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In this paper we propose two fully discrete Finite Elements (FE) schemes for a repulsive 
chemotaxis model with a quadratic production term. The first one, which corresponds to 
the backward Euler in time with FE in space, is energy-stable in the primitive variables of 
the model, under a “compatibility” condition on the FE spaces. The second one, which is 
obtained modifying the scheme proposed in [13] by applying a regularization procedure, 
has an “approximated positivity” property which is obtained from discrete energy estimates 
and an additional estimate for a singular functional. These properties are not available 
in previous approaches. Additionally, we study the well-posedness and the long time 
behaviour of the schemes, obtaining exponential convergence to constant states as in 
the continuous problem. Finally, we compare the numerical schemes throughout several 
numerical simulations, which are in agreement with the theoretical results.

© 2022 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The directed movement of cells in response to a chemical stimulus is known in biology as chemotaxis. More specifically, 
if the cells move towards regions of high chemical concentration, the motion is called chemo-attraction, while if the cells 
move towards regions of lower chemical concentration, the motion is called chemo-repulsion. Models for chemotaxis motion 
have been studied in literature (see [8,14,16–19,26,28] and references therein). One of the most important characteristics 
of chemoattractant models is that the blow-up of solutions can happen in space dimension greater or equal to 2; while in 
chemo-repulsion models this phenomenon is not expected. Many works have been devoted to study in what cases and how 
blow-up takes place (see for instance [4,20,25,24,27,7,30]).

In those cases in which blow-up phenomenon does not happen, it is interesting to study the asymptotic behaviour of 
the solutions of the model. In fact, in [23], Osaki and Yagi studied the convergence of the solution of the Keller-Segel model 
to a stationary solution in the one-dimensional case. In [15], the convergence of the solution of the Keller-Segel model 
with an additional cross-diffusion term to a steady state was shown. In [8] the authors proved the convergence to constant 
state for a chemo-repulsion model with linear production. Therefore, taking into account the results above, the first aim of 
this paper is to study the asymptotic behaviour of the following parabolic-parabolic repulsive-productive chemotaxis model 
(with quadratic signal production):
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t u − �u = ∇ · (u∇v) in �, t > 0,

∂t v − �v + v = u2 in �, t > 0,
∂u

∂n
= ∂v

∂n
= 0 on ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0 in �,

(1)

where � is a n−dimensional open bounded domain, n = 1, 2, 3, with boundary ∂�; and the unknowns are u(x, t) ≥ 0, the 
cell density, and v(x, t) ≥ 0, the chemical concentration. This model has been studied in [12]. There, the authors showed 
that model (1) is well-posed: there exists global in time weak-strong solution (in the sense of Definition 2.1 below) and, for 
1D or 2D domains, there exists a unique global in time regular solution.

On the other hand, another interesting topic is the study of fully discrete FE schemes approximating model (1), conserv-
ing properties of the continuous problem such as: mass-conservation, energy-stability, positivity and long time behaviour. 
In fact, in [13] it was studied a fully discrete FE scheme for model (1), which is mass-conservative and energy-stable with 
respect to a modified energy given in terms of the auxiliary variable σ = ∇v . However, neither energy-stability with respect 
to the primitive variables (u, v) (see (10) below) nor positivity (or approximated positivity) were proved. Moreover, as far 
as we know, there are not another works studying FE approximations for problem (1). For this reason, the second aim of 
this paper is to present two new fully discrete FE schemes approximating model (1), one of them is, as far as we know, 
the only scheme in the primitive variables (u, v) with dissipation of the exact energy; while the second scheme is the only 
known scheme with the property of positivity or approximated positivity for the discrete solutions.

The asymptotic behaviour of fully discrete numerical schemes has been studied in different contexts. In fact, in [10]
Guillén-González and Samsidy proved asymptotic convergence for a fully discrete FE scheme for a Ginzburg-Landau model 
for nematic liquid crystal flow. In [21] Merlet and Pierre studied the asymptotic behaviour of the backward Euler scheme 
applied to gradient flows. It is important to notice that, in chemotaxis models, there are few works studying large-time 
behaviour for fully discrete schemes. We refer to [5], where the authors showed conditional stability and convergence at 
infinite time of a finite volume scheme for a Keller-Segel model with an additional cross-diffusion term. Meanwhile, the 
behaviour at infinite time of a fully discrete finite element scheme for model (1) seems to be still an open problem.

Likewise, the energy-stability property has been studied for fully discrete numerical schemes in the chemotaxis frame-
work. In [11], the authors studied unconditional energy stable FE schemes for a chemo-repulsion model with linear produc-
tion. A finite volume scheme for a Keller-Segel model with an additional cross-diffusion term satisfying the energy-stability
property (conditionally) has been studied in [5]. In [13], it was studied an unconditionally energy-stable FE scheme for 
model (1) with respect to a modified energy written in terms of the auxiliary variable σ = ∇v . However, as we said before 
and up our knowledge, the energy-stability in FE schemes, with respect to the (u, v)-energy given in (10) below, is so far 
an open problem.

In terms of positive or approximately positive numerical schemes on chemotaxis context we refer to [6,9,31,12,11]. In [9], 
the nonnegativity of numerical methods, using FE techniques, to a generalized Keller-Segel model was analyzed. A discrete 
maximum principle for a fully discrete numerical scheme (combining the finite volume method and the nonconforming 
finite element method) approaching a chemotaxis-swimming bacteria model was obtained in [6]. In [11], approximated
positivity of FE schemes for a chemo-repulsion model with linear production was proved. The positivity of a finite volume 
scheme for a parabolic-elliptic chemotaxis system was studied in [31]. In [12], positivity of only time-discrete schemes 
associated to model (1) was proved. However, there are not works studying positive (or approximately positive) FE schemes 
for model (1).

Consequently, the main novelties in this paper are the following ones:

• The introduction of a FE scheme (see scheme UV in Section 3 below) associated to model (1) which is energy-stable 
with respect to the (u, v)-energy of the continuous problem (1) given in (10), whenever a “compatibility” condition on 
the FE spaces holds, namely taking (Pm, P2m)-continuous FE (with m ≥ 1) for (u, v).

• The introduction of another FE scheme (see scheme USε in Section 4 below) associated to model (1) which has the 
“approximated” positivity property for the discrete solutions. In particular, this property helps to correct the spurious 
oscillations around the negativity that is evidenced in other known schemes, as it can be seen in Subsections 5.1 and 
5.2. The main idea lies in the obtention of first energy estimates, and then the obtention of an additional estimate for 
a singular functional in the variable u, which implies the approximate positivity.

• The proof of the long time behaviour for the solutions of the continuous model (1) and the discrete solutions of the 
schemes previously mentioned, obtaining exponential convergence to constant states as time goes to infinity.

The outline of this paper is as follows: In Section 2, we study (formally) the asymptotic behaviour of the global solutions 
for the model (1), and we prove the exponential convergence as time goes to infinity to constant states. In Section 3, 
we study a fully discrete scheme associated to model (1), corresponding to the nonlinear backward Euler in time and FE 
in space in the variables (u, v). The analysis includes the well-posedness of the scheme and some properties such as u-
conservation, energy stability in the primitive variables (u, v), convergence towards weak solutions and long time behaviour. 
In Section 4, we propose another fully discrete FE approximation of model (1), which is obtained combining the scheme US
proposed in [13] with a regularization technique. For this scheme, we can prove, in addition to the properties proved for 
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the previous scheme, the approximated positivity. In Section 5, we compare the numerical schemes with another numerical 
FE approximations throughout several numerical simulations, giving the main conclusions in Section 6.

1.1. Notation

We recall some functional spaces which will be used throughout this paper. We will consider the usual Sobolev spaces 
Hm(�) and Lebesgue spaces Lp(�), 1 ≤ p ≤ ∞, with norms ‖ · ‖m and ‖ · ‖Lp , respectively. In particular, the L2(�)-norm 
will be denoted by ‖ · ‖0. We denote by H 1

σ (�) := {u ∈ H 1(�) : u · n = 0 on ∂�} and we will use the following equivalent 
norms in H1(�) and H1

σ (�), respectively (see [22] and [1, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +
⎛⎝∫

�

u

⎞⎠2

, ∀u ∈ H1(�), (2)

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈ H 1
σ (�). (3)

In particular, (3) implies that

‖∇v‖2
1 = ‖∇v‖2

0 + ‖�v‖2
0, ∀v : ∇v ∈ H 1

σ (�).

If Z is a general Banach space, its topological dual will be denoted by Z ′ . Moreover, the letters C, Ci, Ki will denote different 
positive constants depending on the data (�, u0, v0), but independent of the discrete parameters (k, h) and time step n, 
which may change from line to line (or even within the same line).

2. Continuous problem

In this section some fundamental concepts associated to problem (1) are presented, including the definition of weak-
strong solutions and some qualitative properties such as u-conservation, positivity and large time behaviour. In particular, 
exponential convergence to constant states as time goes to infinity is obtained.

2.1. Some properties

Problem (1) conserves in time the total mass 
∫
�

u. In fact, defining

m0 = 1

|�|
∫
�

u0, (4)

and integrating (1)1 in �,

d

dt

⎛⎝∫
�

u

⎞⎠ = 0, i.e.
∫
�

u(t) =
∫
�

u0 := m0|�|, ∀t > 0.

Now, the definition of weak-strong solutions for problem (1) is presented.

Definition 2.1. (Weak-strong solutions of (1)) Given (u0, v0) ∈ L2(�) × H1(�) with u0 ≥ 0, v0 ≥ 0 a.e. x ∈ �. A pair (u, v)

is called weak-strong solution of problem (1) in (0, +∞), if u ≥ 0, v ≥ 0 a.e. (t, x) ∈ (0, +∞) × �,

(u − m0, v − m2
0) ∈ L∞(0,+∞; L2(�) × H1(�)) ∩ L2(0,+∞; H1(�) × H2(�)), (5)

(∂t u, ∂t v) ∈ Lq′
(0, T ; H1(�)′ × L2(�)), ∀T > 0, (6)

where q′ = 2 in the 2-dimensional case (2D) and q′ = 4/3 in the 3-dimensional case (3D) (q′ is the conjugate exponent of 
q = 2 in 2D and q = 4 in 3D); the following variational formulation holds

T∫
0

〈∂t u, u〉 +
T∫

0

(∇u,∇u) +
T∫

0

(u∇v,∇u) = 0, ∀u ∈ Lq(0, T ; H1(�)), ∀T > 0, (7)

the following equation pointwise holds

∂t v − �v + v = u2 a.e. (t, x) ∈ (0,+∞) × �, (8)
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the initial conditions (1)4 are satisfied and the following energy inequality (in integral version) holds a.e. t0, t1 with t1 ≥
t0 ≥ 0:

E(u(t1), v(t1)) − E(u(t0), v(t0)) +
t1∫

t0

(
‖∇u(s)‖2

0 + 1

2
‖∇v(s)‖2

1

)
ds ≤ 0, (9)

where

E(u, v) = 1

2
‖u‖2

0 + 1

4
‖∇v‖2

0. (10)

Remark 2.2. In particular, the energy inequality (9) is valid for t0 = 0. Moreover, (9) shows the dissipative character of the 
model with respect to the total energy E(u(t), v(t)).

Remark 2.3. (Positivity) u ≥ 0 in 1D and 2D domains and v ≥ 0 in any (1D , 2D or 3D) dimension are a consequence of 
(5)-(8). Indeed, this follows from the fact that in these cases we can test (7) by u− := min{u, 0} ∈ L2(0, T ; H1(�)) and (8) by 
v− := min{v, 0} ∈ L2(0, T ; H2(�)) ↪→ L2(0, T ; L2(�)). Notice that in 3D domains, u− has no the sufficient regularity in order 
to take it as test function. Hence the positivity of u cannot be deduced from (5)-(7), which must be explicitly imposed.

In [12], it was proved the existence of weak-strong solutions of problem (1) (satisfying in particular the energy inequality 
(9)), through convergence of a time-discrete numerical scheme associated to model (1). Hereafter, in order to abbreviate, we 
will use the following notation:

û := u − m0, v̂ = v − m2
0

for m0 defined in (4).

2.2. Convergence at infinite time

In this subsection, the asymptotic analysis of problem (1) is going to be analyzed in a formal manner, without justifying 
the computations and assuming sufficient regularity for the exact solution (u, v). Our main interest is to reproduce the long 
time behaviour in fully discrete numerical schemes.

First, we define:

E(t) := ‖û(t)‖2
0 + 1

2
‖∇v(t)‖2

0 and F (t) := ‖∇û(t)‖2
0 + 1

2
‖∇v(t)‖2

1.

Then, taking ū = û in (7) and testing (8) by v̄ = − 1
2 �v , one arrives at (see [12] for more details)

1

2
E ′(t) + F (t) = 0. (11)

Therefore, using the Poincaré inequality ‖∇û‖2
0 ≥ C p‖û‖2

0 one has that 2F (t) ≥ 2(C p‖û(t)‖2
0 + 1

2 ‖∇v(t)‖2
1) ≥ 2K p E(t) (with 

K p = min{C p, 1}), and from (11) one can deduce

E(t) ≤ ‖(û0,∇v0)‖2
0e−2K pt, ∀t ≥ 0. (12)

Moreover, testing (8) by v̄ = v̂ and using (5) and (12), one has

d

dt
‖v̂‖2

0 + ‖v̂‖2
1 ≤ C‖û‖2

0‖û + 2m0‖2
L3 ≤ Ce−2K pt(1 + ‖û‖2

1),

from which one arrives at

‖v̂(t)‖2
0 ≤ ‖v̂0‖2

0e−t + Ce−t

t∫
0

e(1−2K p)s ds + Ce−t

t∫
0

e(1−2K p)s‖û(s)‖2
1 ds. (13)

The last two terms on the right hand side of (13) are bounded by

Ce−t

t∫
0

e(1−2K p)s ds ≤
⎧⎨⎩

Ce−t if 2K p > 1,

Cte−t if 2K p = 1,

Ce−2K pt if 2K p < 1,

(14)

and
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Ce−t

t∫
0

e(1−2K p)s‖û(s)‖2
1 ds ≤

⎧⎨⎩
Ce−t if 2K p > 1,

Ce−t if 2K p = 1,

Ce−2K pt if 2K p < 1,

(15)

where (5) was used in (15). Thus, from (13)-(15) one can deduce that, for any t>1,

‖v̂(t)‖2
0 ≤ ‖v̂0‖2

0e−t +
⎧⎨⎩

Ce−t if 2K p > 1,

Cte−t if 2K p = 1,

Ce−2K pt if 2K p < 1,

≤ C

⎧⎨⎩
e−t if 2K p > 1,

te−t if 2K p = 1,

e−2K pt if 2K p < 1.

(16)

3. Scheme UV

The first scheme that will be studied in this paper is obtained by using FE in space and backward Euler in time for the 
system (1) (considered for simplicity on a uniform partition of [0, +∞) given by tn = nk, where k > 0 denotes the time 
step). Concerning the space discretization, we consider a family of shape-regular and quasi-uniform triangulations {Th}h>0

of � made up of simplexes (intervals in one dimension, triangles in two dimensions and tetrahedra in three dimensions), 
so that � = ∪K∈Th K , where h = maxK∈Th hK , with hK being the diameter of K . We choose FE spaces for u and v , which we 
denote by

(Uh, Vh) generated by (Pm,P2m)-continuous FE, with m ≥ 1.

With this choice, (un
h)2 ∈ Vh is guaranteed, which will be the key point to prove the energy stability of this scheme (see 

Lemma 3.2 below). Then, the following first order in time, nonlinear and coupled scheme is considered (hereafter, we denote 
δtan = (an − an−1)/k):

• Scheme UV:
Initialization: Let (u0

h, v0
h) ∈ Uh × Vh be a suitable approximation of (u0, v0) ∈ L2(�) × H1(�), as h → 0, with 

1
|�|

∫
�

u0
h = 1

|�|
∫
�

u0 = m0.

Time step n: Given (un−1
h , vn−1

h ) ∈ Uh × Vh , compute (un
h, vn

h) ∈ Uh × Vh solving{
(δt un

h, ūh) + (∇un
h,∇ūh) + (un

h∇vn
h,∇ūh) = 0, ∀ūh ∈ Uh,

(δt vn
h, v̄h) + (∇vn

h,∇ v̄h) + (vn
h, v̄h) − ((un

h)
2, v̄h) = 0, ∀v̄h ∈ Vh.

(17)

Following similar arguments of Theorem 4.4 of [12], it can be proved unconditional solvability and conditional unique-
ness of the scheme UV; for this reason, we will omit the details. On the other hand, for this scheme, it is not clear how to 
prove positivity (neither exact nor approximate) for the discrete variables un

h and vn
h .

3.1. Mass-conservation, energy-stability and convergence

Since 1 ∈ Uh and 1 ∈ Vh , the scheme UV satisfies∫
�

un
h =

∫
�

un−1
h = · · · =

∫
�

u0
h = m0|�|, (18)

and

δt

⎛⎝∫
�

vn
h

⎞⎠ =
∫
�

(un
h)

2 −
∫
�

vn
h. (19)

Definition 3.1. A numerical scheme with solution (un
h, vn

h) is called energy-stable if the energy defined in (10) is time 
decreasing, that is,

E(un
h, vn

h) ≤ E(un−1
h , vn−1

h ), ∀n ≥ 1.

Now, in order to prove the energy stability property for the scheme UV, we consider the linear operator Ah : H1(�) → Vh

defined as follows

(Ah vh, v̄h) = (∇vh,∇ v̄h) + (vh, v̄h), ∀v̄h ∈ Vh. (20)

Then, the discrete chemical equation (17)2 can be rewritten as
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(δt vn
h, v̄h) + (Ah vn

h, v̄h) − ((un
h)

2, v̄h) = 0, ∀v̄h ∈ Vh, (21)

and the following estimate holds (see for instance, Lemma 3.1 in [13]):

‖vh‖W 1,6 ≤ C‖Ah vh‖0, ∀vh ∈ Vh. (22)

Lemma 3.2. (Unconditional stability) If (un
h, vn

h) is generated by (Pm, P2m)-continuous FE, then the scheme UV is unconditionally 
energy-stable. In fact, if (un

h, v
n
h) is any solution of the scheme UV, then the following discrete energy law holds

δtE(ûn
h, vn

h) + k

2
‖δt ûn

h‖2
0 + k

4
‖δt∇vn

h‖2
0 + ‖ûn

h‖2
1 + 1

2
‖(Ah − I)vn

h‖2
0 + 1

2
‖∇vn

h‖2
0 = 0. (23)

Proof. Taking ūh = ûn
h in (17)1, v̄h = 1

2
(Ah − I)vn

h in (21) and using (20), (23) is deduced. �
From the (local in time) discrete energy law (23), we deduce the following global in time estimates.

Lemma 3.3. (Uniform weak-strong estimates) Let (un
h, vn

h) be any solution of the scheme UV. Then, the following estimate holds

‖ûn
h‖2

0 + ‖vn
h‖2

1 + k
n∑

m=1

(
‖ûm

h ‖2
1 + ‖v̂m

h ‖2
W 1,6

)
≤ C0, ∀n ≥ 1, (24)

where W 1,6 is the Sobolev space of functions in L6(�) whose derivatives also belong to L6(�).

Proof. Multiplying (23) by k and summing, one obtains

‖(ûn
h,∇vn

h)‖2
0 + k

n∑
m=1

(
‖ûm

h ‖2
1 + ‖∇vm

h ‖2
0 + ‖(Ah − I)vm

h ‖2
0

)
≤ C0, ∀n ≥ 1. (25)

On the other hand, rewriting (17) as

(δt v̂n
h, v̄h) + (Ah v̂n

h, v̄h) = ((ûn
h + 2m0)ûn

h, v̄h), ∀v̄h ∈ Vh, (26)

and taking v̄h = v̂n
h one has

δt‖v̂n
h‖2

0 + ‖v̂n
h‖2

1 ≤ C‖ûn
h + 2m0‖2

L3/2‖ûn
h‖2

L6 ≤ C‖ûn
h‖2

H1 ,

from which, multiplying by k, adding and using (25), one can deduce

‖vn
h‖2

0 + k
n∑

m=1

‖v̂m
h ‖2

1 ≤ K0, ∀n ≥ 1. (27)

Then, adding (25) and (27) and using (22), (24) is obtained. �
Starting from the previous stability estimates, the convergence towards weak solutions of (1) can be proved. Concretely, 

by introducing the functions:

• (̃uh,k, ̃vh,k) are continuous functions on [0, +∞), linear on each interval (tn, tn+1) and equal to (un
h, vn

h) at t = tn , n ≥ 0;
• (uh,k, vh,k) are the piecewise constant functions taking values (un

h, vn
h) on (tn−1, tn], n ≥ 1,

the following result holds:

Theorem 3.4. (Convergence) There exist a subsequence (k′, h′) of (k, h), with k′, h′ ↓ 0, and a weak-strong solution (u, v) of 
(1) in (0, +∞), such that (̃uh′,k′ − m0, ̃vh′,k′ − m2

0) and (uh′,k′ − m0, vh′,k′ − m2
0) converge to (u − m0, v − m2

0) weakly-	 in 
L∞(0, +∞; L2(�) × H1(�)), weakly in L2(0, +∞; H1(�) ×W 1,6(�)) and strongly in L2(0, T ; L2(�) ×Lp(�)) ∩C([0, T ]; H1(�)′×
Lq(�)), for any T > 0, 1 ≤ p < +∞ and 1 ≤ q < 6.

Remark 3.5. Note that, since the positivity of un
h cannot be assured, then the positivity of the limit function u cannot be 

proven in the 3D case (see Remark 2.3).
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Proof. Proceeding as in Theorem 4.11 of [12], one can prove that there exists a subsequence (k′, h′) of (k, h), with k′, h′ ↓ 0, 
and (u, v) satisfying (7), (8) and the initial conditions (1)4, such that (̃uh′,k′ − m0, ̃vh′,k′ − m2

0) and (uh′,k′ − m0, vh′,k′ − m2
0)

converge to (u − m0, v − m0) weakly-* in L∞(0, +∞; L2(�) × H1(�)), weakly in L2(0, +∞; H1(�) × W 1,6(�)) and strongly 
in L2(0, T ; L2(�) × Lp(�)) ∩ C([0, T ]; H1(�)′ × Lq(�)), for any T > 0, 1 ≤ p < +∞ and 1 ≤ q < 6. Moreover, it holds

d

dt

(
1

2
‖̃uk′,h′(t)‖2

0 + 1

4
‖∇ ṽk′,h′(t)‖2

0

)
+ (tn − t)

2
‖(δt un, δt∇vn)‖2

0

+‖∇uk′,h′(t)‖2
0 + 1

2
‖(Ah − I)vk′,h′(t)‖2

0 + 1

2
‖∇vk′,h′(t)‖2

0 = 0.

In order to obtain that (u, v) satisfies the energy inequality (9), it is necessary to prove that

lim inf
(k′,h′)→(0,0)

t1∫
t0

‖(Ah − I)vk′,h′(t)‖2
0 ≥

t1∫
t0

‖�v(t)‖2
0. (28)

Taking into account that {(Ah − I)vk′,h′ } is bounded in L2(0, T ; L2(�)), one has that there exists w ∈ L2(0, T ; L2(�)) such 
that for some subsequence of (k′, h′), still denoted by (k′, h′),

(Ah − I)vk′,h′ → w weakly in L2(0, T ; L2(�)). (29)

Since u2 ∈ L2(0, T ; L3/2(�)) ↪→ L2(0, T ; H1(�)′), one has

∂t v − �v + v = u2 in L2(H1)′, (30)

and, on the other hand, using (29), one can deduce

∂t v + w + v = u2 in L2(H1)′. (31)

Thus, from (30)-(31), one can deduce that w = −�v in D′(�), and thus −�v ∈ L2(0, T ; L2(�)) because of w ∈
L2(0, T ; L2(�)). Therefore, (u, v) satisfies the regularity (5) and taking into account (29), (28) is concluded. Finally, us-
ing (28) and arguing as in the last part of the proof of Theorem 4.11 of [12], it can be obtained that (u, v) satisfies the 
energy inequality (9), and therefore, (u, v) is a weak-strong solution of (1). �
3.2. Large-time behaviour of the scheme UV

In this subsection, exponential bounds for any solution (un
h, vn

h) of the scheme UV in weak-strong norms are proved. The 
decay estimates obtained in this part (see (32) and (33) below) are a discrete version of (12) and (16).

Theorem 3.6. Let (un
h, v

n
h) be a solution of the scheme UV associated to an initial data (u0

h, v
0
h), with 

1

|�|
∫
�

u0
h = 1

|�|
∫
�

u0 = m0 . 

Then,

‖(ûn
h,∇vn

h)‖2
0 ≤ C0(1 + 2K pk)−n, ∀n ≥ 0, (32)

‖v̂n
h‖2

0 ≤
⎧⎨⎩ C(1 + k)−n if 2K p > 1,

C(kn)(1 + k)−n if 2K p = 1,

C(1 + 2K pk)−n if 2K p < 1,

(33)

where the constant K p > 0 was defined in Subsection 2.2.

Proof. Taking ūh = ûn
h in (17)1, v̄h = 1

2
(Ah − I)vn

h in (21) and using (18) and (20), one obtains

δt

(1

2
‖ûn

h‖2
0 + 1

4
‖∇vn

h‖2
0

)
+ k

2
‖δt ûn

h‖2
0 + k

4
‖δt∇vn

h‖2
0

+ ‖ûn
h‖2

1 + 1

2
‖(Ah − I)vn

h‖2
0 + 1

2
‖∇vn

h‖2
0 = 0. (34)

To get (34), the fact that (un
h)2 ∈ Vh is essential (which comes from the choice (Pm, P2m) approximation for (Uh, Vh)) in 

order to cancel the terms (un
h∇vn

h, ∇ûn
h) and − 1

2 ((un
h)2, (Ah − I)vn

h). Then, from (34) one arrives at

(1 + 2K pk)
(
‖ûn

h‖2
0 + 1‖∇vn

h‖2
0

)
−

(
‖ûn−1

h ‖2
0 + 1‖∇vn−1

h ‖2
0

)
≤ 0,
2 2
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from which, multiplying by (1 + 2K pk)n−1 and summing, one has for all n ≥ 0,

‖ûn
h‖2

0 + 1

2
‖∇vn

h‖2
0 ≤ (1 + 2K pk)−n

(
‖û0

h‖2
0 + 1

2
‖∇v0

h‖2
0

)
(35)

and (32) is obtained. On the other hand, taking v̄h = v̂n
h in (26), one has

1

2
δt‖v̂n

h‖2
0 + ‖v̂n

h‖2
1 ≤

∫
�

|(ûn
h + 2m0)ûn

h v̂n
h|,

which, using the Hölder and Young inequalities, the Sobolev embeddings H1(�) ↪→ L6(�) and H1(�) ↪→ L3(�), as well as 
(32), implies that

(1 + k)‖v̂n
h‖2

0 − ‖v̂n−1
h ‖2

0 ≤ kC‖ûn
h + 2m0‖2

L3‖ûn
h‖2

0

≤ kC̃(1 + ‖ûn
h‖2

1)(1 + 2K pk)−n. (36)

Then, multiplying (36) by (1 + k)n−1 and summing, one obtains

(1 + k)n‖v̂n
h‖2

0 ≤ ‖v̂0
h‖2

0 + C

1 + 2K pk
k

n∑
m=1

(
1 + k

1 + 2K pk

)m−1

(1 + ‖ûm
h ‖2

1). (37)

Then, in order to obtain (33) we split the argument in three cases:

1. Case 1: If 2K p = 1, using (24) in (37) one has that for any tn = nk > 1,

‖v̂n
h‖2

0 ≤ (1 + k)−n(C + C(kn)) ≤ C(kn)(1 + k)−n. (38)

2. Case 2: If 2K p > 1, using (24) in (37) one obtains

‖v̂n
h‖2

0 ≤ (1 + k)−n
(

C0 + C

2K p − 1

[
1 −

(
1 + k

1 + 2K pk

)n]
+ C

1 + 2K pk

)
≤ C(1 + k)−n. (39)

3. Case 3: If 2K p < 1, one rewrites (37) as

(1 + 2K pk)n‖v̂n
h‖2

0 ≤
(

1 + 2K pk

1 + k

)n

‖v̂0
h‖2

0 + C

1 + 2K pk
k

n∑
m=1

(
1 + 2K pk

1 + k

)n−m+1

(1 + ‖ûm
h ‖2

1),

and proceeding as in (39), taking into account that 1+2K pk
1+k < 1, one arrives at

‖v̂n
h‖2

0 ≤ C(1 + 2K pk)−n. (40)

Therefore, from (38)-(40), (33) is deduced. �
Corollary 3.7. Under conditions of Theorem 3.6, the following estimates hold

‖(ûn
h,∇vn

h)‖2
0 ≤ C0e

− 2K p
1+2K pk kn

, ∀n ≥ 0,

‖v̂n
h‖2

0 ≤

⎧⎪⎪⎨⎪⎪⎩
Ce− 1

1+k kn if 2K p > 1,

C(kn)e− 1
1+k kn if 2K p = 1,

Ce
− 2K p

1+2K pk kn
if 2K p < 1.

Proof. Using the inequality 1 − x ≤ e−x for all x ≥ 0, from (32) one has

‖(ûn
h,∇vn

h)‖2
0 ≤ C0(1 + 2K pk)−n ≤ C0

(
1 − 2K p

1 + 2K pk
k
)n ≤ C0e

− 2K p
1+2K pk kn

. (41)

Analogously, (33) can be deduced. �
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4. Scheme USε

Up to our knowledge, there are no previous works studying FE schemes for model (1), with positive or approximately 
positive discrete solutions. In fact, for the scheme UV analyzed in this paper or the scheme US studied in [13], it is not clear 
how to prove any of these properties. For this reason, in this section we propose an unconditionally energy-stable scheme 
with the property of “approximated positivity”; this scheme is constructed as a modification of the scheme US ([13]), by 
introducing the auxiliary variable σ = ∇v and applying a regularization procedure.

4.1. Preliminary results and definition of the scheme

We consider a fully discrete approximation using FE in space and backward Euler in time for a reformulated problem in 
(u, σ )-variables. Moreover, in this case we will assume the following hypothesis on the space discretization:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for u, σ and v:

(Uh,�h, Vh) ⊂ H1 × H1
σ × H1 generated by P1-continuous FE.

Remark 4.1. The right angled requirement and the choice of P1-continuous FE for Uh are necessary in order to obtain the 
relation (44) below, which is essential to define the scheme USε in (46) and to obtain its approximated positivity (see 
Theorem 4.10 below).

We consider the Lagrange interpolation operator 
h : C(�) → Uh , and we introduce the discrete semi-inner product on 
C(�) (which is an inner product in Uh) and its induced discrete seminorm (norm in Uh):

(u1, u2)
h :=

∫
�


h(u1u2), |u|h =
√

(u, u)h.

Remark 4.2. The norms | · |h and ‖ · ‖0 are equivalent in Uh , uniformly with respect to h ([3]).

We consider also the L2-projection Q h : L2(�) → Uh given by

(Q hu, ū)h = (u, ū), ∀ū ∈ Uh,

and the standard L2-projection Q̃ h : L2(�) → �h . Moreover, following the ideas of Barrett and Blowey [2], we consider the 
truncated function λε :R → [ε, ε−1] (with ε ∈ (0, 1)) given by

λε(s) :=
⎧⎨⎩

ε if s ≤ ε,

s if ε ≤ s ≤ ε−1,

ε−1 if s ≥ ε−1.

If we define

F ′′
ε (s) := 1

λε(s)
, (42)

then, we can integrate twice in (42), imposing the conditions F ′
ε(1) = Fε(1) = 0, and we obtain a convex function Fε :R →

[0, +∞), such that Fε ∈ C2(R). Even more, for ε ∈ (0, e−2), it holds (see [2])

Fε(s) ≥ ε

2
s2 − 2 ∀s ≥ 0 and Fε(s) ≥ s2

2ε
∀s ≤ 0. (43)

Then, for each ε ∈ (0, 1) we consider the construction of the operator �ε : Uh → L∞(�)d×d given in [2], satisfying that 
�εuh is a piecewise constant matrix for all uh ∈ Uh , such that the following relation holds

(�εuh)∇
h(F ′
ε(uh)) = ∇uh in �. (44)

Basically, �εuh is a constant by elements symmetric and positive definite matrix such that (44) holds by elements. We 
highlight that (44) is satisfied due to the right angled constraint requirement (H) and the choice of P1-continuous FE for 
Uh . We recall the result below concerning to �ε(·) (see [2, Lemma 2.1]).
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Lemma 4.3. Let ‖ · ‖ denote the spectral norm on Rd×d. Then for any given ε ∈ (0, 1) the function �ε : Uh → [L∞(�)]d×d is contin-
uous and satisfies

εξ T ξ ≤ ξ T �ε(uh)ξ ≤ ε−1ξ T ξ, ∀ξ ∈Rd, ∀uh ∈ Uh. (45)

Then, the following first order in time, nonlinear and coupled scheme is considered:

• Scheme USε :
Initialization: Let (u0

h, σ 0
h, v0

h) = (Q hu0, ̃Q h(∇v0), Q h v0) ∈ Uh ×�h × Vh . In particular, 1
|�|

∫
�

u0
h = 1

|�|
∫
�

u0 = m0, u0
h ≥

0 and v0
h ≥ 0.

Time step n: Given (un−1
ε , σ n−1

ε ) ∈ Uh × �h , compute (un
ε, σ n

ε) ∈ Uh × �h solving{
(δt un

ε, ū)h + (∇un
ε,∇ū) + (�ε(un

ε)σ
n
ε,∇ū) = 0, ∀ū ∈ Uh,

(δtσ n
ε, σ̄ ) + (Bhσ

n
ε, σ̄ ) = 2(�ε(un

ε)∇un
ε, σ̄ ), ∀σ̄ ∈ �h,

(46)

where the linear operator Bh : �h → �h is defined as

(Bhσ
n
ε, σ̄ ) = (∇ · σ n

ε,∇ · σ̄ ) + (rot σ n
ε, rot σ̄ ) + (σ n

ε, σ̄ ), ∀σ̄ ∈ �h.

Once the scheme USε is solved, given vn−1
ε ∈ Vh , we can recover vn

ε = vn
ε((un

ε)
2) ∈ Vh solving:

(δt vn
ε, v̄)h + (∇vn

ε,∇ v̄) + (vn
ε, v̄)h = ((un

ε)
2, v̄), ∀v̄ ∈ Vh. (47)

The well-posedness of problem (46) can be proved proceeding as Theorem 4.6 and Lemma 4.7 of [11]; while Lax-Milgram 
theorem implies the existence and uniqueness of solution for (47). The details are omitted.

4.2. Mass-conservation and energy-stability

In this subsection, we are going to present some properties of the scheme USε; we highlight that these properties can 
be obtained independently of the choice of �ε(un

ε) approximating un
ε .

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh , then the scheme USε is conservative in un
ε , that is,

(un
ε,1) = (un

ε,1)h = (un−1
ε ,1)h = · · · = (u0

h,1)h = (u0
h,1) = (Q hu0,1) = (u0,1) = m0|�|, (48)

and also has the behaviour for 
∫
�

vn
ε given in (19) (with un

ε and vn
ε instead of un

h and vn
h respectively).

Definition 4.4. A numerical scheme with solution (un
ε, σ n

ε) is called energy-stable if the energy

Ẽ(u,σ ) = 1

2
‖u‖2

0 + 1

4
‖σ‖2

0 (49)

is time decreasing, that is,

Ẽ(un
ε,σ

n
ε) ≤ Ẽ(un−1

ε ,σ n−1
ε ), ∀n ≥ 1. (50)

Now, in the following result, the energy stability property for the scheme USε with respect to the modified energy 
Ẽ(u, σ ) given in Definition 4.4 is stablished.

Theorem 4.5. (Unconditional stability) The scheme USε is unconditionally energy stable with respect to the modified energy ̃E(u, σ )

given in (49). In fact, if (un
ε, σ n

ε) is a solution of USε , then the following discrete energy law holds

δt Ẽ(ûn
ε,σ

n
ε) + k

2
‖δt ûn

ε‖2
0 + k

4
‖δtσ

n
ε‖2

0 + ‖ûn
ε‖2

1 + 1

2
‖σ n

ε‖2
1 ≤ 0. (51)

Proof. Testing (46)1 by ū = ûn
ε , (46)2 by σ̄ = 1

2 σ n
ε and adding the resulting expressions, the terms (�ε(un

ε)∇ûn
ε, σ n

ε) cancel, 
and taking into account Remark 4.2, (51) is obtained. �

From (51), multiplying by k and summing, one can deduce the following global energy law:

Corollary 4.6. (Global energy law) Assume that (u0, v0) ∈ L2(�) × H1(�). Let (un
ε, σ n

ε) be any solution of scheme USε . Then, the 
following estimate holds

‖(ûn
ε,σ

n
ε)‖2

0 + k
n∑

‖(ûm
ε ,σm

ε )‖2
1 ≤ C0, ∀n ≥ 1.
m=1
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4.3. Large-time behaviour of scheme USε

In this part, exponential bounds for any solution (un
h, σ n

h) of the scheme USε in weak norms are proved. The decay 
estimates obtained (see (52) and (53) below) can be seen as a discrete version of (12) and (16).

Theorem 4.7. Let (un
ε, σ n

ε) be any solution of the scheme USε . Then, the following estimate holds

‖(ûn
ε,σ

n
ε)‖2

0 ≤ C0e
− 2K p

1+2K pk kn
, ∀n ≥ 0, (52)

where the constant K p > 0 was defined in Subsection 2.2.

Proof. Taking ūh = ûn
ε in (46)1, σ̄ h = 1

2
σ n

ε in (46)2 and using (48) as well as Remark 4.2, one obtains

δt

(1

2
‖ûn

ε‖2
0 + 1

4
‖σ n

ε‖2
0

)
+ k

2
‖δt ûn

ε‖2
0 + k

4
‖δtσ

n
ε‖2

0 + ‖ûn
ε‖2

1 + 1

2
‖σ n

ε‖2
1 = 0.

Then, proceeding as in (35) and (41), one arrives at (52). �
Corollary 4.8. Let vn

ε = vn
ε((un

ε)
2) be a solution of (47). Then, it holds

‖v̂n
ε‖2

0 ≤

⎧⎪⎪⎨⎪⎪⎩
Ce− 1

1+k kn if 2K p > 1,

C(kn)e− 1
1+k kn if 2K p = 1,

Ce
− 2K p

1+2K pk kn
if 2K p < 1,

(53)

where the constant K p > 0 was defined in Subsection 2.2.

Proof. The proof follows as in Theorem 3.6; using, in this case, Remark 4.2. �
4.4. Positivity of vn

ε and approximated positivity of un
ε

Unlike the scheme UV in which it is not clear how to prove positivity (neither exact nor approximate) for the discrete 
variables; for the scheme USε we will deduce exact positivity for vn

h and approximated positivity for un
h . First, the positivity 

of the discrete chemical signal vn
ε will be proved. For this, it will be essential that the interior angles of the triangles or 

tetrahedra are less than or equal to π/2. Since we impose the right angled constraint (H), then this property holds.

Lemma 4.9. (Positivity of vn
ε) Given un

ε ∈ Uh and vn−1
ε ∈ Vh, the unique vn

ε ∈ Vh solution of (47) satisfies vn
ε ≥ 0.

Proof. We define vn
ε− := min{vn

ε, 0} and vn
ε+ := max{vn

ε, 0}. Then, testing (47) by v̄ = 
h(vn
ε−) ∈ Vh , and taking into account 

that (∇
h(vn
ε+), ∇
h(vn

ε−)) ≥ 0 (owing to the interior angles of the triangles or tetrahedra are less than or equal to π/2), 
and using that (
h(v))2 ≤ 
h(v2) for all v ∈ C(�), one has(1

k
+ 1

)
‖
h(vn

ε−)‖2
0 + ‖∇
h(vn

ε−)‖2
0 ≤ 0,

and the proof is concluded. �
Notice that the above properties were proved independently of the choice of �ε(un

ε) approximating un
ε . Now, in order 

to obtain approximated positivity for the discrete cell density un
ε , we need to consider �ε(un

ε) satisfying (44) and (45). The 
main idea in the proof is to get the following bound

(Fε(un
ε),1)h ≤ C (54)

which, following the ideas of Corollary 3.9 and Remark 3.12 of [11], implies the estimate (55) below, from which one can 
deduce that un

ε− → 0 as ε → 0 in the L2(�)-norm.

Theorem 4.10. (Approximated positivity of un
ε) Let (un

ε, σ n
ε) any solution of the scheme USε . If ε ∈ (0, e−2), the following estimate 

holds

max
n≥0

‖
h(un
ε−)‖2

0 ≤ C0ε, (55)

where the constant C0 depends on the data (�, u0, v0), but is independent of k, h, n and ε.
203



F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez Applied Numerical Mathematics 173 (2022) 193–210
Proof. Testing (46)1 by ū = 
h(F ′
ε(un

ε)) and taking into account that �ε(un
ε) is symmetric as well as (44) (which implies 

that ∇
h(F ′
ε(un

ε)) = �−1
ε (un

ε)∇un
ε), one obtains

(δt un
ε,


h(F ′
ε(un

ε)))
h +

∫
�

(∇un
ε)

T · �−1
ε (un

ε) · ∇un
εdx = −

∫
�

σ n
ε · ∇un

εdx. (56)

By using the Taylor formula and taking into account that 
h is linear and F ′′
ε (s) ≥ ε for all s ∈ R, one has (following [11, 

Theorem 3.8])

(δt un
ε,


h(F ′
ε(un

ε)))
h ≥ δt(Fε(un

ε),1)h + ε
k

2
|δt un

ε|2h,

which, together with (45), (56) and Remark 4.2, imply that

δt(Fε(un
ε),1)h + ε

k

2
‖δt un

ε‖2
0 + ε‖∇un

ε‖2
0 ≤ 1

2
‖∇un

ε‖2
0 + 1

2
‖σ n

ε‖2
0. (57)

Then, multiplying (57) by k, adding for n = 1, · · ·, m and using Corollary 4.6, one arrives at

(Fε(um
ε ),1)h ≤ (Fε(u0

h),1)h + k
m∑

n=1

(
1

2
‖∇un

ε‖2
0 + 1

2
‖σ n

ε‖2
0

)
≤ C0,

where C0 > 0 is a constant depending on the data (�, u0, v0), but independent of k, h, n and ε. Thus, (54) is obtained. 
Therefore, if ε ∈ (0, e−2), from (43)2 and following the proof of Corollary 3.9 and Remark 3.12 of [11], (55) is deduced. �
5. Numerical simulations

In this section we will show several numerical simulations that we have carried out using the two schemes studied in the 
paper, comparing them with the following ones, the scheme US studied in [13], the classical backward Euler scheme associ-
ated to (1) with (P1, P1)-continuous approximation for (un

h, vn
h) (called Scheme BE from now on), and a linear characteristic 

method analogous to one considered in [29] for the Keller-Segel system (called Scheme CH from now on), in which we have 
changed the chemo-attraction term by a chemo-repulsion term and the linear production term by a quadratic production. 
We are considering (P1, P2)-continuous approximation for (un

h, vn
h). Moreover, we have chosen the domain � = [0, 2]2 using 

a structured mesh, and all the simulations are carried out using FreeFem++ software. We use Newton’s method to approach 
the nonlinear schemes US, UV and BE; while for the scheme USε , we use the following Picard method:

• Picard method to approach a solution (un
ε,σ

n
ε) of the scheme USε :

Initialization (l = 0): Set (u0
ε, σ 0

ε) = (un−1
ε , σ n−1

ε ) ∈ Uh × �h .
Algorithm: Given (ul

ε, σ l
ε) ∈ Uh × �h , compute (ul+1

ε , σ l+1
ε ) ∈ Uh × �h such that{ 1

k (ul+1
ε , ū)h + (∇ul+1

ε ,∇ū) = 1
k (un−1

ε , ū)h − (�ε(ul
ε)σ

l
ε,∇ū), ∀ū ∈ Uh,

1
k (σ l+1

ε , σ̄ ) + (Bσ l+1
ε , σ̄ ) = 1

k (σ n−1
ε , σ̄ ) + (�ε(ul+1

ε )∇ul+1
ε , σ̄ ), ∀σ̄ ∈ �h,

until the stopping criterion max

{
‖ul+1 − ul‖0

‖ul‖0
,
‖σ l+1 − σ l‖0

‖σ l‖0

}
≤ tol.

In all the cases, we consider tol = 10−4.

5.1. Positivity

The aim of this subsection is to compare the fully discrete schemes UV, US and USε in terms of positivity. Theoretically, 
for all schemes, the positivity of the variable un

h is not clear. However, for the scheme USε , it was proved that 
h(un
ε−) → 0

in L2(�) as ε → 0 (see Theorem 4.10). For this reason, in Fig. 2 we compare the positivity of the variable un in the 
schemes, taking the spatial parameter h = 1/20, a small time step k = 10−5 (in order to see the differences in the spatial 
approximations), and the initial conditions (see Fig. 1):

u0 = −10xy(2 − x)(2 − y)exp(−10(y − 1)2 − 10(x − 1)2) + 10.0001

and

v0 = 100xy(2 − x)(2 − y)exp(−30(y − 1)2 − 30(x − 1)2) + 0.0001.

Note that u0, v0 > 0 in �, min(u0) = u0(1, 1) = 0.0001 and max(v0) = v0(1, 1) = 100.0001. We obtain that (see Fig. 2):
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Fig. 1. Cross section at y = 1 of the initial cell density u0 and chemical concentration v0.

Fig. 2. Minimum values of un
h .

1. In all schemes, the discrete cell density un
h takes negative values for some x ∈ � in some times tn > 0.

2. In the scheme USε , the negative values of un
ε are closer to 0 as ε → 0.

3. The scheme USε evidence “better positivity” than the schemes UV, US, CH and BE because the “greater” negative values 
for USε are of order 10−2, while the another schemes reach values greater than −1, being the scheme BE the one that 
reaches the largest negative values.

5.2. ε-approximated positivity vs spurious oscillations

In this subsection, we present some numerical experiments relating the negativity of the discrete cell density observed 
in Subsection 5.1 with the spurious oscillations that could appear. With this aim, we consider k = 10−5, h = 1

25 , ε = 10−6

(for the scheme USε) and the following initial conditions:

u0 = 5cos(2πx)cos(2π y) + 5.0001 and v0 = −170cos(2πx)cos(2π y)) + 170.0001

in which, the places with the highest chemical concentration have lower cell density, in order to force to the cell density to 
be very close to zero. Note that u0, v0 > 0 in �, min(u0) = u0(1, 1) = 0.0001 and max(v0) = v0(1, 1) = 170.0001.

We observe that, in the case of the schemes UV, US, CH and BE some spuriuos oscillations appear when the discrete cell 
density takes negative values (which makes simulations unreliable in this “extreme” case); while, in the case of the scheme
USε , the ε-approximated positivity favours the non-appearance of spurious oscillations (see Figs. 3, 4).

5.3. Energy-stability

Previously, it was proved that the scheme UV is unconditionally energy-stable with respect to the energy E(u, v) given 
in (10) (in the primitive variables (u, v)), the schemes US and USε are unconditionally energy-stable with respect to the 
modified energy Ẽ(u, σ ) given in (49), and for the schemes CH and BE it is not clear how to obtain an energy stability 
property. In this section, we compare numerically the energy stability of the schemes with respect to the “exact” energy 
E(u, v) which comes from the continuous problem, and we also study the behaviour of the corresponding discrete residual 
of the energy law (9):

R En := δtE(un
h, vn

h) + ‖∇un
h‖2

0 + 1

2
‖(Ah − I)vn

h‖2
0 + 1

2
‖∇vn

h‖2
0.

With this aim, we consider the parameters k = 10−6 (in order to minimize the influence of the numerical dissipation terms 
k ‖δt un‖2 and k ‖δt∇vn‖2 (or k ‖δtσ n‖2) appearing in (23) and (51)), h = 1 and the initial conditions
2 h 0 4 h 0 4 h 0 25
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Fig. 3. Positivity vs spurious oscillations of the discrete cell density for the schemes UV, US and USε .

u0 = −10xy(2 − x)(2 − y)exp(−10(y − 1)2 − 10(x − 1)2) + 10.0001

and

v0 = 20xy(2 − x)(2 − y)exp(−30(y − 1)2 − 30(x − 1)2) + 0.0001,

obtaining that:

(a) All schemes satisfy the energy decreasing in time property for the energy E(u, v), that is, E(un
h, vn

h) ≤ E(un−1
h , vn−1

h ) for 
all n, see Fig. 5(a).

(b) The scheme UV satisfies the discrete energy law R En ≤ 0 for all n ≥ 1; while the schemes USε , US, BE and CH evidence 
positive values for R En for some n ≥ 1, being the scheme CH that reaches the largest positive values (see Fig. 5(b)-(c)).
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Fig. 4. Positivity vs spurious oscillations of the discrete cell density for the schemes CH and BE.

5.4. Asymptotic behaviour

In this subsection, we present some numerical experiments in order to illustrate the large-time behaviour of approxi-
mated solutions computed by using the schemes UV, US and USε in two different situations. In the first test, we consider 
the initial conditions such that the places with the highest chemical concentration have lower cell density; while in the sec-
ond test, the places with the highest initial chemical concentration have the highest initial cell density. In both situations, 
we consider k = 10−3 and h = 1

25 . Moreover, for the scheme USε , we consider ε = 10−5.

• Test 1: We choose the initial conditions (see Fig. 6):

u1 = 5cos(2πx)cos(2π y) + 5.0001 and v1 = −15cos(2πx)cos(2π y) + 24.
0 0
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Fig. 5. Energy-stability of the schemes.

Fig. 6. Cross section at y = 1 of the initial cell densities u1
0 = u2

0 and chemical concentrations v1
0, v2

0.

• Test 2: We choose the initial conditions:

u2
0 = u1

0 and v2
0 = 15cos(2πx)cos(2π y) + 24.

In both cases, we observe that ‖(un
h − m0, ∇vn

h)‖2
0 decreases to 0 faster than ‖vn

h − (m0)
2‖2

0. In Figs. 7-8, on which the 
ordinate axis is on a logarithmic scale, we observe an exponential decay (at least) of (un

h, vn
h) to (m0, (m0)

2). These facts are 
in agreement with the theoretical results proved in this paper.

6. Conclusions

In this paper, we study two fully discrete FE schemes for a repulsive chemotaxis model with quadratic signal production, 
called UV (the FE backward Euler in variables (u, v)) and USε (obtained by mixing the scheme US proposed in [13] with a 
regularization technique). For these numerical schemes we obtain better properties than those proved for the scheme US in 
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Fig. 7. Evolution of ‖(un
h − m0,∇vn

h)‖2
0 and ‖vn

h − (m0)2‖2
0 in test 1.

Fig. 8. Evolution of ‖(un
h − m0,∇vn

h)‖2
0 and ‖vn

h − (m0)2‖2
0 in test 2.

[13]. Specifically, the comparison between the numerical schemes UV and USε , and the scheme US, allows us to conclude 
that, from the theoretical point of view:

1. By imposing the “compatibility” condition (Pm, P2m)-continuous FE (with m ≥ 1) for (u, v), the scheme UV is energy-
stable (in the primitive variables (u, v)). In the case of the schemes US and USε , it can be obtained energy-stability but 
with respect to a modified energy written in terms of (u, σ ).

2. As a consequence of item 1, the exponential convergence of the scheme UV to the constant states m0 and (m0)
2 (when 

the time goes to infinity) can be proved in weak norms for u and strong norms for v (equal than the continuous case); 
while in the schemes US and USε , it can be also proved exponential convergence towards m0 and (m0)

2, but only in 
weak norms for u and v .

3. Approximated positivity for the discrete solutions is proved for the scheme USε , but it is not clear how to prove neither 
positivity nor approximated positivity for the schemes US and UV.

From the numerical point of view, comparing these schemes with a linear characteristic method analogous to one considered 
in [29] for the Keller-Segel system (Scheme CH) and the classical backward Euler scheme associated to (1) with (P1, P1)-
continuous approximation for (un

h, vn
h) (Scheme BE), we have obtained that:

1. The scheme USε shows “better positivity” than the schemes UV, US, CH and BE. Moreover, for the scheme USε it was 
observed numerically that min

�×[0,T ]
un

ε → 0 as ε → 0.

2. In some cases, for example when negative values are obtained for uh , some spurious oscillations are observed in the 
schemes UV, US, CH and BE; while in the scheme USε , the approximated positivity of uh favours the non-appearance of 
spurious oscillations.

3. All schemes have decreasing in time energy E(u, v).
4. It is observed an exponential decay (at least) of (un

h, vn
h) in weak-strong norm to (m0, (m0)

2).
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