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Abstract Since applications of expert systems were typical in domains with no well defined
models, qualitative methods for modelling and reasoning were soon developed. Most current
qualitative reasoning programs derive the qualitative behaviour of a system by simulating a.
hand-crafted qualitative version of the differential equation that caracterizes the model of ~
system. This paper describes a method to construct a family of piecewise linear dynamical
systems from the qualitative information contained in a model. We apply the dynamical
system theory to deduce results about the behaviour of the family of dynamical .systems
constructed as a consequence of the qualitative model.
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mical systems has received enough attention in
different fields at the last decade (Chua 1983and
Sacks 1987c), but the same hasn't happened to
the family of piecewise linear dynamical systems.
To contribute to the study of the latter, it is pos
sible to apply the theory of bifurcation to obtain
interesting qualitative results.

Let's assume in this paper that a qualitative mo
del has a set of variables, constants and a set of
constraints among them. The variables and the
constants take their values in a quantity space.
Each quantity space is defined by an ordered set
of landmark values. We are going to consider
the landmarks that determine the quantity space
as variables, with a partial order extracted from
the specifications. The value of the variables, as
well as the constants, is described qualitatively in
terms of their quantity space. Every variable or
constant may take a value in a landmark of its
quantity space, or between two landmarks.
The constraints among variables can be: Arit
hmetic, where +, -, *, /, represent the arithmetic
operators respectively. Functional, where M+,
M -, N m, they are representable by continuous
functions, f : R -t R and so that M+ is a mono
tonic increasing, M - monotonic decreasing and

1 Introduction

A lot of work is being published at present with
the name of Qualitative Modelling, Qualitative
Simulation and Qualitative Reasoning (Kuipers
1986 and Sacks 1987c). They all have one thing
in common, which is to obtain conclusions from
models of systems, where the information is either
qualitative or incomplete. The systematic gathe
ring of all qualitative information about a system
makes a qualitative model. That qualitative in
formation can be structured as a set of constraints
that join together show the evolution of the diffe
rent system sections. These constraints can have
a derived form, an arithmetic form, a functional
form, etc.
Once a qualitative model has been coqstructed,
the question is to get obtain the maximum infor
mation from it. A set of theoretic tools and some
practical implements have been developed. Qua
litative Simulation is one of them. With some
differences, the qualitative information contained
in the qualitative model that we take into con
sideration in this paper, is similar to Qualitative
Simulation, but the method to obtain conclusions
will be very different. At this point we construct a
family of piecewise linear dynamical systems con
taining the qualitative information and later we
will apply the dynamical system theory to obtain
conclusions from the model.
The research of constant piecewise linear dyna-
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2 Qualitative
Analysis

Model and



Nm no monotonic. And Derivative with refe
rence to time. This is represented by D.
The associated information to the functional
constraints can be extended with a list of pairs
of points. In the event Nm joined with the va
lues of the points that the function takes, we de
signate with the signs +, -, 0 if in this point
the function is increasing, decreasing or it takes
an extreme respectively. The list of N m would
contain the points where the function takes the
extremes.
A qualitative model about the evolution of preys,
predators and their interactions it is given in the
following equations:

:i: = x(J(x) - g(y)) (1)

iJ = y h(x)

where the number of preys are representable by x,
the number of predators are representable by y,
the rate of births of the preys is representable by
I, the rate of mortality of the preys by predators
is representable by 9 and the rate of births of the
predators is representable by h. We assume that:

(quantity-spaces
(x (0 hO h2 inf) (0 h1 h2»
(y (0 int»
(t (mint 0 kO k1 int»
(h (mint 0 int) )
(g (mint 0 inf»
(tnx (mint 0 int»
(ix (minf 0 int»
(ty (mint 0 int»)

(constraints
«Ma x t) (0 kO +)

(hO k1 0) (h2 0 -»
«H+ y g) (0 0»
«H+ x h) (h1 0)
«- t g tnx))
«* x tnx tx»
«* y h ty»
«0 x fx»
«0 y iy»)

Figure 1: Equations of the Model

is piecewise linear if R n can be divided into a fi
nite number of polyhedral regions by a finite num
ber of hyperplanes and in each region i, I is an
afin funtion i:

that bind the variables in a symmetric way.
This is Kuiper's Qualitative Simulation approach
(Kuipers 1986). However, we will consider an
asymmetric causal order and the constraints as
some bonds between a cause and its effect. This
allows us to approach the concepts and the met
hods of the dynamical systems in the Sense it is
understood in Mathematics.
In this paper, we apply tecniques from the theory
of dynamical system to obtain information from
a qualitative model. The use of these techni
ques consists of two stages: first, in the constru
ction and regularization of a family of piecewise
linear dynamical systems and then in their analy
sis. The first stage consists of a sequence of events
that holds up the qualitative information of the
model. The second one is the application of the
methods of qualitative analysis to the dynamical
system that has been constructed.

Func-LinearPiecewise
tions

A continuous function

3

The consumption of prey by predator
is proportional to the number of preys,
and it depends on the number of pre
dators by an increasing monotonic fun
ction. In the absence of predator this
consumption is null ( 9(0) = 0).

Birth of predators depends on the prey
number, by an increasing monotonic
function. In the absence of preys (x = 0)
predators die out (h(O) < 0, or equiva.
lent h(ht} =0 with b: > 0).

In the absence of predation,preys grow
without limit,for small x and when x is
medium the birth rate decreases beco
ming negative (f takes a maximum in
ho and l(h2) = 0 with 0 < ho < h2

The information contained in the qualitative mo
del above is given in a more formal way in the
Figure 1.
As we can observe, the relevant information has
been defined for every variable in the quantity
space and for every constraint of the form M +,
M - and N m. So we can see that 9 takes through
(0,0), the maximun of I is in (ho, k1) , and takes
through zero in (h2,0), h takes through zero in
(h1, 0) with 110 < 112 , etc.
The problem now is what information we can ex
tract regarding trasitory behaviour, and for long
term, from the system whose qualitative informa.
tion we have specified.
One way to study the problem is to consider the
qualitative information as a set of constraints
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where A~ is a constant n X n matrix and b~ is
a constant n-vector. At the following the set of
regions associated to the piecewise linear function
I are representable by 0/. O} is a region of 0/
and t' the afin function associated to I at region
O~. The set 0/ and the set of afin functions Ii
have to be given to specify the piecewise linear
function I. If I is continuous the equation:

is unknown. The opposite happens if al > 0 and
a2 < 0
We can observe the composition of function, now.
If

I: R" -4 Rm,g: Rffl
-4 R

are piecewise linear functions, the composition :

where

I : R" ---> R, 9 : Rm
-t R

and h = I EEl 9 with EEl = + or EEl = - where
h : R" X Rm -4 R, then the function h is also a
piecewise linear function.
If OJ and 0; are the canonical partitions of
R" x Rm induced by OJ and Og respectively. Each
region of Oh is formed with the no empty inter
section of a region of OJ with another one of 0;:

(5)

(6)

s = 1+9
D :: I-g

then

9 if S ~ 0 and D ;::: 0

prodL == I if S ~ 0 and D < 0
-/ if S < 0 and D ~ 0
-g if S < 0 and D < 0

is a piecewise linear function too.
The partition Ogo/ of R" that will be associated
to go I is formed with the no empty intersections
of regions of 0/ with the inverse image by I of a
region of Og:

and the associated afin function is

The selected method assures that the zeros of
prod are the same as the prodL. The regions of
prodL are obtained following the rule in (6). So
to obtain OprodL , each region of Os :::: OD is divi
ded into subregions where the sign of S =/ +9
and the sign of D :::: I - 9 are preserved.
The operator division / will be considered in a
forthcoming paper.

If prod = I *9 is defined with I, 9 piecewise li
near functions. We want to find a piecewise linear
function that is a piecewise linear approach of the
prod. We can define the piecewise linear function

(3)

(2)

must be held for each x in the boundary between
the regions O~, ~.
We show now the way to associate a piecewise li
near function or an operator on piecewise linear
functions to each constraint in our qualitative mo
dels. In the constraints of monotony M +, M
and Nm,the polihedral regions are being defined
by:

Ok+ = (hi, hi+l)

where ho,h 1, .... , h" are the landmarks of the co
rresponding function. In each region i,the corres
ponding afin function has the form ax + b where
a> 0 if the constraint is M+, a < 0 if it is M
and the sign of a depends on the region if the
constraint is Nm.
To the arithmetic constraints +or -, we associate
an operator of piecewise linear function defined
in this way. Given the continuous and piecewise
linear functions:

Oji = O~ x Rm
, O;i :::: Rn x O~

In the case I, 9 have identical domain

4 The construction of the
family of piecewise linear
dynamical systems

(4)

each non null region of 0h is formed simply by
intersection

O~ == O~ no~

The piecewise linear function that results in each
region is:

This introduces ambiguity about the constraints
that may support the element of the correspon
ding A, b. If al > 0 and a2 > 0 the sign of at - a2

The construction process consists of rules for buil
ding a methodical way. As we have establis
hed,the constraints are asymmetric, this means
that if the system is well specified, the set of cons
traints defines implicity a directed acyclic graph
that has as the initial node the state variables and
the ending nodes in the variables that specify the
field. This graph, without loops, specifies a par
tial order which is the one we follow to construct
the result.
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related to the class of attractor that the system
(7) has for P = Po.
The stable equilibrium is the most known of these
attractors. It is related to a long term where :i: =
O. Another attractor is the Limit Cycle. This is
related to the periodic oscillations.
The bifurcation theory is the study about the
change in number and kind of attractors when
the parameters change.
If the system (7) is a family of piecewise linear
dynamical system its qualitative analysis is sim
plified. So the equilibria (x) must verify:

Figure 2: Directed acyclic graph associated to the
example

The qualitative analysis of (7) is the long term
study of its solutions for a fixed value of its pa
rameters p = Po. The long term behaviour is

Each node has no more than two inrnediate pre
decessors. Every node of the graph specifies an
allowed constraint. The directed acyclic graph as
sociated to the example above is shown in Figure
2. Therefore, the constructive method consists of:

(8)

(9)

(10)

(11)
(12)

if = -y

z = x

x = aJx - a~y +bj
iJ = Y

6 Applications to the exam
ple

and its stability is given by the A} matrix.
When the parameters change the number and
kind of at tractors changes too. The bifurcation
theory can help us to find new kind of atractors.
For example, the Hopf bifurcation (a couple of ei
genvalues of Jacobian matrix cross the imaginary
axis) can be used to find limit cycles.
If x E R2 the characteristic polynomial of the Ja
cobian Matrix evaluated in the equilibrium x(p)
is

,\2 +al(p),\ +a2(p) = 0

A Hopf bifurcation appears if al(p) crosses the
zero and a2(p) > 0 when parameters change (Gu
ckenheiner 1982).

The application of the above method to example
give the following conclusions (see the appendix
for intermediate steps). The differentiable field
!x,!y is null in three points:

• El: (0,0) in the region OJI/: nO}y

• E2: (h2,O) in the region 0jl/: n01y
• E3:

- (hI, (ajh 1 + bJ)/a}) in the region
Oil/: n nJy, if ho < hI

- (h1,(a}h1 +b})/a}) in the region
n}1/: n nJy, if hI < ho.

El: In the region Ojl/: n O}y the field is

eigenvalues: '\1 = 1 > 0,'\2 = -1 > O. So (0,0) is
an unstable equilibrium.
E2: In the region nj~ nn,y the field is:

(7)

of

z= !(z,p)

Qualitative Analysis
Dynamical Systems

5

First, for each node to obtain the
piecewise linear function or operator on
piecewise linear function that is associa
ted to constraint as the rules of the pre
vious paragraph.

Second, to reduce this graph by sue
cesive application of one step that con
sists to replace a function node and their
inmediates predecessors nodes by anot
her one whose associated function is the
composition of associated functions to
them.

After we have applied the succesive constraints in
the determined order we will obtain a family of
the piecewise linear functions and a set of cons
traints for their parameters. This family, after to
regularize it in the boundary of each regions is
the field of the dynamical system that we wanted
to construct.
The application of the qualitative analysis of the
dynamical system and the bifurcations theory to
the resultant family of dynamical systems provide
us the relevant information from the qualitative
point of view.

Given the family of dynamical systems:
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and the eigenvalues : ~l = ai < 0, ~2 = 1 > 0.
So (h2 , 0) is an unstable equilibrium.
E3: In the region O'IIJ n O~y, if ho < hI, the field
is:

Ii = a~ z - a;v + b~ (13)

iJ ::: a~x + b~ (14)

If ho < hI the system has an equilibrium
(hll (aJh 1 + b~)/a~) ,with characteristic polyno
mial:

~2 _ aJ~ + a~a; = 0 (15)

Both eigenvalues have a negative real part. So
this point is an attractor.
If 0 < hI < ho, the field, in region O}IIJ nOJy, is:

Ii: ::: a}z-a;V+b} (16)

V = a~z+b~ (17)

The equilibrium E3 changes. It is the point
(hll (a}hl +b})/a;) ,with characteristic polyno
mial:

~2 _ a}~ + aka; = ° (18)

Now it is a repulsor.
When parameter h, changes from ho < hI to
hI < ho the characteristic polynomial of equi
librium E3 changes from (15) to (18). Since
a~a; > 0, -aJ > 0, -a} <°then a Hopf bifurca
tion appears. If hI < ho a Limit Cycle exists.
We can conclude from the qualitative model in
Figure 1 that the system will evolve only to the
attractor. This attractor is a stable equilibrium
if ho < hI and a Limit Cycle if hI < ho.

7 Conclusions

This paper has described a technique for deriving
the properties of nonlinear dynamic systems from
their qualitative description. These dynamic sy
stems are interesting because they pose unsolved
problems in the representation of knowledge, and
because they appear fundamental to common
sense knowledge of causality.
The example presented above demonstrate a re
presentation for qualitative reasoning about cau
sality in ecological mechanisms, and it is possible
to be applicationed to others problems.
The technique developped can be used to deduce
results from the qualitative information about a
system. It uses the theory of dynamical systems
to avoid the ambiguity that appears in other me
thodologies.

8 References

Javier Aracil and Miguel Toro (1991). Qualita
tive methods for system dynamic models. In
Revue Internacional of Systemique.

151

Leon Chua and Robin Ying (1983). Canonical
Piecewise-Linear Analysis. IEEE Transac
tions on circuits and Systems, Vol.Cas-30,
NO 3. pp, 125-140.

J. Guckenheimer and P. Holmes (1982). Nonli
near Oscillations, dynamical systems and bi
furcations of vectorfields. Springer Verlag.

Benjamin Kuipers. Qualitative Simulation. In
Artificial Intelligence 29, pages 289-338.

Elisha P. Sacks (1985). Qualitative mathemati
cal reasoning. In Proceedings of the Ninth
International Conference on Artificial Intelli
gence, pages 137-139.

Elisha P. Sacks (1987a). Hierarchical reasoning
about inequalities. In Proceedings of the Na
tional Conference on Artificial Intelligence,
American Association for Artificial Intelli
gence.

Elisha P. Sacks (1987b). Qualitative sketching
of parameterized functions. In Proceedings
of the Second International Conference on
Applications of Artificial Intelligence in En
gineering, August 1987.

Elisha P. Sacks (1987c). Piecewise Linear Reaso
ning. In Proceedings AAAI-87, 655-659.

Miguel Toro and Javier Aracil (1988a). Qualita
tive Analysis of System Dynamic Ecological
Models. In System Dynamics Review, Vol.
4, Num. 1-2, 56-60.

Miguel Toro and Javier Aracil (1988b). Oscilla
tions and Chaos in Ecological Populations.
In Proceedings of the Internacional Confe
rence of the System Dynamics Society, 391
403.

9 Appendix

General Constrainsts°< ha < b: < h2 < 00

0< ka < kl < 00

Regions
O~ = {zlz ~ O,x:5 ha}
OJ = {xix ~ ha}
Afin Functions

f = P :=a}:t+b}, P :=aJx+bJ
Parameter Constrainsts
a{ > 0, a}ha+b} ::: kl

bi ::: ka a~ <°
a~ha +b~ ::: k1aJh2 +bJ ::: °



The constraints of the fx and the coefficient of
tnx and h involve the next definition of fx and fy,
and the product rule (6):

9 =

h =

tn21 =

fz =

Regions
0; = {yly;::: O}
Afin Functions
gl == a~y

Parameter Constrainsts
a1 > 09

Regions
O~ = {xIx;::: O}
Afin Functions
h1 == alx + bl
Parameter Constrainsts
ah > 0
alh1 +b~ = °
Regions

O}n~ = n~ x 0t
n1n~ = n/ x Og
Afin Functions
tnx1 == a l

21 - a1y + b1
tnx2 == aJx - ah +b}

Regions
n}~ = {(x, y) E nrn.,lx + tnx1

;::: 0,
x - tnx1 ~ O}

OJ., ={(x, y) E 0in." x+tnx1
;::: 0,

x - tnx1 < O}
07:1: = {(x, y) E 0rn." z + tnz1 < 0,

x - tnx1 ~ O}
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fy =

0J~ = {(x, y) E O~n." x + tnx2 ~ 0,
x -tnx2 ;::: O}

0j:l: = {(x,y) E 0~n."x+tnx2 ~ 0,
Z - tnx2 < oj

0':1: = {(z, y) E 01n." z + tnx 2 < 0,
x - tnx2 ;::: O}

Afin Functions
fx l == tnz1

f z 2 == x
fx 3 ==-x
fx 4 == tnx2

fx 5 == x
fx 6 ==-x

Regions
O}v = {(x,y) E 0~,y+h1 < 0,

Y - h1
;::: O}

0Jv={(x,y) Enk,y+h1 ;:::0,
y - h1 ~ O}

n,v = {(x,y) E nk,Y+ h1 ;::: 0,
y - h1 < O}

n}v = {(x ,y) E n~,y+h1;::: 0,
y - h1 < O}

Afin Functions
l y1 ==-y
f y2 == h1

f y3 == Y
f y4 == _h1




