
Advances in a DSL to Specify Smart Contracts for
Application Integration Processes

Eldair F. Dornelles1, Fernando Parahyba1, Rafael Z. Frantz1,
Fabricia Roos-Frantz1, Antonia M. Reina Quintero2, Carlos Molina-Jiménez3,

José Bocanegra4, Sandro Sawicki1

1Unijuı́ University, Brazil

2Department of Language and Systems, University of Seville, Spain

3Department of Computer Science and Technology, University of Cambridge, UK

4Department of Systems and Computing Engineering, Universidad de los Andes, Colombia

{eldair.dornelles, fernando.parahyba}@sou.unijui.edu.br,

{rzfrantz, frfrantz, sawicki}@unijui.edu.br,

reinaqu@us.es, carlos.molina@cl.cam.ac.uk,

j.bocanegra@uniandes.edu.co

Abstract. Several languages have been developed for writing smart contracts
for specific domains, such as health, finance, and business processes. However,
none of them includes the constructors needed for writing smart contracts used
in application integration processes which have their own particularities. Such
smart contracts are responsible for monitoring the communication between the
process and the applications to guarantee that the rights of the parties involved
in the integration process are observed. To cover the gap, this paper discusses
a domain-specific language for writing smart contracts in the application inte-
gration domain. It provides constructors to write smart contracts with a level of
abstraction close to the natural language used in conventional contracts.
Keywords: Smart Contract, Integration Process, Integration Solution, Domain-
specific Language, Enterprise Application Integration.

1. Introduction
Companies of different segments and sizes rely on applications to support their

business activities. Typically, a business environment uses a set of applications that ex-
change data and share functionalities. We use the term ”application” to refer to any soft-
ware artefact capable of processing data or providing functionality programmatically. To
manage the communication between applications in this environment, companies usu-
ally use integration processes. An integration process is a software artefact developed
using tools provided by the Enterprise Application Integration (EAI) community to or-
chestrate the integrated applications. Thus, an integration process acts as a middleware
that communicates individually with each application, performing specific operations to
read, write data, or request or respond to a given function or service.

Usually applications used to support business activities include external applica-
tions. Some applications do not belong to the owner of the integration process. Therefore,

it is advisable to monitor the communication between the integration process and the ex-
ternal applications. Monitoring needs to be able to observe a set of constraints. This
constrains can be related to service level (e.g., number of requests, hours and days in
which access is allowed) or to business level which specify constraints related to the busi-
ness rules (e.g., required data, type of services or products provided). Current integration
platforms do not provide mechanisms for performing this type of monitoring. Therefore,
if needed, the monitoring system has to be developed ad hoc as a separate system.

Communication constraints in an integration process can be specified as a smart
contract. A smart contract is a self-execution contract that can be written using a general-
purpose language (e.g., Java, Javascript, or Python), a Cross-domain language (e.g., So-
lidity, Michelson, or Plutus), or a domain-specific language (DSL) (e.g., Ergo, DSL4SC
or ADICO-Solidity). General-purpose languages do not incorporate natural constructors
to write smart contracts; i.e., they only provide generic constructors that make the task un-
necessarily cumbersome. Cross-domain languages are languages for writing smart con-
tracts that provide general constructors of contracts. However, they do not have the level
of abstraction needed or constructors aimed at specific domains. So, writing smart con-
tracts in these languages requires advanced programming skills. On the other hand, a
domain-specific language is a language with a level of abstraction that is adequate for the
domain. A DSL incorporates the vocabulary of a specific domain and provides construc-
tors closer to natural language. Thus, writing smart contracts in a DSL is simpler and
does not require advanced programming skills.

Recently, [Varela-Vaca and Reina-Quintero 2021] carried out a systematic map-
ping study of the languages used to write smart contracts. They found several domain-
specific languages aimed at distinct domains, such as healthcare, finance, business pro-
cesses, legal, and others. However, no language was found to support the EAI domain.
We have noticed that existing DSLs do not incorporate the essential concepts of EAI, such
as application, process, type of operations, and messages. Therefore, in this article, we
argue that a DSL aimed at the EAI domain will be welcome by the EAI community. Such
a DSL needs to incorporate typical contract constructors explicitly (e.g., contract, clause,
type of clause, party, condition) and concepts that are intrinsic to the EAI domain —we
highlight them in this paragraph.

In this paper, we present Jabuti, a domain-specific language to write smart con-
tracts in the EAI domain. This DSL has a high-level abstraction, providing constructors
close to the natural language used in conventional contracts. Jabuti includes contract
concepts (i.e., contract, party, condition, and types of clause) and incorporates the EAI
domain’s vocabulary (i.e., application, process, type of operations, and messages). These
features make Jabuti intuitive. It is easy to learn and produces easy-to-write and read smart
contracts. We believe that it will be accessible to non–technical people who will be able to
read and possibly write smart contracts. In addition, Jabuti was designed to be platform
independent, i.e., a smart contract written using Jabuti can be translated into other lan-
guages, such as general-purpose languages: Java, Javascript, or Python; or cross-domain
blockchain languages: Solidity, Michelson, or Plutus, to be deployed and activated.

The rest of this paper is organised as follows: Section 2 discusses related work.
Section 3 presents the basic concepts of EAI. In Section 4, we present the metamodel
of Jabuti. Section 5 presents a case study and a smart contract that has been written in

Jabuti. In addition, we present a snippet of Solidity code that reflects some parts of the
code written with Jabuti. Section 6 concludes this paper.

2. Related Work
Since blockchain is receiving substantial mainstream attention from indus-

try and academia, a plethora of smart contract languages have appeared. Thus,
in [Varela-Vaca and Reina-Quintero 2021] 101 different smart contract languages
were analysed. These languages range from high-level languages, such as So-
lidity [Ethereum Foundation 2021] to intermediary languages, such as Simplic-
ity [O’Connor 2017], or low-level languages, such as Ethereum Virtual Machine byte-
code [Wood 2014]. Furthermore, high-level languages can be general-purpose languages
or domain-specific languages. We consider as related work the approaches that propose a
high-level domain-specific language for smart contracts.

Existing domain-specific languages can be grouped according to
their purpose. The group that is most related to our approach is that
of languages designed to specify legal contracts or legal bindings. This
group includes CML [Wöhrer and Zdun 2020], Ergo [Accord Project 2019],
DSL4SC [Tateishi et al. 2019], Das Contract [Skotnica and Pergl 2019],
ADICO-Solidity [Frantz and Nowostawski 2016], SPEC [He et al. 2018],
SLCML [Dwivedi et al. 2021] and Symboleo [Sharifi et al. 2020]. In this group,
the most related approaches to ours are DSLs that are designed having in mind
Event-Condition-Action (ECA) rules, that is, they provide constructors for events,
conditions, and actions. CML is the most related to our approach in the sense that
is devised as a high-level language that is subsequently translated into Solidity. Ergo
is a DSL proposed by the Accord project to specify smart legal contracts. DSL4SC
is an intermediate language that is used as a formal model to generate statecharts.
This approach uses templates to deal with high-level concepts that are managed in a
contract and then transforms these templates into DSL4SC models. Das Contract is a
visual DSL that combines concepts of the DEMO methodology [Skotnica et al. 2017]
and BPMN [Object Management Group 2014] to model contracts. ADICO-Solidity
aims to capture high-level institutional constructs to express rules, regulations, and
laws. SPESC is a language whose goal is to collaboratively specify smart contracts
in the sense that IT experts, domain practitioners, and business experts collaborate in
the specification of the contract. SLCML is an XML-based language for specifying
cross-organizational business smart contracts. Finally, Symboleo is a formal specification
language for legal contracts whose concepts are based on an ontology that extends the
UFO ontology [Griffo et al. 2020]. Although these languages share some concepts with
Jabuti such as Party, Obligation, or Event, they are not devised to be applied in an EAI
context, and, as a consequence, they can not naturally handle operations that are specific
for EAI such as push, pull, and others.

Another group of DSLs includes languages that are devised to spec-
ify financial contracts. To this group belong SmartFin [Dean 2019], Egelund-
Müller et al. [Egelund-Müller et al. 2017], Findel [Biryukov et al. 2017] and Mar-
lowe [Seijas et al. 2020]. The concepts managed by this group of DSLs
are more distant from the concepts managed in the EAI domain. Sma-
CoNat [Regnath and Steinhorst 2018] is a DSL for expressing smart contracts in natural

language syntax. Finally, there are approaches to specifying smart contracts in other do-
mains, such as supply chain [Bistarelli et al. 2021]. None of the previous DSLs can be
used directly in the EAI domain.

3. Background
In this section, we introduce some basic concepts of the enterprise application

integration and smart contracts, which are required to understand our proposal.

3.1. Enterprise Application Integration

Enterprise application integration is a field of software engineering concerned with
developing methodologies, techniques, and tools for designing integration processes. An
integration process is a software artefact that acts as a middleware orchestrating the com-
munication between integrated applications. Integration platforms are used to design in-
tegration processes. An integration platform is a tool that provides the needed resources
to design, implement, and execute integration processes. Figure 1(a) shows an integration
process that is composed of two applications (App 1, App 2), a set of tasks (T1, T2, T3),
slots (S1, S2, S3, S4, S5) and communication ports (P1, P2, P3). Tasks perform atomic
actions on messages, such as split, filter, translate, and merge. Through these actions,
tasks transform the message data, get the relevant content, and translate them into the
format of the target application. Slots are buffers that connect a task to another task and
to ports and help to desynchronize tasks. Ports are mechanisms that implement low-level
protocols that enable the integration process to interact with their integrated applications.
Ports can be unidirectional or bidirectional, as shown in Figure 1(b).

(a) Integration process structure. (b) Types of ports and their operations.

Figure 1. Integration Process: Basic concepts.

There are two types of unidirectional ports, namely entry and exit ports. An entry
port is used to input data into the integration process. Ports support read and push oper-
ations. Read is performed by the integration process to read data from its applications.
Push is performed by an application to input data into its integration process. On the other
hand, an exit port is used by an integration process to input data into an application. Exit
ports, support write, and poll operations. Write is performed by the integration process
to input data into an application. Poll is performed by an application to consume data
that have been processed by the integration process. There are two types of bidirectional
ports: solicitor and responder ports. A solicitor port is used by the integration process

to perform a request against an application. Solicitor ports are used by the integration
process to perform a request operation to request data or services against the application.
The application performs a response operation to provide the data requested by the inte-
gration process. On the other hand, a responder port is used by the application to perform
requests to the integration processes. The application uses a responder port to perform a
request operation to request data from the integration process; next, the latter performs a
response operation to provide the requested data.

3.2. Smart Contracts

Smart contracts are self-executing digital contracts that aim to ensure that agree-
ments entered between two or more parties are fulfilled [Szabo 1997]. That is, smart
contracts are computer programs that define the rules and consequences in the same way
as a traditional contract, defining the obligations, rights, prohibitions, and the possible
penalties to the involved parties. In addition, smart contracts make it possible to auto-
mate the execution of contracts and allow the parties to observe all execution, i.e., which
clauses were executed and which of them it lake to execute yet.

A smart contract is made up of a set of attributes, which represent the general
properties of the contract, such as the duration of the contract, the parties involved, the
asset being traded, and a set of clauses. There are many ways to model smart contracts:
financial, technical, and business, among others. One of the most used is the one with
a focus on business, as the words attributed and used are closer to the knowledge of
business people and therefore more friendly to use. The words attributed to this model
are presented below:

• Contract: Represents an agreement between two or more parties. It is composed
of a set of clauses which arbitrate whether or not a specific action can be per-
formed.

• Party: A party represents a natural or legal person involved in the agreement
signed in the contract.

• Action: An action represents an operation that can be performed by one of the
parties. The execution of one action results in one event, which defines the next
step in executing the contract.

• Condition: A condition is part of a clause; it defines a rule which must be met so
that a specific action can or cannot be performed.

• Clause: A clause establishes a relationship between a part, a condition, an action,
and possible penalties. Clauses can express a right, an obligation or a prohibition.

– Right: A right clause sets out some conditions under which one of the
parties can perform a certain action.

– Obligation: An obligation clause determines the conditions under which
one of the parties is obligated to perform a certain action.

– Prohibition: A prohibition clause defines the conditions under which one
of the parties cannot perform a certain action.

• Event: An event is a result generated by the execution of an action. That is,
whenever an action is executed, an event is generated. This event can trigger
another clause, a penalty or terminate the contract.

In the enterprise application integration domain, smart contracts can be used to
define the clauses that express the conditions under which the operations described in
the subsection 3.1 may or may not be performed. In our approach, we associate a smart
contract with each port. The contract defines the clauses that govern the communication
between the integration process and a given application.

4. The DSL Metamodel

In this Section, we present the metamodel of Jabuti and describe its elements.
Figure 2 shows the metaclasses and the relationships between them in the metamodel, as
well as the properties and operations on each metaclass. Jabuti provides constructors that
allows us to model contract concepts, such as Contract, Party, and Clause, as well
as concepts that are specific to the application integration domain, i.e. the parties involved
in the contract (Process and Application) and the types of Operations that are
carried out by ports (PUSH, POLL, WRITE, READ, REQUEST, RESPONSE).

Figure 2. Jabuti metamodel.

The Contract metaclass defines the scope of the contract. A contract involves two
parties, a Process and an Application, one or more Clauses, and one or more
Events generated by the contract execution. In addition, the contract contains a start
and expiration dates (beginDate and dueDate).

The Party metaclass is used to represent the parties involved in the contract. A
party can be a Process that represents the integration process or an Application that
represents the integrated application. The perform method defined in this metaclass

represents the action performed by the parties during the execution of the integration
process. The parties are associated with the clauses. Each clause declares an active party.
This active party is defined by the property rolePlayer and indicates which party will
trigger the clause.

The Clause metaclass is used to specify the condition under which the rolePlayer
will be able or not to perform the operation associated with the clause. The operation
property can assume the values: push, poll, write, read, request, or response, and repre-
sents the operations executed at the port during the execution of the integration process.
Clauses can be of the following three types: Right, Obligation or Prohibition.
A Right clause defines the right of the rolePlayer to perform an operation. An
Obligation clause specifies that the rolePlayer must perform the operation spec-
ified in the clause. The Prohibition clause defines the condition under which the
rolePlayer is not allowed to perform the operation specified in the clause.

The Condition metaclass is used to define the service-level and business-level
rules. The service-level rules are modelled by the metaclasses BusinessDay and
BusinessTime, which have the range method that is used to specify the period in
which a given operation can be performed. The business-level rules are modelled by the
MessageContent metaclass, which specifies the conditions related to the business do-
main. The MessageContent metaclass has an evaluation method, which receives an
XPath expression (String), which is used to query the content of the received message
(XML format) and check whether the business rule is satisfied or not.

The Event metaclass is used to model messages with details on the execution
of a clause. When a clause calls an event, the event collects some data of this clause,
such as name, clause type, rolePlayer, description, execution time, and execution status,
to generate the message. In addition, the message generated by the event may contain
custom text that the contract designer should provide. Finally, the Event metaclass logs
the message in the repository using the register method.

5. Example of Application
Our study case is based on a real problem (simplified in this paper) involved in

the docking process of ships in the port of Seville, Spain. Before docking at the port,
the maritime agent (the ship) must request permission to dock from the port authority.
This permission is requested by sending an e-mail to the port authority. This e-mail must
specify the intended arrival and departure dates and time, the name of the ship, the tonnage
of the ship, the Maritime Mobile Service Identity (MMSI) 1, the International Maritime
Organization (IMO) 2, and the required port services. In this study case, we consider that
the ships can not dock at the port on Sundays and from 10 p.m. to 8 a.m. on the other
weekdays. Upon receiving the docking request, the port authority registers it and checks
if a dock could be assigned to the ship during the requested dates. A confirmation or
denying response is sent by e-mail back by the port authority to the maritime agent. If
the e-mail sent is a confirmation, then it should include a proposal with the total cost.
This proposal will be valid for 60 minutes. If there is no available berth for those dates,
the response includes available dates. If the maritime agent accepts the port authority

1MMSI is an unique identifier of a ship station for telecommunication purposes
2The IMO number is a unique identifier for ships

proposal and budget, she sends within 60 minutes another e-mail requesting the booking,
which includes the identification number of the received proposal. Once the reservation
request is received, the port authority registers the reservation and sends a confirmation
message by e-mail to the maritime agent.

5.1. The Integration Process

We have used Guaraná DSL [Frantz et al. 2011, Frantz et al. 2016,
Frantz et al. 2020] to design a solution to support and automate the docking pro-
cess of ships introduced in our study case. Figure 3 shows the integration process that
we have used, which orchestrates the e-mail server of the port authority and its berthing
application.

Figure 3. The berthing integration process.

Communication between the e-mail server and the integration process is carried
out through the entry port P1 and exit port P3, which are responsible for reading and
writing e-mails from and to the server, respectively. For every read operation performed
by port P1 in an interval of 15 minutes, a new message is introduced in slot S1. Because
messages at this point may contain data from more than one e-mail, the splitter task (T1)
splits a message into two or more messages and writes them to slot S2, so that each mes-
sage carries only the data of a single e-mail. The e-mails could be about several subjects.
Due to this, the filter task (T2) filters these messages and keeps in the workflow only the
messages related to the berthing requests or booking confirmations. The messages that
remain in the workflow are replicated in the replicator task (T3) and forwarded to the dis-
patcher task (T4) and the correlator task (T8). Task T4 checks the content of the messages
and identifies the subject. Messages related to the berthing requests are dispatched to the
translator task (T5). The messages related to booking confirmation are dispatched to the
translator task (T6). Task T5 creates a berth permission request message based on the
received e-mail content from task T4. On the other hand, task T6 uses the content of the
e-mail to build a request message to confirm the berth booking. The request messages
created by the tasks T5 and T6 are forwarded to the merger task (T7), which gathers these
messages and routes them to port P2.

Each message that arrives at port P2, produces a request to the Berthing Applica-
tion. The application responds to the port either confirming or denying and providing a
budget for docking the ship or confirming the booking to the maritime agent, according
to the message request type received. Task T8 correlates this response with the original

message containing the data of the e-mail received from the maritime agent. Task T9
enriches the original message with the response, and task T10 transforms the content of
this message into text in natural language to be wrapped in an e-mail and sent using port
P3 as a formal response to the maritime agent.

5.2. Clauses

Taking into account the description of the study case, we have defined five clauses
to monitor the communication between the integration process and the Berthing Applica-
tion, which occurs through the port P2. In this paper, we present only the smart contract
associated with the port P2.

Clause 1: The integration process has the right to perform a berthing request
operation against the Berthing Application. This request is performed under the
following condition: the request must include the arrival and departure dates and
times, the name of the ship, the tonnage of the ship, the MMSI, the IMO, and a
list of the required services.

Clause 2: The Berthing Application has the obligation to perform a response
operation against the integration process with a berthing proposal. This response is
performed under the following conditions: the Berthing Application must respond
within 60 minutes, and must include the berthing dates and budget.
Clause 3: If the maritime agent accepts the proposed berthing conditions, the
integration process has the right to perform a request operation to book the
berthing dates. This request is performed under the following conditions: the
request must respond to the Berthing Application within 60 minutes, and must
include the identification number of the proposal received.
Clause 4: The Berthing Application has the obligation to perform a re-
sponse operation to the integration process with the booking confirmation. This
response is performed under the following conditions: the Berthing Application
must respond within 60 minutes, and must include the identification number of
the berthing proposal.

5.3. Contract in the DSL

In this section, we introduce a smart contract developed using Jabuti to monitor
the interaction between solicitor port P2 of the integration process designed in our study
case and the integrated Berthing Application (cf. Figure 3).

The queries to dock the ship received by the integration process at port P1 give
place to the execution of request operations at port P2 so that the Berthing Application
has to analyse the request and respond to the port with a message denying or containing
a proposal with the date, the time, and the cost to dock the ship at the port. Responses
are delivered by e-mail to the maritime agent via port P3. Listing 1 presents the smart
contract that we have implemented in our editor. This contract is composed of a set of
attributes, the implementation of the four clauses introduced in our study case, and an
event to register eventual failures in the execution of any clause.

The attributes (Atr) on lines 2 to 5 declare the basic and general information of
the contract, such as the start and end dates and time of the contract, as well as the parties
involved in this contract. The first clause, (C1), declares a right of the integration

1 Contract BerthingAndServicesRequest{
2 beginDate = "2022-01-28 12:00:00"
3 dueDate = "2023-01-27 11:59:59"
4 application = "Berthing Application"
5 process = "Integration Process"
6
7 Right requestBerthing {
8 description = "Required data to be able to request berthing."
9 rolePlayer = process

10 rolePlayer.perform(Operation.REQUEST)
11 condition {
12 MessageContent.evaluate(’//arriveData != ""’) AND
13 MessageContent.evaluate(’//departureData != ""’) AND
14 MessageContent.evaluate(’//MMSI != ""’) AND
15 MessageContent.evaluate(’//IMO != ""’)AND
16 MessageContent.evaluate(’//portServices!=""’)
17 }
18 onBreach(registerFailing, "Error sending berthing request.")
19 }
20
21 Obligation respondToBerthingRequest{
22 description = "Timeout for responding and required data."
23 rolePlayer = application
24 rolePlayer.perform(Operation.RESPONSE)
25 condition {
26 Timeout(3600) AND
27 MessageContent.evaluate(’//arriveData!=""’) AND
28 MessageContent.evaluate(’//departureData!=""’) AND
29 MessageContent.evaluate(’//portServices!=""’) AND
30 MessageContent.evaluate(’//budget!=""’) AND
31 MessageContent.evaluate(’//proposalID!=""’)
32 }
33 onBreach(registerFailing, "Error responding to berthing request.")
34 }
35
36 Right requestTheBookingOfBerthingDates{
37 description = "Timeout to respond to the port proposal."
38 rolePlayer = process
39 rolePlayer.perform(Operation.REQUEST)
40 condition {
41 Timeout(3600)AND
42 MessageContent.evaluate(’//proposalID!=""’)
43 }
44 onBreach(registerFailing, "Error requesting the booking dates.")
45 }
46
47 Obligation respondConfirmingTheBerthingBooking{
48 description = "Timeout to confirm the booking has been made."
49 rolePlayer = application
50 rolePlayer.perform(Operation.RESPONSE)
51 condition {
52 Timeout(3600) AND
53 MessageContent.evaluate(’//proposalID!=""’)
54 }
55 onBreach(registerFailing, "Error confirming booking has been made.")
56 }
57
58 Event registerFailing(msg : String) {
59 register(msg)
60 }
61 }

Listing 1. Berthing smart contract in Jabuti.

Atr

C1

R

C2

C3

C4

Ev

process to execute a request against the integrated application when the conditions (R) of
this clause are met. If this clause is breached, then the method onBreach, in line 18, is
executed, and a message detailing the breach is forwarded to event Ev in line 58.

Clause C2 declares the obligation of the application to perform a response

operation by sending a berthing proposal to the integration process, and the condition that
must be met to perform this operation. Clause C3 declares the right of the integration
process to perform a request operation to book the berthing dates when the conditions of
this clause are met. Clause C4 declares an obligation of the application to execute
a response operation to the integration process to confirm the booking of the berthing
dates. Event Ev at line 58 invokes the register(msg) method, which is responsible
for registering the message log regarding the breach of the clause.

5.4. Contract in Solidity

Smart contracts gained more prominence with the emergence of blockchain tech-
nology which provides several services including indelible data, reliability, transparency
and consensus without the involvement of central authorities. Currently, there are several
blockchain platforms and smart-contract languages, Solidity is one of the best known. It
is a cross-domain language that allows the specification of smart-contracts that can be run
on Ethereum, one of the leading blockchain platforms. Solidity is supported by a develop-
ment environment that help programmers to write, test, and deploy smart contracts. It has
been used in a wide variety of domains. In this section, we map the Jabuti constructors
into their equivalents in Solidity (Table 1). Application and Process construc-
tors are mapped into addresses. Clause is mapped into Function. BusinessRule is
mapped into require. Operation and WeekDay are mapped into enum, and Event is
mapped into event.

Table 1. Mapping of Constructors from Jabuti into Solidity.

Jabuti Solidity

Application, Process address
Clause function
Operation, WeekDay enum
BusinessRule require
Event event

The equivalent Solidity code of part of the berthing smart contract written using
Jabuti, (see Listing 1), was hand-coded and is shown in a snippet in Listing 2. The es-
sential attributes of our contract are declared using the Solidity constructors in the snippet
from line 8 to line 11 (Atr). Function C1 in this snippet corresponds to clause C1 in List-
ing 1. The conditions of clause C1 in the contract are represented by the requirements (R)
from line 27 to 31 in the snippet.

The algorithms shown in Listing 1 and 2 demonstrate the high level of abstrac-
tion provided by Jabuti in comparison to Solidity. Jabuti provides constructors that are
frequently used in contract of the EAI domain, such as the Application or Process
and Clause. These constructors are close to natural language as opposed to their cor-
responding constructors (address and function) in Solidity. Furthermore, the exe-
cutable smart contract code in Solidity (or any other cross-domain language) can be auto-
matically generated from Jabuti using model-driven engineering text-to-text transforma-
tions. This turns smart contracts written in Jabuti into blockchain platform independent
code. Automatic transformation minimises coding errors, such as integer overflow and

1
2 // SPDX-License-Identifier: MIT
3 pragma solidity ˆ0.8.7;
4 pragma experimental ABIEncoderV2;
5
6 contract BerthingAndServicesRequest{
7 uint beginDate;
8 uint dueDate;
9 address process;

10 address application;
11
12 RequestForm[] requestList;
13 ResponseForm[] proposalList;
14 uint[] approvedProposalId;
15 uint requestCounter;
16 uint proposalCounter;
17
18 ...
19
20 constructor(address _process, address _application, uint _beginDate, uint _dueDate){
21 ...
22 }
23
24 function requestBerthing(uint _arvDate, uint _dptDate,
25 string memory _mmsi, string memory _imo) public {
26
27 require(msg.sender == process, "Error sending berthing request.");
28 require(_arvDate >= block.timestamp && _dptDate > _arvDate,
29 "Error sending berthing request.");
30 require(!isEmpty(_mmsi), "Error sending berthing request.");
31 require(!isEmpty(_imo), "Error sending berthing request.");
32
33 requestList.push(RequestForm(
34 { requestId: requestCounter++,
35 arriveDate: _arvDate,
36 departureDate: _dptDate,
37 mmsi: _mmsi,
38 imo: _imo,
39 portServices: "",
40 timestamp: block.timestamp,
41 status: Status.WAITING
42 })
43);
44 }
45 ...
46 }

Listing 2. Snippet of berthing contract in Solidity.

Atr

C1

R

underflow or re–entrancy and dependency timestamp [ConsenSys Diligence 2020]. As a
result, the coding effort is significantly reduced, and so is the number of errors compared
to ad–hoc Solidity coding which is known to be error prone. In summary, the abstraction
provided by Jabuti can increase code efficiency, clarity, flexibility and reduce the number
of coding errors.

6. Conclusion
Companies use a set of applications to support their business management activ-

ities. These applications frequently involve external applications owned by third parties.
The field of EAI provides methodologies, techniques, and tools for designing integra-
tion processes to allow the communication process among these applications. Usually,
this communication process needs to comply with some business rules. Therefore, due
to some applications belonging to third-party companies, it is essential to monitor this
communication process and provide mechanisms to define the rights, obligations, and

prohibitions of the involved parties. Smart contracts can be used for this purpose. How-
ever, there is no domain-specific language for writing smart contracts in the EAI domain.

In this paper, we present a domain-specific language called Jabuti to write smart
contracts in the application integration domain. Jabuti delivers a high level of abstraction
that properly incorporates contract concepts and includes the vocabulary managed in the
enterprise application integration domain. Jabuti is user-friendly, enjoys a short learning
curve, and produces easy-to-read smart contracts. These features help business experts
even with no programming skills to develop their smart contracts. Smart contracts written
in Jabuti can be translated into a general-purpose or a cross-domain language.

As a future work, we will implement the translators to automatically convert smart
contracts written in Jabuti to Solidity and deploy them on a blockchain. In addition, we
intend to develop a monitoring application that will provide the necessary resources to
monitor the communication between an application (e.g., Berthing application) and the
respective integration process. This monitoring application will capture the information
related to the executed operations in the integration process and, on the basis of this
information, will trigger the clauses of the corresponding smart contract.

Acknowledgements
This work was supported by the Research Support Foundation of the State of Rio

Grande do Sul in Brazil (FAPERGS), under grant 19/2551-0001782-0; the Coordination
for the Brazilian Improvement of Higher Education Personnel (CAPES); and, the Brazil-
ian National Council for Scientific and Technological (CNPq) under grant 309315/2020-
4. Antonia M. Reina has been funded by projects AETHER-US (PID2020-112540RB-
C44/AEI/10.13039/501100011033), COPERNICA (P20 01224) and METAMORFOSIS
(US-1381375). Carlos Molina has been partially funded by UKRI CAMB (G115169)
project3.

References
Accord Project (2019). Ergo language guide. https://docs.accordproject.
org/docs/logic-ergo.html. Last accessed on 15 Dec 2021.

Biryukov, A., Khovratovich, D., and Tikhomirov, S. (2017). Findel: Secure deriva-
tive contracts for ethereum. In Financial Cryptography Workshops, pages 453–467.
Springer.

Bistarelli, S., Faloci, F., and Mori, P. (2021). Towards a graphical DSL for tracing supply
chains on blockchain. In International Workshop on Future Perspective of Decentral-
ized Applications, pages 1–12. Springer.

ConsenSys Diligence (2020). Ethereum smart contract best practices.
https://consensys.github.io/smart-contract-best-practices/attacks/. Last accessed
on 01/04/2022.

Dean, D. (2019). Smartfin - implementing a financial domain-specific language for smart
contracts. Technical report, Imperial College London.

3For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY)
licence to any Author Accepted Manuscript version arising from this submission.

Dwivedi, V. K., Norta, A., Wulf, A., Leiding, B., Saxena, S., and Udokwu, C. (2021).
A formal specification smart-contract language for legally binding decentralized au-
tonomous organizations. IEEE Access, 9(1):76069–76082.

Egelund-Müller, B., Elsman, M., Henglein, F., and Ross, O. (2017). Automated execution
of financial contracts on blockchains. Business & Information Systems Engineering,
59(6):457–467.

Ethereum Foundation (2021). Solidity documentation. https://solidity.
readthedocs.io/en/latest/. Last accessed on 5 Jan 2022.

Frantz, C. and Nowostawski, M. (2016). From institutions to code: Towards automated
generation of smart contracts. In 2016 IEEE 1st International Workshops on Founda-
tions and Applications of Self* Systems, pages 210–215. IEEE.

Frantz, R. Z., Corchuelo, R., Basto-Fernandes, V., Rosa-Sequeira, F., Roos-Frantz, F., and
Arjona, J. L. (2020). A cloud-based integration platform for enterprise application in-
tegration: A model-driven engineering approach. Software - Practice and Experience,
51(4):824–847.

Frantz, R. Z., Corchuelo, R., and Roos-Frantz, F. (2016). On the design of a maintainable
software development kit to implement integration solutions. Journal of Systems and
Software, 111(1):89–104.

Frantz, R. Z., Reina-Quintero, A. M., and Corchuelo, R. (2011). A domain-specific lan-
guage to design application integration solutions. International Journal of Cooperative
Information Systems, 20(2):143–176.

Griffo, C., ao Paulo A. Almeida, J., and Guizzardi, G. (2020). Towards a legal core
ontology based on alexy’s theory of fundamental rights. In Multilingual Workshop on
Artificial Intelligence and Law, pages 1–12. CEUR-WS.org.

He, X., Qin, B., Zhu, Y., Chen, X., and Liu, Y. (2018). SPESC: A specification language
for smart contracts. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference, pages 132–137. IEEE Computer Society.

Object Management Group (2014). Business Process Model and Notation (BPMN), Ver-
sion 2.0.2. Technical Report formal/2013-12-09, Object Management Group.

O’Connor, R. (2017). Simplicity: A new language for blockchains. In Proceedings of
the 2017 Workshop on Programming Languages and Analysis for Security, pages 107–
120. ACM.

Regnath, E. and Steinhorst, S. (2018). Smaconat: Smart contracts in natural language. In
2018 Forum on Specification Design Languages, pages 5–16. IEEE.

Seijas, P. L., Nemish, A., Smith, D., and Thompson, S. J. (2020). Marlowe: Imple-
menting and analysing financial contracts on blockchain. In Financial Cryptography
Workshops, pages 496–511. Springer.

Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., and Mylopoulos, J. (2020). Sym-
boleo: Towards a specification language for legal contracts. In 2020 IEEE 28th Inter-
national Requirements Engineering Conference, pages 364–369. IEEE.

Skotnica, M. and Pergl, R. (2019). Das contract - A visual domain specific language
for modeling blockchain smart contracts. In Advances in Enterprise Engineering XIII,
pages 149–166. Springer.

Skotnica, M., van Kervel, S. J. H., and Pergl, R. (2017). A DEMO machine - A formal
foundation for execution of DEMO models. In Advances in Enterprise Engineering
XI, pages 18–32. Springer.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First
Monday, 2(9):1–15.

Tateishi, T., Yoshihama, S., Sato, N., and Saito, S. (2019). Automatic smart contract
generation using controlled natural language and template. IBM Journal of Research
and Development, 63(2/3):6:1–6:12.

Varela-Vaca, Á. J. and Reina-Quintero, A. M. (2021). Smart contract languages: A mul-
tivocal mapping study. ACM Computing Surveys, 54(1):1–38.

Wöhrer, M. and Zdun, U. (2020). Domain specific language for smart contract devel-
opment. In 2020 IEEE International Conference on Blockchain and Cryptocurrency,
pages 1–9. IEEE.

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger.
https://gavwood.com/paper.pdf. Last accessed on 20 Jan 2022.

