
Problem Generalization for Designing
Recursive Algorithms

Diana Borrego(B), Irene Barba, Miguel Toro, and Carmelo Del Valle

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain
{dianabn,irenebr,migueltoro,carmelo}@us.es

Abstract. This paper focuses on the difficulty for university students to acquire,
within computational thinking, the skills to solve certain problems through recur-
sion. The acquisition of this type of reasoning is essential to understand the dif-
ferent problem solving techniques that are based on recursive algorithms, such as
divide and conquer or dynamic programming. Therefore, first, the generalization
of problems is proposed as a strategy for designing recursive algorithms. As a
second step, that generalization is formalized through a specification sheet that
contains different fields that correspond to the characteristics that are relevant to
solve a problem recursively.

Keywords: Recursive algorithms · Computational thinking · Problem
generalization

1 Introduction

Computer science university students have the need to develop computational thinking,
which is the mental process used to formulate problems whose solutions can be car-
ried out by a computer. Computational thinking includes skills such as modeling and
breaking down problems, processing data, creating algorithms and generalizing them.

There are several definitions related to computational thinking in the literature.
Reviewing publications about this topic, Wing et al. [6], who made the term com-
putational thinking famous, present the following definition: “Computational thinking
involves solving problems, designing systems, and human behavior understanding, by
drawing on the concepts fundamental to computer science. Computational thinking
includes a range of mental tools that reflect the breadth of the field of computer science.”

Therefore, students must acquire computational thinking to be able to carry out prob-
lem solving through modularization, top-down analysis, bottom-up analysis, recursion,
and so on. Particularly, the understanding and application of this last concept of recur-
sion [3,4] requires the students to make an extra mental effort. They usually understand
and learn more easily the iterative formulations of problems. However, to understand the
recursive formulation, a special type of thinking is needed, and therefore to be able to
use recursive thinking [7]. This presents a difficulty that makes a mental predisposition
necessary that is not always frequent or easy to reach depending on each person.

In detail, the recursive resolution of a problem is raised when the specification of
its solution is made based on the solution of other problems of the same nature but a
c

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57799-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-57799-5_40

smaller size. Therefore, every recursive definition has (i) base case(s), encompassing
and resolving cases where the resolution of the problem is direct and does not require
the use of the function being defined; (ii) recursive case(s), which are those whose
resolution does require the use of the function being defined; and (iii) size of the prob-
lem, which is a cardinal indicating the dimension of the problem to be solved, and that
decreases in each subproblem. Thus, a recursive algorithm is one that expresses the
solution of a problem in terms of invoking itself.

As an example, the definition and recursive algorithm for the resolution of the fac-
torial of a number n are shown below.

n!=

{
1 n= 0

n∗ (n−1)! n > 0

N f(Integer n){

N s;

if{n == 0}{

s = 1;

}else {

s = n * f(n-1);

}

return s;

}

Algorithm 1: Recursive algorithm for
calculating the Factorial number (in Java)

Not all recursive definitions are suitable for building an algorithm. To be adequate,
it must have: (1) at least one base case; (2) in each recursive step the size should be
reduced (which implies that the execution of the algorithm will end).

Taking all this into account, and to facilitate the acquisition and application of recur-
sive thinking, this paper proposes to carry out two steps prior to the design of a recursive
algorithm to solve a given problem, as shown in Fig. 1. Specifically, these steps are:

1. Generalization of the problem through a set of problems [1]. More precisely, gener-
alizing consists of adding properties to the original problem to consider it a particular
case of a wider set of problems.

Fig. 1. Proposed approach for designing recursive algorithms

2. Specification of the solution to the problem through a predefined specification sheet
based on the previous generalization made. This sheet contains different fields that
correspond to the characteristics that are relevant to solve this problem recursively.

Note that the goal of the proposed approach is not to provide a formal method but to
facilitate the acquisition of skills related to the design of recursive algorithms. For this,
we use our experience in the design of types in the context of object-oriented program-
ming to conceptualize the population of problems that are generated when designing
recursive algorithms, i.e., when the generalization is carried out. In such context, the
correct definition of the size of the problems (that is a derived property of such prob-
lems) is key when analyzing the correctness of the generalization performed. To be
more precise, when generalizing a problem for designing a recursive algorithm, it is
necessary to verify that there is an initial problem, and that all the problems are ordered
by size.

The remainder of the paper is structured as follows: Sect. 2 presents the generaliza-
tion of problems through sets of problems, Sect. 3 includes the specification sheet of
the problem solution by recursion along with some illustrative examples, and Sect. 4
presents a critical discussion of the proposed approach. Finally conclusions are drawn
and future work is proposed in Sect. 5.

2 Problem Generalization

This section presents the proposed approach: Sect. 2.1 explains the concept of set of
problems in the context of problem generalization, Sect. 2.2 details how such set of
problems can be used for problem generalization, and, lastly, Sect. 2.3 includes the gen-
eral schema of recursion that is related to the proposed problem generalization.

2.1 Set of Problems

In a recursive definition it is always necessary to start from a set of problems P =
{p, p0, p1, ...}. In such set each problem is characterized by a set of properties x =
{x0,x1, ...}. Each property of a set of problems can be categorized as:

– Shared: shared properties are defined as properties of the set of problems that take
the same value for all problems of such set.

– Individual: individual properties are defined as properties of the set of problems that
take different values for each problem of such set.

Both shared and individual properties can be categorized as basic or derived prop-
erties. The inclusion of the latter, unlike the former, is optional since their values can
be calculated from the values of the basic properties. Derived properties are typically
included for the sake of clarity. It is important to clarify that the basic individual prop-
erties are the ones that unequivocally identify each problem within the set of problems,
i.e., there are not two problems with the same values for all basic individual properties.

Moreover, each problem of a set of problems has a specific size, that is a derived
individual property. To be more precise, the size of a problem is defined as an integer

greater than or equal to zero that is related to the complexity of the problem (i.e., how
far is the problem from a case base). There are different ways of defining the size of a
problem. However, it is necessary to check the correctness of such definition by consid-
ering that the size of a problem should (1) be a function over some of the properties of
the problem, (2) be reduced as a base case is approached.

The problems of a set of problems can be categorized as:

– Base case of a set of problems P: a problem of a set of problems is a base case when
it has a direct solution (i.e., without performing a recursive call). A problem that is
a base case has a small size. Moreover, there can exist several base cases within the
same set of problems.

– Recursive case of a set of problems P: a problem of a set of problems is a recursive
case when it does not have a direct solution (i.e., it is necessary to perform a recursive
call to solve it). The solution of a recursive problem is defined by combining the
solutions related to problems of smaller sizes (i.e., subproblems).

– All problems, in the set of problems of interest, verify a predicate d(x). This predi-
cate establishes the domain of valid problems.

2.2 Problem Generalization

The key idea to solve a problem in a recursive way is based on expressing its solution in
terms of operations over solutions to a set of problems of smaller size. For this, in many
cases it becomes necessary to imagine that set of problems from the original problem
(i.e., problem generalization).

To be more precise, the problem generalization consists of the following steps:

1. Adding, if necessary, a set of additional properties to those that already had the
problem and classify them into basic, derived, individual, shared, etc.

2. Defining the domain of problems of interest through a predicate.
3. Defining the size of a problem.
4. Stating the base cases and the recursive cases.
5. Specifying how each recursive case is reduced to subproblems with a smaller size.
6. Specifying how each recursive case’s solution is related to that of its subproblems.
7. Specifying the solution of base case.
8. Indicating which of the problems in the problem set corresponds to the original

problem.

2.3 General Structure of a Recursive Algorithm

In order to design a recursive algorithm for solving a problem with parameters x (of
type X) it is typically advised to perform 2 functions. The first one (i.e., function f ,
cf. Algorithm 2) receives as input parameters of the initial problem to solve x, and per-
forms an initial call to a second function g (cf. Algorithm 3). The latter is a recursive
function that receive as input parameter both the parameters of problem to solve x and
the additional properties that are considered after problem generalization (i.e., y of type
Y). From now on the properties of the generalized problem will be both the parameters

of the original problem and the new properties added. Function f is optional. There are
cases where the function g is sufficient and f does not appear. This situation is found
when it is possible to consider a broad set of problems by varying within a domain the
values of the parameters. One function calls the other as depicted in Algorithm2.

S f(X x) {

return g(x,y_0);

}

S g(X x, Y y){

...

}

Algorithm 2: Functions in a recursive
algorithm (in Java)

The general structure of a recursive algorithm is shown in Algorithm 3.

S f(X x) {

return g(x,y_0);

}

S g(X x, Y y){

S s;

if(b(x,y){

s = sb(x,y);

} else {

Y y_0 = sp_0(x,y);

S s_0 = g(x,y_0);

Y y_1 = sp_1(x,y);

S s_1 = g(x,y_1);

...;

Y y_{m-1} = sp_{m-1}(x,y);

S s_{m-1} = g(x,y_{m-1});

s = c(s_0,s_1,...,s_{m-1},x,y);

}

return s;

}

Algorithm 3: General structure of a
recursive algorithm (in Java)

As follows, concepts related to Algorithm 3 are detailed:

– x: parameters of problem of type X .
– S: type of the solution.
– y: additional properties (of type Y) for the set of problems that are included after
problem generalization.

– size(x,y): function that returns the size of the problem (x,y).
– d(x,y): predicate establishing the domain of (x,y).
– b(x,y): predicate that shows if a problem is a base case

– sb(x,y): function that returns the solution to a base case.
– np(x,y): function that returns the number of subproblems related to (x,y).
– m= np(x,y): the number of subproblems
– y0,y1, ...,ym−1 : variables of type Y that store the subproblems related to (x,y). To
be more precise, yi refers to the i-th problem related to (x,y).

– sp0(x,y),sp1(x,y), ...,spm−1(x,y): functions that return the subproblems related to
(x,y). To be more precise, spi(x,y) returns the the i-th problem related to (x,y).

– s0,s1, ...,sm−1 : variables of type S storing the solutions to the subproblems related
to (x,y). Thus, si refers to the solution to the i-th problem related to (x,y).

– c(s0,s1, . . . ,x,y): function that returns the solution to x by combining the solutions
to its subproblems.

3 Specification Sheet for the Problem Generalization

This section details the sheet that is proposed for specifying the problem generalization
previously explained (cf. Sect. 2.2). The parts that are included in such specification
sheet are explained as follows:

– Types: information related to the types that are relevant to solve the problem, e.g.,
the type of the solution.

– Shared properties: shared properties of the set of problems that is obtained after the
problem generalization.

– Individual properties: individual properties of the set of problems that is obtained
after the problem generalization.

– Size: size of the problem, which is a function over the properties of such problem.
– Initial instantiation: initial value that is given to the individual properties.
– Base cases: it gives information about whether a problem is a base case. In case there
is more than one condition that causes a problem to be considered a base case, one
per line is specified.

– Solution for base cases: solutions for the problems that are base cases. If there is
more than one base case condition, the solution is provided to each of them on
different lines, using the operator →.

– Number of subproblems: number of subproblems that need to be solved to obtain
the solution to the original problem.

– Subproblems: subproblems that need to be solved to obtain the solution to the orig-
inal problem. When determining them, it is only necessary to specify the changes
that occur in the individual properties with respect to the original problem, since the
shared properties remain the same for all problems. Different subproblems are also
specified in different lines, with the operator →. In case that only one subproblem
needs to be solved, its is determined through the condition to select which one, with
the format ci → si. On the other hand, when there are more than one subproblem, a

superscript is added to distinguish the referred one (
0→,

1→, . . .).
– Combine: function that obtains the solution to the original problem by combining
the solutions that are obtained for the subproblems.

As can be observed, there are many similarities between the elements of the spec-
ification sheet and the elements of the general structure of a recursive algorithm (for
details cf. Table 1).

Table 1. Relation between the specification sheet and the recursive algorithm.

Specification sheet General structure of a recursive algorithm

Types S,X ,Y

Shared properties

Individual properties

Domain d(x,y) predicate

Size size(x,y) function

Initial instantiation y0
Base cases b(x) predicate

Solution for base cases sb(x,y) function

Number of subproblems np(x,y) function

Subproblems sp0,sp1, functions

Combine c(s0,s1, . . . ,x,y) function

3.1 Running Examples

This section includes how the proposed approach is applied to two illustrative examples.
For each example, (1) the specification sheet related to the problem generalization and
(2) the related recursive algorithm are detailed.

Example 1. Calculating the Fibonacci numbers [5]. The Fibonacci number is recur-
sively defined as follows:

f (n) =

{
n n ≤ 1

f (n−1)+ f (n−2) otherwise
Regarding such definition, a recursive algorithm can be designed (cf. Algorithm 4)

according to the problem generalization that is specified in Table 2.

N fib(Integer n){

N s;

if(n<=1){

r = n;

} else {

Integer y_0 = n-1;

s_0 = fib(y_0);

Integer y_1 = n-2;

s_1 = fib(y_1);

s = s_0+s_1;

}

return s;

}

Algorithm 4: fib - Recursive algorithm
for calculating Fibonacci numbers (in
Java)

Table 2. Specification sheet for solving the Fibonacci problem.

Fibonacci

Types Solution: Integer

Shared properties

Individual properties n: Integer

Domain n ≥ 0

Size n

Initial instantiation

Base cases n ≤ 1

Solution for base cases n

Number of subproblems 2

Subproblems (n) 0→ (n−1)

(n) 1→ (n−2)

Combine s0+ s1

Example 2. Binary search in a sorted list [2]. The binary search algorithm is an effi-
cient search method, which finds the position of a target value within a sorted list. To
do this, the algorithm divides the list by its middle element into two smaller sublists,
and compares the target value with the middle element. If they are equal, the search
ends. If the target value is lower, it must be (if present) in the first half of the list, in the
second half otherwise. The process continues until the target is found, or until it reaches
an empty sublist due to the target value is not in the list (returning −1), which are two
base cases conditions.

For this problem, the following shared properties are considered: (1) list of elements
ls, (2) element that is searched m, and (3) size of the list of elements, that is a derived
property n. To generalize, the following individual properties are established: (1) index
i that indicates the starting position of the sublist considered for the current subproblem,
(2) index j that indicates the ending position of the sublist considered for the current
subproblem, and (3) the middle position k, a derived property, between i, j. As detailed,
the problem only invokes one of the two possible subproblems.

More details are given in Table 3, and the related algorithms are depicted (cf.
Algorithm 5). As can be observed, the main algorithm (cf. bs in Algorithm 5) performs
the initial call to the recursive algorithm (cf. bs g in Algorithm 5) according to the initial
instantiation of the individual properties.

4 Discussion

The proposal presented in this paper presents several advantages. To be more precise,
on the one hand, the fact of analysing the solution to a problem before carrying out
the implementation itself facilitates error isolation as well as error detection. On the
other hand, the generalization of problems and the related specification sheet allow for
establishing a systematic way of designing a recursive algorithm for solving a specific
problem.

Based on our experience as teachers of programming subjects in the first university-
level courses, students are reluctant at first to specify the generalization of problems
through the specification sheet. On the one hand, this is something new for them, and
therefore, a period of learning and training is required. In this period, students acquire
the necessary knowledge regarding the meaning and usefulness of each of the properties
that are included in the specification sheet. On the other hand, specifying the problem
generalization is more time-consuming than directly implementing the solution. More-
over, the application of the proposed approach makes sense for problems that presents
certain characteristics. To be more precise, the proposed approach makes more sense
in the case that designing an efficient recursive algorithm for solving a problem is not
trivial for the students, i.e., previous analysis is required (e.g., cf. Example 2). However,
there are some problems, i.e., those problems whose definition itself is recursive, that

Table 3. Specification sheet for solving the Binary search problem.

Binary search

Types Solution: Integer

Shared properties ls: List < E >

e: E

n: Integer (derived - size of ls)

Individual properties i: Integer

j: Integer

k: Integer (derived), k = (j+ i)/2

Domain i ∈ [0,n)&& j ∈ [i,n]

Size j− i

Initial instantiation (0,n)

Base cases e= ls[k]
j− i< 1

Solution for base cases e== ls[k] → k

j− i< 1 → −1

Number of subproblems 1

Subproblems e> ls[k] → (k, j)
e ≤ ls[k] → (i,k)

Combine s0

presents a recursive algorithm that can be directly implemented in an easy way without
requiring a previous analysis (e.g., cf. Example 1).

Therefore, in summary, through the use of specification sheets, students are able
to address complex problems in less time, since they are guided and assisted in the
reasoning necessary to reach the solution.

Integer bs(ls,e){

Integer n = ls.size();

return bs_g(ls,e,n,i,j,(j+i)/2);

}

Integer bs_g(ls,e,i,j,k){

Integer s;

if(j-i < 1) {

s = -1;

} else if(e == ls[k]) {

s = k;

} else {

Integer n1, nj, nk;

if(e < ls[k]) {

ni = i;

nj = k;

nk = (ni+nj)/2;

} else if(e > ls[k]){

ni = k;

nj = j;

nk = (ni+nj)/2;

}

s = bs_g(ls,e,ni,nj,nk);

}

return s;

}

Algorithm 5: Recursive algorithm for the
binary search (in Java)

5 Conclusions and Future Work

In this paper, a methodology for solving recursive problems is proposed, so that the
acquisition of this skill within computational thinking is easier for computer science
university students. For this, the generalization of problems is proposed as a strategy
for the design of recursive algorithms. After this generalization, and based on it, a for-
malization is made by filling in a defined specification sheet that contains different
fields encompassing the characteristics that are relevant to solve a problem recursively.
Through this step-by-step methodology, students can understand and learn recursive
reasoning more quickly and easily.

As future work, we intend to make proposals regarding the specification sheets of
the solution using techniques such as dynamic programming, or backtracking. It is also
proposed to conduct a study about the acceptance of this type of techniques by the
students, and the impact that their use has on the grades obtained.

References

1. Algoritmos iterativos y recursivos. https://drive.google.com/file/d/1qF7eDq0a7MvrFTbfWVJ
F7qKb9LZTrezb/view. Accessed 21 Jan 2020

2. Knuth, D.E.: The Art of Computer Programming, Volume 3, Searching and Sorting. Addison-
Wisley, Reading, MA (1973)

3. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT press,
Cambridge (1983)

4. Shih-hua, H.: Theory of recursive algorithms I. Sci. Sinica 9, 843–875 (1960)
5. Vorobiev, N.N.: Fibonacci numbers. Birkhäuser (2012)
6. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006). https://doi.org/10.

1145/1118178.1118215
7. Zapata-Ros, M.: Pensamiento computacional: Una nueva alfabetización digital. Revista de

Educación a Distancia (RED) (September 2015). https://doi.org/10.6018/red/46/4

https://drive.google.com/file/d/1qF7eDq0a7MvrFTbfWVJF7qKb9LZTrezb/view
https://drive.google.com/file/d/1qF7eDq0a7MvrFTbfWVJF7qKb9LZTrezb/view
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.6018/red/46/4

	Problem Generalization for Designing Recursive Algorithms
	1 Introduction
	2 Problem Generalization
	2.1 Set of Problems
	2.2 Problem Generalization
	2.3 General Structure of a Recursive Algorithm

	3 Specification Sheet for the Problem Generalization
	3.1 Running Examples

	4 Discussion
	5 Conclusions and Future Work
	References

