15th European Biomass Conference & Exhibition May 7–11, 2007, Berlin, Austria

Advanced utilisation options for biomass gasification fly ash

ICC Berlin - International Congress Center, 10 May 2007 Berlin, Germany

A. Gómez-Barea, C. Fernández-Pereira, L.F. Vilches, C. Leiva; M. Campoy; P. Ollero Chemical and Environmental Department University of Seville Spain

Content

- 1. Objective
- 2. Fly ash generation
- 3. Fly ash characterisation
- 4. Screening methods for fly-ash utilisation
- 5. Manufacturing of lightweight wallboards
- 6. Manufacturing of bricks
- 7. Conclusions

1. Introduction

- Fly ash (FA) quality may limit biomass gasification
- FA from the gasification of biomass differs considerable from conventional combustion ash
 - unburned carbon is much higher, typically 10–60% w.w.
 - Relatively high chlorine and heavy metals in case of waste gasification
- These make the management of gasification fly ash a challenging task (difficult recycling or utilisation)

1. Introduction

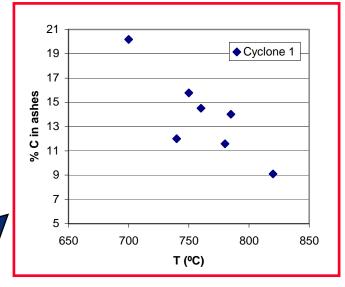
- An increase in carbon conversion results in higher:
 - Efficiency
 - direct positive influence on power production efficiency
 - Utilisation potential
 - facilitate the development of sustainable economical methods for ash management
- BFB gasification needs to optimise operation to improve ash quality (reduce carbon content in ash)

2. Fly ash generation

- Pilot pant
 - 150 kW_{th} BFB pilot plant at the University of Seville
- Fuel
 - Orujillo: by-product from the olive oil industry: 3 Mt/yr HV of 18 MJ/kg)
- Bed material
 - ofite (also trials with limestone)
- Location
 - Fly ash (bottom ash simpler)

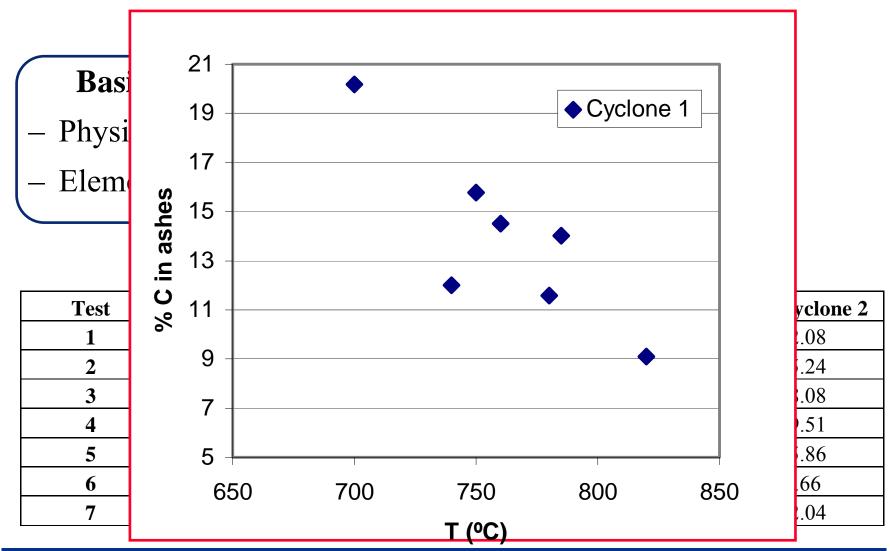
Test facility

Technical and operating data of pilot plant facility


Inside bed diameter	0.15 m
Bed height	1.7 m
Inside freeboard diameter	0.25 m
Freeboard height	2.5 m
Fluidisation velocity	0.8 - 1.4 m/s
Bed material	Ofite, limestone
Fuel	Orujillo, MBM
Fuel feed rate	6 – 35 kg/h
Gasification agent	Air
Operating temperature	700 - 850°C
Operating pressure	Atmospheric
Fluidisation regime	Bubbling
Maximum thermal capacity	150 kW _{th}

3. Ash characterisation

Basic ash characterisation


- Physical analysis: density and PSD
- Elemental and ultimate analysis

<u> </u>					
Test	T bed (°C)	ER	%C Overflow	%C Cyclone 1	%C Cyclone 2
1	700	0.17	37.54	20.18	22.08
2	740	0.20	20.77	12.00	15.24
3	750	0.22	37.44	15.78	18.08
4	760	0.23	29.85	14.51	19.51
5	785	0.24	19.85	14.03	15.86
6	780	0.29	8.24	11.58	9.66
7	820	0.31	5.33	9.09	12.04

5. Ash characterisation

Detailed characterisation of ashes

- Further characterisation (necessary for the screening of existing utilisation options)
 - Trace elements (ASTM D-3683)
 - Ashes leachability
 - DIN 38414
 - TCLP (USEPA 1311)
 - Compliance batch leaching test EN 12457/1-4
 - Up-flow percolation test EN 14405 (Column test)
 - Analysis of Eluates (metals)
 - Thermal analysis (TGA, DSC, DTA)
 - Other: PAH, and specific for a given route being tested

4. Screening methods for fly-ash utilisation

Use as fuel:

- co-firing in coal/biomass-fired power plants;
- firing in a dedicated boiler
- replacement fuel in smelters/incinerators
- firing in cement kiln

Use in construction:

- Fine applications: cement replacement in concrete
- Less stringent applications:
 - soil stabilization
 - road base
 - structural fill (filler in asphalt, asphalt-like products)
- Use in agriculture: directly as fertilizer or as soil improver.

Conclusions from preliminary screening

- 1. Cl, alkali metals (K) and carbon content limit ash utilisation
- 2. Pretreatment necessary (washing and oxidation)
- 3. Economic methods for management without pretreatment are more attractive
- fuel in cement kilns
- Advanced utilisation
 - Stabilisation/Solidification (S/S)
 - lightweight wall boards
 - bricks with special properties

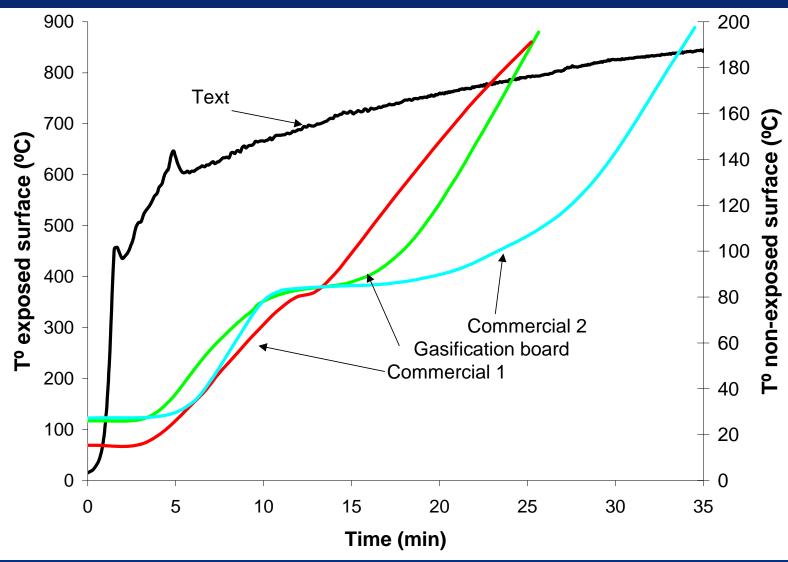
5. Manufacturing of lightweight wallboards

Method of preparation:

- low-cost moulding and curing methods
- ash percentages up to 60%w/w
- gypsum and additives (vermiculite and fibre)

5. Manufacturing of lightweight wallboards

Main Results:


Acceptable mechanical and properties

$\rho (kg/m^3)$	рН	A(%)	Rc (MPa)	S _H (Shore C)
652	9.95	67.4	0.43	28

- Good environmental behaviour (leaching)
- Further studies on optimisation of blends

Fire resistance test curves for various board

Leaching tests results (DIN: (µg/L))

Component	Limit	Orujillo gasification ash
Cd	100	<30
Cr(VI)	100	
Cr_{total}	500	< 50
Ni	500	50
Cu	2000	55
Zn	2000	20
As	100	<1
Hg	20	< 50
Pb	500	100

6. Manufacturing of bricks

Preparation

- Three types of blends prepared by adding ash to the clays as organic material
- Ash content in bricks up to 20%
- Three clay bodies tested (representative to the used in facing bricks)

Tests

- Mechanical tests (standard for bricks)
- Fire test (similar to the tunnel kiln firing)
- Leaching tests

6- Manufacturing of bricks

6. Manufacturing of bricks

Results

- Mechanical tests showed that the three clay bodies tested are very near (slightly below using 20%) the requirements for facing bricks, i.e. HD clay masonry units
- Environmental tests (leaching) favorable

Optimisation

- There are two routes for further testing:
 - Reduction of ash quantity (from 20% to 15%)
 - Bricks with special insulating thermal and acoustic properties (body strength need to be slightly improved to meet UNE-EN 771-1)

7. Conclusions

- Existing (combustion) options for utilisation of fly ash are not valid for the ash derived from the FBG of orujillo (pretreatment is needed)
- Demonstration that fly ash from FBG of orujillo has potential as the main constituent in lightweight wallboards (60% ash) and bricks (20% ash)
- Optimisation of the blend composition for the lightweight plates and the bricks are under study

Acknowledgements

- The authors acknowledge the financial support for this research by the Commission of Science and Technology, European Commission and Junta de Andalucía.
- We also acknowledge Cerámicas Malpesa (Bailén, Spain) for its help in preparing the brick samples.

Thank you for your attention

15th European Biomass Conference & Exhibition May 7–11, 2007, Berlin, Austria

Advanced utilisation options for biomass gasification fly ash

ICC Berlin - International Congress Center, 10 May 2007 Berlin, Germany

A. Gómez-Barea, C. Fernández-Pereira, L.F. Vilches, C. Leiva, M. Campoy, P. Ollero Chemical and Environmental Department University of Seville Spain