
A Methodological Proposal and Tool Support for
the HL7 Standards Compliance in the

Development of Health Information Systems

A. Martínez-García1, M.A. Olivero2, A. Suárez-Bote2, J.M. Sánchez-Bejines2,
F.J. Domínguez-Mayo2, M.J. Escalona2, M. Mejías2, C.L. Parra-Calderón1

1Group of Research and Innovation in Biomedical Informatics, Biomedical
Engineering and Health Economy. Institute of Biomedicine of Seville, IBiS /

Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
Av. Manuel Siurot, s/n, 41013, Seville (Spain)

{alicia.martinez.exts, carlos.parra.sspa}@juntadeandalucia.es

2Web Engineering and Early Testing Group, Computer Languages and Systems
Department, University of Seville

ETSII, Avda. Reina Mercedes S/N, 41012, Seville (Spain)
{almudena.suarez, miguel.olivero, juan.sanchez}@iwt2.org

{fjdominguez, mjescalona, risoto}@us.es

Abstract

Health information systems are increasingly complex, and their
development is presented as a challenge for software development
companies offering quality, maintainable and interoperable products.
HL7 (Health level 7) International, an international non-profit
organization, defines and maintains standards related to health
information systems. However, the modelling languages proposed
by HL7 are far removed from standard languages and widely known
by software engineers. In these lines, NDT is a software
development methodology that has a support tool called NDT-Suite
and is based, on the one hand, on the paradigm of model-driven
engineering and, on the other hand, in UML that is a widely
recognized standard language. This paper proposes an extension of
the NDT methodology called MoDHE (Model Driven Health
Engineering) to offer software engineers a methodology capable of
modelling health information systems conforming to HL7 using
UML domain models.

Keywords: HL7, UML, Model-Driven Engineering, health
information systems, MoDHE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Solent Electronic Archive

https://core.ac.uk/display/83926118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.0 Introduction

Today, health information systems are increasingly complex [1]. Developing
quality, maintainable and interoperable products is a challenge for software
development companies wishing to find a market in healthcare systems. The need
for a shared clinical history at the global level is a reality [2]. For this, it is essential
to use health informatics standards that allow the establishment of standards for the
exchange of clinical information [3].

There are proposals such as NDT [4], which are included in the paradigm of
model-driven engineering, covering the requirements and analysis phases of web
systems. However, NDT has a generalist character, therefore, in this paper we
present in detail the methodological proposal that we have named MoDHE (Model
Driven Health Engineering) because of its close relation with the MDE paradigm,
the health field, and because it is based on the NDT methodology.
Nowadays, this methodology focuses on the requirements definition phase, since it
is the most critical phase in clinical projects because there are many HL7 standards
that apply to that specific phase of software engineering, standards that must be
applied to obtain software Interoperable health. Once the requirements phase is
solved, the rest of the life cycle phases of the health software could be developed in
the way equivalent to any other non-sanitary software project. In any case, the
methodology has been developed with the capacity to be extended to the rest of the
life cycle phases.

This methodology allows the software engineer to systematically model health
information systems by working on UML diagrams and ensures compliance with
HL7 standards including extension mechanisms that allow for any existing
standards in HL7.

The MoDHE methodology is based on 3 main pillars. The first pillar, the
methodology, offers a procedure that allows designing HL7 domain models as part
of the development of a health information system. The second pillar, the HL7-
based modelling language, extends to UML to model health information systems
conforming to the full spectrum of HL7 standards. The third pillar, the derivation
mechanisms, makes possible the interoperability between standards, facilitating the
maintainability and extension of the systems. At the time of develop a first version
of the methodology of MoDHE, it was decided to work with 3 of the main
standards of HL7: v3, CDA and v2.x.

To automate this frame of reference, a support tool has been developed, registered
as MoDHE Suite. The main objective of the tool in which we focus on this paper is
to support the development of health information systems conforming to HL7,
through a framework of reference that allows approaching the standards of HL7
and the modelling language of general purpose UML, using the MDE paradigm.
The MoDHE methodology makes real this framework.
Section 2 of this article describes the HL7 standard and its relation to UML, as well

as what is NDT. In section 3 we talk about our proposed NDT extension, MoDHE.
In section 4 we present the tool that supports this methodology, MoDHE Suite,
concluding with the conclusions in section 5.

2.0 Related work and context
This article proposes the joint use of two initially independent worlds of wide
relevance in software engineering applied to the health environment: UML [5]
(Unified Modeling Language) and HL7 (Health Level Seven).

2.1 UML y HL7 (CDA, v3 y v2.x)

UML [6] is the standard modelling language proposed by the OMG (Object
Management Group) [7], an organization that promotes the use of object-oriented
technologies by creating and maintaining guidelines, standards and specifications.
A domain model is a conceptual model that describes the entities, attributes, roles,
relationships, and constraints related to the domain of the problem [8, 9]. Instead of
describing concepts of a software system, it describes the concepts of the reality of
the problem itself. On the other hand, MDE (Model Driven Engineering) is a
paradigm that focuses on the creation and exploitation of domain models, allowing
software engineers to become independent of representation and to focus on
concepts [8, 9]. In this way, a metamodel describes the concepts used in a
particular domain model [8, 9]. When representing metamodels, there are many
accepted notations. One of the most commonly used notations is UML.

On the other hand, HL7 defines domain models in each of its standards [10],
ranging from information necessary to define messaging between systems, to the
clinical documents themselves, in order to represent each of the problems or work
scenarios that HL7 has gone identifying over time [11]. The HL7 standards have a
common metamodel, called MIF (Model Interchange Format), from which all HL7
domain models can be modelled [12]. The MIF is formally defined in one of the
HL7 standards [13]. It should be noted that the MIF is so extensive and presented
in such an abstract way that, although it is very interesting from a conceptual point
of view, it can cause much difficulty in its management and learning.

Each HL7 standard has an underlying metamodel, which specializes and extends
the MIF. In some cases, the metamodel is not explicitly defined in a diagram, but is
defined verbally in different documents. In other cases, this metamodel is explicitly
defined in diagrams that use a graphic language of HL7.
Given that the metamodels of some HL7 standards are described verbally in large
documents, and that other HL7 standards are modelled using their own graphical
language, we think that it is not easy for a software engineer to design the domain
model of a software solution conforming to a specific HL7 standard. Unlike HL7
standards, software engineers in general are comfortable with more general
modelling languages, such as UML.

The HL7 CDA and HL7 v2.x standards are the most used in Spain [14]. The HL7
v3 standard is the reference model where, by refinement of a subset of RIM
(Reference Information Model) elements, domain models such as the HL7 CDA
itself are generated. Therefore, when deciding which standards to include as part of
the MoDHE framework, it was decided to work on these 3 standards.
The HL7 v3, Version 3 Product Suite, consists of a set of RIM-based specifications
that provide implementers with the necessary resources to work with messages,
data types, and terminologies. It is considered a more robust standard than HL7
v2.x, since it reduces the semantic ambiguity and improves the processes, by
having an underlying information reference model (this reference model is the
RIM).

HL7 CDA is a document marking standard that specifies the structure and
semantics that any clinical document must meet to be exchanged between health
care providers and / or patients. This standard works on the R-MIM information
model, which is a subset of RIM.

2.2 NDT

NDT is a methodology based on model-driven engineering that provides formal
and complete support for software lifecycle management (feasibility study,
requirements, analysis, design, implementation, maintenance, testing) [4]. Using
NDT, we can cover the phases of the software engineering life cycle in a structured
way, reducing errors and redundancies.
The NDT methodology extends the UML metamodels, supporting the design of
models in each phase of the software life cycle, representing these models using
UML diagrams. To support the limitations identified in each phase of the software
life cycle, it defines constraints. In addition, it defines transformations between
models, allowing to automatically generate the model of a specific phase, taking
the information previously modeled from diagrams or models of previous phases.

Most HL7 standards are framed in the NDT Requirements Engineering phase
(DRS phase). Therefore, of all the phases covered by NDT, in this paper we focus
on the DRS phase. In addition, of all phases of the software life cycle covered by
the NDT methodology, the DRS phase is the most complete because NDT covers a
large percentage of the needs presented by this phase of the software life cycle.
The final objective of the DRS phase is to model a catalog of requirements that
define the needs of the system, establishing these requirements cataloged per their
typology, without entering aspects related to development.

In this paper, efforts have focused on three HL7 standards that can correspond to
the software information requirements (as part of the DRS phase of NDT), defining
the static or structural part of the system. These standards are HL7 v3, HL7 CDA
and HL7 v2.x. These 3 standards can be matched with elements modeled in the

'Data Storage Requirements' (RA) of the NDT DRS phase. Therefore, to
encompass these 3 HL7 standards, the NDT metamodel corresponding to the DRS
phase has been extended, adding the proper elements of each standard.

3.0 The Model Driven Health Engineering (MoDHE)
framework

The MoDHE methodology enables the software engineer to systematically model
health information systems by working on UML diagrams, and ensures compliance
with HL7 standards including extension mechanisms that allow for any existing
HL7 standards to be included. This methodology is part of one of the three pillars
defined in the previous section. Thanks to this methodological proposal once the
software engineer has modeled the information requirements according to HL7
using the methodology of MoDHE, you can automatically generate the analysis
phase of the system and the later phases of the software life cycle as if of a project
Non-health software. In this way, we can systematize the development process.

The MoDHE methodology extends to the NDT methodology, extending the
metamodels that cover the elements of the software life cycle, and contemplating
the metamodels of the HL7 standards, thus allowing a formal and complete
framework that allows modeling a system of Health information according to HL7
in a systematic way using UML models. The MoDHE methodology allows a
software engineer to model requirements using the UML language, defining in a
transparent and systematic way the HL7 requirements. The following figure
(Figure 1) shows the overall process.

Figure 1: Global process

The NDT methodology extends the UML metamodels, supporting the design of
models in each phase of the software life cycle, representing these models using
UML diagrams. To support the limitations identified in each phase of the software
life cycle, it defines constraints. In addition, it defines transformations between
models, allowing to automatically generate the model of a specific phase, taking
the information previously modeled from diagrams or models of previous phases.

Using the MoDHE methodology, the software engineer, when constructing a
sanitary software system, would perform the same phases as when using the NDT
methodology (EVS, DRS, DAS, DDS, Construction, DPS, DMS), with the
difference That in the DRS phase, in addition to defining non-health information
requirements (and other types of requirements, such as objectives, actors, new
natures, etc.), it would define health information requirements conforming to HL7.
It should be noted that, considering that the NDT methodology uses UML notation,
the learning curve of the software engineer using NDT for the first time is minimal.

The MoDHE methodology extends the DRS metamodels of NDT. The DRS phase
of NDT has as its final objective to model a catalog of requirements that defines
the needs of the system, establishing these requirements catalogued according to
their typology, without entering into aspects related to development. Specifically,
MoDHE extends the storage requirements (RA) metamodel to include elements of
the HL7 standards. Within the RA metamodel, the MoDHE methodology focuses
on information requirements. Thanks to this feature, a software engineer can define
the catalog of health requirements according to HL7.

Figure 2: Formal definition of the approach

Health software, from the point of view of the software life cycle, runs the same
process as any other software development. Each HL7 standard provides
guidelines and recommendations focused on a specific phase of the software
lifecycle [15]. Therefore, the MoDHE methodology has been developed as an
extension of the NDT methodology, supporting the development of all phases of
the health software lifecycle as can be viewed on Figure 2. It should be noted that,
focusing on the modelling of health requirements, it is not mandatory to design the
models according to all 3 HL7 standards, the standards to be used will depend on
the concrete scenario.

Considering that the HL7 v3, HL7 CDA, HL7 v2.x standards have the common
characteristic that they cover the definition of information requirements of a health
system, common elements in those standards are identified. These common
elements allow you to define simple transformations between entities from one
standard and another, allowing you to partially create the structure of the model
based on a standard taking as input the model based on another standard. , Taking
as reference the formal definition of the metamodels that has been realized in other
studies, these can be analysed and formalized the established semantic relations, by
means of which the target model can be obtained following a specific source
model. This process, considering such semantic relations, establishes a rule-based
transformation mechanism to obtain the final model. Thanks to this transformation
process, a traceability between the two metamodels is established, allowing the
automation of development, as well as improving the quality and consistency of
the models. For example, if you have modelled a model based on the MoDHE v2.x
metamodel, you can automatically generate part of the MoDHE CDA model with
the same information previously modelled by the MoDHE v2.x metamodel.

By implementing these transformations between the different MoDHE metamodels
(each representing an HL7 standard), the MoDHE methodology allows reuse of
models already created in an HL7 standard when modelling requirements per
another HL7 standard, reusing the information, removing duplication, redundancy,
and reducing errors. In addition, based on the NDT methodology, the MoDHE
methodology covers the entire software lifecycle, including modelling non-health
requirements in the requirements engineering phase.

4.0 MoDHE Suite: A tool to support the framework
The MoDHE framework, as we have seen, allows the design of HL7 domain
models based on UML, using techniques based on the MDE paradigm. This
framework is composed of the methodology and metamodels needed to make this
design, as well as the transformations necessary to create models by taking the
information previously modeled in other models. To make possible the practical
use of this theoretical framework that allows us to generate UML models
conforming to HL7, it is necessary to have a CASE support tool. This tool, which
we have called MoDHE Suite has been implemented in C # as a plugin for
Enterprise Architect.

To develop the MoDHE Suite tool, this research has been used as an EA basis, an
already existing modeling tool that provides extension mechanisms through
plugins, as well as because this modeling tool is widely known by companies and
organizations in the that MoDHE Suite can be validated and evaluated once it is set
up.

The definition of the specific syntax has been made using UML profiles, more
specifically, UML version 2.5 [5] has been used. A UML profile is a formal
extension of the UML language itself with the objective of defining new concepts
from existing UML constructors, to provide them with a more precise and concrete
semantics. It has been chosen to use a UML extension as a mechanism to define
the concrete syntax of the UML and HL7 metamodels, since there is no problem
with the use of a new specific language.

The UML extension protocol is based on 3 mechanisms:

• Stereotypes. Thanks to the stereotypes it is possible to define each of the
elements of a specific domain that in turn will extend specific UML
metaclases.

• Tagged value. Tagged values allow you to add particular properties to any
defined stereotype within the profile.

• Constraints. The constraints define the semantic conditions that apply to
the stereotypes of the profile and that condition the instantiation of the
metamodel.

In developing all UML profiles for MoDHE, all stereotypes extend the UML Class
metaclass. It has been chosen to extend this UML metaclass in question because
this metaclass aims to specify a classification of objects and to specify their
properties (attributes, operations, associations, etc.), characterizing the structure
and the context of these objects. Thus, when modeling an element of HL7,
attributes, associations, etc. can be defined using a nomenclature similar to that
used by the UML class metaclass, thus reducing the learning curve in the use of the
methodology and the tool one, and improving the usability of these.

Considering that the MoDHE methodology extends the NDT methodology, the
MoDHE Suite tool is based on the implementation of the NDT-Suite tool, which in
turn uses the software architecture provided by EA. One of the most important
aspects in the development of the MoDHE Suite tool is the translation of the
concrete syntax within EA. For this, the MDG Technologies module of EA has
been used. In the case of the MoDHE Suite tool, since it is an extension of the
NDT-Suite tool, an MDG Technology project has not been created from scratch,
failing which the 5 existing MDG Technology projects have been used for the
implementation of the tool NDT-Suite, corresponding to the following phases of
software development: requirements, analysis, design, testing, maintenance.

For each MDG Technology project, EA creates 2 packages by default:

• Toolbox package. It contains the set of stereotypes that make up the UML
profile, along with its tagged values. Each of these stereotypes must be
linked to the appropriate UML metaclass through a "extend" relationship.
Each of the contemplated stereotypes is defined by means of a set of
tagged values, which correspond to the attributes of the stereotypes
defined in the UML profile.

• Profile package. It contains all those EA artifacts necessary to define the
creation of diagrams according to certain stereotypes defined in the
previous package, and previously selected. From this set of artifacts, the
user is given the ability to model following a UML profile.

When configuring our plugin, and running EA, we have a new menu that allows
modeling in UML health information requirements conforming to HL7 standards.
It should be noted that the MoDHE Suite toolbox for modeling information
requirements, in addition to including the elements of HL7 standards, includes the
necessary elements to model non-health information requirements (subsystems,
storage requirements, new natures) elements of the NDT-Suite tool.

The EA plugin for MoDHE Suite includes the profile implemented in EA, and
implements the methods necessary to verify that the constraints specified in this
section satisfy. It also implements the transformations defined for this tool. These
transformations have been previously and theoretically defined in QVT language
[16].

The QVT language is a standard language proposed by the OMG for the definition
of M2M transformations. This language was born at the end of 2005 as a common
proposal of several research institutions and companies. For the definition of the
structure and syntax of the metamodels, this language is based on the specifications
of the MOF [17] and OCL [18] standards proposed by the OMG. The use of QVT
against other transformation languages such as ATL (Atlas Transformation
Language) is due to the proposal presented is an extension of the NDT
methodology, which uses specifications of transformations in QVT, therefore,
using QVT will improve the Compatibility between both sets of transformations
(those of NDT, and those of MoDHE).

These transformations have finally been implemented in C # language. These
transformations could have been implemented alternatively in any other general
purpose language such as Java, Python, etc.

To cover this development, first, the concrete syntax of the metamodels has been
defined, and secondly the code that models the concepts of the metamodels and the
transformations previously defined in QVT has been implemented.

5.0 Conclusions
In this paper, we have presented the Model Driven Health Engineering (MoDHE)
framework. This proposal is an extension of NDT that is based on 3 main pillars.
The first pillar, the methodology, offers a procedure that allows the design of HL7
domain models as part of the development of a health information system. The
second pillar, the HL7-based modelling language, extends to UML to model health
information systems conforming to the full spectrum of HL7 standards. The third
pillar, the derivation mechanisms, make possible the interoperability between

standards, facilitating the maintainability and extension of the systems. At the time
of developing the methodology of MoDHE, it was decided to work with 3 of the
main standards of HL7: v3, CDA and v2.x

To automate this reference frame, a support tool has been developed, registered as
MoDHE Suite. This tool allows the design of HL7 compliant domain models using
a UML-based interface. It also allows the generation of models of a specific
standard based on existing models of another specific standard. This tool has been
validated in a real case study extracted from a project in which the Technological
Innovation Group of Virgen del Rocío University Hospital participated,
demonstrating that the solution developed is very useful.

The present paper proposes the development of a reference framework that
facilitates the design of HL7-compliant domain models using a UML-based
interface.

6.0 Acknowledgments

This research has been partially supported by the POLOLAS project (code
TIN2016-76956-C3-2-R) of the Spanish Ministry of Science and Innovation, the
KNOWBED project (code PIN-0213-2016) founded by the Andalusian Regional
Ministry of Health, and Carlos III Health Institute within the call Strategic Help in
Health (PITeS TliSS project, code PI15/01213), and FEDER funds.

The authors are grateful to Carlos III Health Institute for promoting the Network
for Innovation in Medical Technologies and Health (‘Plataforma ITEMAS’ in
Spanish, CODE PT13/0006/0036). Finally, we would also like to thank Universia
Foundation for awarding PhD students with research grants.

7.0 References

1 Kushniruk, A. W., Borycki, E. M., Kuwata, S., & Kannry, J. (2010).
Emerging approaches to usability evaluation of health information
systems: towards in-situ analysis of complex healthcare systems and
environments. Studies in health technology and informatics, 169, 915-
919.

2 Garde, S., Knaup, P., Hovenga, E. J., & Heard, S. (2007). Towards
Semantic Interoperability for Electronic Health Records--Domain
Knowledge Governance for open EHR Archetypes. Methods of
information in medicine, 46(3), 332-343.

3 Sinha, P. K., Sunder, G., Bendale, P., Mantri, M., & Dande, A. (2012).
Electronic health record: standards, coding systems, frameworks, and
infrastructures. John Wiley & Sons.

4 Jose Escalona, M., & Aragón, G. (2008). NDT.A model-driven approach
for web requirements. Software Engineering, IEEE Transactions on,
34(3), 377-390.

5 OMG (2015, marzo). OMG Unified Modeling Language, v2.5. Retrieved
March, 2017, http://www.omg.org/spec/UML/

6 UML (2017, March). Object Management Group. Retrieved March, 2017,
http://uml.org/

7 OMG (2017, March). Object Management Group. Retrieved March, 2017,
http://www.omg.org/

8 Van Der Straeten, R., Mens, T., & Van Baelen, S. (2009). Challenges in
model-driven software engineering.In Models in Software Engineering
(pp. 35-47).SpringerBerlin Heidelberg.

9 Schmidt D.C. (2006). Model-Driven Engineering.Computer, 39(2), 25-31.
10 HL7 Standards (2017, March). Section 3: Clinical and Administrative

Domains. Retrieved March, 2017,
http://www.hl7.org/implement/standards/product_section.cfm?section=3

11 HL7 Wiki (2017, March). Domain Analysis Model. Retrieved March,
2017, http://wiki.hl7.org/index.php?title=Domain_Analysis_Model

12 Spronk, R., &Ringholm, C. (2010, febrero). The HL7 MIF-Model
Interchange Format.

13 HL7 International (2011). Model Interchange Format, Release 1.
Informative Document - August 2011

14 HL7 International (2016). Affiliate Spotlight: HL7 Spain. The official
publication of Health Level Seven International News. Page 19.

15 HL7 Reference Information Model (2017, March). Retrieved March,
2017, http://www.hl7.org/implement/standards/rim.cfm

16 OMG (2015, February). Documents Associated with Meta Object Facility
(MOF) 2.0 Query/View/Transformation, v1.3. Retrieved October, 2016,
http://www.omg.org/spec/QVT/.

17 OMG (2015, junio). Meta Object Facility (MOF) Core, v2.5. Retrieved
October, 2016, http://www.omg.org/spec/MOF/.

18 OMG (2014, February). Object Constraint Language, v2.4. Retrieved
October, 2016, http://www.omg.org/spec/OCL/.

http://www.omg.org/spec/UML/
http://uml.org/
http://www.omg.org/
http://www.hl7.org/implement/standards/product_section.cfm?section=3
http://wiki.hl7.org/index.php?title=Domain_Analysis_Model
http://www.hl7.org/implement/standards/rim.cfm
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/OCL/

	A Methodological Proposal and Tool Support for the HL7 Standards Compliance in the Development of Health Information Systems
	Abstract
	1.0 Introduction
	2.0 Related work and context
	2.1 UML y HL7 (CDA, v3 y v2.x)
	2.2 NDT

	3.0 The Model Driven Health Engineering (MoDHE) framework
	4.0 MoDHE Suite: A tool to support the framework
	5.0 Conclusions
	6.0 Acknowledgments
	7.0 References

