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Device-independent quantum key distribution (DI-QKD) offers the strongest form of security against eaves-
droppers bounded by the laws of quantum mechanics. However, a practical implementation is still pending due to
the requirement of combinations of visibility and detection efficiency that are beyond those possible with current
technology. This mismatch motivates the search for DI-QKD protocols that can close the gap between theoretical
and practical security. In this work, we present two DI-QKD protocols whose security relies on Bell inequalities
with more than two inputs and two outputs. We show that, for maximally entangled states and perfect visibility,
a protocol based on a Bell inequality with three inputs and four outputs requires a slightly lower detection
efficiency than the protocols based on Bell inequalities with two inputs and two outputs.
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I. INTRODUCTION

A. Context

In the device independent quantum key distribution (DI-
QKD) paradigm [1–5], two parties (Alice and Bob), using
only the input-output correlations obtained in a Bell inequal-
itylike experiment, aim to generate a cryptographic key while
quantifying the amount of information available to an eaves-
dropper (Eve) bounded by the laws of quantum mechanics.

Suppose that each party can choose between n different
measurements and each measurement yields one of m possible
outcomes. Then, there are n2 probability distributions each of
them specified by m2 probabilities, which can be arranged in
a list P = {p(a, b|x, y)}, where p(a, b|x, y) is the probability
that Alice obtains outcome a for measurement x and Bob
obtains outcome b for measurement y. P is usually referred
to as a behavior [6] and is the tool used by Alice and Bob to
check the security of the key.

Since a behavior does not refer to any particular physi-
cal realization or quantum system of a given dimension, in
DI-QKD Alice and Bob can treat their preparation and mea-
surement devices as black boxes in which the measurement
choices are the inputs and the measurement outcomes are the
outputs. A quantum realization Q of a behavior P consists of a
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quantum state ρ, a set of measurements for Alice {Ma|x}, and
a set of measurements for Bob {Mb|y}.

DI-QKD offers security under a minimal set of assump-
tions [7,8] and against a wide range of side channel attacks
[5]. Side channel attacks have been shown to compromise
the security of some commercial implementations of QKD
[9–12].

However, DI-QKD still has to overcome several challenges
before being technologically feasible. In what follows, we
focus on photonic implementations, given that photons are the
most suitable physical systems to carry out QKD in real life.

One of the most significant obstacles is that DI-QKD
requires combinations of overall detection efficiency η and
visibility V , which are very difficult to achieve with current
technology. The overall detection efficiency η is defined as
the probability of detecting a photon emitted by the source.
The visibility V is defined assuming that the targeted state |ψ〉
is affected by white noise. That is, assuming that the actual
state is of the form ρ = V |ψ〉〈ψ | + 1−V

d2 1, where d is the
dimension of the local systems.

For example, for the most studied DI-QKD protocols,
which are those based on the Clauser-Horne-Shimony-Holt
(CHSH) [13] Bell inequality, the minimum detection effi-
ciency required to distill a secret key was initially found to be
η = 0.924, assuming V = 1 [5]. Subsequently, it was shown
that, using partially entangled states, the threshold can be
reduced to η = 0.865, again with V = 1 [14–16].

Recently, various efforts have been made to reduce the
detection efficiency threshold [14,17–19]. The most success-
ful one [14] reported detection efficiency thresholds of η =
0.8257 for V = 1 and η = 0.8757 for V = 0.99. However,
any of these requirements is still very difficult to meet.

To date, the best combination of parameters (η,V ) re-
ported in photonic experiments are (0.763,≈0.99) [20],
(0.774, 0.99) [21], and (0.8411, 0.9875) [22].
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All the examples just mentioned refer to CHSH inequality-
based DI-QKD protocols. This Bell inequality has two inputs
and two outputs per party. There, Jordan’s lemma (or sim-
ilar arguments) [5,6,23,24] offers a convenient reduction of
the problem to a two-qubit system. This reduction allowed
Pironio et al. [5] to derive an analytical tight bound on the
quantum conditional entropy Alice-Eve H (A|E ) as a function
of the value of the Bell parameter S = 〈A1B1〉 + 〈A1B2〉 +
〈A2B1〉 − 〈A2B2〉 of the CHSH inequality

H (A|E ) � 1 − h

(
1 +

√
S2/4 − 1

2

)
. (1)

The quantum conditional entropy quantifies the strength of
the correlations between Alice and Eve, and hence the secrecy
of the key. Analytical bounds for the quantum entropy like
the one in Eq. (1) are only known for a few cases [14,19].
In addition to Jordan’s Lemma, some previous results were
crucial to derive these analytical bounds. One of them is
the possibility to calculate the maximum violation of a Bell
inequality that a two-qubit state can attain [25,26].

B. Approach

The motivation for the present work is the observation
that the minimum detection efficiency for reaching detection-
loophole-free Bell tests can decrease when Bell inequalities
with more inputs and outputs are considered [27,28]. For
example, Massar [27] proved that entangled states of large
local dimension d and 2d measurements per party require
lower detection efficiencies. Specifically, in that case, the de-
tection efficiency threshold decreases exponentially with the
dimension of the state as η = d1/22−0.0035d . This means that
loophole-free Bell tests with arbitrary low detection efficiency
are, in principle, possible.

In addition, it has also been shown that high dimensional
entangled states are more robust against noise than two-
qubit systems [29–31]. Correspondingly, violations of Bell
inequalities with lower visibilities are achievable. Further-
more, it has been recently shown that QKD protocols benefit
from the resistance to noise exhibited by high dimensional
systems [32].

Therefore, a natural question is whether similar benefits
may occur in DI-QKD protocols based on Bell inequalities
with more than two inputs and two outputs. In this article,
we present two DI-QKD protocols of this type and explore
their performance using the technique developed by Brown
et al. [16] to estimate H (A|E ) in a device-independent way
(for details, see the Appendix). This technique, together with
the one in Ref. [15], have shown significant improvement with
respect to the min-entropy approach [33,34].

II. THE TWO DI-QKD PROTOCOLS

A. General considerations

Here, we introduce two DI-QKD protocols. Each of them
is constructed around a Bell inequality that has some specific
features that make it worth considering for DI-QKD.

Both protocols follow the structure of the protocol by
Pironio et al. [5]. In each measurement round, Alice randomly

chooses one of n inputs x ∈ {1, . . . , n}, while Bob randomly
chooses one of n + 1 inputs y ∈ {1, . . . , n + 1}. Each mea-
surement has m possible outputs a, b ∈ {1, . . . , m}. The raw
key is obtained from the rounds where x = 1 and y = n + 1,
while the other rounds are used to characterize the behavior.

Our first protocol has n = 4 and m = 2, while the second
one has n = 3 and m = 4. In both cases, to generate the
behaviors P, we use quantum realizations Q with entangled
states of two ququarts (i.e., quantum systems of dimension
four). Using a particular realization ensures that the statis-
tics obtained corresponds to a valid quantum probability
distribution.

The information revealed by the behavior allows Alice and
Bob to bound H (A|E ), which quantifies the information avail-
able to an eavesdropper. If the behavior exhibits sufficiently
strong correlations between Alice and Bob and sufficiently
weak correlations between each of them and an eavesdrop-
per, then the raw key can be turned into a shared secret key
by using classical error correction and privacy amplification
[5,14].

Unlike, Eq. (1), where H (A|E ) is bounded solely by the
value of the Bell parameter, in our case, we use the complete
behavior to estimate H (A|E ). The behavior contains much
more information than the value of the Bell parameter, thus
allowing a more accurate evaluation of H (A|E ) [35].

The asymptotic secret key rate against collective attacks is
given by the Devetak-Winter formula [36]

rDW � H (A1|E ) − H (A1|Bn+1), (2)

where H (A1|Bn+1) is the conditional Shannon entropy, which
quantifies the strength of the correlations between Alice and
Bob. H (A1|Bn+1) is calculated from the behavior as follows:

H (A1|Bn+1) = −
∑
a,b

p(a, b|1, n + 1) log2 p(a, b|1, n + 1)

+
∑

b

pB(b|n + 1) log2 pB(b|n + 1), (3)

where pB(b|n + 1) is the probability that Bob obtains outcome
b when the input is n + 1.

We investigate how the secret key rate changes when white
noise and limited detection efficiency are taken into account.

To study the effect of the limited detection efficiency, we
assume that Alice and Bob have the same detection efficiency
ηa = ηb = η for all detectors and measurement settings. We
also assume that Alice and Bob map the nondetection events,
denoted ⊥, to the mth output. This way, the violation of the
Bell inequality by itself assures that there is no local hidden
variable model even when the detectors have limited detection
efficiency [37,38]. The limited detection efficiency transforms
the probabilities as follows:

p′(a, b|x, y) −→ η2 p(a, b|x, y) + ηη̄[δa,m pB(b|y)

+ δb,m pA(a|x)] + δa,mδb,mη̄2, (4)

where η̄ = 1 − η, and δx,y is the Kronecker delta function.
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B. Protocol based on I4
4422 using maximal

ququart-ququart entanglement

The first protocol is constructed around the I4
4422 inequality

[39], which can be written as

I4
4422 � 0, (5)

with

I4
4422 = I (1,2;1,2)

CH + I (3,4;3,4)
CH − I (2,1;4,3)

CH − I (4,3;2,1)
CH

− pA(1|2) − pA(1|4) − pB(1|2) − pB(1|4), (6)

where I (i, j;u,v)
CH = p(1, 1|i, u) + p(1, 1| j, u) + p(1, 1|i, v) −

p(1, 1| j, v) − pA(1|i) − pB(1|u).
The reason for choosing this Bell inequality is that the

threshold detection efficiency for attaining the loophole-free
regime for I4

4422 is 0.7698 and 0.618, for maximally and
partially entangled states, respectively [40]. That is, the I4

4422
inequality requires lower threshold detection efficiencies than
the CHSH inequality, for which these thresholds are 0.828
and 2/3 [41], respectively. Therefore, the hope is that this
advantage can be translated into a similar advantage in the
threshold detection efficiency for DI-QKD.

We used the quantum realization Q4422 given in the Sup-
plementary Material of Ref. [40], consisting of the maximally
entangled two-ququart state

|ψ〉 = 1
2 (|11〉 + |22〉 + |33〉 + |44〉), (7)

and four measurements with two outcomes. Each mea-
surement is a projector defined by four coefficients ci as
follows:

4∑
i, j=1

cic
∗
j |i〉〈 j|, (8)

with
∑4

i=1 |ci|2 = 1. The coefficients for Alice’s measure-
ments x ∈ {1, 2, 3, 4} are

1 = (−0.2816,−0.2816, 0.9159, 0.0499),

2 = (−0.5438, 0.5438, 0.5625,−0.3035),
(9)

3 = (0.2816, 0.2816, 0.9159, 0.0499),

4 = (0.5438,−0.5438, 0.5625,−0.3035),

and for Bob’s measurements y ∈ {1, 2, 3, 4} are

1 = (−0.2816, 0.2816, 0.9159,−0.0499),

2 = (−0.5438,−0.5438, 0.5625, 0.3035),
(10)

3 = (0.2816,−0.2816, 0.9159,−0.0499),

4 = (0.5438, 0.5438, 0.5625, 0.3035).

Since each measurement is a projector, it has only two eigen-
values λ ∈ {0, 1}. For the QKD protocol, we consider that the
output 1 corresponds to the eigenvalue λ = 1, while the output
2 corresponds to λ = 0. Also, in order to distill the key, Bob’s
extra input is y = 5 = (−0.2816,−0.2816, 0.9159, 0.0499).
Notice that Q4422 does not reach the maximum quantum vio-
lation of the I4

4422 inequality (Fig. 3), which value is
√

2 − 1
and it is achieved with pairs of real qubits and degenerate
measurements [42].

FIG. 1. Secret key rates versus detection efficiency η (dimen-
sionless). Comparison between the secret key rate obtained with
Q234 (solid blue line), Q4422 (dashed orange line), and the realiza-
tion described in Sec. II C (dotted orange line). The corresponding
thresholds to distill a secret key are 0.9218, 0.9474, and 0.9317,
respectively.

The key rate of the resulting QKD protocol, as a function
of the detection efficiency, is presented in Fig. 1, while Fig. 2
shows the key rate as a function of the visibility. In both cases
the key rate is represented with dashed orange lines.

The thresholds to distill a secret key are η � 0.9474 and
V � 0.9396. Note that Q4422 does not reach the value of 1
bit for the key rate, even with η = 1 and V = 1. Instead, the
maximum key rate obtained is 0.4516 bits. This is a conse-
quence of Q4422 not reaching the maximum value of the I4

4422
inequality.

C. Protocol based on I4
4422 using partially entangled states

We also investigated the performance of the protocol using
partially entangled states. For that, we searched for the quan-
tum realization that maximizes the value I4

4422 for a particular

FIG. 2. Secret key rates versus visibility V (dimensionless).
Comparison between the secret key rate obtained with the Q234

realization (solid blue line) and the Q4422 one (dashed orange line).
The corresponding thresholds to distill a secret key are 0.9104 and
0.9396, respectively.
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FIG. 3. Comparison between the violations of the I4
4422 inequal-

ity with maximally (dotted blue line) and partially entangled states
(dashed orange line). The upper bound (solid black line) was cal-
culated using the NPA hierarchy. For any detection efficiency η

the partially entangled states outperformed the maximally entangled
ones. The quantities in both axes are dimensionless.

class of ququart-ququart entangled states and measurements,
optimized for each η. Specifically, we use the parametrization
given in Ref. [40]. This parametrization is

|ψ (ε)〉 =
√

1 − ε2

3
(|11〉 + |22〉 + |33〉) + ε|44〉 (11)

and gives a maximally entangled ququart-ququart state for
ε = 1/2. As in the previous case, the measurements per-
formed are projectors. Alice’s measurements x ∈ {1, 2, 3, 4}
have the coefficients

1 = (−u,−u, �p1),

2 = (−v, v, �p2),
(12)

3 = (u, u, �p1),

4 = (v,−v, �p2),

and for Bob’s measurements y ∈ {1, 2, 3, 4} are

1 = (−u, u, �q1),

2 = (−v,−v, �q2),

3 = (u,−u, �q1),

4 = (v, v, �q2), (13)

where �pi = (pi1, pi2) and �qi = (qi1, qi2), with i ∈ {1, 2}. The
normalization condition

∑4
i=1 |ci|2 = 1 is introduced as a con-

straint in the optimization.
We found that stronger violations than the ones obtained

with maximally entangled states can be reached using par-
tially entangled states. This is shown in Fig. 3, where the
violations obtained are compared with the bounds to the
maximal quantum violation of the I4

4422 inequality computed
using the Navascués-Pironio-Acín (NPA) hierarchy [43]. The
change in the slope of the violation given by the partially
entangled states (dashed orange line), at η = 0.84, is due to
an abrupt change in the value of ε in Eq. (11). For η > 0.84,
the optimization yielded a value of ε ≈ 0, which means that
qutrits are enough to achieve these violations. However, for
η � 0.84, ququarts are needed as ε > 0. This change in the
dimension of the systems is likely to be the reason for the
high accuracy of the parametrization in the regions η � 0.75
and 0.92 � η � 0.95.

Using partially entangled states, better bounds for H (A|E )
were achieved, allowing us to improve the threshold to distill
a secret key in this scenario. The key rate as a function of
the detection efficiency is presented in Fig. 1 (dotted orange
lines). The detection efficiency threshold obtained in this case
was η = 0.9317. This corresponds to a reduction in the thresh-
old of 0.0157 with respect to the one obtained using Q4422. To
accomplish this improvement, we had to also optimize Bob’s
measurement Bn+1, targeting the minimum H (A1|Bn+1). No-
tice that in this case the key rate reaches a maximum of
0.89 bits at η = 1, which is higher than the value of 0.4516
bits obtained using Q4422. This is due to the stronger viola-
tion of the I4

4422 inequality achieved with partially entangled
states.

D. Protocol based on the I234 Bell inequality using maximal
ququart-ququart entanglement

The second protocol is constructed around the following
Bell inequality with three inputs and four outputs:

I234 � 8, (14)

with

I234 = p(1, 1|1, 1) + p(1, 2|1, 1) + p(2, 1|1, 1) + p(2, 2|1, 1) + p(3, 3|1, 1) + p(3, 4|1, 1) + p(4, 3|1, 1) + p(4, 4|1, 1)

+ p(1, 1|1, 2) + p(1, 2|1, 2) + p(2, 3|1, 2) + p(2, 4|1, 2) + p(3, 1|1, 2) + p(3, 2|1, 2) + p(4, 3|1, 2) + p(4, 4|1, 2)

+ p(1, 1|2, 1) + p(1, 3|2, 1) + p(2, 1|2, 1) + p(2, 3|2, 1) + p(3, 2|2, 1) + p(3, 4|2, 1) + p(4, 2|2, 1) + p(4, 4|2, 1)

+ p(1, 1|2, 2) + p(1, 3|2, 2) + p(2, 2|2, 2) + p(2, 4|2, 2) + p(3, 1|2, 2) + p(3, 3|2, 2) + p(4, 2|2, 2) + p(4, 4|2, 2)

+ p(1, 1|1, 3) + p(1, 2|1, 3) + p(2, 3|1, 3) + p(2, 4|1, 3) + p(3, 3|1, 3) + p(3, 4|1, 3) + p(4, 1|1, 3) + p(4, 2|1, 3)

+ p(1, 1|2, 3) + p(1, 3|2, 3) + p(2, 2|2, 3) + p(2, 4|2, 3) + p(3, 2|2, 3) + p(3, 4|2, 3) + p(4, 1|2, 3) + p(4, 3|2, 3)

+ p(1, 1|3, 1) + p(1, 4|3, 1) + p(2, 1|3, 1) + p(2, 4|3, 1) + p(3, 2|3, 1) + p(3, 3|3, 1) + p(4, 2|3, 1) + p(4, 3|3, 1)

+ p(1, 1|3, 2) + p(1, 4|3, 2) + p(2, 2|3, 2) + p(2, 3|3, 2) + p(3, 1|3, 2) + p(3, 4|3, 2) + p(4, 2|3, 2) + p(4, 3|3, 2)

+ p(1, 2|3, 3) + p(1, 3|3, 3) + p(2, 1|3, 3) + p(2, 4|3, 3) + p(3, 1|3, 3) + p(3, 4|3, 3) + p(4, 2|3, 3) + p(4, 3|3, 3).

(15)
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This inequality was introduced in Ref. [44] and is tight in the
two-party, three-setting, four-measurement or (2,3,4) scenario
[45]. Its maximum quantum violation, I234 = 9, requires pairs
of ququarts.

The reason for choosing this inequality is that it is the sim-
plest bipartite Bell inequality in which the maximum quantum
violation equals the nonsignaling bound [46].

We chose a quantum realization that leads to the maxi-
mum violation. This realization Q234 is defined as follows.
Each party has a ququart. The initial state of the pair is the
maximally entangled state given in Eq. (7). Each ququart can
be seen as a pair of qubits. Then, each local measurement
can be seen as a pair of compatible measurements on the
corresponding qubit-qubit local system. Specifically, if we
relabel the basis of Alice and Bob as

|1〉 −→ |0〉|0〉,
|2〉 −→ |0〉|1〉,

(16)
|3〉 −→ |1〉|0〉,
|4〉 −→ |1〉|1〉,

then Alice’s measurements can be written as

1 = (
σ (b)

z , σ (a)
x

)
,

2 = (
σ (a)

z , σ (b)
x

)
,

3 = (
σ (a)

z ⊗ σ (b)
z , σ (a)

x ⊗ σ (b)
x

)
. (17)

Similarly, Bob’s measurements can be written as

1 = (
σ (d )

z , σ (c)
z

)
,

2 = (
σ (c)

x , σ (d )
x

)
,

3 = (
σ (c)

x ⊗ σ (d )
z , σ (c)

z ⊗ σ (d )
x

)
, (18)

where σ k
i denotes the i = {x, y, z} Pauli matrix for qubit

k = {a, b, c, d}. The qubits {a, b} correspond to Alice, while
qubits {c, d} to Bob. Bob’s extra input to distill the key is
y = 4 = (σ (d )

z , σ (c)
x ).

The local observables correspond to the three rows (Alice’s
observables) and columns (Bob’s) of the Peres-Mermin table
[47,48]. Previous DI-QKD protocols have used this realization
[49,50].

In addition, the pair of outcomes (±1,±1) that each
measurement yields can also be mapped as (+1,+1) −→ 1,
(+1,−1) −→ 2, (−1,+1) −→ 3 and (−1,−1) −→ 4.

The key rates of this protocol are presented in Figs. 1 and
2. We obtained the following thresholds to distill a secret
key, η � 0.9218 and V � 0.9104. Also notice that since Q234

reaches the maximum value of the I234 inequality, the key rate
achieves its maximum of 2 bits, for η = 1 and V = 1. Our
detection efficiency threshold is lower than the one obtained
with the CHSH-based protocol using a maximally entangled
state (0.924). However, it is still beyond the scope of the
current technology. On the other hand, our visibility threshold,
under the assumption of perfect detection efficiency, shows
that the experiment reported in Ref. [51] has good enough
visibility to distill a secret key (V ≈ 0.95).

E. Protocol based on the I234 Bell inequality using qutrit-qutrit
partially entangled states

We optimized the inequality I234 over the family of states
given by

|ψ〉 = cos θ1 cos θ2|11〉 + cos θ1 sin θ2|22〉
+ sin θ1 cos θ2|33〉 + sin θ1 sin θ2|44〉. (19)

In the most general case, each four-outcome measurement
is specified by 15 parameters. However, using 15 variables
per measurement would make the parameter space extremely
large and impractical to optimize. Therefore, we opted for
trying an ansatz that involved less parameters. Concretely, we
tried three different parametrizations for the measurements.
Our first parametrization was given by projections in the plane
for each qubit,

i = (cos α σz + sin α σx )a ⊗ (cos β σz + sin β σx )b,

j = (cos γ σz + sin γ σx )c ⊗ (cos δ σz + sin δ σx )d , (20)

where i = 1, 2, 3 are Alice’s measurements and j = 1, 2, 3
are Bob’s.

The second parametrization was the one introduced in
Refs. [29,52]. For this parametrization it is convenient to
define the projectors into each subspace for Alice and Bob.
Specifically, we denote by x the measurements that Alice
performs and with y the measurements of Bob. Moreover, the
outputs of the measurements are a for Alice and b for Bob.
The projectors are then given by

a
x = V ( �φx )†|a〉〈a|V ( �φx ),

b
y = V ( �ϕy)†|b〉〈b|V ( �ϕy), (21)

where V ( �φx ) = UFTU ( �φx ) and V ( �ϕy) = U ∗
FTU ( �ϕy). The uni-

tary operators U ( �φx ) and U ( �ϕy) have nonzero elements only
in their diagonal. The elements in the diagonal are exp iφx(k)
for Alice and exp iϕy(l ) for Bob. Also, φx(k) and ϕy(l ) refer
to the components of the real vectors �φx and �ϕy, respectively.
UFT is the Fourier transform. Under this prescription, the
probability is

p(a, b|x, y) = tr
{(

a
x ⊗ b

y

)
ρ
}
. (22)

The third parametrization uses pairs of compatible
measurements as in Eqs. (17) and (18). However, now
each operator, aside from the identity, is replaced by
cos ασz + sin ασx.

The first and second parametrizations do not reach any
violations of the I234 inequality. The third parametrization
achieved values of I234 � 8. However, these are smaller
than the violations obtained by maximally entangled states
together with measurements in Eqs. (17) and (18). As a con-
sequence, none of the models is able to improve the key rate
presented in Fig. 1.

We speculate that for η < 1, there are quantum realizations
that are better than the one we used Q234. Our guess is sup-
ported by the fact that the NPA hierarchy predicts stronger
violations of the I234 when η < 1. In fact, the lowest detection
efficiency required to violate the I234 inequality using the
quantum realization Q234 is η = 0.8828, while the NPA hier-
archy predicts that there is a quantum realization that requires
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FIG. 4. Comparison of the violation of the I234 inequality with
maximally entangled states (dashed blue line) and the maximum
allowed by quantum mechanics (solid black line). The gap between
both realizations increases when detectors are less efficient. The
quantities in both axes are dimensionless.

η ≈ 0.86. The quantum realizations predicted by the NPA
hierarchy can potentially improve the detection efficiency
threshold that we presented in Fig. 1. Further research is re-
quired to find a suitable parametrization and identify the state
and measurements that reach the violations of I234 predicted
by the NPA hierarchy (Fig. 4).

III. CONCLUSIONS

We have presented two DI-QKD protocols whose security
relies on Bell inequalities with more than two inputs and
two outputs. Both protocols were based on behaviors that
display features that are potentially interesting for DI-QKD.
Our best results were obtained with the protocol based on a
behavior using maximally entangled states violating the I234

Bell inequality. We found that this protocol requires a lower
detection efficiency than the protocol based on maximally
entangled states violating the CHSH inequality. Regarding
visibility, we have noticed that previous experiments based on
Q234 could be used to distill a cryptographic key (if η would
have been 1).

Our results could be improved using more general par-
tially entangled states and noise preprocessing [14,19] (see

Sec. II E). We will investigate these possibilities in a future
work.

Summing up, we have addressed the problem of the detec-
tion efficiency in DI-QKD protocols from a different angle
than previous works [14,17–19]. Although our findings are
still not capable to close the gap between theoretical and
practical security, they show that DI-QKD protocols indeed
benefit from the usage of Bell inequalities with more than two
inputs and two outputs and should stimulate further research
in this direction.
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APPENDIX: METHODS

Here, we summarize the method to bound the quantum
conditional entropy H (A|E ) of Brown et al. [16]. They intro-
duced a family of iterated mean quantum Rényi divergences
that is applicable on device-independent tasks. Using this
technique, it is possible to lower bound device-independent
random number generation rates, as well as secret key rates of
DI-QKD protocols. The required quantum Rényi divergence
is obtained after the following optimization (Lemma 1 in
Ref. [16]):

Lemma. Let |ψ〉〈ψ | ∈ D(QAE ), {Ma}a∈A be a POVM on
QA and ρAE = �a|a〉〈a| ⊗ ρE (a) be a cq-state where ρE (a) =
trQA [(Ma ⊗ 1)|ψ〉〈ψ |]. Then, for each k ∈ N, we have

H↑
(αk ) = αk

1 − αk
log QDI

(αk ), (A1)

where

QDI
αk

= max
Vj,a:1� j�k,a∈A

∑
a

tr

{(
Ma ⊗ V1,a + V ∗

1,a

2

)
|ψ〉〈ψ |

}

s.t.
∑

a

V ∗
k,aVk,a � IE

(A2)
V1,a + V ∗

1,a � 0 for all a ∈ A

2V ∗
i,aVi,a � Vi+1,a + V ∗

i+1,a for all 1 � i � k − 1 and a ∈ A.

The family of iterated mean quantum Rényi divergences
is indexed by the parameter αk = 1 + 1

2k−1 , with k being
a positive integer. The optimization in Eq. (A2) is not yet
yielding a device-independent entropy, as it is performed in a

particular Hilbert space. In order to compute the entropy H↑
(αk )

in a device-independent way, the optimization can be relaxed
to a semidefined program through the NPA hierarchy [43].
Whether or not the relaxation of H↑

(αK ) converges to H (A|E )

052436-6



DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION … PHYSICAL REVIEW A 103, 052436 (2021)

for k −→ ∞, it is still an open question. This technique does
not rely on any Bell inequality to estimate H↑

(αk ); instead, it
uses the complete behavior of the system as a constraint of
Eq. (A2), in contrast to the CHSH-based protocol [5].

Since H↑
(αk ) constitutes a valid lower bound of H (A|E ) for

any value of k, we can choose the k that fits better with our
hardware. The calculations of r4422 were performed with k =
2 up to the second level of the NPA hierarchy. The certificates
required approximately 30 GB of RAM. The calculations for
r234 proved to be considerably more demanding given the high
number of inputs and outputs. At first instance, we performed

the calculations with k = 2, but we ran out of memory to
include the necessary monomials to ensure H↑

(αk+1 ) � H↑
(αk ).

Thus, this first estimation was outperformed by the result
with k = 1. Finally, the results presented for r234 were all
calculated with k = 1 (applying the dilation theorem in the
Supplementary Material of Ref. [16]), the NPA hierarchy at
level 2, and adding as many monomials as our hardware
allowed us. The certificates required around 180 GB of RAM.
All the semidefinite programs in this work were constructed
with the Python package ncpol2sdpa and solved with Mosek
[53,54].
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