20,100] U[20,100] U[1,80]
Sung and Kim (2008) U[1,20] U[1,20] U[1,15] U[5,20]

Table 4.2: References with the generation of the processing times in different classes.

one are proposed in Sung and Yoon (1998) or one set with 360 instances and
another one with 2,430 instances are designed in Mozdgir et al. (2013).

4.3 The 2-ASP

As mentioned in Section 4.1, there are few references that address the assembly
scheduling problem with several machines in the second stage (𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗).
These references are the works by Sung and Kim (2008) and Al-Anzi and Allahverdi
(2012). Sung and Kim (2008) developed a heuristic, denoted 𝑆𝐴𝐾 from now on,
applying a processing-time-based pairwise exchange mechanism, while in Al-Anzi
and Allahverdi (2012), a mathematical model of the problem with two assembly
machines was proposed, together with three new metaheuristics. Due to the scarce
literature handling the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 problem, we review the existing literature
of the 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 and 𝐷𝑃𝑚 → 0| |∑𝐶 𝑗 problems.

Regarding the 𝐷𝑃𝑚 → 1| |∑𝐶 𝑗 problem, the first reference that addresses it
is Tozkapan et al. (2003), where the authors proved that permutation schedules are
optimal for the 𝐷𝑃𝑚 → 1 problem and proposed two heuristics, labelled 𝑇𝐶𝐾1 and
𝑇𝐶𝐾2 in the following, to find an upper bound for their branch and bound algorithm.
Al-Anzi and Allahverdi (2006a) also addressed this problem and derived a number
of theoretical properties. They proposed three simple constructive heuristics (𝑆1, 𝑆2,
and 𝑆3) based on the idea of ordering the jobs according to the Shortest Processing
Time (SPT) rule, and two additional constructive heuristics, labelled 𝐴1 and 𝐴2 in the
following. Recently, Framinan and Perez-Gonzalez (2017b) developed a constructive
heuristic, denoted 𝐹𝐴𝑃 in the following, which outperforms the existing constructive
heuristics and is based on the problem properties studied by Al-Anzi and Allahverdi
(2006a). The last reference where this problem is considered is Lee (2018). Six
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lower bounds were proposed and tested in a branch-and-bound algorithm. The author
also proposed four greedy-type constructive heuristics, labelled𝐺1, 𝐺2, 𝐺3, and𝐺4.
This problem has also been tackled with respect to different objectives: Lee et al.
(1993) and Potts et al. (1995) addressed this problem regarding the minimisation of the
makespan, while Al-Anzi and Allahverdi (2006b) and Allahverdi and Al-Anzi (2006)
considered the minimisation of the maximum lateness; additional constraints such as
setup times (Al-Anzi and Allahverdi, 2007), or additional stages for the transportation
of components (Koulamas and Kyparisis, 2001 and Shoaardebili and Fattahi, 2015)
have also been studied.

For the 𝐷𝑃𝑚 → 0| |∑𝐶 𝑗 problem, Sung and Yoon (1998) proposed two con-
structive heuristics based on the SPT rule. The first one schedules the order with
the smallest total processing time across all 𝑚 machines, labelled 𝑆𝑇𝑃𝑇 in the fol-
lowing, and the second one selects the order with the smallest maximum amount of
processing time on any of the 𝑚 machines, denoted as 𝑆𝑀𝑃𝑇 . Leung et al. (2005)
proposed a constructive heuristic that selects as the next order to be sequenced the one
that would be completed the earliest, that is, the order with the Earliest Completion
Time (ECT). Based on this idea and including some look-ahead concepts, Framinan
and Perez-Gonzalez (2017a) proposed a constructive heuristic and two specific local
search mechanisms for the problem, labelled 𝑆𝐻𝐼𝐹𝑇𝑘 and 𝑆𝐻𝐼𝐹𝑇𝑘𝑂𝑃𝑇

.

4.4 The 2-ASP-pm

In this section, we review the literature related to the periodic maintenance constraint.
To the best of our knowledge, the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem has never been
addressed so far and no resolution methods have been designed to solve it. Therefore,
we review the existing literature of the related problems presented in Chapter 2.

Regarding the 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem, with a single machine, it was firstly
addressed by Ji et al. (2007). The authors proposed a dispatching rule, named LPT,
which first sorts the jobs in descending order of their processing times and then
assigns them according to the First Fit (or FF, see the explanation in Section 7.2)
policy. Low et al. (2010a) proposed a Particle Swarm Optimization (PSO) algorithm,
using different dispatching rules to generate the initial population. Hsu et al. (2010)
addressed a different version of the problem where the machine stops for maintenance
after T units of time or after processing A jobs. This problem is equivalent to
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1|𝑛𝑟− 𝑝𝑚 |𝐶max if 𝐴 = 𝑛. Firstly, the authors presented a Binary Integer Programming
model and, secondly, they proposed two heuristics. The first heuristic sorts the jobs
according to LPT and assigns them using the Best Fit (or BF, see the explanation
in Section 7.2) policy. The second heuristic sorts the jobs in the so-called butterfly
order (given the jobs in LPT, select first the largest one, then the smallest, the second
largest, the second smallest, and so on), and then applies the BF bin packing policy. In
Low et al. (2010b), the problem with flexible maintenance was addressed, where the
maintenance has to be executed within a given time window. The authors proposed
six constructive heuristics obtained by combining a sequencing priority list (random
order, SPT order and LPT order) with the FF or BF policies. Yu et al. (2014) designed
three constructive heuristics, labelled LS, LPT and MLPT, concluding that MLPT
is the best among them. Finally, Perez-Gonzalez and Framinan (2018) designed a
heuristic, denoted here by PGF, using a given bin packing assignment policy as an
operator to be applied to permutation sequences, and carried out a computational
evaluation with all the previous procedures.

With respect to the 𝐷𝑃𝑚 → 1| |𝐶max problem, Lee et al. (1993) considered the
𝐷𝑃2 → 1| |𝐶max problem by proposing a branch-and-bound solution scheme and
three Johnson-based heuristics, labelled 𝐿𝐶𝐿1, 𝐿𝐶𝐿2 and 𝐿𝐶𝐿3, which reduces the
problem to a modified 2-machine flowshop scheduling problem. Sun et al. (2003)
considered the same problem and proposed different heuristic algorithms based also
on Johnson’s rule. Lin et al. (2006) addressed the same problem, assuming that
the assembly machine processes batches of specific jobs and that a (non-sequence
dependent) setup is required every time a bin is formed. The authors proved that
this problem is strongly NP-hard, detected some few polynomially solvable cases,
and provided heuristics for the problem. Potts et al. (1995) addressed the problem
with 𝑚 machines in the first stage and proposed a heuristic, which is an extension of
the 𝐿𝐶𝐿3. Allahverdi and Al-Anzi (2006) addressed the same problem with setup
times and proposed three different approximate algorithms. Komaki and Kayvanfar
(2015) studied the problem with release times, developed several heuristics (based
on Johnson’s rule) and also proposed a meta-heuristic algorithm. Finally, regarding
the problem with an intermediate stage for collection and transportation (denoted
as 𝐷𝑃𝑚 → 𝐹2| |𝐶max), Koulamas and Kyparisis (2001) analysed the worst-case
ratio bound for several heuristics and proposed a heuristic based on compact vector
summation techniques. In Komaki et al. (2017), the authors proposed an Improved
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Discrete Cuckoo Optimization Algorithm, a lower bound, and a series of dispatching
rules for the same problem.

Regarding the flowshop scheduling problem with maintenance, Perez-Gonzalez
et al. (2020) developed specific heuristics with different computational complexity,
employed an iterated greedy algorithm, and carried out an extensive computational
experiment to establish the efficiency of the proposed heuristics. Recently, Zhao et al.
(2020) studied the problem with blocking and minimisation of the makespan.

4.5 Conclusions of the chapter

In this chapter, on the one hand, the literature related to the existing sets of instances
of related problems has been analysed, and, on the other hand, the literature of the
existing approximate methods for the related problems of the two problems under
study, 2-ASP and 2-ASP-pm, has been reviewed. After the first analysis of the
existing testbeds carried out in Section 4.2, some conclusions can be obtained:

• Compared to other testbeds designed for different scheduling problems (see
Taillard, 1993; Vallada et al., 2015; Fernandez-Viagas and Framinan, 2020),
the levels of the number of jobs considered in the majority of the literature are
very small.

• Some sets of instances are not well-suited for a statistical analysis as they do
not use the same number of levels of parameters (number of machines in both
stages) for each number of jobs (see e.g., Mozdgir et al., 2013).

• So far, no study has been carried out to ensure that any of the so-generated
instances are representative of the problem under study.

• Since all proposals to solve the problem, approximate and exact algorithms,
have been tested using very different sets of instances, the conclusions obtained
may be different depending on the set used, i.e., the values of the quality of the
solutions and the computational effort may become very different depending
on the chosen set.

• To the best of our knowledge, no analysis of the hardness of the instances has
been carried out, so the instances generated might be relatively easy to solve.
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Therefore, we find appropriate to design and propose two comprehensive bench-
marks for the 2-stage multi-machine scheduling problem with total completion time
criterion, one for each variant considered (see Objective GO2). All the analysis and
methodology are presented in Chapter 5.

Regarding the review in Section 4.3, it can be seen that despite the existence
of some solution procedures for the 2-ASP, the performance of the adaptation of
procedures from related problems has not been tested so far. For these reasons, we
find pertinent to address the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 problem and propose some heuristic
algorithms in Chapter 6 (see Objectives GO3 and GO4).

From the analysis of the literature related to the 2-ASP-pm (Section 4.4, we can
conclude that, while the periodic maintenance constraint has been widely studied
for other scheduling problems, it has never been considered in the 2-stage assembly
scheduling problem so far. To cover this opportunity, in Chapter 7, we adapt the
existing approximate algorithms from related problems and propose new algorithms
to solve the 2-ASP-pm (see Objective GO5) with the minimisation of the makespan.
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Chapter 5

New benchmark generation

5.1 Introduction

Following the recommendation identified in Section 4.5, in this chapter, we generate
a new benchmark for the 2-ASP with total completion time minimisation. More
specifically, in Section 5.2, we explain the reasons for justifying the need for a
common benchmark to solve this problem. Then, the methodology adopted to select
the most suitable instances is explained in the previous chapter (see Section 5.3), and
the experiments needed to apply the methodology are included in Section 5.4. Finally,
we discuss the conclusions in Section 5.5.

New benchmark generation
(Chapter 5)

Justification Methodology Conclusions

Adequacy

Hardness

Preliminary testbeds

Experimental 
results

Proposal of  two 
new benchmarks

Figure 5.1: Structure of Chapter 5.
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5.2 Justification

According to the conclusions obtained after reviewing the literature in Section 4.2, the
issues to justify the proposal of a new benchmark for the problem are the following:

• Every time a new approximate method for the problem is proposed, it is tested
in different different sets of instances with different parameters and processing
times. Therefore, it might occur that a method obtains a good performance in
a set of instances and a bad performance in another one. This fact may lead to
an unclear knowledge about the state-of-the-art algorithms for this problem.

• Since the scheduling problems are very sensitive to the input data of the instance
(Fernandez-Viagas and Framinan, 2015b), in some cases the methodologies
adopted to generate the processing times of the instances do not guarantee
that researchers are solving their specific problems. More specifically, we will
show that there is a strong relationship among the variants under study and the
customer order and the traditional parallel machine problem, among others (see
Section 5.3.1 for more details). In other words, the good performance of some
approximate methods might have been established by solving, in fact, instances
of a different (albeit related) scheduling problem. As a consequence, to fulfil
this requirement, the procedure to design a new benchmark has to follow a
methodology which ensures the adequacy of the instances to the scheduling
problem under study, such as e.g., in Fernandez-Viagas and Framinan (2020).

• The procedures adopted to generate the instances do not ensure that the resulting
instances represent the hardest ones. This is an important aspect (see Vallada
et al., 2015; Fernandez-Viagas and Framinan, 2020) since, for a given schedul-
ing problem, using a solution procedure that outperforms others in the hardest
instances ensures an excellent performance of this procedure when applied to
easier instances, whereas the opposite does not have to be true.

This chapter is aimed to tackle these issues. More specifically, the contribution is
twofold: First, an analysis of the context is performed with a computational experiment
to determine the relationship among our variants and the related scheduling problems.
Second, using this information, we propose two comprehensive benchmarks for 2-
ASP with the total completion time criterion (one for each variant considered, 𝑆𝐴 and
𝑀𝐴).
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5.3 Methodology

In Section 4.2, the testbeds from the literature have been analysed and some disad-
vantages have been identified. To overcome these issues, we propose two new large
benchmarks, one for the SA variant, and other for the MA variant, which are detailed
in this section. According to the works by Hall and Posner (2001), Vallada et al.
(2015) and Fernandez-Viagas and Framinan (2020), the following characteristics of a
testbed for scheduling problems are desirable:

• Adequacy: The way in which the processing times in both stages are generated
is an important aspect to comply with the adequacy of the instances. This
characteristic is highly connected to the concept of balance between stages,
and, depending on how the processing times are generated, three scenarios can
be distinguished:

1. 1st stage unbalance if the processing times in the first stage are higher than
those in the second stage. It should be studied if the generated instances
for SA and MA in that way can be efficiently solved by methods designed
for the CO scheduling problem, since the assembly times might not greatly
influence the total completion time.

2. 2nd stage unbalance if the processing times in the second stage are higher
than those in the first stage. In this case, it should be studied if the
generated instances for SA and MA in that way can be efficiently solved by
methods designed for the SM and PM scheduling problems, respectively,
since the processing times of the dedicated machines might not greatly
influence the total completion time.

3. Balance if the workload in both stages are similar. In this case we can
assume that the instances generated are representative of the two variants
under study, SA and MA.

• Exhaustiveness: The benchmarks should include a large number of instances
and these instances should cover different sizes of the parameters of the problem.

• Amenability for statistical analysis: In order to perform suitable statistical tests,
all the levels of all the parameters must be combined, and the levels should be
equidistant.
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• Hardness: The proposed instances have to be hard to be solved by approximate
algorithms, i.e., if two methods can find the optimal solution for most of
the instances, the benchmark will not be interesting since it does not have
discriminant power and it could not be used to compare the methods. This
characteristic, together with the exhaustiveness, leads us to obtain a more
discriminant benchmark.

In this section, the procedure generated to design the new benchmarks and satisfy
the previous characteristics is described. Figure 5.2 shows the outline of the proce-
dure. First, the adequacy characteristic is determined by using exact and approximate
methods selected from the problem under consideration and from the related schedul-
ing problems. Sets of small and medium size preliminary testbeds are solved by
these methods and the solutions are evaluated for SA and MA. Both sets of instances
depend on a parameter 𝛼 (see Section 5.3.1). Once the most suitable value for this
parameter is established, a large size preliminary testbed is generated to select the
hardest ones to be included in the benchmark of each variant, SA and MA (see Section
5.3.2). This procedure is carried out evaluating the distance between a near optimal
solution (solution obtained by applying an iterated greedy algorithm) and a lower
bound of the problem. The description of the preliminary testbeds and the selection
procedure to select the suitable instances for the final benchmarks, denoted B1 and
B2 in Figure 5.2, are explained in Section 5.3.3. Finally, after the methodology has
been determined, the experimental analysis is carried out in Section 5.4.

The use of a generic representation of the solutions (permutation based) is a key
aspect in this methodology. For each one of the considered variants, the representation
of a solution to provide a schedule is given by: For SA, the same sequence of jobs on
all of the machines, including the assembly machine (Al-Anzi and Allahverdi, 2006a),
and for MA, a sequence on all the dedicated machines in the first stage and applying
the ECT rule to assign the jobs to the assembly machines (Al-Anzi and Allahverdi,
2012). Regarding the related problems, for CO, the solution is given by a permutation
of 𝑛 components (Framinan and Perez-Gonzalez, 2017a); for SM, the schedule is
given by a sequence (Smith, 1956) and, for PM, the solution is given by a sequence
and assigning the jobs to the machines using a dispatching rule (Conway et al., 1967)
as seen in Section 4.2. As can be observed, the use of a sequence provides a generic
solution for all the considered scheduling problems.
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Figure 5.2: Diagram of the methodology designed to propose the new benchmarks.

5.3.1 Adequacy

In order to guarantee the adequacy of the generated benchmarks for each variant,
SA and MA, the balance between stages is analysed to determine the relationship
among the problems. As usual in the problem under consideration (see Table 4.1)
and in the scheduling literature (see Taillard, 1993; Vallada et al., 2015; Fernandez-
Viagas and Framinan, 2020), the processing times are randomly generated from a
uniform distribution. Therefore, we consider 𝑝𝑖 𝑗 ∼ 𝑈 [1, 100] on all 𝑚1 machines
in the first stage. Regarding the second stage, to control the different scenarios
of balance / unbalance mentioned above, the processing times are generated using
𝑎𝑡 𝑗 ∼ 𝑈 [1, 𝛼 ·𝑚2 ·100], where 𝛼 is a parameter that represents the existing relationship
between the workload of the two stages. Based on preliminary results in which a wider
range of 𝛼 values is evaluated, the instances consider 𝛼 ∈ {1, 2, 3} for SA and MA. The
objective is to determine the value of 𝛼 that makes the instances suitable for inclusion
in the benchmarks, avoiding those that can be efficiently solved by methods designed
for CO, SM, and PM.

To accomplish with adequacy, small instances are first solved using exact methods
(explained below), developed for CO, SM, PM, SA, and MA. Second, some approx-
imate methods are re-implemented for the same problems, and their solutions and
conclusions are validated in the same small instances. Finally, the approximate al-
gorithms are also tested in medium size instances to cover a wider extension of the
problem under consideration. In the case where a (exact or approximate) method
is specific for CO, SM or PM, the instances need to be adapted by making 𝑝𝑖 𝑗 = 0
or 𝑎𝑡 𝑗 = 0, depending on each case. Let 𝑆𝑇 denote the solution obtained from an
algorithm specific for the problem T , with T ∈ {𝑆𝐴, 𝑀𝐴,𝐶𝑂, 𝑃𝑀, 𝑆𝑀}. Then, this
solution is evaluated for other related problems by computing

∑
𝐶T

′
𝑗
(𝑆T ), i.e., the
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total completion time of the solution obtained by a specific method of the problem T ,
𝑆T , evaluated for the problem T ′. Three different cases can be defined depending on
the value of 𝛼:

• Instances for which specific methods designed for CO yield a good performance
indicate that there is unbalance and the workload in the first stage is higher than
in the second stage.

• Instances for which specific methods designed for 𝑆𝑀/𝑃𝑀 yield a good per-
formance indicate that there is unbalance and the workload in the second stage
is higher than in the first stage.

• Instances for which specific methods designed for SA/MA yield a good perfor-
mance and specific methods designed for CO and SM/PM yield a bad perfor-
mance indicate that they are suitable and eligible for the benchmark.

Regarding the exact methods to solve the small size instances, the following have
been employed:

• For SA and MA: the MILP model presented in Section 2.3.

• For CO: an adaptation of the MILP model presented in Section 2.3, removing
the constraints related to the second stage.

• For SM and PM: SPT and SPT+ECT rules, respectively.

Regarding the approximate (heuristics) methods to solve the small and medium
size instances:

• For SA: the best-known constructive heuristic for the 𝐷𝑃𝑚1 → 1| |∑𝐶 𝑗 , 𝐹𝐴𝑃,
by Framinan and Perez-Gonzalez (2017b). .

• For MA: the best-known constructive heuristic for the 𝐷𝑃𝑚1 → 𝑃𝑚2 | |
∑
𝐶 𝑗 ,

𝐶𝐻𝑀𝐴, proposed in Chapter 6.

• For CO: the best-known constructive heuristic for solving the CO problem,
𝑁𝐸𝑊 − 𝐸𝐶𝑇 , by Framinan and Perez-Gonzalez (2017a).

• For SM and PM: SPT and SPT+ECT rules, respectively, since both problems
are polynomially solvable.
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𝑗 𝑝1 𝑗 𝑝2 𝑗 𝑝3 𝑗 𝑎𝑡 𝑗

1 2 9 7 3
2 10 5 5 18
3 5 4 8 25
4 4 5 9 17

Table 5.1: Processing times of the jobs in both stages.

The evaluation procedure of the adequacy is illustrated by an example with four
jobs to be scheduled in a 2-stage assembly system. The first stage consists of three
dedicated parallel machines and the second stage has two identical parallel machines.
The processing times of the jobs are shown in Table 5.1. Different methods are
applied to the instance: First, the exact method for MA is applied, providing the
solution 𝑆𝑀𝐴 = (2, 1, 3, 4) with objective function

∑
𝐶𝑀𝐴
𝑗

(𝑆𝑀𝐴)=136 (see Figure
5.3a). Then, the processing times in the second stage are considered equal to zero and
the exact method for 𝐶𝑂 is applied, providing the solution 𝑆𝐶𝑂 = (1, 2, 3, 4). The
sequence obtained is evaluated for MA using the data from the original instance (see
Figure 5.3b), yielding

∑
𝐶𝑀𝐴
𝑗

(𝑆𝐶𝑂)=138. Finally, the SPT+ECT rule is applied to
the instance assuming that the processing times in the dedicated machines are equal
to zero (𝑆𝑀/𝑃𝑀 case), obtaining 𝑆𝑃𝑀 = (1, 4, 2, 3). As in the previous case, the
sequence is evaluated for MA using the data of the original instance (see Figure 5.3c),
with the value of the objective function

∑
𝐶𝑀𝐴
𝑗

(𝑆𝑃𝑀 )=142.
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Figure 5.3: Gantt charts of the different optimal sequences evaluated for the MA variant. Figure
5.3a Gantt chart of the optimal sequence of the MA variant, 𝑆𝑀𝐴. Figure 5.3b Gantt chart of the
optimal sequence of the CO problem, 𝑆𝐶𝑂 , when it is evaluated for MA. Figure 5.3c Gantt chart
of the optimal sequence of the PM problem, 𝑆𝑃𝑀 , when it is evaluated for MA.
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5.3.2 Hardness

The empirical hardness of the instances has been measured by the difference between
the performance of a metaheuristic and a lower bound, as in similar studies (see
Taillard, 1993 and Vallada et al., 2015). The selected metaheuristic is the Iterated
Greedy, denoted as 𝐼𝐺, developed by Ruiz and Stützle (2007), which is among the most
effective metaheuristics in the scheduling literature (see some IG based algorithms
in Hatami et al., 2015; Lin, 2018; Pan et al., 2019) and is also used to determine
the empirical hardness in Vallada et al. (2015) and Fernandez-Viagas and Framinan
(2020). Following the literature (see Hatami et al., 2015; Vallada et al., 2015), the
stopping criterion is set to 𝑛 · 𝑚/2 · 90/1000 seconds, where 𝑚 is equal to 𝑚1 + 1,
since the number of machines in the second stage does not have an influence since the
ECT rule is applied. The parameters of the 𝐼𝐺 are set as in the original paper (Ruiz
and Stützle, 2007).

The lower bound used in this study is proposed by Blocher and Chhajed (2008),
where the authors addressed the problem 𝐷𝑃𝑚1 → 1| |∑𝐶 𝑗 . This lower bound
is calculated following Equation (5.1), where 𝑤 𝑗 =

∑𝑚
𝑖=1 𝑝𝑖 𝑗/𝑚1 and 𝑤 [𝑘 ] is the

average processing time of job in position 𝑘 with the jobs ordered according to
𝑤 [1] ≤ 𝑤 [2] ≤ · · · ≤ 𝑤 [𝑛] . Similarly, 𝑝𝑖 [𝑘 ] is the processing time of job in position
𝑘 in machine 𝑖 and the jobs are ordered according to 𝑝𝑖 [1] ≤ 𝑝𝑖 [2] ≤ · · · ≤ 𝑝𝑖 [𝑛] ,
with 1 ≤ 𝑖 ≤ 𝑚1. The sum in Equation (5.1) is an estimate of the completion time
of each job 𝑗 in the system: On the one hand, the completion time of each job 𝑗 in
the dedicated machines is computed as the maximum between the sum of the (largest
integer value given by the) average processing times of the jobs scheduled prior to
job 𝑗 given in the order defined by 𝑤 [𝑘 ] ; and the maximum among all the dedicated
machines of the processing times of the jobs scheduled prior to job 𝑗 given in the order
defined by 𝑝𝑖 [𝑘 ] . On the other hand, the processing time is added in the second stage.
Note that since our proposed lower bound for 𝐷𝑃𝑚1 → 1| |∑𝐶 𝑗 does not consider
the waiting time for the job between the first and the second stage, it is clear that it
is also a LB for the 𝐷𝑃𝑚1 → 𝑃𝑚2 | |

∑
𝐶 𝑗 problem. Also, since the total completion

time cannot increase with the number of machines in the second stage, this LB is
tighter for the MA variant.

𝐿𝐵 =

𝑛∑︁
𝑗=1

(
𝑚𝑎𝑥

{
𝑗∑︁
𝑘=1

⌈
𝑤 [𝑘 ]

⌉
, max
𝑖=1,...,𝑚1

{
𝑗∑︁
𝑘=1

𝑝𝑖 [𝑘 ]

}}
+ 𝑎𝑡 𝑗

)
(5.1)
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The difference between the performance of the metaheuristic and the lower bound
is determined using the Relative Percentage Deviation computed as follows:

𝑅𝑃𝐷𝑀T (T ′) =
∑
𝐶T

′
𝑗
(ℎ) − 𝑀𝐼𝑁
𝑀𝐼𝑁

(5.2)

where 𝑀𝐼𝑁 is the solution obtained by the lower bound and
∑
𝐶T

′
𝑗
(ℎ) is the

evaluation for T ′ ∈ {𝑆𝐴, 𝑀𝐴} of the solution provided by metaheuristic h, in this
case 𝐼𝐺. Following the idea by Vallada et al. (2015), the higher the 𝑅𝑃𝐷 𝐼𝐺 , the
harder the instance is, i.e., the best known solution is further from the theoretical
lower bound. On the contrary, a low value of 𝑅𝑃𝐷 𝐼𝐺 means that the instance is easy,
since the method is able to provide an objective function value close to the lower
bound. Instances with the highest values of RPD will be selected to be part of the
new benchmark.

5.3.3 Preliminary testbeds and selection procedure

In this section, the procedure to select the final sets of instances, denoted as B1 and
B2, is explained. The selection procedure is carried out using different preliminary
testbeds: S1,M1 and L1 for SA including small, medium and large size instances,
respectively; and S2,M2 andL2 for MA, equivalently. Regarding the parameters for
the preliminary instances, the levels considered are (always verifying the equidistance
and thus ensuring the amenability for statistical analysis):

• Number of jobs: 𝑛 ∈ {8, 10, 12} for S1 and S2, 𝑛 ∈ {30, 40, 50, 60, 70} for
M1 andM2, and 𝑛 ∈ {50, 100, 150, 200, 250, 300} for L1 and L2. Although
the maximum number of jobs considered in the literature is equal to 200 (see
Table 4.1 in Section 4.2), it seems appropriate to consider a higher number
of jobs following the literature of other benchmarks (see Vallada et al., 2015;
Fernandez-Viagas and Framinan, 2020).

• Number of machines in the first stage: 𝑚1 ∈ {2, 4} in S1 and S2, and 𝑚1 ∈
{2, 4, 6, 8} (based on the literature, see Table 4.1 in Section 4.2) inM1,M2,
L1, L2.

• Number of machines in the second stage: 𝑚2 = 1 inS1,M1 andL1,𝑚2 ∈ {2, 3}
inS2,𝑚2 ∈ {2, 4, 6, 8} inM2 andL2. In the literature (see Table 4.1 in Section
4.2) the maximum value of 𝑚2 is 4, so here it has been extended.
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• Number of replicates: 30 is established for S1 and S2, 10 forM1 andM2, and
finally 1,000 for L1 and L2.

• Values of parameter 𝛼: 𝛼 ∈ {1, 2, 3} for S1, S2, M1 and M2 (see Section
5.3.1). For L1 and L2, 𝛼 is equal to 2, according to the results obtained in
Section 5.4.

Taking into account these parameters, S1 and S2 have 540 and 1,080 instances,
respectively; M1 and M2 600 and 2,400 instances, respectively; and L1 and L2

24,000 and 96,000 instances, respectively.
As far as the selection procedure is concerned, it consists of two steps:
Step 1. Analysis of the small and medium size preliminary testbeds: To obtain

the adequacy of the instances, the most suitable values of 𝛼 should be identified for
SA and MA.

• For the SA variant, S1 is solved using exact methods. Additionally, S1 andM1

are solved with the approximate methods. All the methods have been previously
described in Section 5.3.1. Next, for each preliminary testbed, an Analysis of
Variance (ANOVA) is carried out with the following factors: 𝑛, 𝑚1, 𝑚2, 𝛼 and
𝑇 , where 𝑇 is the problem considered. The factor 𝑇 has the levels 𝑆𝐴, 𝐶𝑂
and 𝑆𝑀 . When exact methods are used, the dependent variable employed is
the total completion time obtained after evaluating the optimal sequence of CO
and SM in the SA variant for S1. For the approximate methods, the dependent
variable is the total completion time obtained after evaluating the best sequence
provided for the related problems in SA, in this case for S1 and M1. Next,
a post-hoc Tukey’s Honest Significant Difference test is applied to determine
the statistical significant differences between the levels of each factor. In this
study, the differences between the levels of the factor 𝑇 are tested, contrasting
the hypotheses 𝐻1 : 𝑆𝐴 = 𝐶𝑂 and 𝐻2 : 𝑆𝐴 = 𝑆𝑀 , for each value of 𝛼.

• For the MA variant, the procedure is the same using S2 andM2. In this case,
the levels of 𝑇 are 𝑀𝐴, 𝐶𝑂 and 𝑃𝑀 , and the hypotheses 𝐻3 : 𝑀𝐴 = 𝐶𝑂 and
𝐻4 : 𝑀𝐴 = 𝑃𝑀 .

The value of 𝛼 for which all the hypotheses are rejected is chosen to generate
balanced instances of the corresponding variant, SA and MA.
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Step 2. Selection of the most suitable instances: The hardness is determined by
selecting the most suitable instances of the preliminary large size testbeds,L1 andL2,
for SA and MA, respectively. These testbeds have been generated for the value of 𝛼
provided in the previous step. The high number of replicates ensures that the hardest
instances are included in the benchmark. In this case, as explained in Section 5.3.2,
the instances are solved by the IG and the lower bound for each one is computed. For
each instance size, the Average 𝑅𝑃𝐷 obtained is sorted in decreasing order, and the
first 10 instances are selected to be part of the new benchmark. The instances selected
for each variant form the benchmarkB1 for SA, with 240 large size instances (Section
5.4.1), andB2 for MA, with 960 large size instances (Section 5.4.2).

As B1 and B2 are selected from the testbeds L1 and L2, respectively, it is
ensured that the instances are amenable for statistical analysis since all the levels
of the parameters are combined and they are equidistant. Furthermore, since the
benchmarks consist of a high number of instances, their exhaustiveness is also fulfilled.
The instances files of benchmarksB1 andB2 are published as additional material at
the following link:

5.4 Experimental results

In this section, the results obtained by applying the procedure of Section 5.3 are
presented. Section 5.4.1 presents the results for SA, and Section 5.4.2 for MA. In each
case, the ANOVA shows the statistically significant influence of all the factors in the
response variable. For each value of 𝛼, we are interested in the differences among the
levels of the factor 𝑇 (problem). The results from Tukey’s HSD test are presented in a
simplified way. All detailed results are available in Anova & Tukey Test Experimental
Results files at http://grupo.us.es/oindustrial/en/research/results/.

5.4.1 Results for the SA variant

This section shows the results provided for the SA variant. Regarding adequacy, the
preliminary testbed S1 has been solved using exact methods, and both S1 andM1

using approximate methods. Table 5.2 shows the conclusions provided by the Tukey’s
HSD test for each value of 𝛼. On the one hand, hypothesis 𝐻1 : 𝑆𝐴 = 𝐶𝑂 contrasts
the equality of the mean total completion time provided by the optimal solution of
SA, and by the optimal solution of CO evaluated for SA when the exact methods are
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applied toS1. When the approximate methods are applied toS1 andM1, the equality
of the mean total completion time of the best solution provided for SA and the best
solution provided for CO is contrasted. On the other hand, hypothesis 𝐻2 : 𝑆𝐴 = 𝑆𝑀

is similar when comparing SA with SM. Therefore, in Table 5.2 it is shown whether
the hypothesis is rejected (R), or if there is not significant evidence to reject it (-), and
the significance provided by the test (Sig.).

From the results for 𝐻1, it can be observed that there are not statistical differences
between SA and CO for 𝛼 = 1 when exact methods are applied to S1. Although for
approximate methods the hypothesis is rejected, instances generated with 𝛼 = 1 are
not suitable for SA since the exact method of CO provides good results. Additionally,
for 𝛼 = 2 and 𝛼 = 3, CO, and SA are not similar regardless of the method applied
to small and medium size instances. From the results for 𝐻2, 𝛼 = 1 and 𝛼 = 2
indicate that SA and SM are not similar for all the cases. For 𝛼 = 3, there are not
statistical differences between SA and SM when approximate methods are applied to
S1. Therefore, instances generated with 𝛼 = 3 are not suitable for SA. In conclusion,
the instances generated with 𝛼 = 1 and 𝛼 = 3 are not suitable (unbalanced) for the SA
variant, and 𝛼 = 2 is consistently balanced due to the rejection of the hypotheses in
all cases.

𝐻1 : 𝑆𝐴 = 𝐶𝑂

Method Instances 𝛼=1 Sig. 𝛼=2 Sig. 𝛼=3 Sig.

Exact S1 - 0.993 R 1.000 R 1.000
Approximate S1 R 1.000 R 1.000 R 1.000
Approximate M1 R 1.000 R 1.000 R 1.000

𝐻2 : 𝑆𝐴 = 𝑆𝑀

Method Instances 𝛼=1 Sig. 𝛼=2 Sig. 𝛼=3 Sig.

Exact S1 R 1.000 R 1.000 R 1.000
Approximate S1 R 1.000 R 1.000 - 0.150
Approximate M1 R 1.000 R 1.000 R 1.000

Table 5.2: Conclusions from HSD Tukey tests for SA.

Regarding the hardness, testbed L1 has been solved by 𝐼𝐺. Then, the 𝐴𝑅𝑃𝐷𝑆𝐴
𝐼𝐺

with respect to the lower bound has been computed. In Table 5.3, the values of 𝐴𝑅𝑃𝐷
of the 10 hardest instances of each combination are shown in the rows labelled as
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𝑛

𝑚1 50 100 150 200 250 300 Average

Selected 2 114.54 109.90 112.70 108.23 102.77 101.73 108.31
instances 4 100.52 96.18 89.93 86.69 85.85 84.17 90.56

6 95.30 90.40 83.71 79.39 77.56 77.65 84.00
8 89.86 82.65 78.14 76.82 74.83 74.43 79.46
Average 100.05 94.78 91.12 87.78 85.25 84.49 90.58

Total 2 62.71 69.24 72.26 73.39 73.38 74.07 70.84
instances 4 54.96 59.55 60.61 61.32 61.83 62.49 60.13

6 50.80 54.87 56.25 56.84 57.28 57.62 55.61
8 50.53 53.59 54.27 55.02 54.91 55.34 53.94
Average 54.75 59.31 60.85 61.64 61.85 62.38 60.13

Table 5.3: Values of 𝐴𝑅𝑃𝐷 for the 10 hardest instances and for the total instances of each
combination of parameters in testbed L1.

“Selected instances”, while in the rows labelled as “Total instances” the values of
𝐴𝑅𝑃𝐷 of the total instances of each combination are computed.

5.4.2 Results for the MA variant

In this section, the results for the MA variant are shown. Similarly to the previous
section, the adequacy is analysed. The preliminary testbed S2 is solved using exact
and approximate methods and M2 using approximate methods. Table 5.4 has the
same structure as Table 5.2. In this case, the hypotheses are 𝐻3 : 𝑀𝐴 = 𝐶𝑂 and
𝐻4 : 𝑀𝐴 = 𝑃𝑀 .

Hypothesis 𝐻3 shows that there are not statistical differences between MA and
CO for 𝛼 = 1 when approximate methods are applied to S1. Although the hypothesis
is rejected in the rest of the cases, instances generated with 𝛼 = 1 are not suitable
for MA. Additionally, for 𝛼 = 2 and 𝛼 = 3, CO, and MA are not similar regardless
of the method applied to small and medium size instances. For 𝐻4, MA and PM are
not similar for all the cases when 𝛼 = 1 and 𝛼 = 2. However, there are not statistical
differences when 𝛼 = 3 and approximate methods are applied to S2. Therefore,
instances generated with 𝛼 = 3 are not suitable for MA. In the same way as in the
previous case, instances generated with 𝛼 = 1 and 𝛼 = 3 are unbalanced for the MA
variant, where 𝛼 = 2 is again the suitable value.
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𝐻3 : 𝑀𝐴 = 𝐶𝑂

Method Instances 𝛼=1 Sig. 𝛼=2 Sig. 𝛼=3 Sig.

Exact S2 R 1.000 R 1.000 R 1.000
Approximate S2 - 0.184 R 1.000 R 1.000
Approximate M2 R 1.000 R 1.000 R 1.000

𝐻4 : 𝑀𝐴 = 𝑃𝑀

Method Instances 𝛼=1 Sig. 𝛼=2 Sig. 𝛼=3 Sig.

Exact S2 R 1.000 R 1.000 R 1.000
Approximate S2 R 1.000 R 1.000 - 0.317
Approximate M2 R 1.000 R 1.000 R 1.000

Table 5.4: Conclusions from HSD Tukey tests for MA

Regarding the hardness of the instances, the testbedL2 has been solved by 𝐼𝐺 and
the same procedure as in the previous section is followed. Table 5.5 has a structure
similar to Table 5.3, including a column for the number of jobs in the second stage
𝑚2. As in the SA variant, the values of 𝐴𝑅𝑃𝐷 of the hardest instances are higher than
the average of all instances.

Finally, after following the procedure detailed throughout Section 5.3, the hardest
instances of L1 and L2 form the two new proposed benchmarks, whose parameters
can be summarised as follows:

• B1: 𝑛 ∈ {50, 100, 150, 200, 250, 300}, 𝑚1 ∈ {2, 4, 6, 8}, 𝑚2 ∈ {1}. 240
instances in total.

• B2: 𝑛 ∈ {50, 100, 150, 200, 250, 300}, 𝑚1 ∈ {2, 4, 6, 8}, 𝑚2 ∈ {2, 4, 6, 8}. 960
instances in total.

In summary, these benchmarks fulfil the required characteristics of a benchmark.
The adequacy is achieved by generating instances with both stages balanced and thus
representative of the SA and MA variants. The benchmarks are hard since the hardest
instances have been selected after solving a huge number of instances with the IG
algorithm and evaluating the solutions with respect to a lower bound. The exhaustive-
ness is ensured by the large number of instances, 240 and 960, respectively, in which
different sizes of the parameters have been considered. Finally, the benchmarks are
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𝑛

𝑚1 𝑚2 50 100 150 200 250 300 Average

Selected 2 2 98.15 100.64 105.70 102.85 95.26 96.52 99.85
instances 4 75.17 86.65 95.12 94.68 81.25 79.61 85.41

6 59.47 78.06 81.78 85.70 74.26 72.44 75.29
8 47.96 68.56 74.64 79.80 72.48 69.86 68.88

4 2 87.31 88.56 84.72 82.49 92.04 90.95 87.68
4 68.23 77.02 76.89 76.58 76.36 76.29 75.23
6 54.82 66.07 72.22 74.58 69.91 70.98 68.10
8 44.87 58.66 66.36 69.88 67.77 67.69 62.54

6 2 83.30 83.60 79.05 75.64 86.39 84.87 82.14
4 65.80 73.26 71.95 70.53 70.60 73.61 70.96
6 53.10 61.50 65.45 67.22 66.59 67.72 63.60
8 43.54 54.89 60.30 63.17 63.39 64.17 58.25

8 2 78.64 76.51 73.84 73.37 81.58 83.18 77.85
4 62.46 67.31 67.38 68.25 67.19 68.63 66.87
6 50.67 60.04 62.45 63.25 62.27 64.55 60.54
8 41.88 53.78 57.59 59.49 61.38 60.29 55.73

Average 61.15 70.30 72.65 73.64 72.90 72.99 70.60

Total 2 2 53.76 63.33 67.67 69.58 70.54 71.64 66.09
instances 4 41.30 54.75 61.10 64.29 59.25 59.85 56.76

6 32.39 48.80 54.86 59.43 55.05 55.10 50.94
8 25.75 42.96 50.18 55.46 52.46 53.38 46.70

4 2 47.61 54.70 56.89 58.21 65.93 67.51 58.48
4 37.21 47.72 51.66 54.01 55.61 56.68 50.48
6 29.66 41.66 47.61 51.05 51.66 52.37 45.67
8 23.91 36.96 43.79 47.85 49.62 50.87 42.17

6 2 44.20 50.55 52.92 54.06 62.10 63.95 54.63
4 34.81 44.24 48.19 50.25 52.35 54.00 47.31
6 27.94 39.26 44.26 47.18 49.14 50.37 43.02
8 22.65 34.92 40.82 44.35 47.31 48.21 39.71

8 2 44.08 49.49 51.15 52.39 58.29 61.13 52.76
4 34.89 43.42 46.65 48.76 50.10 51.55 45.90
6 28.12 38.06 43.29 45.84 46.67 48.22 41.70
8 22.92 33.93 39.99 43.14 45.00 46.29 38.55

Average 34.45 45.30 50.06 52.87 54.44 55.70 48.80

Table 5.5: Values of 𝐴𝑅𝑃𝐷 for the 10 hardest instances and for the total instances of each
combination of parameters in testbed L2.



70 Chapter 5. New benchmark generation

amenable for statistical analysis, since the levels of the parameters are equidistant and
all the levels have been combined to generate the instances.

5.5 Conclusions of the chapter

In this chapter, we consider the 2-stage assembly scheduling problem with several
dedicated parallel machines in the first stage and one assembly machine in the second
stage (𝑆𝐴) and also with several assembly machines in the second stage (𝑀𝐴). Due
to the absence of a commonly accepted set of instances in the literature ensuring that
the instances are representative of the problem under study, there is a need of hard
instances specifically designed for variants SA and MA, which has been covered in
this chapter. Therefore, two new benchmarks of instances are designed (see GO2)
according to the following characteristics found in the literature: empirical hardness,
adequacy, exhaustiveness, and amenability for statistical analysis.

Regarding the procedure followed to design the benchmarks, first, different scenar-
ios have been generated using a parameter 𝛼, depending on the relationship between
stages. Two preliminary testbeds for each variant have been generated, and both exact
and approximate methods have been applied to identify the adequacy of the instances
of the problem under study. Next, with the most suitable values of 𝛼 identified in
the previous analysis, two additional preliminary testbeds, with 24,000 and 96,000
instances, respectively, have been generated to determine the empirical hardness of
the testbeds. A lower bound for each instance has been computed and the IG algorithm
has been applied to solve the testbeds. Then, instances whose solution founded by the
𝐼𝐺 is further from the previous lower bound are selected to form two new benchmarks
of 240 instances for SA, and 960 instances for MA. With this methodology, the char-
acteristics of adequacy and empirical hardness are ensured. The exhaustiveness and
amenability are also fulfilled by considering a large number of instances, equidistant
levels, and by combining all the levels of parameters to obtain the instances.
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Chapter 6

Heuristic algorithms for the 2-ASP

6.1 Introduction

In this chapter, we address the 2-ASP with the objective of minimising the total
completion time. More specifically, in Section 6.2, we propose a fast constructive
heuristic that applies to our problem some dominance properties by Framinan and
Perez-Gonzalez (2017b) derived for the case where there is only one assembly ma-
chine. In light of the excellent results of this heuristic in negligible computation
times, in Section 6.3, it is embedded into a beam-search-based constructive heuristic.
This type of heuristic has recently been applied by Fernandez-Viagas and Framinan
(2017); Fernandez-Viagas et al. (2016) and Fernandez-Viagas et al. (2018) for re-
lated flowshop scheduling problems. In addition, we introduce the idea of keeping
only the most promising nodes in each iteration to boost its performance, an idea
successfully employed for different scheduling problems (see, e.g., Della Croce and
T’kindt, 2003, Valente and Alves, 2008, and Valente, 2010). Then, in Section 6.4,
the state-of-the-art algorithms are adapted and implemented, and in Section 6.5, an
extensive computational evaluation is performed to show that the proposals are found
to be more efficient than the existing solution procedures for the problem. Finally, the
conclusions are discussed in Section 6.6.
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Figure 6.1: Structure of Chapter 6.

6.2 A simple constructive heuristic

The first proposal for solving the 2-ASP is a simple constructive heuristic. The idea
of this heuristic, labelled 𝐶𝐻𝑀𝐴 in the following, consists of iteratively constructing
a sequence by selecting one job among the unscheduled jobs and adding it at the end
of the partial sequence, an idea that has been addressed for different scheduling
problems by Framinan and Perez-Gonzalez (2017b,a) and Fernandez-Viagas and
Framinan (2017) with excellent results. A key issue for the performance of this type
of heuristics is the development of a problem-specific indicator 𝜓 that adequately
represents the suitability of an unscheduled job to be appended since, once a job is
added to the sequence, its position cannot be modified in subsequent iterations.

Thence, the proposed algorithm starts with a set U containing all (unscheduled)
jobs and an empty schedule S . For each iteration 𝑘 ∈ {1, · · · , 𝑛}, each unscheduled
job 𝜔 𝑗 ∈ U ( 𝑗 = 1, . . . , 𝑛 − 𝑘 + 1) is analysed as a candidate to be added to the last
position in 𝑆, and its suitability is measured by computing the indicator 𝜓 𝑗 . Then, the
job inU with the lowest value of 𝜓 𝑗 is selected.

In our problem, two main aspects are considered to assess the suitability of
appending a candidate job 𝜔 𝑗 at the end of the partial sequence, i.e.,:

1. The case in which its inclusion implies that the first available machine in the
second stage has to wait for processing the candidate job. Therefore, the idle
time induced in the assembly stage by the insertion of job 𝜔 𝑗 is computed. Let
us 𝐼𝑇𝜔 𝑗

denote the idle time induced by scheduling job 𝜔 𝑗 at the end of the
sequence which is computed as follows:
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𝐼𝑇𝜔 𝑗
= max

{
𝐶1𝜔 𝑗

− (𝐶𝜔 𝑗
− 𝑎𝑡𝜔 𝑗

), 0
}

(6.1)

Note that 𝐶𝜔 𝑗
− 𝑎𝑡𝜔 𝑗

computes the workload of the first available machine
in the second stage before scheduling job 𝜔 𝑗 (i.e., the machine in the second
stage where the candidate job will be processed). If the idle time induced by
scheduling a job is greater than 0, then the completion times of the components
in the first stage dominate the completion time of this job when it is evaluated
as candidate to be scheduled. Otherwise, the completion time of the candidate
job is largely influenced by the second stage. As we are minimising the total
completion time, it is clear that the lower the idle time caused by a job, the
more suitable it is to be scheduled.

2. The contribution of the candidate job to the total completion time. As can
be seen, the idle time takes into account the suitability of the job until its
processing in the second stage starts. In addition, its contribution to the total
completion time would depend on the processing time in the second stage, i.e.,
𝑎𝑡𝜔 𝑗

, which roughly measures the influence of the second stage. We weight
this influence according to the number of assembly machines (𝑚2) since, with
a higher number of machines in the second stage, the next jobs have a lower
probability of not being affected by the second stage. Furthermore, to take into
account the fact that, the higher the number of components in the first stage, the
higher is its influence on the completion time, 𝐶𝑇𝜔 𝑗

the expected contribution
of job 𝜔 𝑗 to the total completion time is measured as follows:

𝐶𝑇𝜔 𝑗
=

𝑎𝑡𝜔 𝑗

𝑚1 · 𝑚2
(6.2)

By taking into account these two aspects, we will ensure that the jobs to be first
sequenced are those with lower values of idle time and assembly time. Therefore, the
indicator 𝜓𝜔 𝑗

, which estimates the suitability of appending a candidate job 𝜔 𝑗 at the
end of S , is computed as follows:

𝜓𝜔 𝑗
= 𝑎 · 𝐼𝑇𝜔 𝑗

+ 𝐶𝑇𝜔 𝑗
(6.3)

where 𝑎 is a parameter to weight the influence of the two terms and that would be
determined via calibration of the algorithm.
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Note that the complexity of this heuristic is𝑂 (𝑛 · (𝑛− 𝑘) ·𝑚1) ∼ 𝑂 (𝑛2 ·𝑚1), since
the main loop in the algorithm performs 𝑛 iterations. In each iteration, 𝑛 − 𝑘 jobs are
evaluated, each evaluation consisting on obtaining the maximum processing time in
the first stage, so each machine 𝑚1 is evaluated. The pseudo-code of the proposed
heuristic is shown in Algorithm 1.

6.3 A beam-search-based constructive heuristic

The heuristic proposed in Section 6.3 provides excellent results with negligible CPU
times (see Section 6.5), proving that the indicator 𝜓 𝑗 properly captures the suitability
of a job to be appended. Therefore, we embed the components of this indicator into
a new beam-search-based constructive heuristic for the problem, labelled 𝐵𝑆𝐶𝐻𝑀𝐴.
This type of heuristic has been considered to solve different scheduling problems,
such as in Sotskov et al. (1996) (where some constructive heuristics based on in-
sertion techniques are combined with beam search for the permutation flowshop
scheduling problem), Erenay et al. (2010) (for the single machine bicriteria schedul-
ing problem), and Fernandez-Viagas and Framinan (2017) (also for the permutation
flowshop scheduling problem). In this type of heuristics, a number of candidate nodes,
denoted by a parameter 𝑥, are maintained in each iteration. In iteration 𝑘 , each node
𝑙 (𝑙 ∈ {1, · · · , 𝑥}) is formed by a set of 𝑘 scheduled jobs, denoted as partial sequence
S 𝑙
𝑘
, and a set of unscheduled jobs,U 𝑙

𝑘
with 𝑛− 𝑘 +1 jobs. Then, all unscheduled jobs

in U 𝑙
𝑘

are inserted in position 𝑘 + 1 of S 𝑙
𝑘
, thus obtaining 𝑥 · (𝑛 − 𝑘 + 1) candidate

nodes. Out of these nodes, the 𝑥 most suitable ones are selected as candidates for the
next iteration. To deal with that, the ideas behind the indicator 𝜓 𝑗 could be used in
this heuristic. However, an additional complication arises because candidates from
different nodes may have to be compared. More specifically, the heuristic may have
to deal with one of the following situations:

• If the candidate jobs have been obtained by appending different jobs in U 𝑙
𝑘

to the same node 𝑙, their partial sequences S 𝑙
𝑘

will be exactly alike with the
exception of the last job appended. So, the comparison can be done in reference
to the completion time or the idle time caused by the added job.

• If the candidate jobs have been obtained from different nodes, the unscheduled
jobs and the scheduled jobs are different for each candidate node. In this case,
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Algorithm 1 Pseudo-code of the proposed heuristic 𝐶𝐻𝑀𝐴
1: procedure 𝐶𝐻𝑀𝐴
2: All jobs are initially unscheduled
3: Π := ∅;
4: Completion times on stages 1 and 2:
5: 𝐶1𝑖 := 0 𝑖 = 1, . . . , 𝑚1

6: 𝐶2𝑖 := 0 𝑖 = 1, . . . , 𝑚2

7: 𝑖∗ := arg min1≤𝑖≤𝑚2
𝐶2𝑖;

8: Obtain a sequenceU := {𝜔1, . . . , 𝜔𝑛} by applying algorithm S2;
9: for 𝑗 = 1 to 𝑛 do

10: for each 𝜔 𝑗 ∈ U do
11: Compute the completion times in the first stage after selecting 𝜔 𝑗 as

candidate:
12: 𝐶1(𝜔 𝑗) := max1≤𝑖≤𝑚1{𝐶1𝑖 + 𝑝𝑖𝜔 𝑗

}
13: Compute the idle time induced if job 𝜔 𝑗 is inserted at the end of the

partial sequence:
14: 𝐼𝑇𝜔 𝑗

= max
{
𝐶1(𝜔 𝑗) − 𝐶2∗〉 , 0

}
15: Compute the expected contribution to the total completion time in-

duced when job 𝜔 𝑗 is inserted at the end of the partial sequence:
16: 𝐶𝑇𝜔 𝑗

=
𝑎𝑡𝜔𝑗

𝑚1 ·𝑚2

17: Compute 𝜓𝜔 𝑗
:

18: 𝜓𝜔 𝑗
:= 𝑎 · 𝐼𝑇𝜔 𝑗

+ 𝐶𝑇𝜔 𝑗

19: end for
20: 𝑟 := arg min1≤𝑘≤𝑛− 𝑗+1 𝜓𝑘 ;
21: Append 𝜔𝑟 at the end of Π, i.e., Π := (𝜋1, . . . , 𝜋 𝑗−1, 𝜔𝑟 );
22: Extract 𝜔𝑟 fromU , i.e.,U := {𝜔1, . . . , 𝜔𝑟−1, 𝜔𝑟+1, . . . , 𝜔𝑛− 𝑗+1};
23: Update values of the constructive sequence:
24: 𝐶1𝑖 := 𝐶1𝑖 + 𝑝𝑖𝜔𝑟

25: 𝐶2𝑖 := max
{
𝐶2𝑖∗ ,max1≤𝑖≤𝑚1 𝐶1𝑖

}
+ 𝑎𝑡𝜔𝑟

26: end forreturn 𝐶2𝑖
27: end procedure
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the comparison should take into account that the previous scheduled jobs at each
candidate node are different, so this fact has to be considered when developing
the indicator for suitability.

To explain the design of the heuristic in detail, we first denote by ∫ 𝑙
𝑗𝑘

the 𝑗 th

scheduled job of node 𝑙 in iteration 𝑘 and by ⊓𝑙
𝑗𝑘

the 𝑗 th unscheduled job of selected
node 𝑙 in iteration 𝑘 . As shown in Algorithm 2, the heuristic consists of the following
steps:

Step 1: Generate the initial 𝑥 nodes: All jobs are initially sorted according to Algorithm
S2 by Al-Anzi and Allahverdi (2006a), as it is done in𝐶𝐻𝑀𝐴. The first 𝑥 nodes
are obtained by assigning the job in position 𝑙 of the sorted list to the first position
of the partial sequence ∫ 𝑙11 of the selected node 𝑙. The list of unscheduled jobs

of this selected node 𝑙 is formed by the rest of the jobs.

Step 2: Generate candidate nodes: At iteration 𝑘 , 𝑛 − 𝑘 + 1 candidate jobs are obtained
by appending each job inU 𝑙

𝑘
at the end of the partial sequence of each selected

node 𝑙 ∈ {1, · · · , 𝑥}.

Step 3: Evaluate candidate nodes: In this step, two aspects are considered: first, the
influence from the selected node and, second, the influence from the inserted
job. The former is computed as the forecast index, 𝐹𝑘𝑙 , which is explained in
Step 6.3, and the latter is due to the insertion of the new job, ⊓𝑙

𝑗𝑘
, at the end

of the partial sequence, which is measured by 𝐶𝑇𝑗𝑘𝑙, analogously as Equation
(6.2), and by 𝐼𝑇𝑗𝑘𝑙, which denotes the idle time incurred when inserting job
⊓𝑙
𝑗𝑘

in the selected node and is computed analogously as Equation (6.1). Note
that these two last components are taken from the heuristic in Section 6.2, while
𝐹𝑘𝑙 is a component specifically designed to allow the comparison of candidates
from different nodes.

Therefore, at each iteration 𝑘 , the following indicator is used to compute the
suitability of appending an unscheduled job ⊓𝑙

𝑗𝑘
in a selected node 𝑙:

𝐵 𝑗𝑘𝑙 := 𝐹𝑘𝑙 + 𝑎′ · 𝐼𝑇𝑗𝑘𝑙 + 𝐶𝑇𝑗𝑘𝑙 (6.4)

In Equation (6.4) the parameter 𝑎′ has been considered in order to balance the
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idle time and the completion time of the new inserted job and its calibration is
addressed in Section 6.5.1.

Step 4: Select the best 𝑥 candidate nodes: The 𝑥 candidate nodes with the lowest values
of 𝐵 are selected and these nodes will form the nodes of the next iteration, i.e.,
in iteration 𝑘 all the combinations of 𝑗 and 𝑙 are tested and those achieving the
lowest values of 𝐵 𝑗𝑘𝑙, as defined in Equation (6.4), are selected. The rest of
candidate nodes are discarded and the best candidate nodes are defined as the
selected nodes for the next iteration. At each iteration 𝑘 , the combination of
𝑙 and 𝑗 of the 𝑙′th best 𝐵 𝑗𝑘𝑙 (𝑙 ′ ∈ {1, . . . , 𝑥}) are denoted by 𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′] and
𝑗𝑜𝑏[𝑙′], respectively.

Step 5: Update forecast index: The forecast index 𝐹 is defined in order to compare
candidate nodes obtained from different nodes and, therefore, composed by
different un- and scheduled jobs. 𝐹 represents the completion time of the last
scheduled job at each candidate node and it is computed by Equation (6.5):

𝐹𝑘,𝑙′ = 𝐹𝑘−1,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] + 𝑏 · 𝜓 𝑗𝑜𝑏[𝑙′ ],𝑘,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] (6.5)

where parameter 𝑏 is designed to balance the influence of the last scheduled
job in the completion time and 𝜓 𝑗𝑜𝑏[𝑙′ ],𝑘,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] is defined by Equation 6.6
(similar as in Equation (6.3)) and computed when job ⊓𝑙

𝑗𝑘
is appended. The

calibration of 𝑏 is discussed in Section 6.5.1. The pseudocode of the algorithm
is shown in Algorithm 2.

𝜓 𝑗𝑜𝑏[𝑙′ ],𝑘,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] = 𝑎
′ · 𝐼𝑇𝑗 + 𝐶𝑇𝑗 (6.6)

Apart from the weights 𝑎′ and 𝑏 (which are determined during the calibration
of the algorithm), the 𝐵𝑆𝐶𝐻𝑀𝐴 has only one parameter (𝑥, the beam width).
It can be seen that, for 𝑥 = 1, 𝐵𝑆𝐶𝐻𝑀𝐴 is tantamount to 𝐶𝐻𝑀𝐴. Note that the
complexity of this heuristic is given by Equation 6.7, since the main loop in the
algorithm performs 𝑛 iterations. In each iteration, 𝑛 − 𝑘 + 1 jobs are evaluated
in each node 𝑥. This evaluation consists of obtaining the maximum processing
time in the first stage, so each 𝑚1 is evaluated (complexity 𝑛2 · 𝑥 · 𝑚1), and
assigning the selected job to the first available assembly machine, so each 𝑚2

is evaluated (𝑂 (𝑛2 · 𝑥 · 𝑚2)). In addition, for each node 𝑥, the rest of nodes are
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evaluated in order to select the best 𝑥 combinations of nodes and jobs for the
next iteration (𝑂 (𝑛2 · 𝑥2)).

𝑂 (𝑚𝑎𝑥{𝑛2 · 𝑥 · 𝑚1, 𝑛
2 · 𝑥 · 𝑚2, 𝑛

2 · 𝑥2}) (6.7)

6.3.1 Variable Beam Width

To the best of our knowledge, beam-search-based heuristics employed in the schedul-
ing literature always use a constant beam width 𝑥. However, it is expected that the
number of nodes analysed in each iteration has a large influence on the performance
of this heuristic. To test this hypothesis, we carry out this study and analyse the
behaviour of the 𝐵𝑆𝐶𝐻𝑀𝐴 when 𝑥 may take different values. More specifically, we
will test the following variants:

• Constant Beam Width: 𝐵𝑆𝐶𝐻𝑀𝐴 is tested with different values of 𝑥. In this
manner, the influence of the beam width on the performance of the heuristic
can be analysed.

• Ascending Beam Width: In this version, the heuristic, denoted as 𝐵𝑆𝐶𝐻𝐴𝑆𝐶 ,
starts selecting 𝑥 nodes and the beam width increases by one unit as the beam
search advances. The search is stronger in each iteration since the number of
selected nodes is higher.

• Descending Beam Width: This version, labelled as 𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 , starts by
selecting a number of nodes equal to 𝑥 + 𝑛 − 1, and the beam width decreases
one by one as the number of iterations increases. Therefore, in the last iteration,
𝑥 nodes are considered.

• V-shaped Beam Width: In this version, the beam width is modified taking a
V-shape. Initially, 𝑥 nodes are considered and, for each iteration 𝑘 , the number
of nodes is decreased one by one while 𝑘 ≤ 𝑛

2 and then it increases until 𝑘 = 𝑛.
We denote this version as 𝐵𝑆𝐶𝐻𝑉 .

• Peak-shaped Beam Width: The pattern of this version, labelled as 𝐵𝑆𝐶𝐻𝑃, is
completely opposed to the previous one. The initial beam width is 𝑥, and then
it increases one by one whereas 𝑘 ≤ 𝑛 · 2

3 and then it decreases also one by one
until the last iteration.
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Algorithm 2 Pseudo-code of the proposed beam-search-based constructive heuristic.
1: procedure BSCH_MA(x)
2: Obtain a sequence Ω := (𝜔1, . . . , 𝜔𝑛) by applying algorithm S2;
3: UpdateU 𝑙

1 (𝑢
𝑙
1,1 = 𝜔𝑙) and S 𝑙

1 (𝑠
𝑙
1,1 = ∅).

4: for 𝑙 = 1 to 𝑥 do 𝐹1,𝑙 = 𝜓𝜔 [𝑙 ],0,𝑙
5: end for
6: for 𝑘 = 2 to 𝑛 do
7: // Candidate Nodes Creation
8: Determination of 𝐼𝑇𝑗𝑘𝑙, 𝐶𝑇𝑗𝑘𝑙;
9: // Candidate Nodes Evaluation

10: 𝐵 𝑗𝑘𝑙 := 𝐹𝑘𝑙 + 𝑎′ · 𝐼𝑇𝑗𝑘𝑙 +𝐶𝑇𝑗𝑘𝑙 ∀ 𝑙 = 1, · · · , 𝑥 and ∀ 𝑗 = 1, · · · , 𝑛 − 𝑘 + 1;
11: // Candidate Nodes Selection
12: for 𝑙′ = 1 to 𝑥 do
13: Determination of the 𝑙′-th best candidate node according to non-

decreasing 𝐵 𝑗𝑘𝑙 in iteration 𝑘 . Denote by 𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′] and 𝑗𝑜𝑏[𝑙′] the value of 𝑙
and 𝑗 respectively, of that candidate.

14: end for
15: // Forecasting Phase
16: for 𝑙′ = 1 to 𝑥 do
17: Update S 𝑙′

𝑘+1 andU 𝑙′

𝑘+1 by removing job ⊓𝑏𝑟𝑎𝑛𝑐ℎ[𝑙
′ ]

𝑗𝑜𝑏[𝑙′ ],𝑘 fromU 𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ]
𝑘

and including in S 𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ]
𝑘

.
18: 𝐹𝑘+1,𝑙′ = 𝐹𝑘,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] + 𝑏 · 𝜓 𝑗𝑜𝑏[𝑙′ ],𝑘,𝑏𝑟𝑎𝑛𝑐ℎ[𝑙′ ] ;
19: end for
20: end for
21: // Final evaluation
22: Evaluate the total completion time of the scheduled jobs of each selected node

and return the least one.
23: end procedure
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We design and implement different versions, which are evaluated considering the
next values of 𝑥, 𝑥 ∈ {2, 5, 10, 15, 𝑛10 , 𝑛, 𝑛 +

𝑛
2 , 2𝑛}.

6.4 Implemented heuristics

In order to determine the performance of the proposed heuristics (𝐶𝐻𝑀𝐴 and the best
variants of the beam-search-based heuristic), these have been compared with existing
heuristics for the problem, as well as with heuristics adapted from similar problems.
More specifically, the heuristics used for the comparison are the following:

• Heuristics from the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑ 𝑗 𝐶 𝑗 problem:

– New heuristics proposed in Section 6, i.e., heuristic 𝐶𝐻𝑀𝐴 in Section 6.2
and the variants of the 𝐵𝑆𝐶𝐻 proposed in Section 6.3 that are in the Pareto
frontier found in 6.5.2: 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛/10) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=5) ,
𝐵𝑆𝐶𝐻𝑉 (𝑥=10) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=15) , 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) .

– 𝑆𝐴𝐾 (Sung and Kim, 2008): This heuristic sorts the jobs in non decreasing
order of 𝑝𝑠𝑢𝑚 𝑗 =

∑
𝑖=1,...,𝑚1 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 . Set 𝑘=1 and 𝑚=𝑘+1, it exchanges

the 𝑘th job and the 𝑚th job. If the total completion time is improved, it
keeps the exchange. If not, 𝑚 = 𝑚+1.

– 𝑁𝑆𝐷𝐸 (Al-Anzi and Allahverdi, 2012): This algorithm has been coded
and run, but it has been discarded due to its computational effort is far
from the rest of the heuristics and the quality of its solution is poor since
it is specifically designed for the problem with two assembly machines.

• Heuristics adapted from the 𝐷𝑃𝑚 → 1| |∑ 𝑗 𝐶 𝑗 problem. Since this problem
is closely related to the one addressed in this chapter, it is interesting to test
whether heuristics specifically designed for the problem with one assembly
machine can be adapted to the problem under consideration. These adaptations
are:

– 𝑇𝐶𝐾1 and 𝑇𝐶𝐾2 (Tozkapan et al., 2003): The original 𝑇𝐶𝐾1 constructs
𝑚1+1 indices for each job, according to 𝑃𝑇𝐹𝑖 𝑗 = 𝑡𝑖 𝑗 and 𝑃𝑇𝑆 𝑗 = 𝑎𝑡 𝑗 . So,
𝑚1+1 sequences are obtained by sorting the jobs in non decreasing order
of these indicators, and the sequence with the lowest TCT is selected. The
index 𝑃𝑇𝑆 𝑗 has been adapted to our problem so that 𝑃𝑇𝑆 𝑗 = 𝑎𝑡 𝑗/𝑚2.
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Similarly, 𝑇𝐶𝐾2 computes three indices for each job, so three sequences
are obtained by sorting the jobs in non decreasing order of these indices,
and the sequence yielding the lowest TCT is selected. The indices have
been adapted to our problem taking into account 𝑚2, i.e.,: 𝑀𝑃𝑇𝑗 =

𝑚𝑖𝑛{𝑝1 𝑗 , 𝑝2 𝑗 , · · · , 𝑝𝑚1 𝑗 , 𝑎𝑡 𝑗/𝑚2}; 𝐴𝑃𝑇𝑗 = 1
𝑚1+𝑚2

∑𝑚1
𝑖=1 𝑝𝑖 𝑗 +𝑎𝑡 𝑗/𝑚2; and

𝑀𝑋𝑃𝑇𝑗 = 𝑚𝑎𝑥{𝑝1 𝑗 , 𝑝2 𝑗 , · · · , 𝑝𝑚1 𝑗 , 𝑎𝑡 𝑗}.

– 𝐴1 and 𝐴2 (Al-Anzi and Allahverdi, 2006a): These algorithms construct
a sequence by iteratively appending a job at the end of a partial sequence.
For algorithm 𝐴1, the job is chosen so that the following indicator is
minimised:

𝐴1 𝑗 = max
𝑖=1,...,𝑚1

{
𝑗−1∑︁
𝑟=1

𝑝𝑖 [𝑟 ] + 𝑝𝑖 𝑗

}
(6.8)

Note that this indicator does not require any adaptation to our problem.
However, for algorithm 𝐴2 the indicator is adapted by dividing the assem-
bly time by the number of assembly machines 𝑚2, so the modified index
is:

𝐴2 𝑗 = max
𝑖=1,...,𝑚1

{
𝑗−1∑︁
𝑟=1

𝑝𝑖 [𝑟 ] + 𝑝𝑖 𝑗

}
+
𝑎𝑡 𝑗

𝑚2
(6.9)

– 𝑆1, 𝑆2 and 𝑆3 (Al-Anzi and Allahverdi, 2006a): 𝑆1 sorts the jobs in non
decreasing order of 𝑎𝑡 𝑗 . Heuristic 𝑆2 is obtained by sorting the jobs in
non decresing order of max𝑖=1,...,𝑚1{𝑝𝑖 𝑗} and, finally, heuristic 𝑆3 orders
the jobs in non decreasing order of max𝑖=1,...,𝑚1{𝑝𝑖 𝑗} + 𝑎𝑡𝑘 . As with the
previous heuristics, 𝑆1 and 𝑆3 have been adapted by dividing 𝑎𝑡 𝑗 by 𝑚2.

– 𝐺1, 𝐺2, 𝐺3 and 𝐺4 (Lee, 2018): Each of these heuristics constructs
a sequence by inserting the job with the smallest value of one of the
following indicators: 𝐺1 𝑗 = 𝐶[ 𝑗 ] − 𝐶∗

2 ; 𝐺2 𝑗 = 𝐶1∗
𝑗
− 𝐶1∗

𝑗−1; 𝐺3 𝑗 =

𝐶1∗
𝑗
− 𝐶∗

2 and 𝐺4 𝑗 = 𝐶[ 𝑗 ] − 𝐶1∗
𝑗
. These indicators can be used for our

problem in a straightforward manner.

– 𝐹𝐴𝑃 (Framinan and Perez-Gonzalez, 2017b): This heuristic appends one
by one the unscheduled jobs at the end of a partial sequence by computing
an estimate of the completion times of the unscheduled jobs which takes
into account which stage is more important. This estimate has been
adapted considering the number of assembly machines so, if the first



84 Chapter 6. Heuristic algorithms for the 2-ASP

stage is dominant, then 𝐹𝐴𝑃𝑙 = 𝐶1∗
𝑗
+ 𝑛− 𝑗+1

𝑛
(𝐶1• + 𝑎𝑡•

𝑚1+𝑚2
). Otherwise,

𝐹𝐴𝑃𝑙 =
𝑎𝑡𝜔𝑙

𝑚1+𝑚2
+ 𝑛− 𝑗+1

𝑛
(𝐶1• + 𝑎𝑡•

𝑚1+𝑚2
), where 𝐶1• is the completion time

in the first stage of an average artificial job composed of the unscheduled
jobs, and 𝑎𝑡• is the processing time of such artificial job in the second
stage.

• Heuristics adapted from 𝐷𝑃𝑚 → 0| |∑ 𝑗 𝐶 𝑗 problem. As mentioned above, the
Customer Order (𝐶𝑂) scheduling problem is identical to the problem considered
if the processing times of the second stage are zero. Therefore, it is also of
interest to test how the adaptation of their best methods perform in our case.
The most relevant methods for the order scheduling problem are:

– 𝑆𝑇𝑃𝑇 (Sung and Yoon, 1998): A sequence is constructed sorting the
jobs in ascending order of their sum of their processing times on the 𝑚1

machines. In our case, 𝑚1 + 𝑚2 machines are considered.

– 𝑆𝑀𝑃𝑇 (Sung and Yoon, 1998): A sequence is constructed sorting the jobs
in ascending order of their maximum processing time on the𝑚1 machines.
As with the previous heuristic, 𝑚1 + 𝑚2 machines are considered.

– 𝐸𝐶𝑇 (Ahmadi et al., 2005; Leung et al., 2005): In this heuristic, the
order with the earliest completion time is selected as the next to be se-
quenced. This heuristic does not require adaptation, as for each order, the
completion time is computed according to Equation (2.3).

– 𝑆𝐹𝑇𝑘 and 𝑆𝐹𝑇𝑘𝑂 (Framinan and Perez-Gonzalez, 2017a): 𝑆𝐹𝑇𝑘 obtains
iteratively a partial sequence using the 𝐸𝐶𝑇 heuristic. Then, the jobs
are iteratively removed from their position and re-inserted. The proce-
dure is repeated until the so-obtained partial sequence does not returns a
lower total completion time. 𝑆𝐹𝑇𝑘𝑂 restarts the reinsertion phase when-
ever a better sequence is found and repeats the process until no further
improvement is found.

6.5 Computational experience

In this section, we analyse the efficiency of the heuristics proposed in Section 6.2 and
6.3 compared with the implemented heuristics described in Section6.4. In Section
6.5.1 we perform a design of experiments to set up proper values for parameters 𝑎 for
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𝐶𝐻𝑀𝐴, 𝑎′ and 𝑏 for 𝐵𝑆𝐶𝐻𝑀𝐴. In Section 6.5.2, the different versions of the beam-
search heuristics presented in Section 6.3.1 are compared to obtain the best variants.
Finally, in Section 6.5.3 and 6.5.4 the proposed heuristics are compared with the
existing heuristics for the problem and for related problems in the benchmarks B0,
B1 and B2. The experiments have been carried out comparing the algorithms by
means of the indicators established in Section 3.2, using the sets of instances designed
in Section 3.3 and following the conditions detailed in Section 3.4. To obtain a better
estimation of the performance of all algorithms and based on the computational
experiments carried out by Rad et al. (2009), Fernandez-Viagas and Framinan (2017)
and Valente and Alves (2008), a total of 10 replicates are carried out for each instance
and the results are averaged.

6.5.1 Experimental parameter tuning

In this section, a factorial design of experiments is performed to find the best values
of the parameters of the two heuristics presented in Section 6.2 and 6.3. After some
preliminary tests, it has been identified that the best values for the different parameters
are in the ranges detailed below. More specifically, the following values are tested:

• Parameter 𝑎 for the 𝐶𝐻𝑀𝐴 heuristic described in Section 6.2. The following
levels for 𝑎 are tested: 𝑎 ∈ {1, 2, 5, 10, 15, 20, 50, 200}.

• Parameters 𝑎′ and 𝑏 for the 𝐵𝑆𝐶𝐻𝑀𝐴 heuristic described in Section 6.3. The
following levels for each parameter are tested (in total, there are 42 combina-
tions):

– 𝑎′ ∈ {1, 2, 5, 10, 15, 20}

– 𝑏 ∈ {0, 1, 2, 3, 4, 5, 6}

To determine the best combination of parameters, the calibration benchmarkB𝐶0

presented in Section 3.3 is used. With this testbed, after proving that the normality
and homoscedasticity assumptions are not fulfilled, a non-parametric Kruskal-Wallis
test is performed. The results indicate that there are significant differences among the
different values of parameter 𝑎. The best result is obtained for 𝑎 = 5. Regarding the
𝐵𝑆𝐶𝐻𝑀𝐴 heuristic, it has been assumed that 𝑥 = 𝑛 and the so-obtained results are
compared. Wider ranks of the parameter 𝑎′ have been tested, but the results have not
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been improved. A non-parametric Kruskal-Wallis test is also carried out. The results
indicate that there are significant differences between parameters 𝑎′ and 𝑏 since the
significance of both parameters is equal to 0.000. The best combination is obtained
for 𝑎′=2 and 𝑏=2. In Figures 6.2 and 6.3, the evolution of the 𝐴𝑅𝑃𝐷 of the heuristics
is shown according to the different experimental values of each parameter. It can be
seen that the minimum 𝐴𝑅𝑃𝐷 is obtained for 𝑎 = 5 and for 𝑎′ = 2 and 𝑏 = 2. These
values are used for the different versions of 𝐵𝑆𝐶𝐻 in Section 6.5.2 and Section 6.5.3
regardless of the value of 𝑥.

Figure 6.2: Evolution of 𝐴𝑅𝑃𝐷 with different values of the parameter 𝑎.

6.5.2 Comparison of the different versions of 𝐵𝑆𝐶𝐻 in benchmarkB0

Prior to conducting a full comparison with the existing heuristics, the best variant of the
beam-search-based heuristics is selected. To do so, the versions of 𝐵𝑆𝐶𝐻 presented
in Section 6.3.1 have been run on the 2,400 instances generated in Section 3.3.
The results are summarised in Table 6.2 using the indicators defined in Section 3.2.
The 𝐴𝑅𝑃𝐷 values range from 1.320 (𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=2) ) to 0.523 (𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) )
whereas 𝐴𝐶𝑃𝑈 values range from 0.997 to 0.004. Results are graphically shown in
Figure 6.4 where the 𝑦-axis represents the 𝐴𝑅𝑃𝐷 for each heuristic and the 𝑥-axis
represents the ACPU.
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Figure 6.3: Evolution of 𝐴𝑅𝑃𝐷 with different values of parameters 𝑎′ and 𝑏.
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Figure 6.4: 𝐴𝑅𝑃𝐷 versus average CPU times of the different versions of 𝐵𝑆𝐶𝐻 with the Pareto
frontier.
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In view of these results, the following conclusions can be derived:

• 𝐵𝑆𝐶𝐻𝑃 (𝑥=2) with 𝐴𝑅𝑃𝐷 = 0.617 improves the variants 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=2,𝑥=5,𝑥=𝑛/10)
with 𝐴𝑅𝑃𝐷 equal to 1.320, 0.806 and 0.771, respectively, using approximately
a similar computational effort.

• 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) with 𝐴𝑅𝑃𝐷 = 0.546 outperforms variants 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) ,
𝐵𝑆𝐶𝐻𝐴𝑆𝐶 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑃 (𝑥=5) , with 𝐴𝑅𝑃𝐷 equal to 0.644, 0.550 and 0.578,
respectively.

• 𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 (𝑥=2) with 𝐴𝑅𝑃𝐷 = 0.550 improves the variant 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=15)
using the same 𝐴𝐶𝑃𝑈.

• 𝐵𝑆𝐶𝐻𝑉 (𝑥=5) with 𝐴𝑅𝑃𝐷 = 0.532 outperforms variants 𝐵𝑆𝐶𝐻𝑃 (𝑥=10) and
𝐵𝑆𝐶𝐻𝐴𝑆𝐶 (𝑥=5) , with 𝐴𝑅𝑃𝐷 equal to 0.563 and 0.547, respectively, using the
same computational effort.

• 𝐵𝑆𝐶𝐻𝑉 (𝑥 = 𝑛/10) with 𝐴𝑅𝑃𝐷 = 0.523 outperforms variants 𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 (𝑥=5)
and 𝐵𝑆𝐶𝐻𝐴𝑆𝐶 (𝑥=𝑛/10) , with 𝐴𝑅𝑃𝐷 equal to 0.547 and 0.536, respectively, us-
ing the same computational effort.

• For 𝑥 = 𝑛, the variants 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) and 𝐵𝑆𝐶𝐻𝑃 (𝑥=𝑛) yield a similar perfor-
mance, being its 𝐴𝑅𝑃𝐷 equal to 0.538 and 0.535, respectively. Moreover, the
version 𝐵𝑆𝐶𝐻𝑉 (𝑥=10) obtains a similar 𝐴𝑅𝑃𝐷 = 0.5349 with less computa-
tional effort.

• The minimum 𝐴𝑅𝑃𝐷 is achieved by 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) , being the rest of the
variants worse with respect to the quality of the solutions.

• The Pareto frontier (i.e., the efficient variants with respect to the quality of solu-
tions and the computational effort) is formed by 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=2) , 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=5) ,
𝐵𝑆𝐶𝐻𝑃 (𝑥=2) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=5) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛+/10) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) .

• The performance of 𝐵𝑆𝐶𝐻𝑀𝐴 worsens for 𝑥 = 2𝑛. For this value of 𝑥,
this heuristic selects 2𝑛 candidates in each iteration, so there are more node
candidates to be evaluated from the first iteration. Due to this poor result, it has
not been considered.
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𝑖 𝐻𝑖 𝑝-value Wilcoxon 𝛼/(𝑘 − 𝑖 − 1) Holm’s
Procedure

1 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) = 𝐵𝑆𝐶𝐻𝐴𝑆𝐶 (𝑥=2) 0.015 R 0.0083 -
2 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) = 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) 0.001 R 0.0100 R
3 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=5) = 𝐵𝑆𝐶𝐻𝑃 (𝑥=2) 0.000 R 0.0125 R
4 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) = 𝐵𝑆𝐶𝐻𝑃 (𝑥 = 5) 0.000 R 0.0167 R
5 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) = 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) 0.025 R 0.0125 R
6 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=15) ) = 𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 (𝑥=2) 0.000 R 0.0500 R

Table 6.1: Holm’s procedure for comparing the different versions of 𝐵𝑆𝐶𝐻.

To establish the statistical significance of the results, a Holm’s procedure (Holm,
1979) is performed where each hypothesis is evaluated using a non-parametric
Wilcoxon signed-rank test assuming a 0.95 confidence level, i.e., 𝛼 = 0.05. In
Holm’s test, the hypotheses are sorted in non-descending order of the 𝑝-values ob-
tained in the Wilcoxon test. Each hypothesis is rejected if 𝑝 < 𝛼/(𝑘 − 𝑖+1) where 𝑘 is
the total number of hypotheses. The results can be seen in Table 6.1, where 𝑅 means
that the hypothesis is rejected by Wilcoxon and/or Holm’s procedure. As can be seen,
hypothesis 𝐵𝑆𝐶𝐻(𝑥=10) = 𝐵𝑆𝐶𝐻𝐴𝑆𝐶 (𝑥=2) is the only one that cannot be rejected by
Holm’s procedure, but it has to be noted that the 𝐴𝑅𝑃𝐷 achieved by the latter version,
equal to 0.6145, is considerably lower than the one obtained by 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=10) . In
summary, it can be concluded that the variants in the Pareto frontier in Figure 6.4 are
efficient for the problem. However, as no variant obtains the best performance for all
values of 𝑥, it can be also concluded that, if 𝑥 ≤ 𝑛 the best variant is 𝐵𝑆𝐶𝐻𝑉 , and if
𝑥 > 𝑛, then 𝐵𝑆𝐶𝐻𝑀𝐴 is the most efficient one.

6.5.3 Comparison of heuristics in benchmarkB0

These heuristics have been employed to solve the instances from the testbed in Section
3.3. The 𝐴𝑅𝑃𝐷 and 𝐴𝐶𝑃𝑈 are computed according to Eqs. (3.1) and (3.3), while
the indicator 𝐴𝑅𝑃𝑇 is computed using Equation (3.6). The detailed results of 𝐴𝑅𝑃𝐷
in terms of 𝑛 × 𝑚1 × 𝑚2 are shown in Tables 6.5- 6.10. The average results in terms
of 𝐴𝑅𝑃𝐷, 𝐴𝐶𝑃𝑈, and 𝐴𝑅𝑃𝑇 are shown in Table 6.3 and graphically in Figure 6.5.
Note that, in this figure, the dispatching rules are not displayed in order to have a
clearer interpretation of the results. In view of the results, a number of conclusions
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𝑥 2 5 𝑛/10 10 15 𝑛 𝑛+𝑛/2 𝑛

𝐴𝑅𝑃𝐷

𝐵𝑆𝐶𝐻𝑀𝐴 1.320 0.771 0.806 0.644 0.587 0.538 0.523 0.541
𝐵𝑆𝐶𝐻𝐴𝑆𝐶 0.550 0.547 0.536 0.542 0.552 0.528 0.545 0.557
𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 0.550 0.547 0.536 0.542 0.544 0.554 0.574 0.579
𝐵𝑆𝐶𝐻𝑉 0.546 0.532 0.523 0.535 0.536 0.542 0.558 0.565
𝐵𝑆𝐶𝐻𝑃 0.617 0.578 0.582 0.563 0.554 0.535 0.550 0.562

𝐴𝐶𝑃𝑈

𝐵𝑆𝐶𝐻𝑀𝐴 0.004 0.010 0.017 0.028 0.043 0.122 0.269 0.503
𝐵𝑆𝐶𝐻𝐴𝑆𝐶 0.027 0.057 0.087 0.123 0.165 0.280 0.464 0.723
𝐵𝑆𝐶𝐻𝐷𝐸𝑆𝐶 0.044 0.092 0.141 0.196 0.260 0.419 0.659 0.997
𝐵𝑆𝐶𝐻𝑉 0.025 0.052 0.080 0.110 0.144 0.220 0.330 0.482
𝐵𝑆𝐶𝐻𝑃 0.648 0.608 0.613 0.593 0.585 0.566 0.581 0.592

Table 6.2: Summary of results of the different versions of 𝐵𝑆𝐶𝐻.

can be drawn:

• 𝐶𝐻𝑀𝐴 (𝐴𝑅𝑃𝐷=1.874) clearly outperforms heuristics 𝐴1, 𝐴2, 𝐺1, 𝐺2, 𝐺3
and 𝐺4 using a similar computational effort. It can be seen that 𝐶𝐻𝑀𝐴 obtains
very good results, evaluating only one job at each iteration and, consequently,
consuming less computational time. Furthermore, 𝐶𝐻𝑀𝐴 obtains a similar
𝐴𝑅𝑃𝐷 to 𝐹𝐴𝑃, but our proposal requires much less CPU time.

• 𝑆2 and 𝑇𝐶𝐾2 with 𝐴𝑅𝑃𝐷 equal to 15.253 and 7.525, respectively, are the best
dispatching rules. Although the quality of the solution is low, these rules obtain
a solution very fast.

• 𝐵𝑆𝐶𝐻𝑉 (𝑥 = 2) with 𝐴𝑅𝑃𝐷=0.546 outperforms 𝐶𝐻𝑀𝐴, with 𝐴𝑅𝑃𝐷 equal to
1.874, using the same computational effort as can be checked in Figure 6.5.

• 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) with 𝐴𝑅𝑃𝐷 =0.5382 outperforms 𝑆𝐹𝑇𝑘 , 𝑆𝐹𝑇𝑘𝑂 and 𝑆𝐴𝐾 with
𝐴𝑅𝑃𝐷 equal to 14.175, 9.323 and 12.679, respectively. Moreover, it can be
pointed out that this version of the 𝐵𝑆𝐶𝐻𝑀𝐴 obtains the best result in terms of
quality of the solution, 𝐴𝑅𝑃𝐷.

• Taking into account these results and those obtained in the previous section,
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Heuristic 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 𝐴𝑅𝑃𝑇 Heuristic 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 𝐴𝑅𝑃𝑇

𝐶𝐻𝑀𝐴 1.874 0.0019 625.07 𝑆𝐴𝐾 12.680 0.3596 102534.03
𝐹𝐴𝑃 1.664 0.0114 3358.46 𝑆𝑇𝑃𝑇 15.873 0.0000 1.64
𝐺1 17.403 0.0019 615.74 𝑆𝑀𝑃𝑇 21.671 0.0000 2.36
𝐺2 6.142 0.0018 605.78 𝐸𝐶𝑇 17.403 0.0368 10559.23
𝐺3 6.817 0.0018 590.66 𝑆𝐹𝑇𝑘 14.175 0.1226 34958.62
𝐺4 17.465 0.0018 583.61 𝑆𝐹𝑇𝑘𝑂 9.323 0.1590 45640.85
𝐴1 6.029 0.0018 595.67 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) 0.546 0.0251 7482.71
𝐴2 9.257 0.0018 593.95 𝐵𝑆𝐶𝐻𝑉 (𝑥=5) 0.532 0.0522 15574.12
𝑆1 19.274 0.0000 1.00 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛/10) 0.530 0.0796 23690.42
𝑆2 15.253 0.0000 2.13 𝐵𝑆𝐶𝐻𝑉 (𝑥=10) 0.535 0.1100 32796.73
𝑆3 16.649 0.0000 2.30 𝐵𝑆𝐶𝐻𝑉 (𝑥=15) 0.536 0.1442 43052.43
𝑇𝐶𝐾1 15.313 0.0008 242.55 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) 0.538 0.1220 36705.90
𝑇𝐶𝐾2 7.525 0.0003 109.24 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) 0.523 0.2685 78987.16

Table 6.3: Summary of results of the different heuristics.

the group of the most efficient heuristics is formed by the dispatching rule
𝑆2, the existing and adapted heuristic 𝑇𝐶𝐾2 and the proposed versions of
the beam-search-based constructive heuristic: 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛/10) ,
𝐵𝑆𝐶𝐻𝑉 (𝑥=5) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=10) , 𝐵𝑆𝐶𝐻𝑉 (𝑥=15) , 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) .

In order to check the statistical significance of these results, Holm’s procedure is
used as in the previous computational experience. However, each hypothesis is now
analysed using a non-parametric Mann-Whitney test assuming a 95% confidence level
(i.e., 𝛼 = 0.05) to establish de 𝑝-value of each hypothesis. The results are shown in
Table 6.4. As can be seen, each 𝑝-value is 0.000, so all hypotheses can be rejected.
In summary, it can be concluded that the proposed heuristics outperform the existing
algorithms for the problem under consideration, as well as the adaptations of efficient
algorithms for related problems.

6.5.4 Comparison of heuristics in benchmarksB1 andB2

The objective of this section is to analyse the actual state-of-the-art heuristics in the
two new benchmarksB1 andB2, generated in Chapter 5. This experimentation can
help us to make a solid comparison of the existing approximate methods and identify
the most efficient ones to solve the SA and MA variants.
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Figure 6.5: 𝐴𝑅𝑃𝐷 versus 𝐴𝐶𝑃𝑈. 𝐴𝐶𝑃𝑈 (𝑥-axis) is shown in logarithmic scale.

𝑖 𝐻𝑖 𝑝-value Mann-Whitney 𝛼/(𝑘 − 𝑖 − 1) Holm’s
Procedure

1 𝐶𝐻𝑀𝐴 = 𝐴1 0.000 R 0.0100 R
2 𝑆2 = 𝑆3 0.000 R 0.0125 R
3 𝑇𝐶𝐾2 = 𝑇𝐶𝐾1 0.000 R 0.0167 R
4 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) = 𝐶𝐻𝑀𝐴 0.000 R 0.0250 R
5 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) = 𝑆𝐹𝑇𝑘𝑂 0.000 R 0.0500 R

Table 6.4: Mann-Whitney’s procedure. (R indicates that the hypothesis can be rejected)

To evaluate the efficiency of the different heuristics, the 𝐴𝑅𝑃𝐷 values are com-
puted following the Equation (3.2), where

∑
𝑂𝐹ℎ𝑠 is the value of the objective function

found by each heuristic h and 𝑀𝐼𝑁 is the minimum known solution for each instance.
Moreover, since there are heuristics with different number of steps in their procedure,
the 𝐴𝑅𝑃𝑇 indicator is also computed according to Equation (3.6).

Table 6.11 shows the average results, and is organised as follows: column 1 and
column 2 indicate the problem and the heuristics for each variant. Results for the
benchmark of SA,B1, are presented in columns 3 to 10. More specifically, columns
3 to 8 show the values of 𝐴𝑅𝑃𝐷 for the different number of jobs, column 9 indicates
the Total 𝐴𝑅𝑃𝐷 and column 10 the Total 𝐴𝑅𝑃𝑇 ′. Results for the benchmark of MA,
B2, are presented in columns 11 to 18, and the columns are organised in the same
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𝑛 𝑚1 𝑚2 𝐴1 𝐴2 𝑆1 𝑆2 𝑆3 𝑇𝐶𝐾1 𝑇𝐶𝐾2 𝐺1 𝐺2 𝐺3

30 2 2 9.20 9.17 24.30 11.09 12.68 18.99 7.20 16.13 9.41 10.46
4 5.14 9.24 19.52 7.74 12.18 14.94 5.79 18.96 5.21 6.07
6 3.71 7.00 18.13 6.30 10.91 13.37 5.62 18.70 3.83 4.63
8 3.15 6.78 15.25 5.16 10.56 13.19 6.12 18.68 3.18 3.53

4 2 7.19 10.43 22.19 18.59 20.86 15.86 8.69 16.02 7.35 7.04
4 5.44 7.76 17.84 17.28 17.44 13.59 6.89 15.87 5.25 4.51
6 3.28 7.50 15.81 14.54 15.25 12.08 6.32 15.21 3.54 3.72
8 1.91 6.35 14.47 12.69 13.35 11.28 5.79 13.44 2.06 2.17

6 2 5.53 8.91 19.79 17.96 18.17 13.71 8.59 13.18 5.56 5.70
4 4.52 7.89 15.99 16.14 16.60 11.75 8.35 14.85 4.77 4.28
6 2.75 6.69 15.42 14.14 13.87 11.05 6.27 13.22 2.95 2.81
8 2.53 6.06 13.36 12.56 12.26 9.74 5.28 11.52 2.78 3.07

8 2 3.96 7.97 17.79 17.11 16.97 11.74 7.87 12.50 4.12 4.18
4 3.25 7.30 14.83 14.80 15.29 10.23 8.32 13.79 3.14 3.81
6 2.60 6.00 14.85 13.55 14.45 9.44 6.00 12.56 2.61 3.04
8 2.20 5.77 12.99 11.79 12.46 8.73 6.12 11.42 2.14 2.12

40 2 2 11.10 10.59 26.79 12.54 15.05 22.53 8.78 18.96 11.16 11.71
4 9.01 9.08 24.09 10.61 12.55 19.51 7.05 20.26 9.34 9.74
6 5.99 7.71 18.97 7.57 11.22 16.29 5.81 20.76 6.25 6.26
8 4.68 7.25 19.24 6.52 10.12 16.38 5.67 18.92 4.92 5.34

4 2 8.26 10.86 22.33 22.14 22.67 17.33 8.78 16.85 8.30 8.80
4 4.80 9.35 20.05 18.35 19.37 15.37 8.39 18.68 4.95 6.31
6 3.47 8.22 18.04 15.38 15.36 12.90 5.49 15.74 3.75 4.12
8 3.13 6.82 16.02 15.06 14.10 12.52 6.34 14.83 3.35 3.65

6 2 5.73 9.81 19.99 18.53 19.77 15.30 9.23 14.79 5.73 6.22
4 3.47 8.60 16.98 16.47 17.43 13.03 6.99 14.99 3.70 4.66
6 2.64 7.31 16.33 15.28 17.58 11.61 7.07 15.40 2.70 4.64
8 2.72 7.40 14.61 15.03 15.25 11.38 6.23 14.96 3.16 3.85

8 2 5.05 10.40 17.29 17.49 18.41 13.15 9.28 14.24 4.99 6.25
4 4.01 8.50 17.74 16.35 17.37 12.39 7.52 14.37 4.02 4.62
6 3.12 7.07 14.69 13.65 14.20 11.23 7.10 13.14 3.16 3.98
8 3.03 6.75 14.40 14.38 13.77 10.27 6.53 13.22 2.84 3.56

50 2 2 13.42 11.22 28.55 14.33 16.29 23.57 8.47 20.92 13.40 13.74
4 8.71 9.03 22.35 10.50 14.14 20.24 6.35 23.42 9.13 9.29
6 7.54 8.46 21.27 9.46 11.63 18.07 5.81 22.76 7.89 8.14
8 5.94 8.14 20.89 7.96 11.96 16.28 5.99 21.62 6.09 6.40

4 2 8.32 11.42 23.29 20.18 21.99 19.14 9.04 17.25 8.57 9.56
4 6.77 10.20 21.29 19.80 20.41 16.66 7.10 18.42 6.92 8.20
6 4.87 9.35 19.31 17.30 18.02 14.80 7.02 18.21 5.20 6.14
8 4.28 8.10 17.96 15.63 17.06 14.32 6.74 17.88 4.16 5.06

6 2 7.09 10.77 20.26 18.94 20.44 15.98 9.23 16.39 6.93 8.58
4 4.61 9.90 18.71 17.78 19.04 13.70 7.95 16.46 4.96 5.34
6 4.63 8.57 17.24 16.73 17.60 13.42 7.40 16.21 4.48 4.40
8 2.80 7.60 15.45 13.80 14.99 11.65 6.98 14.65 3.13 4.01

Table 6.5: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (I).
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𝑛 𝑚1 𝑚2 𝐴1 𝐴2 𝑆1 𝑆2 𝑆3 𝑇𝐶𝐾1 𝑇𝐶𝐾2 𝐺1 𝐺2 𝐺3

50 8 2 5.72 11.00 18.08 18.57 19.01 14.36 8.97 14.56 5.76 7.41
4 5.28 10.14 17.74 16.34 17.33 13.31 8.09 15.61 5.55 6.45
6 3.46 8.54 15.83 14.88 15.60 11.60 7.16 14.35 3.49 4.54
8 3.62 8.01 14.41 13.77 15.30 10.65 6.44 14.91 3.57 3.74

60 2 2 12.88 9.47 25.62 14.37 14.00 21.64 8.33 19.13 12.91 12.72
4 10.08 9.34 24.79 12.03 12.76 20.60 6.78 22.50 10.29 11.91
6 7.82 8.75 22.70 9.36 12.28 19.44 6.34 22.51 8.01 8.94
8 6.61 9.40 20.37 8.25 12.60 18.21 6.25 22.84 6.97 7.41

4 2 12.45 12.17 23.34 22.17 23.11 19.50 10.19 18.76 12.26 11.77
4 6.27 10.78 20.02 18.65 19.48 17.02 7.78 19.33 6.45 7.64
6 5.86 9.59 19.02 16.76 18.05 15.62 7.33 19.64 6.46 6.80
8 4.22 8.13 18.88 17.09 17.44 15.28 6.01 18.48 4.61 5.39

6 2 7.95 11.19 20.84 19.67 20.34 17.11 9.40 16.08 7.80 8.79
4 5.52 10.12 19.47 17.52 18.56 14.74 8.35 17.67 5.51 6.76
6 5.89 9.35 17.01 16.42 18.26 14.12 7.13 16.81 5.72 5.89
8 3.56 8.01 16.74 15.72 16.27 13.00 6.39 16.70 3.56 4.14

8 2 6.22 10.98 20.51 18.22 19.04 14.90 8.88 15.01 6.33 8.25
4 5.78 10.76 17.78 16.53 20.04 13.59 9.12 17.19 5.89 5.92
6 3.61 9.07 16.11 15.86 17.49 12.43 7.60 16.04 3.32 4.87
8 3.46 7.94 14.70 14.96 15.51 12.05 6.45 15.14 3.55 4.18

70 2 2 15.07 10.94 28.62 15.98 14.85 25.38 8.08 20.12 15.02 16.04
4 12.71 10.56 25.65 13.94 13.77 22.80 6.84 24.38 13.03 14.30
6 9.59 9.10 22.06 11.16 13.66 20.37 6.69 24.97 9.82 10.47
8 7.10 9.14 20.80 8.81 12.64 19.04 6.23 23.07 7.47 8.25

4 2 10.22 12.18 23.65 21.75 23.24 19.17 8.44 18.22 10.11 10.79
4 6.92 10.94 21.36 19.15 20.09 17.40 7.46 19.73 6.91 7.81
6 6.16 9.57 20.20 17.99 18.02 17.22 7.03 18.99 6.31 7.26
8 3.85 9.06 18.49 16.42 17.73 15.63 7.16 19.13 4.16 5.32

6 2 6.18 11.64 20.34 18.38 19.60 16.27 9.24 15.66 6.10 8.94
4 7.02 10.75 18.22 17.43 19.38 15.34 7.80 17.86 7.27 7.12
6 5.86 10.62 17.71 16.20 18.16 14.34 7.06 17.98 6.04 6.50
8 4.91 9.37 16.77 15.12 18.13 13.25 7.24 17.74 5.09 5.49

8 2 6.30 11.69 19.49 18.13 20.81 15.71 9.81 15.93 6.47 8.10
4 4.70 9.45 17.65 16.97 18.99 13.65 8.14 16.18 4.79 6.11
6 4.95 9.56 18.13 16.37 17.43 13.57 7.04 16.44 4.74 5.91
8 4.67 9.71 15.41 14.19 15.30 11.01 7.09 14.50 4.15 6.11

Average 5.85 9.08 19.06 15.05 16.44 15.10 7.35 17.18 5.96 6.65

Table 6.6: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (II).
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𝑥 = 2

𝑛 𝑚1 𝑚2 𝐺4 𝐸𝐶𝑇 𝑆𝑇𝑃𝑇 𝑆𝑀𝑃𝑇 𝑆𝐹𝑇𝑘 𝑆𝐹𝑇𝑘𝑂𝑃𝑇
𝑆𝐴𝐾 𝐹𝐴𝑃 𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴

30 2 2 16.53 16.13 13.38 22.13 10.65 5.86 9.62 1.51 1.84 1.63
4 19.12 18.96 18.02 23.04 14.32 6.81 13.17 1.32 1.39 1.06
6 18.80 18.70 18.70 21.81 13.55 3.98 13.54 1.39 1.14 0.83
8 18.71 18.68 18.51 20.78 13.84 4.14 13.35 1.18 1.19 0.72

4 2 16.23 16.02 13.53 22.91 12.42 10.19 9.78 1.51 1.74 1.21
4 15.95 15.87 13.99 20.86 11.80 6.52 10.17 1.33 1.52 0.75
6 15.24 15.21 15.41 18.27 11.41 6.49 11.19 1.35 1.44 0.98
8 13.48 13.44 13.02 15.40 10.13 5.50 9.25 1.08 1.10 0.66

6 2 13.31 13.18 11.04 19.43 10.25 8.60 8.05 1.10 1.73 1.37
4 14.91 14.85 13.97 18.41 11.07 7.12 9.92 1.44 1.64 1.04
6 13.26 13.22 12.61 15.53 9.69 6.42 9.22 1.10 1.23 0.60
8 11.53 11.52 11.00 13.46 8.48 5.38 7.86 1.38 1.14 0.75

8 2 12.58 12.50 9.59 19.38 9.26 7.57 6.89 1.26 1.59 1.09
4 13.82 13.79 12.75 17.42 10.55 6.79 9.25 1.28 1.68 0.97
6 12.59 12.56 11.85 14.71 9.17 5.56 8.08 1.05 1.22 0.78
8 11.44 11.42 11.18 13.30 8.47 5.50 8.02 1.06 1.10 0.60

40 2 2 19.30 18.96 16.44 25.81 14.74 10.09 12.76 1.80 2.32 1.41
4 20.38 20.26 19.02 24.89 15.51 7.32 14.84 1.45 1.70 1.24
6 20.80 20.76 20.15 24.47 16.18 4.29 15.93 1.72 1.68 0.87
8 18.99 18.92 18.88 21.71 14.74 4.37 14.71 1.48 1.31 0.92

4 2 16.99 16.85 13.01 23.65 13.37 11.23 9.95 1.48 2.05 1.07
4 18.76 18.68 16.64 23.56 14.93 8.56 13.00 1.34 1.72 1.10
6 15.77 15.74 14.87 18.54 12.39 7.57 11.99 1.34 1.46 0.68
8 14.86 14.83 14.61 17.04 11.42 6.89 11.15 1.45 1.49 0.67

6 2 14.88 14.79 11.85 21.97 12.21 9.72 8.88 1.31 1.87 1.13
4 15.01 14.99 13.52 18.94 12.05 9.11 10.26 1.53 1.46 0.82
6 15.43 15.40 15.22 18.60 12.15 7.58 11.49 1.30 1.45 0.90
8 14.98 14.96 14.16 17.24 11.60 7.18 10.96 1.26 1.22 0.96

8 2 14.32 14.24 11.18 20.01 11.68 10.69 8.25 1.20 1.99 1.41
4 14.38 14.37 12.78 18.34 11.52 8.80 9.78 1.40 1.68 0.90
6 13.16 13.14 12.19 16.11 10.35 7.25 9.16 1.13 1.24 0.84
8 13.24 13.22 12.72 15.03 10.39 6.34 9.52 1.27 1.37 0.74

50 2 2 21.18 20.92 17.83 28.11 16.47 11.29 14.28 1.74 2.09 1.78
4 23.52 23.42 22.21 29.15 18.85 7.99 18.31 1.81 1.89 1.10
6 22.83 22.76 21.99 26.46 18.43 7.51 18.13 1.75 1.87 1.08
8 21.65 21.62 21.42 24.06 17.36 5.38 17.44 1.48 1.43 1.11

4 2 17.36 17.25 12.86 25.11 14.54 12.71 10.36 1.63 2.61 1.59
4 18.48 18.42 16.80 23.20 15.01 10.70 13.70 1.49 1.92 1.47
6 18.24 18.21 17.72 21.47 14.98 8.87 14.46 1.62 1.80 1.07
8 17.91 17.88 17.29 20.28 14.48 7.54 14.14 1.55 1.67 0.84

6 2 16.48 16.39 11.78 23.31 13.54 11.99 9.24 1.60 2.19 1.52
4 16.48 16.46 14.98 20.79 13.73 10.27 11.90 1.35 1.48 1.07
6 16.23 16.21 15.46 19.08 13.26 9.12 12.27 1.43 1.54 0.95
8 14.66 14.65 14.46 16.86 11.91 8.57 11.36 1.49 1.57 0.97

Table 6.7: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (III).
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x=2

𝑛 𝑚1 𝑚2 𝐺4 𝐸𝐶𝑇 𝑆𝑇𝑃𝑇 𝑆𝑀𝑃𝑇 𝑆𝐹𝑇𝑘 𝑆𝐹𝑇𝑘𝑂𝑃𝑇
𝑆𝐴𝐾 𝐹𝐴𝑃 𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴

50 8 2 14.59 14.56 10.82 20.67 12.31 11.49 8.77 1.35 1.99 1.51
4 15.62 15.61 14.18 19.32 12.88 10.78 11.28 1.12 1.72 1.10
6 14.36 14.35 13.74 16.91 12.00 9.55 11.11 1.34 1.65 0.79
8 14.92 14.91 13.95 17.07 12.25 8.65 11.01 1.31 1.32 0.87

60 2 2 19.28 19.13 15.34 27.09 15.87 9.01 12.38 1.52 2.11 1.57
4 22.61 22.50 21.33 27.94 18.78 9.49 18.06 1.82 2.08 1.31
6 22.58 22.51 21.78 26.50 18.75 8.67 18.43 1.79 1.98 1.45
8 22.89 22.84 22.42 25.81 19.08 7.01 18.67 1.65 1.80 1.34

4 2 18.82 18.76 14.25 26.32 16.14 13.68 11.63 2.00 2.60 1.66
4 19.39 19.33 17.60 23.81 16.38 12.04 14.78 1.56 2.05 1.28
6 19.67 19.64 18.49 23.16 16.26 9.76 15.39 1.57 1.73 0.97
8 18.51 18.48 17.73 21.29 15.26 8.49 14.86 1.52 1.61 1.05

6 2 16.17 16.08 12.47 22.79 14.04 12.80 10.26 1.80 2.48 1.74
4 17.69 17.67 16.37 22.48 14.96 11.69 13.38 1.51 1.82 1.34
6 16.83 16.81 16.27 20.04 14.17 10.59 13.50 1.41 1.79 1.10
8 16.71 16.70 16.26 19.19 13.70 8.92 12.97 1.27 1.54 0.71

8 2 15.04 15.01 11.16 21.46 12.89 12.15 8.82 1.60 2.34 1.45
4 17.20 17.19 15.71 21.65 14.56 11.42 13.04 1.54 1.93 1.40
6 16.06 16.04 15.28 19.01 13.43 9.89 12.14 1.43 1.61 1.13
8 15.15 15.14 14.13 17.34 12.40 9.34 11.49 1.45 1.54 0.97

70 2 2 20.32 20.12 16.70 27.63 16.64 11.13 14.01 2.14 2.64 1.92
4 24.40 24.38 23.21 30.12 21.08 11.46 20.02 1.92 2.05 1.49
6 25.02 24.97 24.58 29.15 21.02 8.82 21.27 1.83 1.93 1.23
8 23.11 23.07 22.69 26.10 19.60 7.47 19.32 1.75 1.82 1.10

4 2 18.31 18.22 13.27 26.13 15.85 13.75 11.07 2.01 2.55 1.89
4 19.75 19.73 18.15 24.55 17.12 13.78 15.53 1.63 2.10 1.39
6 19.02 18.99 17.92 22.48 16.02 11.60 15.51 1.69 1.87 1.07
8 19.16 19.13 18.72 21.72 16.14 10.33 15.94 1.53 1.64 1.11

70 6 2 15.72 15.66 12.70 22.34 13.85 12.78 10.52 1.69 2.35 1.71
4 17.87 17.86 15.35 22.61 15.48 11.88 12.74 1.50 2.10 1.41
6 18.00 17.98 17.13 21.26 15.52 12.77 14.09 1.64 1.74 1.17
8 17.74 17.74 17.23 20.32 15.12 11.22 14.25 1.71 1.72 1.11

8 2 16.00 15.93 11.77 22.87 14.30 13.34 9.69 1.60 2.44 1.60
4 16.18 16.18 14.13 21.07 13.99 11.74 11.67 1.41 1.72 1.28
6 16.45 16.44 14.87 19.78 13.95 11.36 12.39 1.30 1.68 1.09
8 14.46 15.57 15.83 17.70 13.24 8.92 13.30 3.20 1.58 0.89

Average 17.24 17.19 15.68 21.45 13.97 9.11 12.49 1.51 1.75 1.14

Table 6.8: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (IV).
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𝑥 = 𝑛/10 𝑥 = 5 𝑥 = 10 𝑥 = 15 𝑥 = 10 𝑥 = 15 𝑥 = 𝑛

𝑛 𝑚1 𝑚2 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑉 𝐵𝑆𝐶𝐻𝑉 𝐵𝑆𝐶𝐻𝑀𝐴

30 2 2 1.17 0.73 0.42 0.29 0.58 0.45 0.37
4 0.68 0.46 0.39 0.45 0.51 0.40 0.52
6 0.56 0.46 0.47 0.51 0.44 0.51 0.39
8 0.45 0.32 0.29 0.23 0.37 0.37 0.21

4 2 1.03 0.68 0.67 0.49 0.42 0.57 0.61
4 0.63 0.52 0.43 0.54 0.40 0.52 0.45
6 0.91 0.56 0.38 0.46 0.51 0.56 0.46
8 0.48 0.23 0.30 0.31 0.44 0.29 0.46

6 2 0.78 0.69 0.60 0.64 0.72 0.50 0.65
4 0.67 0.54 0.66 0.58 0.59 0.62 0.75
6 0.46 0.48 0.40 0.41 0.48 0.54 0.49
8 0.45 0.38 0.40 0.37 0.35 0.39 0.34

8 2 0.94 0.45 0.48 0.59 0.62 0.61 0.78
4 0.76 0.69 0.53 0.67 0.60 0.56 0.68
6 0.55 0.41 0.52 0.52 0.47 0.42 0.45
8 0.38 0.46 0.31 0.44 0.54 0.45 0.49

40 2 2 1.02 0.75 0.47 0.35 0.67 0.56 0.23
4 0.75 0.56 0.49 0.66 0.43 0.51 0.39
6 0.57 0.45 0.41 0.41 0.43 0.40 0.49
8 0.49 0.63 0.54 0.44 0.45 0.47 0.33

4 2 0.60 0.61 0.59 0.37 0.37 0.44 0.44
4 0.67 0.54 0.45 0.56 0.57 0.66 0.47
6 0.58 0.54 0.33 0.38 0.42 0.41 0.58
8 0.47 0.33 0.41 0.35 0.40 0.39 0.45

6 2 0.75 0.51 0.41 0.43 0.44 0.35 0.53
4 0.61 0.57 0.37 0.32 0.50 0.39 0.45
6 0.51 0.45 0.49 0.48 0.39 0.43 0.48
8 0.54 0.42 0.32 0.31 0.41 0.42 0.43

8 2 1.01 0.67 0.57 0.35 0.41 0.48 0.49
4 0.67 0.58 0.56 0.52 0.39 0.36 0.47
6 0.58 0.53 0.38 0.45 0.48 0.51 0.45
8 0.51 0.42 0.34 0.42 0.36 0.39 0.43

50 2 2 0.64 0.64 0.56 0.27 0.52 0.51 0.08
4 0.44 0.44 0.54 0.39 0.45 0.38 0.22
6 0.58 0.58 0.43 0.25 0.59 0.50 0.32
8 0.68 0.68 0.35 0.30 0.41 0.42 0.29

4 2 0.79 0.79 0.55 0.36 0.30 0.32 0.22
4 0.77 0.77 0.61 0.51 0.46 0.40 0.32
6 0.56 0.56 0.42 0.38 0.35 0.31 0.39
8 0.53 0.53 0.58 0.47 0.40 0.44 0.34

6 2 0.66 0.66 0.50 0.36 0.47 0.36 0.35
4 0.56 0.56 0.44 0.32 0.47 0.55 0.26
6 0.59 0.59 0.42 0.41 0.48 0.44 0.33
8 0.45 0.45 0.37 0.35 0.46 0.38 0.34

Table 6.9: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (V).
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𝑥 = 𝑛/10 𝑥 = 5 𝑥 = 10 𝑥 = 15 𝑥 = 10 𝑥 = 15 𝑥 = 𝑛

𝑛 𝑚1 𝑚2 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑀𝐴 𝐵𝑆𝐶𝐻𝑉 𝐵𝑆𝐶𝐻𝑉 𝐵𝑆𝐶𝐻𝑀𝐴

50 8 2 0.71 0.71 0.51 0.40 0.39 0.44 0.35
4 0.75 0.75 0.60 0.44 0.55 0.35 0.37
6 0.66 0.66 0.47 0.42 0.43 0.37 0.30
8 0.49 0.49 0.43 0.29 0.46 0.50 0.40

60 2 2 0.76 0.81 0.55 0.44 0.42 0.36 0.23
4 0.79 0.73 0.64 0.40 0.47 0.54 0.24
6 0.71 0.63 0.64 0.39 0.54 0.48 0.28
8 0.65 0.68 0.45 0.43 0.42 0.46 0.34

4 2 0.79 0.75 0.40 0.39 0.38 0.37 0.12
4 0.67 0.82 0.45 0.45 0.53 0.45 0.32
6 0.64 0.48 0.61 0.51 0.56 0.43 0.32
8 0.45 0.40 0.39 0.31 0.34 0.36 0.40

6 2 0.79 0.77 0.46 0.41 0.31 0.31 0.23
4 0.67 0.58 0.36 0.46 0.36 0.28 0.26
6 0.42 0.50 0.42 0.49 0.42 0.50 0.38
8 0.50 0.47 0.44 0.33 0.45 0.44 0.33

8 2 0.80 0.78 0.52 0.47 0.35 0.26 0.29
4 0.72 0.61 0.60 0.45 0.45 0.46 0.38
6 0.53 0.50 0.36 0.35 0.34 0.35 0.31
8 0.49 0.63 0.36 0.32 0.39 0.44 0.37

70 2 2 0.57 0.79 0.57 0.38 0.64 0.44 0.10
4 0.58 0.75 0.55 0.45 0.55 0.54 0.18
6 0.56 0.77 0.44 0.34 0.44 0.43 0.37
8 0.51 0.80 0.47 0.36 0.54 0.52 0.36

4 2 0.65 0.81 0.62 0.38 0.38 0.38 0.11
4 0.55 0.61 0.36 0.35 0.30 0.36 0.31
6 0.63 0.63 0.49 0.43 0.42 0.34 0.27
8 0.52 0.55 0.43 0.34 0.30 0.29 0.30

6 2 0.51 0.69 0.62 0.41 0.43 0.34 0.19
4 0.59 0.70 0.40 0.44 0.37 0.32 0.26
6 0.55 0.64 0.37 0.37 0.39 0.36 0.40
8 0.59 0.63 0.62 0.39 0.43 0.32 0.47

8 2 0.64 0.79 0.46 0.36 0.37 0.26 0.19
4 0.58 0.67 0.51 0.48 0.43 0.44 0.29
6 0.54 0.58 0.36 0.37 0.31 0.31 0.21
8 0.53 0.71 0.50 0.43 0.37 0.35 0.28

Average 0.63 0.60 0.47 0.41 0.45 0.43 0.36

Table 6.10: 𝑅𝑃𝐷 of heuristics per levels of 𝑛, 𝑚1 and 𝑚2 (VI).
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way as forB1. The Pareto set for each variant is indicated in bold in Table 6.11.
Figures 6.6, 6.7 and 6.8 show the confidence intervals for the 𝐴𝑅𝑃𝐷 values

of the heuristics designed to solve the SA variant, providing good results solving
benchmarks B1 and B2. In the case of Figures 6.9, 6.10 and 6.11, they show the
confidence intervals for the values of 𝐴𝑅𝑃𝐷 of the best heuristics, designed to solve
the MA variant, solving both benchmarks. These figures show the values of 𝐴𝑅𝑃𝐷
per levels of 𝑛 inB1 and per levels of 𝑛 and 𝑚2 inB2, respectively. From the analysis
of Table 6.11 and Figures 6.6-6.11, some comments can be made:

• The heuristics designed to solve the SA variant performs similarly in both
benchmarks, B1 and B2. Regarding the results shown in Table 6.11, there
is slight variation in the 𝐴𝑅𝑃𝐷 of the heuristics, with an average absolute
difference between the 𝐴𝑅𝑃𝐷 values equal to 1.83. Some reasons for this
behaviour may be the way in which these heuristics have been adapted to
solve the MA variant (see Section 6.4 for the details) and the fact that parallel
machines at the second stage flatten the significance of assembly operations.
The best heuristics of this group are 𝐹𝐴𝑃, 𝑇𝐶𝐾2 and𝐺1 with an 𝐴𝑅𝑃𝐷 equal
to 2.96, 5.72 and 7.20, respectively, for the SA variant, and 1.51, 5.40 and
8.92, respectively, for the MA variant. The performance of these heuristics is
graphically shown in Figures 6.6, 6.7 and 6.8.

• The heuristics designed for CO are not suitable for solving SA and MA, as they
are not as good as some of the heuristics of the other two groups. However, it
becomes clear that for both variants the best results are achieved by the heuristic
𝑆𝐹𝑇𝑘𝑂𝑃𝑇

with an 𝐴𝑅𝑃𝐷 equal to 6.14, for SA and for MA.

• Regarding the methods proposed to solve the MA variant, on the one hand, the
heuristic𝐶𝐻𝑀𝐴 yields a good performance in both benchmarks, with an 𝐴𝑅𝑃𝐷
lower than 1 in both cases (see Table 6.11). Taking into account the results
shown in Figures 6.9, 6.10 and 6.11, in terms of the number of jobs, 𝐶𝐻𝑀𝐴
shows a considerable difference between 𝑛 = 50 and 𝑛 = 100 in benchmark
B2, while it performs similarly for 𝑛 ≥150 in both benchmarks, B1 and B2.
𝐶𝐻𝑀𝐴 performs also similarly for 𝑚2, being its 𝐴𝑅𝑃𝐷 around 1 for all the
levels. On the other hand, the best performance of the beam search-based
constructive heuristic is achieved by 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) forB1,
and 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛) for B1, providing the lowest values of
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𝐴𝑅𝑃𝐷 and consuming less computational time. Regarding the number of
jobs, these methods yield good results in both benchmarks, with an 𝐴𝑅𝑃𝐷

lower than 0.5 for all the levels. Moreover, the worst 𝐴𝑅𝑃𝐷 of the three
heuristics is obtained for 𝑛 = 50 and, as 𝑛 increases, their performance becomes
similar. Note that, with respect to 𝑚2, the values of 𝐴𝑅𝑃𝐷 of 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) ,
𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) increase, but in all cases it is less than 1.
Therefore, it can be pointed out that these versions are the best heuristics to
solve variants SA and MA.

• Comparing the results obtained from this evaluation and that carried out in
Section 6.5.3, several changes can be observed in the relative performance of
some heuristics, possibly due to the lack of adequacy in the testbed used in the
referred work. In this evaluation, the heuristics 𝐺1 and 𝐺4 are more efficient
than 𝐺2 and 𝐺3, while in the previous evaluation 𝐺2 and 𝐺3 yield better
results. The heuristic 𝐴2 performs better than 𝐴1 in benchmarks B1 and B2,
while in the previous experimentation the opposite happens. Regarding 𝑆1, 𝑆2
and 𝑆3, in benchmarksB1 andB2, 𝑆3 is more efficient than 𝑆1 and 𝑆2, being
similar to the performance of the two latter. On the contrary, in the previous
section, 𝑆2 yields a better result than 𝑆1 and 𝑆3, and 𝑆3 is also more efficient
than 𝑆1.

Finally, to summarise the main aspects of these results, it is worth noting that, in
terms of the number of jobs, the performance of the beam search-based constructive
heuristics improves as 𝑛 increases. On the contrary, all the other heuristics worsen
their performance when 𝑛 is equal to 250 and 300 than with a lower number of jobs.
Note that this behaviour had not been previously detected, as the existing testbeds
did not include instances with such large number of jobs. Taking into account this
information, the methods recommended to solve the variants considered are as follows.

• For SA: the dispatching rules 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇 and 𝑆3, and the heuristics 𝑇𝐶𝐾2,
𝐶𝐻𝑀𝐴 and 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) .

• For MA: the dispatching rules 𝑆1 and 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇 , and the heuristics 𝐶𝐻𝑀𝐴
and 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛) .

To establish the statistical significance of the results, a Holm’s procedure (Holm,
1979) is performed where each hypothesis is evaluated using a non-parametric Mann-
Whitney test assuming a 95% confidence level (i.e., 𝛼=0.05). In Holm’s test, the
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Figure 6.6: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best SA heuristics per levels of 𝑛 inB1.

Figure 6.7: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best SA heuristics per levels of 𝑛 inB2.
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Figure 6.8: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best SA heuristics per levels of𝑚2 inB2.
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Figure 6.9: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best MA heuristics per levels of 𝑛 inB1.

hypotheses are formed by a heuristic in the Pareto frontier and the closer dominated
heuristic (in terms of 𝐴𝑅𝑃𝐷) which provides higher 𝐴𝑅𝑃𝑇 ′. The hypotheses are
sorted in non-descending order of the p-values obtained in the Mann-Whitney test,
evaluating the 𝑅𝑃𝐷 of each heuristic. Each hypothesis𝐻𝑖 is rejected if 𝑝 ≤ /(𝑘−𝑖+1)
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Figure 6.10: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best MA heuristics per levels of 𝑛 inB2.

Figure 6.11: 95% Confidence Intervals for 𝐴𝑅𝑃𝐷 of the best MA heuristics per levels of 𝑚2 in
B2.
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where k is the total number of hypotheses. The objective of this procedure is to estab-
lish if there are significant differences between the two heuristics compared in each
hypothesis. The results are shown in Table 6.12. It can be checked that, for both SA
and MA, all the hypotheses are rejected, indicating that there are statistically signifi-
cant differences between the considered heuristics, and validating the composition of
the Pareto set.

6.5.5 Upper bounds

Finally, the experimentation carried out in this section is aimed towards the gen-
eration of reference upper bounds to be used by practitioners and researchers to
compare their proposals. In order to obtain these bounds, the iterated greedy al-
gorithm by Ruiz and Stützle (2007) has been run following the same procedure as
Vallada et al. (2015) and Fernandez-Viagas and Framinan (2020). The stopping
criterion used is 𝑛 · 𝑚/2 · 600/1000 seconds, where 𝑚 is equal to 𝑚1 + 1. More
specifically, this algorithm is run 20 times for each instance and the best value is
taken as the reference upper bound of the instance. Then, the upper bounds are the
minimum value between the solution provided by the 𝐼𝐺 and all the experimentation
carried out in this section. The upper bounds are published as on-line materials in
http://grupo.us.es/oindustrial/en/research/results/.

6.6 Conclusions of the chapter

In this chapter, we have addressed the 2-stage multi-machine assembly scheduling
problem with the objective of minimising the total completion time. We have pre-
sented two constructive heuristics (see GO3). The first algorithm, 𝐶𝐻𝑀𝐴, constructs
a sequence by iteratively adding a job at the end of a partial sequence. The job is
selected according to a problem-specific indicator that takes into account the idle time
of the assembly machines in the second stage and the contribution of the job to the
total completion time. Due to the good performance of this heuristic, the indicator has
been embedded into a beam-search-based constructive heuristic, labelled 𝐵𝑆𝐶𝐻𝑀𝐴,
which constructs several sequences at the same time, compares them, and selects the
best 𝑥 ones. Thereby, this second heuristic proposed combines the diversification of
population-based algorithms and the speed of the constructive heuristic. Furthermore,
we have implemented different variants of the 𝐵𝑆𝐶𝐻, whose main difference is the
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B1

𝐻𝑖 Hypothesis 𝑝-value Mann-Whitney 𝛼/(𝑘 − 𝑖 − 1) Holm’s
Procedure

𝐻1
1 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇=𝑆1 0.000 R 0.0125 R

𝐻1
2 𝐶𝐻𝑀𝐴=𝐺1 0.000 R 0.0167 R

𝐻1
3 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) =𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛/10) 0.000 R 0.0250 R

𝐻1
4 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛+𝑛/2) = 𝐵𝑆𝐶𝐻𝑉 (𝑥=15) 0.000 R 0.0500 R

B2

𝐻𝑖 Hypothesis 𝑝-value Mann-Whitney 𝛼/(𝑘 − 𝑖 − 1) Holm’s
Procedure

𝐻2
1 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇=𝑆2 0.000 R 0.0100 R

𝐻2
2 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇=𝑆3 0.000 R 0.0125 R

𝐻2
3 𝑇𝐶𝐾2=𝐴2 0.000 R 0.0167 R

𝐻2
4 𝐶𝐻𝑀𝐴=𝐸𝐶𝑇 0.000 R 0.0250 R

𝐻2
5 𝐵𝑆𝐶𝐻𝑉 (𝑥=2)=𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) 0.027 R 0.0500 R

Table 6.12: Mann-Whitney’s procedure. (R indicates that the hypothesis can be rejected).

way in which the beam width (𝑥) is modified in each iteration.
Using testbed B0, the extensive computational experiments carried out show

that the best 𝐴𝑅𝑃𝐷 are found by variants 𝐵𝑆𝐶𝐻𝑉 (𝑥 ∈ {2, 𝑛/10, 5, 10, 15, 𝑛}) and
𝐵𝑆𝐶𝐻𝑀𝐴 (𝑥 ∈ {𝑛, 𝑛 + 𝑛/2}). These variants have been compared with the 𝐶𝐻𝑀𝐴
heuristic and with 18 existing heuristics for the problem under consideration and
heuristics adapted from related scheduling problems. The results show that the
proposed heuristics outperform the existing ones (see GO4).

Furthermore, all heuristics designed to solve variants SA and MA and related prob-
lems CO, SM and PM have been tested and compared in the new benchmarksB1 and
B2. On the one hand, the results obtained show that most of the heuristics designed
to solve the SA variant perform slightly better, on average, to solve the variant MA
than the variant SA. On the other hand, the beam search-based constructive heuristics
designed in 6.3 yield the best results in terms of 𝐴𝑅𝑃𝐷, for both benchmarks. Finally,
this computational experimentation has led us to determine the best heuristics to solve
each of the variants considered. For SA, the group of the most efficient heuristics
is formed by the dispatching rules 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇 and 𝑆3, and the heuristics 𝑇𝐶𝐾2,
𝐶𝐻𝑀𝐴, 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑀𝐴(𝑥=𝑛) ; and for MA, by the dispatching rules 𝑆1
and 𝑆𝑇𝑃𝑇/𝑆𝑀𝑃𝑇 , and the heuristics 𝐶𝐻𝑀𝐴 and 𝐵𝑆𝐶𝐻𝑉 (𝑥=2) and 𝐵𝑆𝐶𝐻𝑉 (𝑥=𝑛) .
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Regarding the most efficient heuristics for the MA variant, there are some differences
with respect to the conclusions obtained Section 6.5.2, showcasing the importance of
the set of instances selected in a state-of-the-art study.
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Chapter 7

Heuristic algorithms for the
2-ASP-pm

7.1 Introduction

After reviewing the literature related to the 2-ASP-pm in Chapter 4, to the best of
our knowledge, the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem has never been addressed in
the literature so far. To cover this opportunity, the contribution of this chapter, also
shown in Figure 7.1, can be stated as follows:

• In Section 7.2, we explain the different simple bin-packing policies used in the
construction of a schedule due to the relation of the problem to the bin-packing
problem.

• In Section 7.3, the adapted methods are explained: in Section 7.3.1, all the
dispatching rules adapted from the literature are detailed, while in Section
7.3.2 the heuristics adapted from the literature are presented.

• In Section 7.4, we design two constructive heuristics to efficiently solve the
problem under study (see GO5). In this regard, it is well-known that construc-
tive heuristics need no more than a few minutes to obtain good results (Pan
et al., 2019). Furthermore, these methods can provide good initial solutions for
metaheuristics (Framinan et al., 2014). For both reasons, following the idea of
other papers considering periodic maintenance (Perez-Gonzalez and Framinan,

109
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2018; Perez-Gonzalez et al., 2020), we propose two constructive heuristics as
a first step to analyse their performance on the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max prob-
lem. The first constructive heuristic uses knowledge of the problem domain to
iteratively construct the solutions, while the second one extends this procedure
by applying a partial local search mechanism at each iteration.

• In Section 7.5, we propose two composite heuristics by designing a novel local
search mechanism. Note that, as commented before, constructive heuristics
can often provide a reasonably good solution very quickly. Then, if improved
solution quality is needed and time is allowed, then one way is to apply local
search algorithms to the solution provided by a constructive heuristic(Liu and
Reeves, 2001).

• Finally, in Section 7.7, two computational evaluations are carried out: on the
one hand, 84 dispatching rules adapted from the literature are compared, and,
on the other hand, the proposed heuristics are compared with seven approximate
methods from the literature.

The 2-ASP-PM
(Chapter 7)

Assignment 
rules

None

Proposed
algorithms

Computational 
experience

Comparison of  
dispatching rules

Comparison of  
heuristics

Conclusions

First Fit

Best Fit

Two constructive 
heuristics

A composite 
heuristic

Implemented
algorithms

Dispatching 
rules

Heuristics

Figure 7.1: Structure of Chapter 7.

7.2 Assignment rules: Bin packing policies

In the problem under study, given a sequence, the construction of the schedule implies
the assignment of each operation to a bin on each machine. The decision is not only to
determine the job sequence, but also to assign such operations to the bins. Therefore,
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a bin-packing policy is needed to generate a feasible solution of the problem at hand.
In fact, in the process, the operation should fit in the bin, and the bin should be feasible.
These concepts are formally defined in the following:

Definition 7.2.1 (Operation fits in bin 𝑧 at the first stage) The operation of the job
𝑗 in a given sequence fits in a given bin 𝑧 of a machine 𝑖 ∈ {1, . . . , 𝑚} if 𝑠𝑙𝑎𝑐𝑘 (𝑧, 𝑖) ≥
𝑝𝑖 𝑗 . Let denote 𝑧 as a feasible bin.

Definition 7.2.2 (Operation fits in bin 𝑧 at the second stage) The operation of the
job 𝑗 in a given sequence fits in a given bin 𝑧 of machine𝑚+1 if max {𝐶1 𝑗 , 𝐶𝑇𝑧,𝑚+1}+
𝑎𝑡 𝑗 ≤ 𝑧 · 𝑇 . In this case, let denote 𝑧 as a feasible bin.

To evaluate a given sequence, the following different bin-packing policies can be
applied in the construction of the schedule (Perez-Gonzalez and Framinan, 2018):

• Not applying any policy (𝑁𝑂𝑁𝐸 or 𝑁): Given the sequence Π, the operation
of job 𝑗 in machine 𝑖 is assigned to the same bin where the previous job was
assigned, if the bin is feasible, or in the following bin in the opposite case.

• First Fit (𝐹𝐹) bin packing policy: Given the sequence Π, the operation of job
𝑗 in machine 𝑖 is assigned to the first feasible bin.

• Best Fit (𝐵𝐹) bin packing policy: Given the sequence Π, the operation of job
𝑗 in machine 𝑖 is assigned to the feasible bin where the operation fits with the
minimum slack.

Depending on the bin packing policy selected to assign the operations to the
bins, the schedule obtained could potentially be different, which consequently im-
plies a different value of the objective function denoted as 𝐶𝑁𝑂𝑁𝐸max , 𝐶𝐹𝐹max and 𝐶𝐵𝐹max,
respectively.

For the sake of clarity, a numerical example involving six jobs to be scheduled in a
2-stage assembly system with 𝑚 = 3 at the first stage is reported in the following. The
processing times of the jobs are shown in Table 7.1 and 𝑇 = 25 is considered. Given
the sequence Π = (1, 2, 3, 4, 5, 6), the different bin packing policies are applied, thus
obtaining the Gantt charts shown in Figures 7.2, 7.3 and 7.4. If no bin packing policy
is applied, as shown in Figure 7.2, when a job is too long to be included into the
current bin, it is assigned to the next bin maintaining the order of jobs given by the
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𝑗 𝑝1 𝑗 𝑝2 𝑗 𝑝3 𝑗 𝑎𝑡 𝑗

1 12 13 14 14
2 16 13 15 11
3 5 11 13 13
4 3 12 9 13
5 16 10 17 7
6 11 10 3 5

Table 7.1: Processing times of the jobs in both stages.

sequence Π. In Figure 7.3, policy FF is applied and each job is assigned to the first
feasible bin. Finally, in Figure 7.4, policy BF is applied and each job is assigned to the
feasible bin with minimum slack. As commented before, by applying the policies FF
and BF, jobs can be sequenced in each machine following a different order. Notably,
by applying FF and BF, the obtained solutions entail a smaller number of bins than
the one adopting the NONE policy. As a result, the machine workload (idle time) is
higher (lower) than in the schedule pertaining to the NONE policy.
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Figure 7.2: Gantt chart of the bin packing policy NONE.

7.3 Implemented heuristics

In this section, we deal with the methods that have been adapted and implemented
from the related literature. For the sake of brevity, we refer the readers to their original
papers for a full understanding of these algorithms.
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Figure 7.3: Gantt chart of the bin packing policy FF.
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Figure 7.4: Gantt chart of the bin packing policy BF.

The existing methods can be classified in two groups according to the literature:
dispatching rules and heuristics. They are explained in the following subsections.

7.3.1 Dispatching rules

Firstly, we adapt the dispatching rules proposed to solve the related problems. These
methods consist of two phases: in the first phase, jobs are sorted according to a certain
sorting criterion depending on the processing time of the jobs, and then, in the second
phase, a specific bin packing policy is applied. In this section, we also consider in this
group the methods from the literature for the 𝐷𝑃2 → 1| |𝐶max, 𝐷𝑃𝑚 → 1|𝐵𝑆 |𝐶max

and 𝐷𝑃𝑚 → 1|𝑟 𝑗 |𝐶max problems, that apply Johnson’s algorithm since they are based
on the combination of two dispatching rules. In all the adaptations, each dispatching



114 Chapter 7. Heuristic algorithms for the 2-ASP-pm

rule is combined with FF, BF, and NONE bin policies to analyse the effect of the bin
packing policies on the dispatching rules.

In Table 7.2, 7.3 and 7.4 all the adapted dispatching rules are summarised. The
first two columns indicate the problem and the article from which each dispatching
rule is adapted. The third column means the name1 used for denoting each rule in
this chapter. Then, the fourth column represents the index computed to sort the jobs
or, if Johnson’s rule is applied, the first index needed to apply this rule. The fifth
column indicates the order in which jobs are sorted or, if Johnson’s rule is applied,
the second index needed to apply this rule. Finally, the last column means the bin
packing policy applied in each case. Note that, all the dispatching rules from the
1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem are adapted by computing 𝑖𝑛𝑑 𝑗 (the index computed in the
proposed methods in Section 7.4, see Equation 7.1). From the 𝐷𝑃2 → 1| |𝐶max

problem, 𝑚 machines in the first stage are considered to adapt the different methods.
Regarding the dispatching rules from the 𝐷𝑃𝑚 → 1|𝑟 𝑗 |𝐶max problem, the methods
shown in Table 7.2, 7.3 and 7.4 are adapted by eliminating the release dates from the
original indexes. Finally, from the 𝐷𝑃𝑚 → 𝐹2| |𝐶max problem, the rules are adapted
by considering one machine in the second stage instead of a flowshop. In total, we
obtain 84 dispatching rules.

7.3.2 Heuristics

Secondly, we adapt the existing heuristics in the literature to solve the related prob-
lems. These methods are summarised in Table 7.5, where it is also indicated their
complexity. Their adaptations are briefly explained: from the 1|𝑛𝑟 − 𝑝𝑚 |𝐶max prob-
lem, the method 𝑃𝐺𝐹 (Perez-Gonzalez and Framinan, 2018) is adapted by computing
𝑖𝑛𝑑 𝑗 (see Equation 7.1 in Section 7.4) and applying the LPT rule to generate the initial
solution. Then, one of the aforementioned policies (FF and BF) is applied to com-
pute the objective function. From the 𝐹𝑚 |𝑝𝑟𝑚𝑢, 𝑛𝑟 − 𝑝𝑚 |𝐶max problem, the method
𝑃𝐹𝐹1 (Perez-Gonzalez et al., 2020) is adapted by generating the initial sequence by
sorting the jobs in non-descending order of the index 𝑋 𝑗 = 𝐶1 𝑗 + 𝑎𝑡 𝑗 + 2 · 𝐼𝑇𝑗 . Then,
the algorithm is applied considering the problem as a flowshop with two stages. The
adaptation of 𝑃𝐹𝐹2 and 𝑃𝐹𝐹3 implies the same heuristic since 𝑃𝐹𝐹3 is a general-
ization of 𝑃𝐹𝐹2. Finally, the authors propose two iterative heuristics by repeating

1Note that in the case of Komaki and Kayvanfar (2015), the original notation is used to make easier
its identification in the original paper.
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Problem Author Label Order1 Order2 Bin packing
policy

1|𝑛𝑟 − 𝑝𝑚 |𝐶max 2 𝐿𝑃𝑇𝐹𝐹 𝑖𝑛𝑑 𝑗 LPT FF
3 𝐿𝑃𝑇𝐵𝐹 BF
4 𝑅𝑁𝐷𝐹𝐹 Random FF

𝑅𝑁𝐷𝐵𝐹 BF
𝑆𝑃𝑇𝐹𝐹 SPT FF
𝑆𝑃𝑇𝐵𝐹 BF
𝑉𝑆𝐻𝐴𝑅𝑃𝐹𝐹 V-Sharp FF
𝑉𝑆𝐻𝐴𝑅𝑃𝐵𝐹 BF
𝐴𝑆𝐻𝐴𝑅𝑃𝐹𝐹 A-Sharp FF
𝐴𝑆𝐻𝐴𝑅𝑃𝐵𝐹 BF
𝐻𝐼𝐿𝑂𝐹𝐹 HILO FF
𝐻𝐼𝐿𝑂𝐵𝐹 BF

5 𝐿𝑂𝐻𝐼𝐹𝐹 LOHI FF
𝐿𝑂𝐻𝐼𝐵𝐹 BF

𝐷𝑃2 → 1| |𝐶max 6 𝐿𝐶𝐿1𝑁 max𝑖 𝑝𝑖 𝑗 𝑎𝑡 𝑗 NONE
𝐿𝐶𝐿1𝐹𝐹 FF
𝐿𝐶𝐿1𝐵𝐹 BF
𝐿𝐶𝐿2𝑁 𝑝𝑖∗ 𝑗 𝑎𝑡 𝑗 NONE
𝐿𝐶𝐿2𝐹𝐹 FF
𝐿𝐶𝐿2𝐵𝐹 BF
𝐿𝐶𝐿3𝑁

∑
𝑝𝑖 𝑗/𝑎𝑡 𝑗 𝑎𝑡 𝑗 NONE

𝐿𝐶𝐿3𝐹𝐹 FF
𝐿𝐶𝐿3𝐵𝐹 BF

𝐷𝑃𝑚 → 1|𝐵𝑆 |𝐶max 7 𝐿𝐶𝐶𝑁
∑
𝑝𝑖 𝑗/𝑚 𝑎𝑡 𝑗 NONE

𝐿𝐶𝐶𝐹𝐹 FF
𝐿𝐶𝐶𝐵𝐹 BF

𝐷𝑃𝑚 → 1|𝑟 𝑗 |𝐶max 8 𝐼4𝑁
∑
𝑝𝑖 𝑗/𝑚 non-decreasing NONE

𝐼4𝐹𝐹 FF
𝐼4𝐵𝐹 BF
𝐼8𝑁 𝑝𝑖∗ 𝑗 NONE
𝐼8𝐹𝐹 FF
𝐼8𝐵𝐹 BF

2 Ji et al. (2007).
3 Hsu et al. (2010).
4 Low et al. (2010b).
5 Perez-Gonzalez and Framinan (2018).
6 Lee et al. (1993).
7 Lin et al. (2006).
8 Komaki and Kayvanfar (2015).

Table 7.2: Classification of the dispatching rules adapted from the related problems (I).



116 Chapter 7. Heuristic algorithms for the 2-ASP-pm

Problem Author Label Order1 Order2 Bin packing
policy

𝐷𝑃𝑚 → 1|𝑟 𝑗 |𝐶max 8 𝐼10𝑁 max𝑖 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 non-decreasing NONE
𝐼10𝐹𝐹 FF
𝐼10𝐵𝐹 BF
𝐼11𝑁

∑
𝑝𝑖 𝑗/𝑚 + 𝑎𝑡 𝑗 non-increasing NONE

𝐼11𝐹𝐹 FF
𝐼11𝐵𝐹 BF
𝐼12𝑁 𝑝𝑖∗ 𝑗 + 𝑎𝑡 𝑗 NONE
𝐼12𝐹𝐹 FF
𝐼12𝐵𝐹 BF
𝐼27𝑁 max𝑖 𝑝𝑖 𝑗 max𝑖 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 NONE
𝐼27𝐹𝐹 FF
𝐼27𝐵𝐹 BF
𝐼28𝑁

∑
𝑝𝑖 𝑗/𝑚 max𝑖 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 NONE

𝐼28𝐹𝐹 FF
𝐼28𝐵𝐹 BF
𝐼32𝑁 𝑝𝑖∗ 𝑗 max𝑖 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 NONE
𝐼32𝐹𝐹 FF
𝐼32𝐵𝐹 BF
𝐼35𝑁 max𝑖 𝑝𝑖 𝑗

∑
𝑝𝑖 𝑗/𝑚 + 𝑎𝑡 𝑗 NONE

𝐼35𝐹𝐹 FF
𝐼35𝐵𝐹 BF
𝐼36𝑁

∑
𝑝𝑖 𝑗/𝑚

∑
𝑝𝑖 𝑗/𝑚 + 𝑎𝑡 𝑗 NONE

𝐼36𝐹𝐹 FF
𝐼36𝐵𝐹 BF
𝐼40𝑁 𝑝𝑖∗ 𝑗

∑
𝑝𝑖 𝑗/𝑚 + 𝑎𝑡 𝑗 NONE

𝐼40𝐹𝐹 FF
𝐼40𝐵𝐹 BF
𝐼43𝑁 max𝑖 𝑝𝑖 𝑗 𝑝𝑖∗ 𝑗 + 𝑎𝑡 𝑗 NONE
𝐼43𝐹𝐹 FF
𝐼43𝐵𝐹 BF
𝐼46𝑁

∑
𝑝𝑖 𝑗/𝑚 𝑝𝑖∗ 𝑗 + 𝑎𝑡 𝑗 NONE

𝐼46𝐹𝐹 FF
𝐼46𝐵𝐹 BF
𝐼48𝑁 𝑝𝑖∗ 𝑗 𝑝𝑖∗ 𝑗 + 𝑎𝑡 𝑗 NONE
𝐼48𝐵𝐹 BF

8 Ji et al. (2007).

Table 7.3: Classification of the dispatching rules adapted from the related problems (II).
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Problem Author Label Order1 Order2 Bin packing
policy

𝐷𝑃𝑚 → 𝐹2| |𝐶max 9 𝐾𝑇𝐾𝐵1𝑁 max𝑖 𝑝𝑖 𝑗 non-decreasing NONE
𝐾𝑇𝐾𝐵1𝐹𝐹 FF
𝐾𝑇𝐾𝐵1𝐵𝐹 BF
𝐾𝑇𝐾𝐵3𝑁 𝑎𝑡 𝑗 NONE
𝐾𝑇𝐾𝐵3𝐹𝐹 FF
𝐾𝑇𝐾𝐵3𝐵𝐹 BF
𝐾𝑇𝐾𝐵4𝑁 max𝑖 𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 NONE
𝐾𝑇𝐾𝐵4𝐹𝐹 FF
𝐾𝑇𝐾𝐵4𝐵𝐹 BF

𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max First 𝑅𝑁𝐷𝑁 Random NONE
time 𝑆𝑃𝑇𝑁𝑂𝑁𝐸 SPT
imple- 𝐿𝑃𝑇𝑁 LPT
mented* 𝑉𝑆𝐻𝐴𝑅𝑃𝑁 V-Sharp

𝐴𝑆𝐻𝐴𝑅𝑃𝑁 A-Sharp
𝐻𝐼𝐿𝑂𝑁 HILO
𝐿𝑂𝐻𝐼𝑁 LOHI

9 Hsu et al. (2010).
* Only for complementing the existing methods for 1 |𝑛𝑟 − 𝑝𝑚 |𝐶max .

Table 7.4: Classification of the dispatching rules adapted from the related problems (III).
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a NEH-based mechanism, named 𝐼𝑇𝑃𝐹𝐹1 and 𝐼𝑇𝑃𝐹𝐹2. As for the 𝐷𝑃2 → 1| |𝐶max

problem, algorithms from Sun et al. (2003), named 𝑆𝑀𝑁13 and 𝑆𝑀𝑁14, are adjusted
by considering 𝑚 machines in the first stage and are combined with NONE, FF and
BF policies. Finally, from the 𝐷𝑃𝑚 → 1| |𝐶max problem, the method 𝐴𝐴 (Allahverdi
and Al-Anzi, 2006) can be easily adapted and combined with NONE, FF and BF
policies. In total, we obtain 15 heuristics from the state-of-the-art.

Furthermore, as the computational effort required by 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆
can be considered quite higher than that by the other heuristics adapted for the
comparison (see Section 7.6.4), we also adapt the imperialist competitive algorithm
(𝐼𝐶𝐴) proposed by Seidgar et al. (2014) for the 𝐷𝑃𝑚 → 1| |𝐹𝑙 (𝐶max,

∑
𝐶 𝑗) problem.

This metaheuristic is a population-based algorithm, and the population consists of
some countries (sequences), which are classified in imperialists and colonies. Both
types of countries compete to be the most powerful country, i.e., the sequence with
the best value of the objective function. The stopping criterion considered is the
computational time required by the different versions of 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆 .

7.4 Constructive heuristics

In this section, we propose two constructive heuristics and a local search mechanism
for the 𝐷𝑃𝑚 → 1|𝑛𝑟 − 𝑝𝑚 |𝐶max problem. The first proposal, denoted as 𝐶𝐻1,
constructs a sequence by iteratively appending jobs at the end of a sequence. Then,
the second constructive heuristic, CH2 in the following, is obtained by applying
a partial local search mechanism enabled at each iteration of CH1 (Section 7.4.2)
and, finally, we propose a novel local search mechanism, denoted as 𝑁𝐿𝑆, to be
implemented after constructing a complete sequence by CH1 and CH2, hereinafter
denoted as 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆 , respectively (Section 7.5).

7.4.1 Constructive Heuristic 1

Following the ideas of the methods proposed by Liu and Reeves (2001) and applied
to other assembly problems (see e.g., Framinan and Perez-Gonzalez, 2017b), the
proposed heuristic CH1 iteratively constructs a sequence by selecting the most suitable
job among the unscheduled jobs and appending it to the end of the partial sequence.
The pseudocode of 𝐶𝐻1 is provided in Algorithm 3. CH1 starts with a set W of all
(unscheduled) jobs and an empty sequence Π. For each iteration (_ ∈ {1, . . . , 𝑛}),
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Problem Author Label Bin packing policy Complexity

1|𝑛𝑟 − 𝑝𝑚 |𝐶max 10 𝑃𝐺𝐹𝑁 NONE 𝑛2𝑚

𝑃𝐺𝐹𝐹𝐹 FF 𝑛2𝑚𝑍

𝑃𝐺𝐹𝐵𝐹 BF 𝑛2𝑚𝑍

𝐹𝑚 |𝑝𝑟𝑚𝑢, 𝑛𝑟 − 𝑝𝑚 |𝐶max 11 𝑃𝐹𝐹1 - 𝑛3𝑚𝑍

𝑃𝐹𝐹2 - 𝑛3𝑚𝑍

𝐼𝑇𝑃𝐹𝐹1 - 𝐾𝑛3𝑚𝑍*
𝐼𝑇𝑃𝐹𝐹2 - 𝐾𝑛3𝑚𝑍*

𝐷𝑃2 → 1| |𝐶max 12 𝑆𝑀𝑁13𝑁 NONE 𝑛2 + 𝑛𝑚
𝑆𝑀𝑁13𝐹𝐹 FF 𝑛2 + 𝑛𝑚𝑍
𝑆𝑀𝑁13𝐵𝐹 BF 𝑛2 + 𝑛𝑚𝑍
𝑆𝑀𝑁14𝑁 NONE 𝑛2 + 𝑛𝑚
𝑆𝑀𝑁14𝐹𝐹 FF 𝑛2 + 𝑛𝑚𝑍
𝑆𝑀𝑁14𝐵𝐹 BF 𝑛2 + 𝑛𝑚𝑍

𝐷𝑃𝑚 → 1| |𝐶max 13 𝐴𝐴𝑁 NONE 𝑛𝑚

𝐴𝐴𝐹𝐹 FF 𝑛𝑚𝑍

𝐴𝐴𝐵𝐹 BF 𝑛𝑚𝑍

10 Perez-Gonzalez and Framinan (2018).
11 Perez-Gonzalez et al. (2020).
* 𝐾 is the number of times that the NEH procedure is executed. It is equal to ⌈∑𝑚

𝑖=1
∑𝑛

𝑗=1 (𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 )/𝑇 ⌉.
12 Sun et al. (2003).
13 Allahverdi and Al-Anzi (2006).

Table 7.5: Classification of the heuristics adapted from the related problems.
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each unscheduled job 𝜔𝑙 ∈ W (𝑙 = 1, . . . , 𝑛 − _ + 1) is analysed as candidate to be
added to the last position of Π. The suitability of each job is measured by computing
the index 𝜓𝜔𝑙

and the job with the lowest value is selected to be scheduled at the end
of Π. There are three main characteristics of the problem to be considered in order to
fully define this index:

1. The completion time of job 𝜔𝑙. It depends on its completion time in the first
stage (i.e., 𝐶11 = 𝑚𝑎𝑥𝑖 𝑝𝑖𝜔𝑙

) and the processing time in the second stage, 𝑎𝑡𝜔𝑙
.

2. The idle time between stages before processing job 𝜔𝑙. We denote with 𝐼𝑇𝜔𝑙

the idle time in machine 𝑚 + 1 caused by scheduling job 𝜔𝑙 at the end of the
sequence, i.e., 𝐼𝑇𝜔𝑙

= 𝑚𝑎𝑥{𝐶1𝐵𝐹𝜔𝑙
−𝐶𝑇𝑧,𝑚+1, 0}, where𝐶1𝐵𝐹𝜔𝑙

is the completion
time of 𝜔𝑙 in the first stage by applying BF bin-packing policy, and 𝐶𝑇𝑧,𝑚+1 is
the completion time of the last job scheduled before 𝜔𝑙 in the bin 𝑧 in machine
𝑚 + 1 according to the notation from Section 2.4.

3. The waiting time incurred when a job has to wait for being processed in
the second stage, i.e., when 𝐼𝑇𝜔𝑙

= 0. Then, the difference between the
completion time of the job in the second stage and in the first stage is computed
as 𝐶𝐵𝐹𝜔𝑙

− 𝐶1𝐵𝐹𝜔𝑙
, where 𝐶𝐵𝐹𝜔𝑙

is the completion time of job 𝜔𝑙, using BF as
bin-packing policy.

By considering these three aspects, we will ensure that the jobs to be first se-
quenced are those with lower values of idle/waiting time and completion time. Ad-
ditionally, we also take into account the availability period 𝑇 . Therefore, the index
𝜓𝜔𝑙

, which estimates the suitability of appending a candidate job 𝜔𝑙 at the end of Π,
is computed as follows:

𝜓𝜔𝑙
=


max𝑖 𝑝𝑖𝜔𝑙

+ 𝑎𝑡𝜔𝑙
− 𝑐1 ·𝑇

𝑐3
· 𝐼𝑇𝜔𝑙

if 𝐼𝑇𝜔𝑙
> 0,

max𝑖 𝑝𝑖𝜔𝑙
+ 𝑎𝑡𝜔𝑙

+ 𝑐2 ·𝑇
𝑐3

· (𝐶𝐵𝐹𝜔𝑙
− 𝐶1𝐵𝐹𝜔𝑙

) if 𝐼𝑇𝜔𝑙
= 0,

where 𝑐1, 𝑐2 and 𝑐3 are parameters of the algorithm that would be determined via a
proper calibration analysis (see Section 7.6.1).

The complexity of this heuristic is O (𝑛 · (𝑛−_) ·𝑚 · 𝑍) ∼ O (𝑛2 ·𝑚 · 𝑍), where 𝑏 is
the final number of bins used. It is clear that the main loop of the algorithm performs
𝑛 iterations and, in each one, 𝑛 − _ jobs are considered in the partial sequence. In
each evaluation, the maximum processing time in the first stage is computed, so all
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machines 𝑚 are taken into consideration. Besides, for each machine, all bins (𝑍) are
also considered in order to determine the bin where best fits job 𝜔𝜔𝑙

.

Algorithm 3 Pseudocode of the proposed heuristic 𝐶𝐻1
1: procedure CH1
2: All jobs are initially unscheduled
3: Π := ∅;
4: W := {1, . . . , 𝑛};
5: for _ = 1 to 𝑛 do
6: for 𝑙 = 1 to 𝑛 − _ + 1 do
7: Compute the completion times, applying the bin packing policy Best

Fit in both stages with 𝜔𝑙 as candidate.
8: Compute the idle time induced if job 𝜔𝑙 is inserted at the end of the

partial sequence:
9: 𝐼𝑇𝜔𝑙

= max
{
𝐶1𝐵𝐹𝜔𝑙

− 𝐶𝑇𝑧𝑖, 0
}

10: Compute the index:
11: if 𝐼𝑇𝜔𝑙

> 0 then
12: 𝜓𝜔𝑙

= max𝑖 𝑝𝑖𝜔𝑙
+ 𝑎𝑡𝜔𝑙

− 𝑐1 · 𝑇/𝑐3 · 𝐼𝑇𝜔𝑙

13: else
14: 𝜓𝜔𝑙

= max𝑖 𝑝𝑖𝜔𝑙
+ 𝑎𝑡𝜔𝑙

+ 𝑐2 · 𝑇/𝑐3 · (𝐶𝐵𝐹𝜔𝑙
− 𝐶1𝐵𝐹𝜔𝑙

)
15: end if
16: end for
17: 𝑟 := arg min1≤𝑙≤𝑛−_+1 𝜓𝑙;
18: Append 𝜔𝑟 at the end of Π, i.e., Π := (𝜋1, . . . , 𝜋_−1, 𝜔𝑟 );
19: Extract 𝜔𝑟 from𝑈;
20: end for
21: Evaluate the sequence Π: 𝐶𝐵𝐹max(Π) = 𝑚𝑎𝑥 𝑗𝐶𝐵𝐹𝑗 (Π)
22: return 𝐶𝐵𝐹max(Π)
23: end procedure

7.4.2 Constructive Heuristic 2

Similar to 𝐶𝐻1, we design an additional constructive heuristic by adding an im-
provement procedure after appending the most suitable job in each iteration. More
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specifically, the proposed method, labelled 𝐶𝐻2, consists of two phases. First, we
select a job to be added to the partial sequence according to the index 𝜓𝑙, and then,
we apply an improvement procedure based on exploring the space of solutions of
the partial sequence. The neighbourhood structure is based on interchanging the last
added job with the rest of the jobs in the partial sequence, considering a relative
improvement strategy, i.e., if the new solution obtained after an interchange improves
the best solution in the current iteration, the latter solution is replaced and the local
search keeps evaluating the space of solutions by interchanging the selected job with
the remaining jobs. To reduce the computational effort of the improvement procedure,
each partial schedule obtained by each interchange is evaluated in this case by the
FF policy. Algorithm 4 describes the pseudocode of 𝐶𝐻2. The complexity of this
heuristic is O (𝑛3 · 𝑚 · 𝑍).

Let consider the example from Section 7.2. In Figure 7.5 is shown the method-
ology followed by applying the improvement procedure. Being the partial sequence
Π = (2, 1, 4) and job 4 the last job to be added, the first sequence evaluated by the FF
bin packing policy is Π′ =(2,1,4) with 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 := 𝐶𝐹𝐹max = 88. Then, job 4 is inter-
changed with job 2 obtaining the sequence Π′ =(4,1,2) with 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 := 𝐶𝐹𝐹max = 86.
As 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 < 𝑏𝑒𝑠𝑡𝑠𝑜𝑙, then 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 = 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 and Π = Π′. Job 4 is interchanged
with job 1, obtaining the sequenceΠ′ =(1,4,2) with 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 := 𝐶𝐹𝐹max = 89. Therefore,
Π =(4,1,2) and the next iteration is started.

Figure 7.5: Example of the relative improvement strategy.

7.5 Composite heuristics

In this section, an additional local search mechanism is proposed. This mechanism,
named Novel Local Search (𝑁𝐿𝑆), is designed to be applied once we get a complete
sequence by the constructive heuristics 𝐶𝐻1 and 𝐶𝐻2, being the resultant heuristics
named 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆 . NLS consists of interchanging two sets of jobs (A
and B), both with the same length 𝛾 in the complete sequence Π provided by the
corresponding constructive heuristic. The procedure followed by this mechanism is
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Algorithm 4 Pseudo-code of the proposed heuristic 𝐶𝐻2
1: procedure CH2
2: All jobs are initially unscheduled
3: Π := ∅;
4: W := {1, . . . , 𝑛};
5: for _ = 1 to 𝑛 do
6: for 𝑙 = 1 to 𝑛 − _ + 1 do
7: Compute the completion times, applying the bin packing policy Best

Fit in both stages with 𝜔𝑙 as candidate.
8: Compute the idle time induced if job 𝜔𝑙 is inserted at the end of the

partial sequence:
9: 𝐼𝑇𝜔𝑙

= max
{
𝐶1𝐵𝐹𝜔𝑙

− 𝐶𝑇𝑘𝑖 , 0
}

10: Compute the index 𝜓𝜔𝑙
:

11: if 𝐼𝑇𝜔𝑙
> 0 then

12: 𝜓𝜔𝑙
= max𝑖 𝑝𝑖𝜔𝑙

+ 𝑎𝑡𝜔𝑙
− 𝑐1 · 𝑇/𝑐3 · 𝐼𝑇𝜔𝑙

13: else
14: 𝜓𝜔𝑙

= max𝑖 𝑝𝑖𝜔𝑙
+ 𝑎𝑡𝜔𝑙

+ 𝑐2 · 𝑇/𝑐3 · (𝐶𝐵𝐹𝜔𝑙
− 𝐶1𝐵𝐹𝜔𝑙

)
15: end if
16: end for
17: 𝑟 := arg min1≤𝑙≤𝑛−_+1 𝜓𝑙;
18: Append 𝜔𝑟 at the end of Π, i.e., Π := (𝜋1, . . . , 𝜋_−1, 𝜔𝑟 );
19: Extract 𝜔𝑟 from𝑈;
20: if _ ≥ 2 then
21: Evaluate Π: 𝐶𝐹𝐹max(Π) = 𝑚𝑎𝑥 𝑗𝐶𝐹𝐹𝑗 (Π)
22: Compute the completion times, applying the bin-packing policy First

Fit. Do 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 := 𝐶𝐹𝐹max(Π)
23: for 𝑠 = 1 to 𝑠 = _ − 1 do
24: Let Π′ be the neighbour obtained interchanging 𝜔𝑟 with job in

position 𝑠.
25: Evaluate Π′: 𝐶𝐹𝐹max(Π′) = 𝑚𝑎𝑥 𝑗𝐶

𝐹𝐹
𝑗

(Π′). Do 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 :=
𝐶𝐹𝐹max(Π′)

26: if 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 < 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 then
27: 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 = 𝑐𝑢𝑟𝑟𝑠𝑜𝑙. Π = Π′

28: end if
29: end for
30: end if
31: end for

return 𝐶𝐹𝐹max(Π)
32: end procedure
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as follows:

• The selection of the jobs in the first set, A , is based on the variable 𝑖𝑛𝑑 𝑗 ,
according to Equation 7.1. This index is defined for each job 𝑗 (with 𝑗 ∈
{1, . . . , 𝑛}) as the sum of the maximum completion time in the first stage and
the processing time in the second stage:

𝑖𝑛𝑑 𝑗 = max
𝑖
𝑝𝑖 𝑗 + 𝑎𝑡 𝑗 (7.1)

Let O = (O1, . . . ,O𝑛) be the order obtained after sorting the jobs in non-
decreasing order according to such index, then we select 𝛾 consecutive jobs of
O to be included inA . Three options for positioning the selected jobs, denoted
as PA , are considered:

– PA = Beginning. The selected jobs are at the beginning of O : A =

(O1, . . . ,O𝛾).
– PA = Middle. The selected jobs are at the middle of O : A = (O 𝑗 , . . . ,
O 𝑗+𝛾) with 𝑗 = ⌈𝛾/2⌉.

– PA = End. The selected jobs are at the end of O : A = (O𝑛−𝛾 , . . . ,O𝑛).

• The jobs in the second set,B , are selected directly from Π, being 𝛾 consecutive
jobs in this sequence. In the same way, the three previous options, PB , are
considered, selecting those jobs at the beginning, the middle, or the end of Π.

Note that to do the interchange process, the jobs indicated byA are selected one
by one in Π, and they are interchanged with all jobs indicated byB . The procedure
depends on three parameters: 𝛾 ∈ { 𝑛4 ,

𝑛
2 ,

3𝑛
4 , 𝑛} andPA ,PB ∈ {𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔, 𝑀𝑖𝑑𝑑𝑙𝑒,

𝐸𝑛𝑑}. Each neighbour is evaluated by the FF policy and the relative improvement
strategy used in the Improvement Procedure described in Algorithm 4. Algorithm 5
describes the pseudocode of this mechanism, whose complexity is O (𝑛3 · 𝑚 · 𝑍).

The procedure considering 𝛾 = 𝑛
2 ,PA = 𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 andPB = 𝐸𝑛𝑑, is illustrated

by an example (see Figure 7.6), where O = [1, 6, 4, 3, 5, 2] and Π = [2, 1, 6, 4, 3, 5]
has been obtained by 𝐶𝐻1 or 𝐶𝐻2, with a value of the objective function equals to
93. Then,A = [1, 6, 4] andB = [4, 3, 5]. The process is as follows:

• Iteratively, each job is selected from Π given byA and interchanged with each
job given by B . Each neighbour is evaluated, and Π is updated in case of
improvement. More specifically, the following steps are done:
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Algorithm 5 Pseudo-code of the proposed local search mechanism 𝑁𝐿𝑆

1: procedure NLS(Π, 𝛾, PA , PB )
2: Let Π be a sequence given by heuristic 𝐶𝐻1 or 𝐶𝐻2
3: 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 := 𝐶𝐹𝐹max(Π)
4: Compute for each job 𝑖𝑛𝑑 𝑗 according to Equation (7.1).
5: Let O = (O[1] , . . . ,O[𝑛]) be the order obtained after sorting the jobs in non-

decreasing order of 𝑖𝑛𝑑 𝑗 .
6: Two sets of jobs,A andB , initially empty.
7: {A ,B} := ∅;
8: Select 𝛾 consecutive jobs, depending on PA , of O to be included inA .
9: Select 𝛾 consecutive jobs, depending on PB , of Π to be included inB .

10: for each job O𝑥 inA do
11: Let Π′ be the neighbour obtained interchanging O𝑥 with each job given

byB .
12: Evaluate Π′: 𝐶𝐹𝐹max(Π′) = 𝑚𝑎𝑥 𝑗𝐶𝐹𝐹𝑗 (Π′). Do 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 := 𝐶𝐹𝐹max(Π′)
13: if 𝑐𝑢𝑟𝑟𝑠𝑜𝑙 < 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 then
14: 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 = 𝑐𝑢𝑟𝑟𝑠𝑜𝑙

15: Π = Π′

16: end if
17: end for
18: end procedure
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– 1𝑠𝑡 iteration: The first job in A is 1. This job is located in the second
position of Π, and it is interchanged with the first job indicated by B ,
4. The neighbour obtained is [2,4,6,1,3,5], with objective function equals
to 96. Then, 1 is interchanged with the second job indicated by B , 3.
The neighbour obtained is [2,3,6,4,1,5], with objective function equals
to 102. Finally, 1 is interchanged with the third job indicated by B ,
5. The neighbour obtained is [2,5,6,4,3,1], with the objective function
equals to 91. As, in this case there is an improvement, Π is updated:
Π = [2, 5, 6, 4, 3, 1]

– 2𝑛𝑑 iteration. The second job in A is 6, and it is interchanged with the
first job indicated by B , 4, then with the second job 3, and finally with
the third job 5. In this iteration, there is not improvement.

– 3𝑟𝑑 iteration. The third job inA is 4. As it coincides with the first job in
B , in this iteration, there are only two neighbours, those obtained by the
interchange of jobs 3 and 5. In this iteration, there is not improvement.

• After that, the procedure returns as the best solution, the new sequence Π =

[2, 5, 6, 4, 3, 1].

7.6 Computational experience

This section describes the procedure for evaluating the proposed algorithms and the
adapted methods, detailed in Sections 7.4 and 7.3. Section 3.2 explains the testbeds
and the performance indicators necessary to evaluate the MILP and compare the
different algorithms, while Section 7.6.1 presents the design of experiments to properly
set the values of the control parameters pertaining to 𝐶𝐻1 and the 𝑁𝐿𝑆 procedure as
well. Section 7.6.2 analyses the efficiency of the MILP model, Section 7.6.3 outlines
the results of a comparison analysis involving the aforementioned dispatching rules,
and Section 7.6.4 allows assessing the difference in performance among existing and
proposed heuristics in solving the scheduling problem at hand. This comparison
has been carried out using the same language (C# using Visual Studio) and on an
Intel Core i7-3770 PC with 3.4 GHz and 16 GB RAM, and using the same common
functions and libraries. In order to obtain a better estimate of the CPU time required
by each algorithm, and based on the computational experiments carried out by Ruiz
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Figure 7.6: Example of the partial interchange local search mechanism.

and Stützle (2007), Pan and Ruiz (2013) and Fernandez-Viagas and Framinan (2014),
a total of five replicates for each instance are carried out and the results are averaged.

7.6.1 Tuning control parameters

In this section, a factorial design of experiments is performed to find the best values of
the parameters of the constructive heuristic𝐶𝐻1 and the novel local search mechanism
based on interchange 𝑁𝐿𝑆 presented in Section 7.4. After some preliminary tests, it
has been identified that the best values for the different parameters are in the ranges
detailed below. More specifically, the following values are tested:

• 𝐶𝐻1 parameters: 𝑐1 ∈ {1, 2, 5, 10}, 𝑐2 ∈ {0, 0.5, 1} and 𝑐3 ∈ {1, 500}, since
500 is the highest level of parameter 𝑇 (see Section 3.3). In total, there are 24
combinations.

• 𝑁𝐿𝑆 parameters: 𝛾 ∈ { 𝑛4 ,
𝑛
2 ,

3𝑛
4 , 𝑛}, andPA ,PB ∈ {𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔, 𝑀𝑖𝑑𝑑𝑙𝑒, 𝐸𝑛𝑑}.

In this case, we are interested in determining the most favourable cases for the
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parametersPA andPB , in order to test𝐶𝐻1𝑁𝐿𝑆 and𝐶𝐻2𝑁𝐿𝑆 with all values
of 𝛾 ∈ { 𝑛4 ,

𝑛
2 ,

3𝑛
4 , 𝑛}. Therefore, in the tuning process, 𝛾 has been set to 𝑛

2 .

To determine the best combination of parameters, the calibration benchmarkB𝑐4

presented in Section 3.3 is used. As noted before, these instances are different from
those used in Section 7.6.3 and Section 7.6.4 to avoid overfitting these parameters. Af-
ter proving that the normality and homoscedasticity assumptions are not fulfilled, two
Kruskal-Wallis tests are performed to determine the best combinations of parameters:

• In order to determine the best combination for the parameters 𝑐1, 𝑐2 and 𝑐3,
the generated instances have been solved through the 24 versions of 𝐶𝐻1
obtained by combining all the levels of the parameters. The response variable
in the statistical analysis is 𝐴𝑅𝑃𝐷. A non-parametric Kruskal-Wallis test
has been carried out, providing significant differences between the levels of
the parameters. See Appendix for the different values of 𝐴𝑅𝑃𝐷. The best
combination is obtained for 𝑐1 = 2, 𝑐2 = 1 and 𝑐3 = 500.

• To determine the best combination of parameters PA and PB , the generated
instances have been solved by the nine versions of𝐶𝐻1𝑁𝐿𝑆 obtained combining
the levels of both parameters. The parameters used for 𝐶𝐻1 have been fixed to
those obtained in the previous test. The response variable is again the 𝐴𝑅𝑃𝐷.
Again, significant differences between the levels of the parameters have been
obtained, being the best combination PA = 𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔, and PB = 𝐸𝑛𝑑. The
values of 𝐴𝑅𝑃𝐷 for the different combinations are shown in Appendix.

7.6.2 Evaluation of the MILP model

In this section, we run the MILP model for the small size instances of benchmark
B3. We set the time limit for the MILP model to 1800 seconds and report the
optimal/best feasible solutions found. In Table 7.6, we summarize the computational
results grouped by instance size (𝑛 and 𝑚) and level of parameter 𝑇 , showing the
average value of 𝐴𝑅𝑃𝐷 and 𝐴𝐶𝑃𝑈, and the percentage of optimal solutions obtained
by the model for 10 instances. From the table, it is clear that as the level of𝑇 increases,
the model finds more optimal solutions, since as the constraint is relaxed, it is easier
to find optimal solutions by the model. It is remarkable the big difference in 𝐴𝑅𝑃𝐷
between instances of size 𝑛 = 40 and 𝑚 = 8 for 𝑇 = 200 (𝐴𝑅𝑃𝐷 = 138.36) and
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𝑇 = 500 (𝐴𝑅𝑃𝐷 = 0.36). With respect to the behaviour of the model, it requires
more computational time to obtain an optimal solution as the number of jobs and
machines increases. Regarding the total average of percentage of optimal solutions,
it is equal to 65%, so we can conclude that the model is effective to solve instances
with the size considered in this testbed. However, the MILP is not efficient to solve
bigger instances in reasonable computational time, and it becomes necessary to apply
approximate methods.

7.6.3 Comparison of the dispatching rules

This section describes the numerical results achieved by the dispatching rules on the
benchmarkB4 generated as in Section 3.2. The 𝐴𝑅𝑃𝐷 of the different methods (84
in total) are summarised in Table 7.7. Note that the 𝐴𝐶𝑃𝑈 values are not analysed
since all the methods are fast and their 𝐴𝐶𝑃𝑈 are not significant (lower than 0.0001).
The 𝐴𝑅𝑃𝐷 values range from 30.63 (𝐿𝑂𝐻𝐼𝑁 ) to 2.86 (𝐿𝐶𝐶𝐹𝐹).

From these results, the following conclusions can be obtained:

• The worst performance is found by applying methods with the NONE bin
packing policy, since there is a big difference among their 𝐴𝑅𝑃𝐷 values and
those from FF and BF policies. In the case of methods 𝐾𝑇𝐾𝐵3, 𝐾𝑇𝐾𝐵4, 𝑆𝑃𝑇 ,
𝑉𝑆𝐻𝐴𝑅𝑃 and 𝐴𝑆𝐻𝐴𝑅𝑃, the bin packing policies do not influence the results
since all of them appear quite weak in solving the problem under investigation
and a small difference emerges from a numerical viewpoint.

• The FF and BF policies yield a similar performance according to the 𝐴𝑅𝑃𝐷,
being the average 𝐴𝑅𝑃𝐷 for all the dispatching rules, 8.04 for BF and 8.20 for
FF.

• The minimum value of 𝐴𝑅𝑃𝐷 = 2.86 is achieved by 𝐿𝐶𝐶 with the FF bin
packing policy (𝐿𝐶𝐶𝐹𝐹). However, there are other dispatching rules whose
𝐴𝑅𝑃𝐷 values make them quite comparable with each other, such as 𝐿𝐶𝐿1𝐵𝐹
and 𝐼27𝐵𝐹 . To establish the statistical significance of these results, a non-
parametric Mann-Whitney test is performed, assuming a 0.95 confidence level,
i.e., 𝛼 = 0.05. The first hypothesis compares 𝐿𝐶𝐶𝐹𝐹 and 𝐿𝐶𝐿1𝐵𝐹 , obtaining
a 𝑝-value = 0.233. Hence, there are not statistical evidence to reject it. The
second hypothesis compares 𝐿𝐶𝐶𝐹𝐹 and 𝐼27𝐵𝐹 and it is rejected since its
𝑝-value is equal to 0.014.



130 Chapter 7. Heuristic algorithms for the 2-ASP-pm

𝑇 𝑛 𝑚 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 %OPT 𝑇 𝑛 𝑚 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 %OPT

200 10 2 0.00 0.57 100 400 10 2 0.00 0.14 100
4 0.00 0.68 100 4 0.00 0.16 100
6 0.00 1.51 100 6 0.00 0.40 100
8 0.00 1.93 100 8 0.00 0.71 100

20 2 0.00 1307.62 30 20 2 0.00 4.00 100
4 0.00 1642.86 10 4 0.00 11.50 100
6 0.10 1800.12 0 6 0.00 10.52 100
8 1.03 1653.79 10 8 0.00 34.08 100

30 2 0.09 1599.00 20 30 2 0.00 27.37 100
4 0.28 1713.78 10 4 0.07 592.11 80
6 1.49 1800.05 0 6 0.00 936.66 60
8 1.32 1800.09 0 8 0.18 875.50 60

40 2 0.06 1800.03 0 40 2 0.00 155.80 100
4 1.40 1800.07 0 4 0.30 1531.11 30
6 3.88 1800.13 0 6 0.41 1798.52 10
8 138.36 1800.15 0 8 0.93 1629.23 20

300 10 2 0.00 0.26 100 500 10 2 0.00 0.08 100
4 0.00 0.27 100 4 0.00 0.20 100
6 0.00 0.85 100 6 0.00 0.21 100
8 0.00 0.91 100 8 0.00 0.43 100

20 2 0.00 185.76 90 20 2 0.00 1.57 100
4 0.00 366.63 90 4 0.00 2.50 100
6 0.00 182.76 100 6 0.00 3.71 100
8 0.00 443.66 90 8 0.00 8.89 100

30 2 0.00 430.81 90 30 2 0.00 6.17 100
4 0.14 1191.00 40 4 0.00 243.60 100
6 0.35 1369.80 30 6 0.00 464.78 90
8 0.41 1603.95 20 8 0.00 564.89 80

40 2 0.03 900.96 70 40 2 0.00 27.67 100
4 0.98 1800.07 0 4 0.06 922.54 60
6 1.29 1800.09 0 6 0.15 1205.41 50
8 2.09 1800.12 0 8 0.36 1342.03 30

Table 7.6: Values of 𝐴𝑅𝑃𝐷, 𝐴𝐶𝑃𝑈 and %OPT of the MILP.
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DR 𝐴𝑅𝑃𝐷 DR 𝐴𝑅𝑃𝐷 DR 𝐴𝑅𝑃𝐷 DR 𝐴𝑅𝑃𝐷

𝐾𝑇𝐾𝐵1𝑁 22.81 𝐴𝑆𝐻𝐴𝑅𝑃𝑁 27.85 𝐼4𝑁 22.81 𝐼32𝑁 23.38
𝐾𝑇𝐾𝐵1𝐹𝐹 4.34 𝐴𝑆𝐻𝐴𝑅𝑃𝐹𝐹 24.01 𝐼4𝐹𝐹 4.34 𝐼32𝐹𝐹 4.37
𝐾𝑇𝐾𝐵1𝐵𝐹 3.77 𝐴𝑆𝐻𝐴𝑅𝑃𝐵𝐹 23.91 𝐼4𝐵𝐹 3.84 𝐼32𝐵𝐹 3.94
𝐾𝑇𝐾𝐵3𝑁 30.05 𝐿𝑂𝐻𝐼𝑁 30.63 𝐼8𝑁 23.32 𝐼35𝑁 22.90
𝐾𝑇𝐾𝐵3𝐹𝐹 29.33 𝐿𝑂𝐻𝐼𝐹𝐹 9.95 𝐼8𝐹𝐹 4.96 𝐼35𝐹𝐹 3.28
𝐾𝑇𝐾𝐵3𝐵𝐹 29.32 𝐿𝑂𝐻𝐼𝐵𝐹 10.58 𝐼8𝐵𝐹 4.44 𝐼35𝐵𝐹 3.05
𝐾𝑇𝐾𝐵4𝑁 27.85 𝐻𝐼𝐿𝑂𝑁 30.23 𝐼10𝑁 23.61 𝐼36𝑁 22.91
𝐾𝑇𝐾𝐵4𝐹𝐹 24.01 𝐻𝐼𝐿𝑂𝐹𝐹 9.57 𝐼10𝐹𝐹 4.64 𝐼36𝐹𝐹 3.66
𝐾𝑇𝐾𝐵4𝐵𝐹 23.91 𝐻𝐼𝐿𝑂𝐵𝐹 10.22 𝐼10𝐵𝐹 4.67 𝐼36𝐵𝐹 3.34
𝑅𝑁𝐷𝑁 23.25 𝐿𝐶𝐿1𝑁 22.86 𝐼11𝑁 23.43 𝐼40𝑁 23.38
𝑅𝑁𝐷𝐹𝐹 5.01 𝐿𝐶𝐿1𝐹𝐹 3.12 𝐼11𝐹𝐹 4.54 𝐼40𝐹𝐹 4.33
𝑅𝑁𝐷𝐵𝐹 4.56 𝐿𝐶𝐿1𝐵𝐹 2.95 𝐼11𝐵𝐹 4.57 𝐼40𝐵𝐹 3.92
𝑆𝑃𝑇𝑁 27.85 𝐿𝐶𝐿2𝑁 23.37 𝐼12𝑁 23.48 𝐼43𝑁 22.89
𝑆𝑃𝑇𝐹𝐹 24.01 𝐿𝐶𝐿2𝐹𝐹 4.26 𝐼12𝐹𝐹 4.50 𝐼43𝐹𝐹 3.33
𝑆𝑃𝑇𝐵𝐹 23.91 𝐿𝐶𝐿2𝐵𝐹 3.89 𝐼12𝐵𝐹 4.58 𝐼43𝐵𝐹 3.06
𝐿𝑃𝑇𝑁 23.61 𝐿𝐶𝐿3𝑁 22.98 𝐼27𝑁 22.87 𝐼46𝑁 22.91
𝐿𝑃𝑇𝐹𝐹 4.64 𝐿𝐶𝐿3𝐹𝐹 3.63 𝐼27𝐹𝐹 3.25 𝐼46𝐹𝐹 3.66
𝐿𝑃𝑇𝐵𝐹 4.67 𝐿𝐶𝐿3𝐵𝐹 3.32 𝐼27𝐵𝐹 3.02 𝐼46𝐵𝐹 3.34
𝑉𝑆𝐻𝐴𝑅𝑃𝑁 27.85 𝐿𝐶𝐶𝑁 23.01 𝐼28𝑁 22.90 𝐼48𝑁 23.37
𝑉𝑆𝐻𝐴𝑅𝑃𝐹𝐹 24.01 𝐿𝐶𝐶𝐹𝐹 2.86 𝐼28𝐹𝐹 3.70 𝐼48𝐹𝐹 4.33
𝑉𝑆𝐻𝐴𝑅𝑃𝐵𝐹 23.91 𝐿𝐶𝐶𝐵𝐹 3.11 𝐼28𝐵𝐹 3.36 𝐼48𝐵𝐹 3.92

Table 7.7: Values of 𝐴𝑅𝑃𝐷 of the dispatching rules.

In summary, it can be concluded that 𝐿𝐶𝐶𝐹𝐹 is the most effective dispatching
rule for solving the problem under study. It reaches the lowest 𝐴𝑅𝑃𝐷 and, with the
exception of 𝐿𝐶𝐿1𝐵𝐹 , significantly improves the results. As can be seen, there is
not a significant difference between the FF and BF policies from an 𝐴𝑅𝑃𝐷 point of
view. In turn, the experimental results reveal that applying different indicators at each
stage and adopting the SPT rule to arrange related jobs would improve the quality of
solutions.

7.6.4 Comparison of the different heuristics

In order to determine the effectiveness of the proposed heuristics𝐶𝐻1,𝐶𝐻2,𝐶𝐻1𝑁𝐿𝑆
and𝐶𝐻2𝑁𝐿𝑆 , a series of alternative heuristics from the relevant literature and properly
adapted to the problem at hand have been involved in a comprehensive experimental
analysis. Regarding 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆 , they are implemented considering 𝛾 =

{ 𝑛4 ,
𝑛
2 ,

3𝑛
4 , 𝑛} resulting in 𝐶𝐻1𝑁𝐿𝑆 (𝑛/4) , 𝐶𝐻1𝑁𝐿𝑆 (𝑛/2) , 𝐶𝐻1𝑁𝐿𝑆 (3𝑛/4) , 𝐶𝐻1𝑁𝐿𝑆 (𝑛) ,



132 Chapter 7. Heuristic algorithms for the 2-ASP-pm

𝐶𝐻2𝑁𝐿𝑆 (𝑛/4) , 𝐶𝐻2𝑁𝐿𝑆 (𝑛/2) , 𝐶𝐻2𝑁𝐿𝑆 (3𝑛/4) and 𝐶𝐻2𝑁𝐿𝑆 (𝑛) . Hence, we propose
𝐶𝐻1, 𝐶𝐻2 and these eight variants of 𝐶𝐻1𝑁𝐿𝑆 and 𝐶𝐻2𝑁𝐿𝑆 . All the heuristics
have been employed to solve the instances from the benchmark B4 in Section 3.2.
The average results in terms of 𝐴𝑅𝑃𝐷, 𝐴𝐶𝑃𝑈, and 𝐴𝑅𝑃𝑇 are shown in Table 7.8
and graphically in Fig. 7.7, where the y-axis represents the 𝐴𝑅𝑃𝐷 for each heuristic
and the x-axis represents the 𝐴𝑅𝑃𝑇 . Observing Table 7.8, where the efficient frontier
is marked in bold, the next conclusions can be obtained:

• Regarding to the methods applying bin-packing policies (𝐴𝐴, 𝑆𝑀𝑁13, 𝑆𝑀𝑁14
and 𝑃𝐺𝐹), they provide the best computational times, being the 𝐴𝐴 methods
the fastest in terms of 𝐴𝐶𝑃𝑈 and 𝐴𝑅𝑃𝑇 . Comparing the policies, it can
be observed that the case NONE yields poor 𝐴𝑅𝑃𝐷 results, being the cases
with BF and FF more efficient with similar results. Among them, 𝑆𝑀𝑁13𝐵𝐹
provides the best 𝐴𝑅𝑃𝐷 value (1.88) with competitive computational time
(around 0.01 seconds on average).

• As far as the alternative methods are concerned, except𝐶𝐻1, the computational
times are considerably higher. On the one hand, among the adapted methods,
𝑃𝐹𝐹1, 𝐼𝑇𝑃𝐹𝐹1, 𝑃𝐹𝐹2 and 𝐼𝑇𝑃𝐹𝐹2, 𝑃𝐹𝐹2 improves the 𝐴𝑅𝑃𝐷 with respect to
𝑆𝑀𝑁13𝐵𝐹 (1.06), increasing the computational time to 5.55 seconds on aver-
age. On the other hand, for the proposed methods, the results provided by 𝐶𝐻1
are remarkable, with a very good performance and competitive computational
time. For the rest of the proposed methods, the computational effort pays off
due to the good 𝐴𝑅𝑃𝐷 results (less than 0.03 for 𝐶𝐻2 and its variants).

• The effect of the NLS method on the proposed heuristics is worthy to be
investigated as well. In the case of 𝐶𝐻1 there is an interesting improvement
by applying the 𝑁𝐿𝑆 method, but the length of 𝛾 increases considerably the
computational times, so the case 𝛾 = 𝑛/4 seems to be the most suitable option.
In the case of 𝐶𝐻2, it improves considerably the 𝐴𝑅𝑃𝐷, but also consumes
more computational time. This case should be analysed depending on the size
of the instance, since the biggest instances increase the computational time, but
small instances provide good 𝐴𝑅𝑃𝐷 values in reasonable computational time.

• Regarding the 𝐼𝐶𝐴 algorithm, the results reached with the stopping criteria
given by the composite heuristics are shown in Table 7.9. It can be observed
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Heuristic 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 𝐴𝑅𝑃𝑇 Heuristic 𝐴𝑅𝑃𝐷 𝐴𝐶𝑃𝑈 𝐴𝑅𝑃𝑇

𝑆𝑀𝑁13𝑁 19.32 0.0088 0.0086 𝐼𝑇𝑃𝐹𝐹1 2.30 18.4105 6.5694
𝑆𝑀𝑁13𝐹𝐹 2.06 0.0101 0.0097 𝑃𝐹𝐹2 1.06 5.5431 2.1214
𝑺𝑴𝑵13𝑩𝑭 1.88 0.0102 0.0099 𝐼𝑇𝑃𝐹𝐹2 1.47 10.7562 4.1292
𝑆𝑀𝑁14𝑁 22.92 0.0092 0.0088 𝑪𝑯1 0.29 0.0978 0.0564
𝑆𝑀𝑁14𝐹𝐹 3.25 0.0109 0.0106 𝑪𝑯1𝑵𝑳𝑺 (𝒏/4) 0.19 1.3746 0.5365
𝑆𝑀𝑁14𝐵𝐹 2.95 0.0111 0.0108 𝑪𝑯1𝑵𝑳𝑺 (𝒏/2) 0.16 5.2115 1.9824
𝐴𝐴𝑁 22.86 0.0006 0.0006 𝐶𝐻1𝑁𝐿𝑆 (3𝑛/4) 0.15 11.6022 4.3910
𝐴𝐴𝐹𝐹 3.12 0.0006 0.0006 𝐶𝐻1𝑁𝐿𝑆 (𝑛) 0.15 20.5503 7.7663
𝑨𝑨𝑩𝑭 2.99 0.0034 0.0006 𝑪𝑯2 0.03 5.7693 2.2595
𝑃𝐺𝐹𝑁 21.85 0.0038 0.0034 𝑪𝑯2𝑵𝑳𝑺 (𝒏/4) 0.02 7.0397 2.7359
𝑃𝐺𝐹𝐹𝐹 3.62 0.0684 0.0368 𝑪𝑯2𝑵𝑳𝑺 (𝒏/2) 0.01 10.8705 4.1792
𝑃𝐺𝐹𝐵𝐹 3.61 0.0796 0.0434 𝐶𝐻2𝑁𝐿𝑆 (3𝑛/4) 0.01 17.2492 6.5836
𝑃𝐹𝐹1 3.39 4.7372 1.8045 𝐶𝐻2𝑁𝐿𝑆 (𝑛) 0.01 26.1883 9.9540

Table 7.8: Summary of results of the different heuristics. The efficient frontier is marked in bold.

that, fixing as stopping criteria the time required by the composite heuristics,
the results are worse14 than those provided by the proposed heuristics. The
𝐴𝑅𝑃𝐷 values range from 2.32 to 2.19, far for the results given by 𝐶𝐻1𝑁𝐿𝑆
and 𝐶𝐻2𝑁𝐿𝑆 .

The results from Table 7.8 are graphically shown in Figure 7.7, where the 𝑦-axis
holds the 𝐴𝑅𝑃𝐷 for each heuristic and the 𝑥-axis represents the 𝐴𝑅𝑃𝑇 , i.e., the 𝐴𝐶𝑃𝑈
in logarithmic scale. In order to determine the efficient frontier and establish the
statistical significance of these results, a Holm’s procedure (Holm, 1979) is performed
evaluating each hypothesis by using a non-parametric Mann-Whitney test, assuming
a 0.95 confidence level, i.e., 𝛼 = 0.05, to establish the 𝑝-value of each hypothesis is
performed considering the 𝐴𝑅𝑃𝐷 as response variable. In Holm’s test, the hypotheses
are sorted in non-descending order of the 𝑝-values obtained in the Mann-Whitney test.
There are not significant evidences to accept each hypothesis if 𝑝 ≤ 𝛼/(𝑁−𝑖+1) where
N is the total number of hypotheses and i the hypothesis evaluated. The results can be
seen in Table 7.10, where R means that the hypothesis is rejected by Holm’s procedure.

14The results obtained by this metaheuristic are not good since the method is not able to converge
with the time given as stopping criteria.
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Heuristic 𝐴𝑅𝑃𝐷 Metaheuristic 𝐴𝑅𝑃𝐷

𝐶𝐻1𝑁𝐿𝑆 (𝑛/4) 0.19 𝐼𝐶𝐴𝐶𝐻1𝑁𝐿𝑆 (𝑛/4) 2.32
𝐶𝐻1𝑁𝐿𝑆 (𝑛/2) 0.16 𝐼𝐶𝐴𝐶𝐻1𝑁𝐿𝑆 (𝑛/2) 2.30
𝐶𝐻1𝑁𝐿𝑆 (3𝑛/4) 0.15 𝐼𝐶𝐴𝐶𝐻1𝑁𝐿𝑆 (3𝑛/4) 2.26
𝐶𝐻1𝑁𝐿𝑆 (𝑛) 0.15 𝐼𝐶𝐴𝐶𝐻1𝑁𝐿𝑆 (𝑛) 2.21
𝐶𝐻2𝑁𝐿𝑆 (𝑛/4) 0.02 𝐼𝐶𝐴𝐶𝐻2𝑁𝐿𝑆 (𝑛/4) 2.29
𝐶𝐻2𝑁𝐿𝑆 (𝑛/2) 0.01 𝐼𝐶𝐴𝐶𝐻2𝑁𝐿𝑆 (𝑛/2) 2.27
𝐶𝐻2𝑁𝐿𝑆 (3𝑛/4) 0.01 𝐼𝐶𝐴𝐶𝐻2𝑁𝐿𝑆 (3𝑛/4) 2.23
𝐶𝐻2𝑁𝐿𝑆 (𝑛) 0.01 𝐼𝐶𝐴𝐶𝐻2𝑁𝐿𝑆 (𝑛) 2.19

Table 7.9: Summary of results of the proposed composite heuristics and the metaheuristic ICA.

𝑖 𝐻𝑖 𝑝-value Mann-Whitney 𝛼/(𝑘 − 𝑖 − 1) Holm’s
Procedure

1 𝑆𝑀𝑁13𝐵𝐹=𝑆𝑀𝑁13𝐹𝐹 0.000 R 0.0083 R
2 𝐶𝐻1𝑁𝐿𝑆 (𝑛/4)=𝑃𝐹𝐹1 0.000 R 0.0100 R
3 𝐶𝐻1𝑁𝐿𝑆 (𝑛/2)=𝑃𝐹𝐹2 0.000 R 0.0125 R
4 𝐶𝐻2𝑁𝐿𝑆 (𝑛/4)=𝐼𝑇𝑃𝐹𝐹2 0.000 R 0.0167 R
5 𝐶𝐻2𝑁𝐿𝑆 (𝑛/2)=𝐶𝐻1𝑁𝐿𝑆 (3𝑛/4) 0.000 R 0.0250 R
6 𝐴𝐴𝐵𝐹=𝐴𝐴𝐹𝐹 0.006 R 0.0500 R

Table 7.10: Mann-Whitney’s procedure with response variable 𝐴𝑅𝑃𝐷.

In this test, each heuristic candidate to be part of the efficient frontier is compared to the
closest heuristic, in terms of 𝐴𝑅𝑃𝐷. As can be seen, all the hypotheses are rejected.
Therefore, the efficient frontier is formed by heuristics 𝐴𝐴𝐵𝐹 , 𝑆𝑀𝑁13𝐵𝐹 , 𝐶𝐻1,
𝐶𝐻1𝑁𝐿𝑆 (𝑛/4) , 𝐶𝐻1𝑁𝐿𝑆 (𝑛/2) , 𝐶𝐻2, 𝐶𝐻2𝑁𝐿𝑆 (𝑛/4) and 𝐶𝐻2𝑁𝐿𝑆 (𝑛/2) . In conclusion,
regarding methods 𝐴𝐴𝐵𝐹 and 𝑆𝑀𝑁13𝐵𝐹 , they are capable of assuring a significant
quality of solution with a remarkably small computational effort with values of 𝐴𝑅𝑃𝐷
of 1.88 and 2.99, respectively. The proposed heuristic 𝐶𝐻1 and its variants reaches
a very good performance, with a considerably decrease in the value of 𝐴𝑅𝑃𝐷, and
competitive computational time. Finally, the heuristic 𝐶𝐻2 and its variants consume
more computational time, but is a time-consuming heuristic that in turn is capable of
reaching the best performance in terms of 𝐴𝑅𝑃𝐷.

To see the differences 𝐴𝑅𝑃𝐷 clearly, the 95% confidence intervals for the al-
gorithms whose 𝐴𝑅𝑃𝐷 value is lower than 2.5 are shown in Figure 7.8 and for the
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Figure 7.7: 𝐴𝑅𝑃𝐷 versus 𝐴𝑅𝑃𝑇 of the different heuristics.

proposed algorithms in Figure 7.9. Based on these results, it can be concluded that
the proposed heuristics are the most efficient, since they are statistically different from
the rest.

To analyse the impact of the periodic maintenance constraint, the results of 𝐴𝑅𝑃𝐷
in terms of 𝑇 are shown in Table 7.11. For all the cases, the values of 𝐴𝑅𝑃𝐷 increase
from 𝑇 = 200 to 𝑇 = 300, and then they get lower as the size of the bins increases.
Therefore, the performance of all the heuristics compared in this evaluation gets better
as the constraint of periodic maintenance is relaxed.

7.7 Conclusions of the chapter

In this chapter, we have considered the 2-stage assembly scheduling problem with
periodic maintenance and the objective of minimising the makespan (see GO5). To
the best of our knowledge, such unavailability constraint has never been studied for the
2-stage assembly scheduling problem. In this scenario, with the periodic maintenance
constraint, all the machines stop periodically after a given time interval and jobs cannot
be processed during these periods in which the machines are not available. We have
also considered that jobs are non-resumable, which means that preemption is not
allowed, so if a job cannot be finished within an availability period, then it should be
scheduled in the next one. The periodic maintenance constraint makes the problem
under study highly connected to the bin-packing problem, and, therefore, different
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Figure 7.8: 95% confidence interval for 𝐴𝑅𝑃𝐷 of the algorithms with 𝐴𝑅𝑃𝐷 ≤ 2.5.

bin packing policies are applied to construct a schedule and evaluate the objective
function.

The first objective of this chapter is to implement the MILP model, presented
in Section 2.4, to optimally solve the considered problem and to analyse the results
obtained in small size instances. The second objective is to provide efficient heuristics
to solve the considered problem. Therefore, two specific constructive heuristics have
been designed taking into account the characteristics of the problem. Besides, we have
also proposed a local search mechanism based on interchanging a given number of
jobs in the sequence provided by the constructive heuristics. The third objective is to
check the efficiency of the proposal with the state-of-the-art algorithms (see GO5). To
do so, heuristics proposed to solve related problems have been adapted to the problem
under study. The adaptation of each one of the methods has been carried out in two
steps. From the adaptation, we have obtained two groups of methods depending on
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Figure 7.9: 95% confidence interval for 𝐴𝑅𝑃𝐷 of the proposed algorithms.

the complexity and computational effort: dispatching rules and heuristics. Then, two
computational evaluations have been carried out. One experimentation to establish
the most efficient dispatching rules, and another one to determine the best heuristics to
solve the 2-stage assembly scheduling problem. Regarding the dispatching rules, the
results show that the adaptation 𝐿𝐶𝐶𝐹𝐹 provides the best results. This method makes
use of an index considering all the processing times and arrange the jobs according
to the SPT rule. From the second computational evaluation, the proposed heuristics
𝐶𝐻1, 𝐶𝐻1𝑁𝐿𝑆 (𝑛/4) and 𝐶𝐻1𝑁𝐿𝑆 (𝑛/2) provide better results, in terms of 𝐴𝑅𝑃𝐷,
than the best adapted heuristics (𝐴𝐴𝐵𝐹 , 𝑆𝑀𝑁13𝐵𝐹) with competitive 𝐶𝑃𝑈 times.
Moreover, the proposed heuristics𝐶𝐻2, 𝐶𝐻2𝑁𝐿𝑆 (𝑛/4) and𝐶𝐻2𝑁𝐿𝑆 (𝑛/2) provide the
best results, in terms of 𝐴𝑅𝑃𝐷, with higher computational times.
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Chapter 8

Final remarks

8.1 Main findings

In this thesis, we have addressed the 2-stage assembly scheduling layout (2-ASP),
which has received increasing attention from researchers because of its applications
in industry. This problem is a common layout in manufacturing scheduling research,
as many products are made up of different components that need to be manufactured
in the earlier stages and then assembled into final products in a later stage. The goal
of this thesis is to deeply study this important scheduling problem, by proposing new
hard instances and by designing new efficient algorithms to solve it. To achieve this
goal, the general research objectives identified in Section 1.2 have been addressed in
the four parts of this thesis as follows:
[GO1] To review the 2-ASP literature in order to identify the problems addressed
in this thesis, the most relevant objectives, and the most interesting constraints.

In Chapter 4, the literature related to the problem under study was reviewed. As
the 2-ASP with identical parallel machines in the second stage has been scarcely
studied, we also reviewed the state-of-the-art of related problems. In Section 4.2, we
review the literature related to the sets of instances used proposed to solve the 2-ASP
(variants 𝑆𝐴 and 𝑀𝐴) and the related scheduling problems (𝐶𝑂 and 𝑃𝑀) with total
completion time criterion.

Regarding the 2-ASP to minimise the total completion time, it was addressed in
Section 4.3, where 19 heuristics proposed to solve the 𝐷𝑃𝑚 → 𝑃𝑚 | |∑𝐶 𝑗 , 𝐷𝑃𝑚 →
1| |∑𝐶 𝑗 and 𝐷𝑃𝑚 → 0| |∑𝐶 𝑗 problems were reviewed.
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Regarding the 2-ASP-pm to minimise the makespan, it was handled in Section 4.4,
where the most relevant approximate methods proposed to solve the 1|𝑛𝑟 − 𝑝𝑚 |𝐶max,
𝐷𝑃𝑚 → 1| |𝐶max and 𝐹2|𝑛𝑟 − 𝑝𝑚 |𝐶max were reviewed.
[GO2] To design a new benchmark of hard and exhaustive instances for testing
the efficient approximate algorithms in the literature.

After reviewing the literature and ensuring the absence of a commonly accepted
set of representative instances of 2-ASP, in Chapter 5, we proposed two comprehensive
benchmarks for the problem under study with total completion time criterion to achieve
this goal, one for each variant considered, 𝑆𝐴 and 𝑀𝐴. To deal with that, we follow
the methodology from the literature to generate the new benchmarks and satisfy the
characteristics found in the state-of-the-art: adequacy, hardness, exhaustiveness, and
amenability for statistical analysis. Then, a computational analysis was performed to
determine the relationship among the variants 𝑆𝐴 and 𝑀𝐴 and the related scheduling
problems. In this analysis, we generated different scenarios and preliminary testbeds,
which were solved using exact and approximate methods.
[GO3] To propose faster and more efficient approximate algorithms to solve the
2-ASP with total completion time objective, based on the conclusions obtained
from GO1.

To cover this goal, we developed several heuristic algorithms to solve the 2-stage
assembly scheduling problem with total completion time minimisation (𝐷𝑃𝑚 →
𝑃𝑚 | |∑𝐶 𝑗). More specifically, in Chapter 6, we proposed a fast constructive heuristic,
𝐶𝐻𝑀𝐴, which iteratively constructs a sequence. Then, 𝐶𝐻𝑀𝐴 was embedded into a
beam-search-based heuristic, 𝐵𝑆𝐶𝐻𝑀𝐴.
[GO4] To demonstrate the efficiency and good performance of the solution pro-
cedures developed in GO3.

In this thesis, each proposed approximate algorithm was always compared with the
algorithms adapted and implemented from the literature. In Chapter 3, the indicators
used to compare the different methods in terms of solution quality and computational
effort were presented, and the conditions to carry out a fair comparison were also
detailed (such as the use of the same computer, the same programming language
(C#), among others).

Regarding the approximate algorithms for the 2-ASP with total completion time
minimisation, a computational evaluation comparing the different versions of the
𝐵𝑆𝐶𝐻𝑀𝐴 heuristic was carried out in Section 6.5.2 and the best were selected. After
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that, in Sections 6.5.3 and 6.5.4 the proposals were compared with 19 heuristics from
the literature under the same conditions.

Regarding the approximate algorithms for the 2-ASP-pm with makespan minimi-
sation, the proposed heuristics for that problem were compared with the heuristics
adapted and implemented from the related scheduling problems. In Sections 7.6.3 and
7.6.4, a total of 84 dispatching rules and seven heuristics, respectively, were compared
under the same conditions.
[GO5] To extend the goals GO3 and GO4 to some constrained 2-ASP based on
real manufacturing environments.

This objective was addressed in Chapter 7, where we considered the 2-stage
assembly scheduling problem with periodic maintenance constraint and makespan
minimisation (𝐷𝑃𝑚 → 1|𝑛𝑟 𝑝𝑚 |𝐶max). We designed two constructive heuristics
and a local search mechanism to solve this problem. The first proposal, 𝐶𝐻1,
constructs a sequence by iteratively appending jobs at the end of a sequence. Then,
the second constructive heuristic is then obtained by applying a partial local search
mechanism enabled at each iteration of 𝐶𝐻1. Finally, we developed a novel local
search mechanism 𝑁𝐿𝑆, which will be implemented after constructing a complete
sequence. After proposing the heuristics, a computational evaluation is carried out
comparing the proposals with the heuristics adapted from the literature.

8.2 Results

SCI indexed journals

Parts of this thesis have been published in SCI indexed journals. The following
publications are directly derived from this thesis:

• Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P., Framinan, J.M. New effi-
cient constructive heuristics for the two-stage multi-machine assembly schedul-
ing problem (2020) Computers and Industrial Engineering, 140, art. no.
106223 (2021 Impact Factor: 7.180).

• Talens, C., Perez-Gonzalez, P., Fernandez-Viagas, V., Framinan, J.M. New hard
benchmark for the 2-stage multi-machine assembly scheduling problem: Design
and computational evaluation (2021) Computers and Industrial Engineering,
158, art. no. 107364 (2021 Impact Factor: 7.180).
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• Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P., Costa A. Constructive
and composite heuristics for the 2-stage assembly scheduling problem with
periodic maintenance and makespan objective (2022) Expert Systems with
Applications, 206, art. no. 117824 (2021 Impact Factor: 8.665).

Additionally, during the development of this thesis, the following papers on related
scheduling problems have been published in SCI indexed journals:

• Fernandez-Viagas, V., Talens, C., Framinan, J.M. Assembly flowshop schedul-
ing problem: Speed-up procedure and computational evaluation (2021) Euro-
pean Journal of Operational Research (2021 Impact Factor: 6.363).

Papers in conference proceedings

We briefly mention the contributions in national and international conferences:

• Talens, C., Navarro-Garcia, B., Fernandez-Viagas, V., Perez-Gonzalez, P. The
2-stage Assembly Scheduling Problem with periodic maintenance. The second
EUROYoung Workshop. Porto (Portugal), June 21-22, 2022.

• Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P. Heurísticas para el prob-
lema de ensamblado en dos etapas con mantenimiento periódico. XXXIX Con-
greso Nacional de Estadística e Investigación Operativa (SEIO 2022). Granada
(Spain), June 7-10, 2022.

• Fernandez-Viagas, V., Talens, C., Framinan, J.M. A novel acceleration proce-
dure for the assembly flow shop scheduling problem. 31st European Conference
on Operational Research (EURO 2021). Athens (Greece), July 11-14, 2021.

• Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P. The two-stage assembly
scheduling problem with periodic maintenance: New approximate methods.
31st European Conference on Operational Research (EURO 2021). Athens
(Greece), July 11-14, 2021.

• Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P. Generating instances for
the two-stage multi-machine assembly scheduling problem. 17th International
Conference on Project Management and Scheduling (PMS 2020/2021). Online,
April 21-23, 2021.
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• Fernandez-Viagas, V., Molina-Pariente, J.M., Talens, C., Framinan, J.M. An
acceleration procedure for several objective functions in the permutation flow
shop scheduling problem. 17th International Conference on Project Manage-
ment and Scheduling (PMS 2020/2021). Online, April 21-23, 2021.

• Talens, C., Perez-Gonzalez, P., Fernandez-Viagas, V., Framinan, J.M. New
Approximate Methods for the Two-Stage Multi-Machine Assembly Scheduling
Problem. Operation Research 2019 Conference. Dresden (Germany), Septem-
ber 3-6, 2019.

• Talens, C., Perez-Gonzalez, P., Fernandez-Viagas, V., Framinan, J.M. New effi-
cient constructive heuristics for the two-stage multi-machine assembly schedul-
ing problem. 1st EUROYoung Workshop. Sevilla (Spain), May 2-3, 2019.

• Talens, C., Perez-Gonzalez, P., Fernandez-Viagas, V., Framinan, J.M. New
approximate methods for the two-stage multi-machine assembly scheduling
problem. 19th European Conference on Operational Research (EURO 2018).
Valencia (Spain), July 8-11, 2018.

Research projects

This thesis was carried out under the grant “Predoctoral Research Fellow (FPI BES-
2017-081028)” funded by the Spanish Ministry of Economy and Competitiveness
and has been developed within the framework of the following research projects on
manufacturing scheduling.

• PROMISE - “Production Management under Imperfect and Scarce Data” funded
by the Spanish Ministry of Economy and Competitiveness (reference DPI2016-
80750-P).

• EFECTOS - “Escenarios de Fabricación Emergentes: CaracTerización Opti-
mización y Simulación” funded by Regional Government of Andalusia (refer-
ence US-1264511).

• DEMAND - “Decision-making for Emerging MANufacturing and Distribution”
funded by Regional Government of Andalusia (reference P18-FR-1149).
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• ASSORT - “Advanced Support for Smart Operations & Remanufacture” funded
by the Spanish Science, Innovation and Universities (reference PID2019-108756
RB-I00).

8.3 Future research lines

In this section, we present the main future research lines of this thesis.
Regarding the design of the new benchmarks, the total completion time has been

adopted as an objective since it was by far the most studied criterion for the 2-ASP.
Although this does not preclude using the benchmarks for different criteria, in view of
the high influence of the due dates in scheduling problems, new instances considering
due-date orientated objective functions (as e.g.,

∑(𝑤 𝑗)𝑈 𝑗 and
∑(𝑤 𝑗)𝑇𝑗) could be

proposed, by either adding the due dates of each job to the present instances or
generating a completely new set benchmark. Furthermore, the relationship between
the problem under consideration and related problems would be an interesting research
line to explore when different data or constraints are used, specially regarding the
influence of using different distribution of processing times in the first stage or the
addition of setup times.

Regarding the 2-ASP and 2-ASP-pm, it could be interesting to analyse new ob-
jective functions, such as those related to just-in-time objectives, or different layouts
in the second stage, such as unrelated parallel machines. In addition, further analysis
could be conducted by comparing the efficiency of the new state-of-the-art heuristics
when these are embedded in metaheuristics.
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