Automated testing on the analysis of
variability-intensive artifacts: An exploratory
study with SAT Solvers *

Ana B. Sanchez and Sergio Segura

Department of Computer Languages and Systems, University of Seville,
Av Reina Mercedes S/N Seville, Spain

Abstract. The automated detection of faults on variability analysis
tools is a challenging task often infeasible due to the combinatorial com-
plexity of the analyses. In previous works, we successfully automated the
generation of test data for feature model analysis tools using metamor-
phic testing. The positive results obtained have encouraged us to explore
the applicability of this technique for the efficient detection of faults in
other variability-intensive domains. In this paper, we present an auto-
mated test data generator for SAT solvers that enables the generation
of random propositional formulas (inputs) and their solutions (expected
output). In order to show the feasibility of our approach, we introduced
100 artificial faults (i.e. mutants) in an open source SAT solver and com-
pared the ability of our generator and three related benchmarks to detect
them. Our results are promising and encourage us to generalize the tech-
nique, which could be potentially applicable to any tool dealing with
variability such as Eclipse repositories or Maven dependencies analyzers.

1 Introduction

Variability models are a key asset to represent the common and variable features
of a configurable software system. The automated analysis of variability models
deals with the automated extraction of information from the models [1], e.g.
determining the number of possible configurations of a software product. The
analysis operations that can be performed on variability models are often very
complex [1,4]. This hinders the testing of these applications making it difficult,
often infeasible, to determine the correctness of the outputs, i.e. oracle problem.

Feature models are de-facto standard to manage variability in software prod-
uct lines [1]. In previous works [4], we presented an automated test data gen-
erator for the analysis of feature models overcoming the oracle problem using
metamorphic testing [5]. Roughly speaking, we proposed a set metamorphic re-
lations (so-called metamorphic relations) between feature models (inputs) and
the set of products that they represent (expected output). Using these relations,

* This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT Project SETI (TIN2009-07366), and Projects
ISABEL (TIC-2533) and THEOS (TIC-5906) funded by Andalusian Government.

A.Ruiz, L. Iribarne (Eds.): JISBD’2012, pp. 387-392, ISBN:978-84-15487-28-9.
Jornadas SISTEDES’2012, Almeria 17-19 sept. 2012, Universidad de Almerfa.

388 Ana Belén Sanchez and Sergio Segura

we enabled the automated generation of random feature models representing up
to millions of products that were used as test data. Our results were promising
showing the effectiveness of our generator to detect most faults in a few seconds
without the need for a human oracle. We also detected two defects in FaMa and
another two in SPLOT, two popular open source feature model analysis tools.

The positive results obtained in our previous works have encouraged us to
explore the possibility of generalizing our approach to other variability-intensive
domains. As a proof of concept, in this paper we propose using metamorphic
testing for the automated generation of test data for the analysis of proposi-
tional formulas, i.e. SAT problems. In particular, we present a set of metamor-
phic relations between propositional formulas (input) and their set of solutions
(output) and a test data generator based on them. The generator starts by cre-
ating an empty formula that is then extended by adding random variables to
it. At each step, the set of solutions of the formula is computed by using our
metamorphic relations. Complex formulas representing thousands of solutions
can be efficiently generated by applying this process iteratively. Once generated,
solutions are automatically inspected to get the expected output of the analyses
over the formulas, e.g. number of solutions of the formula. In order to show the
feasibility of our approach, we introduced 100 artificial faults (i.e. mutants) in
a popular open source SAT solver and compared the ability of our generator
and three related benchmarks to detect them. As a result, our generator found
98.7% of the faults while the rest of benchmarks only detected 76.3% of them as
a maximum. We may remark that although a number of benchmarks for test-
ing SAT solver exists, they focus on the evaluation of the performance and not
on the functionality. To the best of our knowledge, this is the first work apply-
ing metamorphic testing addressing the automated detection of faults in SAT
solvers.

We are aware of only one related work that also addresses the automated
detection of faults [2]. This work [2] focused on generating random instances
in order to find defects in current solvers. However, in this paper, we focus on
generating not only random instances (test data inputs) for SAT solvers but we
also obtain expected outputs for these data inputs using metamorphic testing.

2 Propositional formulas

A propositional formula consists of a set of literals or variables and a set of log-
ical connectives constraining the values of the variables, e.g. =, A, V, =, <. A
SAT solver is a software package that takes as input a propositional formula and
determines if the formula is satisfiable, i.e. there is a variable assignment that
makes the formula evaluate to true [1]. Input formulas are usually specified in
conjunctive normal form (CNF), that is a standard form to represent proposi-
tional formulas where only three connectives are allowed: =, A, V. Propositional
formulas in conjunctive normal form consists of the conjunction of a number of
clauses, where a clause is a disjunction of a number of literals or their negations.
Consider the following CNF formula: (x1 V —z3) A (—21 V 22 V 23) where x; rep-

Automated testing on the analysis of variability-intensive artifacts: An exploratory
study with SAT Solvers. (Emergente) 389

resents literals and —x; their negations, V represents the or connective and A
represents and connective, resulting in a formula with two disjunctions and one
conjunction. A possible solution for this formula is z1=1, z2=0, z3=1. Hence,
this propositional formula is satisfiable. SAT solving is one of the well known
NP-complete problems [3].

3 Automated metamorphic testing on the analyses of
propositional formulas

3.1 Metamorphic relations on propositional formulas

In this section, we define a set of metamorphic relations between propositional
formulas (i.e. input) and their corresponding set of solutions (i.e. output). Given
a propositional formula f in disjunctive format (i.e. a clause), we say that f’
is a neighbouring formula if it can be derived from f by adding or removing
a literal. Next, we present the metamorphic relations among the solutions of a
propositional formula f and the one of their neighbours f:

#R1 -New positive literal-: Consider the formulas and associated set of solu-
tions depicted in Figure 1. f’ is created from f by adding a new positive literal
(C) to the clause. The relation between the solutions of f and f” can be informally
described as follows: the solutions of {f’ include the solutions of f duplicated and
extended with all the possible values of the new literal (i.e. C=1 and C=0). Also,
f” adds a new solution with the new literal equal to one and the rest of literals

negated.

[A [B [C [f=AvBvC

0 0 0

l A I B I f=AvB Neighbours 1

0 0 (1) - 1

1 Metamorphic relation 1

1 D 1

1

1

Fig. 1. Neighbour formula. New positive literal.

#R2 -New negative literal-: Consider the formulas and associated set of solu-
tions depicted in Figure 2. f’ is created from f by adding a new negated literal
(=C) to the clause. In this case, the solutions of f’ include the solutions of f
duplicated and extended with all the possible values of the new literal (i.e. C=1
and C=0). Also, f’ adds a new solution with the new literal equal to zero and
the rest of literals negated.

#R3 -Existing variable with different state-: Consider the formulas f = AV B
and f/ = AVBV-A. f’is created from f by adding a literal (—A) that already
existed in the clause with opposite state (A). This is known as tautology, i.e. the
formula is true for any variable assignment. This is, the solutions of f’ should
include all possible literal assignments.

390 Ana Belén Sanchez and Sergio Segura

[A | B [f=AvB Neighbours
0 0 0 |« —————
1 Metamorphic relation
1 -~ —— — —
1

Fig. 2. Neighbour formula. New negative literal.

For completeness, we also considered the case in which an existing variable
is added to a clause (e.g. f = AV B and f' = AV BV A). In this case, the set
of solutions of f” and f remains equal.

3.2 Automated test data generation

We propose a process to automatically generate test data for the analyses of
propositional formulas using previous metamorphic relations. The figure 3 il-
lustrates an example of our approach. The generation process is iterative. On
each iteration, a clause (i.e. disjunction) and its set of solutions is computed.
The generation of each clause starts from an empty formula in which random
literals are added creating neighbouring formulas and its corresponding set of
solutions according to the metamorphic relations. These iterations end when all
the clauses of the formula together with their set of solutions have been gen-
erated. At the end of the process, all the clauses are joined using conjunctions
and creating a valid CNF formula. The final set of solutions is calculated as the
intersection of the set of solutions of all the generated clauses. In the example, a
formula with two clauses is created (f = (AV BV —=C) A (AV B)). The formula
has five different solutions, i.e. it is satisfiable.

#R1 #R2
cl=A = cl'=AvB = c1"=AvBv-C

[TA Tecl=A]] [A | B [c1'=AvB
0 0 0

1
1
1

#R1 . . i " Solutions

2=A o 2=AvC Solutions c2 s°'”§'°"s ct e1"n c2°
$1=001 st1=000

[A [C [e2=AvcC S2=011 $2=010 S1=011

SEE === =R N

S$4=110 |ntersection — S$3=101

$5=101 S5=101 S4=110

S6=111 el i $5=111

Fig. 3. Example random propositional formula generation using metamorphic relations

Automated testing on the analysis of variability-intensive artifacts: An exploratory
study with SAT Solvers. (Emergente)

4 Preliminary evaluation

As a part of our proposal, we implemented a prototype test data generator. Our
tool generates random CNF formulas and its expected solutions. The param-
eters for the generation are received as input and include, among others, the
number of literals, the number of clauses and the number of literals per clause.
In order to measure the effectiveness of our proposal, we evaluated the ability
of our test data generator to detect faults in the software under test. We ap-
plied mutation testing on an open source solver for the analysis of propositional
formulas. Mutation testing is a common fault-based testing technique that mea-
sures the effectiveness of test cases. First, simple faults are introduced into a
program creating a collection of faulty versions, called mutants. These mutants
are created from the original program by applying syntactic changes to its source
code. Then, test cases are used to check if the mutants and the original program
return different responses. If a test case distinguishes the original program from
a mutant we say the mutant has been killed and the test case has proved to
be effective at finding faults in the program. Otherwise, the mutant remains
alive. Mutants that keep the program’s semantics unchanged and thus cannot
be detected are referred to as equivalents. Mutation score is the percentage of
killed mutants with respect to the total number of them (discarding equivalent
mutants) and it provides an adequacy measurement of the test suite.

We selected Sat4j!, a popular open source Java SAT solver as good candidate
to be mutated. In particular, we mutated the class Solver.java (53 methods,
2,223 lines of code), main class of the solver. To automate the mutation process,
we used the mutation tool PIT? which showed to be suitable for our approach.
Test cases were generated randomly using our prototype tool as described in
section 3.1. For the evaluation of our approach, we followed three steps: First, we
checked whether the original Sat4j solver passed all the test before its analyses.
All the test cases were passed successfully. Second, we generated the mutants by
applying all the mutation operators available in PIT, a total of 12. Finally, for
each mutant, we ran our test data generator and tried to find a test case that
kills it (a maximum of 250 test cases were generated and ran for each mutant).

Table 1 shows the evaluation results after comparing our approach with other
3 benchmarks from the library SATLIB?. Out of the 100 generated mutants, 22
were manually discarded because they modified code not covered by any of the
benchmarks under evaluation nor our tool. We found that most of them affected
secondary functionality of the program not addressed by the tests (e.g. computa-
tion of statistics). Also, we discarded two more mutants not exercised by any of
the benchmarks and whose semantic equivalence was not clear. This resulted in
a total of 76 mutants being evaluated. Results revealed that our generator found
98.7% of the faults (i.e. 75 out of 76) while the rest of benchmarks only detected
76.3% of them as a maximum. We may mention that our generator provides

! http://www.sat4j.org/
2 http://pitest.org/
3 http://www.satlib.org/

392 Ana Belén Sanchez and Sergio Segura

information about the satisfiability of the formula and its exact set of solutions,
while the benchmarks only report about the satisfiability of the problem. Hence,
with our generator it is possible a more rigorous comparison of the results. For
this reason, our generator got a higher score even with simpler formulas. Finally,
we generated 250 test cases for efficiency but results suggest that the mutation
score could reach 100% by increasing the number of test cases generated.

Test data Literals Clauses Formulas Mutants Alive Score
Our generator 12 24 250 76 1 98.7
SATLIB uf20-91 20 91 250 76 38 50.0
SATLIB uf50-218 50 218 250 76 27 64.5
SATLIB uf20-91-2 20 91 250 76 18 76.3

Table 1. Evaluation results

5 Conclusions and future work

In this paper, we presented a set of metamorphic relations between propositional
formulas and a test data generator based on them. Our results show that the
application of metamorphic testing in the domain of SAT solvers is effective
in detecting most faults without need for a human oracle. To the best of our
knowledge, this is the first work applying metamorphic testing addressing the
automated detection of faults in SAT solvers.

We identify several challenges for our future work. First, we intend to work
in the formal definition of the metamorphic relations and in a more exhaustive
evaluation of our test data generator. Secondly, our results are promising and
encourage us to generalize this technique. SAT problems are the base of many
variability analysis tools such as web configurators, Eclipse repositories or Debian
packages repositories analyzers. In fact, this work has allowed us to automate
testing on CUDF documents where we have already been able to test p2CUDF
automatically, a tool based on Sat4j. Thus, we envision that the concepts shown
here could be applicable to many other variability-intensive domains.

References

1. David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analyses of
feature models 20 years later: A literature review. Information Systems, 2010.

2. R. Brummayer, F. Lonsing, and A. Biere. Automated testing and debugging of sat
and gbf solvers. In Conf. on Theory and Applications of Satisfiability Testing, 2010.

3. S. Cook. The complexity of theorem-proving procedures. In Conference Record of
Third Annual ACM Symposium on Theory of Computing, pages 151-158, 1971.

4. S.Segura, R.Hierons, D.Benavides, and A.Ruiz-Cortés. Automated metamorphic
testing on the analyses of feature models. Information Software Technology, 2011.

5. 7Z.Q.Zhou, DH.Huang, TH.Tse, Z.Yang, H.Huang, and TY.Chen. Metamorphic test-
ing and its applications. In Symposium on Future Software Technology, 2004.

PrMO: An Ontology of Process-reference Models

César Pardo'2, Félix Garcia®, Francisco J. Pino'?, Mario Piattini? and
Maria Teresa Baldassarre®

'IDIS Research Group
Electronic and Telecommunications Engineering Faculty
University of Cauca, Street 5 # 4 - 70.
Kybele Consulting Colombia (Spinoff)
Popaydn, Cauca, Colombia.
{cpardo, fjpino}@unicauca.edu.co

2 ALARCOS Research Group
ITSI, Information Systems and Technologies Department
University of Castilla—La Mancha, Paseo de la Universidad 4, Ciudad Real, Spain
{Felix.Garcia, Mario.Piattini } @uclm.es

3 Department of Informatics, University of Bari.
SER&Practices, SPINOFF, Via E. Orabona 4, 70126, Bari, Italy
baldassarre@di.uniba.it

Resumen. For a couple of decades, process quality has been considered as one
of main factors in the delivery of high quality products. Multiple models and
standards have emerged as a solution to this issue, but the harmonization of
several models in a company for the fulfillment of its quality requirements is no
easy task. The difficulty lies in the lack of specific guidelines and in there not
being any homogeneous representation which makes this labor less intense. To
address that situation, this paper presents an Ontology of Process-reference
Models, called PrMO. It defines a Common Structure of Process Elements
(CSPE) as a means to support the harmonization of structural differences of
multiple reference models, through homogenization of their process structures.
PrMO has been validated through instantiation of the information contained in
different models, such as CMMI-(ACQ, DEV), ISO (9001, 27001, 27002,
20000-2), ITIL, Cobit, Risk IT, Val IT, BASEL II, amongst others. Both the
common structure and the homogenization method are presented, along with an
application example. A WEB tool to support the homogenization of models is
also described, along with other uses which illustrate the advantages of PrMO.
The proposed ontology could be extremely useful for organizations and other
consultants that plan to carry out the harmonization of multiple models.

Keywords: Harmonization of multiple models and standards; homogenization;
mapping; integration; ontology, processes.

A.Ruiz, L. Iribarne (Eds.): JISBD’2012, pp. 393-406, ISBN:978-84-15487-28-9.
Jornadas SISTEDES’2012, Almeria 17-19 sept. 2012, Universidad de Almerfa.

