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Abstract
We consider a cooperative game defined by an economic lot-sizing problem with

heterogeneous costs over a finite time horizon, in which each firm faces demand for

a single product in each period and coalitions can pool orders. The model of

cooperation works as follows: ordering channels and holding and backlogging

technologies are shared among the members of the coalitions. This implies that each

firm uses the best ordering channel and holding technology provided by the par-

ticipants in the consortium. That is, they produce, hold inventory, pay backlogged

demand and make orders at the minimum cost of the coalition members. Thus, firms

aim at satisfying their demand over the planing horizon with minimal operation

cost. Our contribution is to show that there exist fair allocations of the overall

operation cost among the firms so that no group of agents profit from leaving the

consortium. Then we propose a parametric family of cost allocations and provide

sufficient conditions for this to be a stable family against coalitional defections of

firms. Finally, we focus on those periods of the time horizon that are consolidated

and we analyze their effect on the stability of cost allocations.
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1 Introduction

Lot-sizing is one of the most important and also one of the most difficult problems

in production planning. Although lot-sizing and scheduling problems, and their

variants, have been studied by many authors, providing different solution

approaches, looking for more efficient solution approaches is still a challenging

subject. Variants of the lot-sizing problem (henceforth, LSP) with complex setup

and other variants which are more realistic and practical have received less attention

in the literature. There has been little literature regarding problems such as LSP with

backlogging or with setup times and setup carry-over. Since these problems are NP-

hard, fast and efficient heuristics are required. A good survey on the subject is

Karimi et al. (2003).

Also there is little literature for cost-sharing in LSP. Among the pioneers we

mention Van den Heuvel et al. (2007) which focuses on the cooperation in

economic lot-sizing situations (henceforth ELS-situations) with homogeneous costs.

They consider a homogeneous finite horizon model where cost are all equal for all

the players in each period. Each player must satisfy its demand in each period by

producing or carrying inventory from previous stages but backlogging is not

permitted. The main result in that paper is that the cooperative games induced by

ELS-situations enjoy a nonempty core. Subsequently, (Guardiola et al.

2008, 2009, 2021b) present a new class of totally balanced combinatorial

optimization games: production-inventory games (henceforth, PI-games). PI-games

bring the essentials of inventory and combinatorial optimization games. They

provide a cooperative approach to analyze the production and storage of indivisible

items being their characteristic function given as the optimal objective function of a

combinatorial optimization problem. PI-games can be seen as ELS games without

setup costs but with backlogging. (Guardiola et al. 2008, 2009) prove that the Owen

set, the set of allocations which are achievable through dual solutions [see Owen

(1975) and Gellekom et al. (2000)] reduces to a singleton. In addition, that

allocation is always in the core and it defines a population monotonic allocation

scheme. This fact motivates the name of Owen point for this core-allocation on PI-

games. Recently, Guardiola et al. (2021a) introduce new core allocations for PI-

games improving the weaknesses of the Owen point (it may be seen as an altruistic

allocation for any players) and study the structure and complexity of the core of PI-

games. The main difference between the ELS-games by Van den Heuvel et al.

(2007) and PI-games by Guardiola et al. (2009) is that the former considers set up

costs but assume that costs are homogeneous for all players in each period. Hence,

both situations (ELS and PI) are, in general, different.

On the other hand, Xu and Yang (2009) present a cost-sharing method that is

competitive, cross-monotonic and approximate cost recovering for an ELS-game

under a weak triangle inequality assumption, along with numerical results showing

the effectiveness of the proposed method. Li et al. (2014) present a cost-sharing

123

The effect of consolidated periods... 381



method that is cross-monotonic, competitive, and approximate cost recovery, for the

multi-level ELS-game, under a mild condition. This result extends that of ELS-

game of Xu and Yang (2009).

Dreschel (2010) focusses on cooperative lot-sizing games in supply chains.

Several models of cooperation in lot-sizing problems of different complexity that

are analyzed regarding theoretical properties like monotonicity or concavity and

solved with the proposed row generation algorithm to compute core elements; i.e.,

determining stable and fair cost allocations.

In another paper, Gopaladesikan and Uhan (2011) consider a new class of

cooperative cost-sharing games, associated with the ELS-problem with remanufac-

turing options (henceforth, ELSR). They investigate the relative strength and

integrality gaps of various mathematical optimization formulations of ELSR. Using

insights from these results, they study the core of the associated cost-sharing game

and show it is empty, in general. However, for two special cases—zero setup costs,

and large initial quantity of low cost returns—they find that the cost sharing game

has a non-empty core, and that a cost allocation in the core can be computed in

polynomial time.

Zeng et al. (2011) consider the ELS-game with perishable inventory. In this

cooperative game, a number of retailers that have a known demand through a fixed

number of periods for a same kind of perishable goods collaborate to place joint

orders to a single supplier. They first show that an ELS game with perishable

inventory is subadditive, totally balanced and its core is non-empty. Then, they

propose a core-allocation which allocates the unit cost to each period as equally as

possible. Finally, a numerical example is given to illustrate the above results.

Tsao et al. (2013) use the Nash game and the cooperation game in an imperfect

production system to investigate the combined effects of lot-sizing integration,

learning effect, and an imperfect production process on a manufacturer-retailer

channel. They also developed a search procedure to solve the problem described, the

optimal properties and a numerical study are conducted to seek for structural and

quantitative insights into the relationship between the upstream and downstream

entities of the supply chain. Numerical results indicated that the cooperation game

policy created a higher cost reduction under a wide range of parameter settings.

Chen and Zhang (2016) consider the ELS-game with general concave ordering

cost. In that paper, the dual variables are understood as the price of the demand per

unit. They show that a core allocation can be computed in polynomial time under

the assumption that all retailers have the same cost parameters (again homogeneous

costs). Their approach is based on linear programming (LP) duality. Specifically,

they prove that there exists an optimal dual solution that defines an allocation in the

core and point out that it is not necessarily true that every optimal dual solution

defines a core allocation. Toriello and Uhan (2014) also study ELS-games with

general concave ordering costs and show how to compute a dynamic cost allocation

in the strong sequential core of these games, i.e., an allocation over time that exactly

distributes costs and is stable against coalitional defections at every period of the

time horizon.

More recent papers that are related to ELS-games are Masheli and Mohamma-

ditabar (2017), Margaretha and Hartl (2020), and Feng et al. (2021). In Masheli and
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Mohammaditabar (2017) studies a supplier selection model. The joint decision

making of procurement lot-size, supplier selection, production decisions and

shipment policy selection has potential to reduce total supply chain costs. The

authors present a single-buyer multi-suppliers model in a two level supply chain and

a cooperative game theory model is proposed to analyse the decisions. The selected

suppliers and total supply chain costs are found. The authors show that the

cooperative model could result in a stable solution with same total supply chain cost

as the centralized model and also, when suppliers have equal opportunity costs for

each single production capacity, selected suppliers are determined independent from

the opportunity cost but when the suppliers have different opportunity costs, the

selected suppliers are influenced by the opportunity cost that they have. A numerical

example describes the findings. Margaretha and Hartl (2020) introduce the

collaborative multi-level lot-sizing problem with cost synergies. This arises if

producers can realise reductions of their costs by providing more than one product

in a specific time horizon. The authors propose a decentralised mechanism, where

producers do not have to reveal their individual items costs. Additionally, a Genetic

Algorithms-based centralised approach is developed, which we use for benchmark-

ing. Their study shows that this approach comes very close to the a central plan,

while in the decentralised one no critical information has to be shared. Finally, Feng

et al. (2021) profit allocation rules for joint replenishment among retailers under a

carbon cap-and-trade policy. They show that joint replenishment can increase

participants’ total profit and reduce their total amount of carbon emissions. To

allocate the total profit from joint replenishment to the retailers, a joint

replenishment game with the carbon cap-and-trade policy is introduced. It turns

out this game is convex. Based on this, they design an altruistic profit core

allocation rule by categorizing retailers into efficient ones and non-efficient ones,

with the efficient retailers being altruistic who will transfer their surplus carbon

allowance to those non-efficient ones. Moreover, they get results concerning how

much carbon allowance, to whom and at what price retailers are will- ing to transfer

in the grand coalition, by considering their altruistic parameters. Their results show

that the retailer with the highest altruistic parameter value obtains all the surplus

carbon allowance from other retailers, and this particular retailer transfers his

surplus carbon allowance to the retailer with the second-highest altruistic parameter

value. These results indicate that people do not help other people uniformly; rather,

they do so according to the generosity of other people.

In this paper, we study another class of totally balanced combinatorial

optimization games called setup-inventory games (henceforth, SI-games) that arises

from cooperation in lot-sizing problems with heterogeneous costs. Each firm faces

demand for a single product in each period and coalitions can pool orders. Firms

cooperate which implies that each firm uses the best ordering channel and holding

technology provided by the participants in the consortium. That is, they produce,

hold inventory, pay backlogged demand and make orders at the minimum cost

among the members of the coalition. Thus, firms aim at satisfying their demand over

the planing horizon with minimal operation cost. In principle sharing private

information can be seem as a limitation of this model. However, the reader may

notice that this can be easily overcome. To prevent disclosing private information
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one can assume that firms communicate via a mediator who attempts to streamline

their decisions without restricting their freedom. The mediator implements the

cooperation mechanism without disclosing information, reaching a win-win situation

for all involved entities and giving rise to acceptable costs allocations.

Therefore, each firm must solve the Wagner and Whitin extended model with

backlogging costs, solved by Zangwill (1969) using dynamic programming

techniques. Modeling cooperation in production and holding costs has already

appeared in literature. Additionally, our cooperation in backlogging is also natural,

but new: all the members of a coalition pay backlogging cost (compensation for

delayed demand) by the cheapest cost among those in the coalition. The strength of

the coalitions increase with their size so that larger coalitions can get better

opportunities in the market. To illustrate this form of cooperation today, let us

consider four automotive companies, Peugeot (P), Citroen (C), Fiat (F) and Iveco

(I). They all use the same chassis for their cars and buy it from a Chinese supplier

twice a year (2 periods). Peugeot is interested in buying a larger quantity of chassis

to avoid supply problems from China and a possible increase in transportation costs.

In addition, P is able to negotiate with the Chinese supplier and get very competitive

unit and period production costs for large order sizes. P then proposes to the other

companies to place a joint order for chassis. Citroen thinks this is a good idea

because it has a large warehouse in Vigo where the entire order can be always

stored. Iveco proposes to take advantage of its good contacts with transport

companies and to hire a ship to transport the joint orders from China to Vigo. The

fixed order and transport costs are included in the set up costs. Fiat analyzes the

proposal and, although it does not have a long delay per period in the delivery of its

cars, and its penalty costs are the lowest, it concludes that it turns out profitable. The

four companies then agree and taking the unit production costs of P, the holding

costs of C, the setup costs of I and the backlogging costs of F, they place a joint

order with the lowest total cost c(N). We should note that the cooperation of the four

companies generates a reduction in the backlogging costs of P, C and I (to those of

F) and thus it is profitable for the consortium.

SI-games are an extension of PI-games (Guardiola et al. 2009) since the latter do

not include setup costs. The reader may note that whenever set up costs are zero in

all periods SI-games become PI-games. Moreover, SI-games also generalize ELS-

games in that all considered costs can be different for the different players in each

period and, in addition, backorders are permitted.

The contribution of this paper is to prove that the above mentioned mode of

cooperation is always stable in that there exist fair allocations of the overall cost of

the system among the members of a coalition so that no subgroup of agents is better

off by leaving the consortium (every SI-game has a nonempty core). Then we

propose a parametric family of cost allocations for SI-games: the extended Owen

points. We provide sufficient conditions for this to be a stable family against

coalitional defections of firms, that is, every extended Owen point is a core-

allocation. Finally, we focus on those periods of the time horizon that are

consolidated and analyze their effect on the stability of cost allocations. Specifically

we prove that for consolidated SI-situations, the single extended Owen point

belongs to the core of the game. Our paper contributes as well to the literature on the
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analysis of problems in Operations Research by means of cooperative games. The

interested reader is referred to Borm et al. (2001) for further details on operations

research games (including inventory games).

2 Model

We start by describing the basic form of lot-sizing problems (see Johnson and

Montgomery (1974) for further details). We focus here on periodic review inventory

problems where a setup cost is incurred when placing an order, which in turns

makes the cost structure non-linear.

A setup-inventory problem (hereafter SI-problem) can be described as follows.

We consider T periods, numbered from 1 to T, where the demand for a single

product occurs in each of them. This demand is satisfied by own production, and can

be done in three different periods: (i) the same period, (ii) an earlier period (as

inventory), (iii) a later period (as backlogging). In each production period, a fixed

cost must be paid. Therefore, the model includes production, inventory holding,

backlogging and setup costs. We assume, without loss of generality, the initial and

terminal inventories are set to zero. The objective is to find an optimal ordering

plan, that is a feasible ordering plan that minimizes the sum of setup, production,

inventory holding and backlogging cost.

For each period t ¼ 1; . . .; T we let:

– dt :¼ demand in period t and d ¼ ðd1; . . .; dTÞ:
– kt :¼ setup cost in period t and k ¼ ðk1; . . .; kTÞ:
– ht :¼ unit inventory carrying costs in period t and h ¼ ðh1; . . .; hTÞ:
– bt :¼ unit backlogging carrying costs in period t and b ¼ ðb1; . . .; bTÞ:
– pt :¼ unit production costs in period t and p ¼ ðp1; . . .; pTÞ:
– qt :¼ order size in period t.
– It :¼ ending inventory in period t.
– Et :¼ ending backlogged demand in period t.

We consider that costs and demand can never be negative. Furthermore, the decision

variables qt, It and Et take integer values. The single-item formulation of the

problem (T, d, k, h, b, p) is as follows:

ðSIÞ min
XT

t¼1

ptqt þ htIt þ btEt þ ktcðqtÞ½ �

s.t.I0 ¼ IT ¼ E0 ¼ ET ¼ 0;

It � Et ¼ It�1 � Et�1 þ qt � dt; t ¼ 1; . . .; T ;

qt; It; Et; non-negative, integer; t ¼ 1. . .; T ;

where,
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cðqÞ :¼
1 if q[ 0;

0 if q ¼ 0:

�

Zangwill (1969) proved that there exists an optimal solution to (SI) such that, for

each t ¼ 1; . . .; T , Et [ 0 and It [ 0 simultaneously; i.e., it is not optimal to divide

the production to satisfy demand over multiple periods. We define a feasible

ordering plan for a SI-problem as r 2 RT where rt 2 T [ f0g denotes the period

where demand of period t is ordered. We assume the convention that rt ¼ 0 if and

only if dt ¼ 0. It means that there is no order placed to satisfy a null demand at

period t. Any ordering plan r with r 2 R%T and rt 2 T [ f0gðrt ¼
0 if and only if dt ¼ 0Þ is implementable since it would be a production plan that

firms could carry it out. A feasible ordering plan must be a production plan that

meets all the requirements on satisfying production and demand. For instance, if

rt ¼ 0 for all periods t and there is some positive demand, then this plan would not

be feasible since it would violate the condition of the optimization problem (SI) that

requires satisfying the demand of all the periods. Moreover, we define PðrÞ 2 RT as

the cost vector associated to ordering plan r (henceforth: cost-plan vector), where

PtðrÞ :¼

0 if rt ¼ 0;

pt; if rt ¼ t;

prt þ
Pt�1

r¼rt
hr; if 1� rt\t;

prt þ
Prt

r¼tþ1 br; if t\rt � T :

8
>>><

>>>:

If r� is an optimal ordering plan for a SI-problem, then the optimal cost is given by

vðSIÞ ¼ Pðr�Þ0d þ dðr�Þ0k ¼
XT

t¼1

Ptðr�Þdt þ dtðr�Þktð Þ;

where, dðr�Þ ¼ dtðr�Þð Þt2T and

dtðr�Þ :¼
1 if 9r 2 T : r�r ¼ t ;

0 otherwise.

�

Notice that if all setup costs are zero, the problem we are dealing with is a PI-

problem (see Guardiola et al. 2009, 2021b). Moreover, although the model assumes

that companies produce their demand, we can interchangeably consider the case

where demand is satisfied either by producing or purchasing. One has simply to

interpret that the purchasing costs can be ordering costs (set up costs) and unit

purchasing costs (variable costs).

3 Cooperation in lot-sizing with heterogeneous costs

Next we address a variant of this model where several firms, facing each one a SI-

problem, coordinate their actions to reduce costs. This coordination is driven by

sharing ordering channels, backlogged and inventory carrying technologies. This

means that cooperating firms make a joint order and pay backlogged and inventory
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carrying demand at the cheapest costs among the members of the coalition at each

period. Formally, a setup-inventory situation (henceforth, SI-situation) is a tuple

(N, D, K, H, B, P) where:

– N ¼ f1; . . .; ng is the set of players.

– D ¼ ½d1; . . .; dn�0 is an integer demand matrix, where each row corresponds to

the demand of a player, that is, di ¼ ½di1; . . .; diT �
0:

– K ¼ ½k1; . . .; kn�0 is a setup cost matrix, where ki ¼ ½ki1; . . .; kiT �
0:

– H ¼ ½h1; . . .; hn�0 is an inventory carrying costs matrix, where hi ¼ ½hi1; . . .; hiT �
0:

– B ¼ ½b1; . . .; bn�0 is a backlogging carrying costs matrix, where bi ¼ ½bi1; . . .; biT �
0:

– P ¼ ½p1; . . .; pn�0 is a production costs matrix, where pi ¼ ½pi1; . . .; piT �
0
.

To simplify the notation, we define Z as a matrix in which all costs are included, that

is, Z :¼ ðK;H;B;PÞ: A cost TU-game is a pair (N, c) , where N is the finite player

set, PðNÞ is the power set of N (this is to say the set of all coalitions of N) and

c : PðNÞ ! R the characteristic function satisfying cð£Þ ¼ 0: The subgame related

to coalition S; cS; is the restriction of the mapping c to the subcoalitions of S. A cost

allocation will be x 2 Rn and, for every coalition S � N we shall write xðSÞ :¼P
i2S xi the cost-sharing to coalition S (where xð£Þ ¼ 0Þ:
For each SI-situation (N, D, Z), we associate a cost TU-game (N, c) where, for

any nonempty coalition S � N; cðSÞ is the optimal value of the optimization

problem SI(S), defined as:

ðSIðSÞÞ min
XT

t¼1

ðpSt qt þ hSt It þ bSt Et þ kSt cðqtÞÞ

s.t.I0 ¼ IT ¼ E0 ¼ ET ¼ 0

It � Et ¼ It�1 � Et�1 þ qt � dSt ; t ¼ 1; . . .; T ;

qt � 0; It � 0; Et � 0; and integers, t ¼ 1; . . .; T ;

with

pSt :¼ min
i2S

fpitg; hSt :¼ min
i2S

fhitg; bSt :¼ min
i2S

fbitg; kSt :¼ min
i2S

fkitg; dSt :¼
X

i2S
dit :

Notice that for all nonempty S � N the characteristic function c can be rewritten as

follows:

cðSÞ ¼ PSðrSÞ0dS þ dðrSÞ0kS ¼
XT

t¼1

PS
t ðrSÞdSt þ dtðrSÞkSt

� �
;

where rS;PS
t ðrSÞ 2 RT are the optimal ordering plan and the cost-plan vector

associated to SI(S), respectively. Every cost TU-game defined in this way is what we

call a setup-inventory game (SI-game).

The reader may notice that every PI-game (as introduced by Guardiola et al.

2009) is a SI-game with K ¼ 0: Hence the class of PI-games is a particular subclass

of the SI-games.
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First, we wonder whether the above model of cooperation is stable, i.e., whether

there is a fair division of the total cost among the players such that no group of them

has incentives to leave. As we had already announced the concept of core provides a

direct answer to that question. The core of the game (N, c) consists of those cost

allocations which divide the cost of the grand coalition in such a way that any other

coalition pays at most its cost by the characteristic function. Formally,

CoreðN; cÞ :¼ fx 2 Rn : xðNÞ ¼ cðNÞ and xðSÞ� cðSÞ for all S 	 Ng.
In the following, fair allocations of the total cost will be called core-allocations.

Bondareva (1963) and Shapley (1967) independently provide a general

characterization of games with a non-empty core by means of balanceness. A

collection of coalitions in N, B � PðNÞ is a balanced collection if there exist

nonnegative weights kSf gS2B such that
P

S2B:i2S kS ¼ 1 for all i 2 N. Those weights

kSf gS2B are called balancing coefficients. A cost game (N, c) is balanced if for every

balanced collection B with balancing coefficients fkSgS2B it holds that
X

S2B
kScðSÞ� cðNÞ:

Then, Bondareva and Shapley prove that (N, c) has a nonempty core if and only if it

is balanced. In addition, it is totally balanced game if the core of every subgame is

nonempty. Totally balanced games were introduced by Shapley and Shubik in the

study of market games (see Shapley and Shubik 1969).

It is important to remark that even though the problems that define SI-games have

totally unimodular constraint matrices, dual solutions do not induce core solution

throughout the Owen construction. The reason is because the mixed integer linear

programming reformulation of SI(S) does not have a strong dual (Recall that a pair

of dual problems without duality gap are said to be strong dual (Tamir 1992)).

Therefore, the question whether the core of the corresponding game is empty or not

is a challenging query and its study makes sense.

The main result of this section states that the cooperation in lot-sizing problems

with heterogeneous costs is always stable. In other words, SI-games are balanced. In

what follows we include a technical lemma that helps in proving the following

theorem. Actually, it provides a procedure for constructing new ordering plans out

of existing ones. The rationale behind this construction is similar to the one used in

Van den Heuvel et al. (2007).

Lemma 1 Let B be a balanced collection of coalitions with balancing coefficients

fkSgS2B. Assume that for each coalition S 2 B, pS is the optimal order plan for the

problem ðT ; dS; kN ; hN ; bN ; pNÞ. Let r be the smallest positive integer such that lS :

¼ rk�S 2 Zþ for all S 2 B where fk�SgS2B are irreducible rational numbers bounded

above by 1 and greater than or equal to fkSgS2B (Recall that irreducible refers to

numeric fractions that cannot be simplified, that is, fractions such that the

numerator and the denominator are coprime). Then, there exist fw jgj¼1...;r feasible

order plans for the problem ðT; dN ; kN ; hN ; bN ; pNÞ satisfying (i), (ii) and (iii):

(i) For each t, there exists SðjÞ 2 B such that w j
t ¼

pSðjÞt if dNt [ 0;
0 otherwise.

�
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(ii) S(j) is used at most rk�SðjÞ times 8j ¼ 1; . . .; r.

(iii) For any j ¼ 1; . . .; r; PN
t ðpSðjÞÞ �PN

t ðpSÞ for all S 6¼ SðiÞ; 8i ¼ 1; . . .; r.

Proof The proof of this lemma is constructive so that at the end we will have a

procedure to actually construct the corresponding order policies fw jgj¼1...;r.

Let B be a balanced collection and fkSgS2B their corresponding balancing

coefficients. Take k�S as a rational number greater than or equal to kS for all S 2 B.
There exists r 2 N being the smallest positive integer such that lS ¼ rk�S 2 Zþ for

all S 2 B. Notice that this number r satisfies

m :¼
X

S2B
rk�S � r; ð1Þ

since
P

S2B k
�
S �

P
S2B kS � 1.

Consider the following artificial set of coalitions, namely BA . For each coalition

S 2 B, consider lS ¼ rk�S replicas of S in the set BA. Therefore, we have in total m
coalitions in the new collection (see (1)). We assume an arbitrary ordering of these

coalitions so that we can refer, without confusion, to any coalition, say Sj, by its

index in such a sequence. Moreover, let pSj be the optimal order plan corresponding

to the problem ðT ; dSj ; kN ; hN ; bN ; pNÞ, for each j ¼ 1; . . .;m.

Then we proceed to construct the feasible order plans fwjg. For each period t,
1� t� T set:

i) w j
t ¼ 0 for all j ¼ 1; . . .; r if dNt ¼ 0.

ii) If dNt [ 0 do the following. Define

N�
t ¼fi 2 N : dit [ 0g;
Ct ¼fSj : N�

t \ Sj 6¼ ;; j ¼ 1; . . .;mg:
ð2Þ

Notice that N�
t 6¼ ; and moreover fig 	 N�

t since there exists always at least

one agent i 2 N such that dit [ 0, otherwise dNt ¼ 0. Therefore,P
S2B;i2S rk

�
S � r; and thus jCtj � r. Arrange the coalitions in Ct in non-

decreasing sequence , Sð1Þ; Sð2Þ; � � � ; SðjCt jÞ, with respect to the values of

fPN
t ðpSjÞgSk2Ct . It is then clear that:

PN
t ðpSð1Þ Þ �PN

t ðpSð2Þ Þ � . . .�PN
t ðpSðjCt jÞ Þ: ð3Þ

Finally, we set w j
t ¼ p

SðjÞ
t for j ¼ 1; . . .; r. Notice that since jCtj � r this

definition is well-stated.

The above construction satisfies the thesis of the lemma. h

The following example illustrates how to implement the aforementioned

procedure.

Example 1 Consider the following SI-situation with three players and four periods.

Notice that all players have the same costs but different demands.

123

The effect of consolidated periods... 389



Demand Production Inventory Backlogging Setup

P1 1 1 3 2 1 1 2 2 1 2 2 1 1 1 1 1 3 1 1 9

P2 2 1 8 2 1 1 2 2 1 2 2 1 1 1 1 1 3 1 1 9

P3 2 1 9 2 1 1 2 2 1 2 2 1 1 1 1 1 3 1 1 9

Let B :¼ f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gf g be a balanced collection of coalitions

with balancing coefficients fkSgS2B ¼ 1
3
; 1
3
; 1
3
; 1
3

� �
: In this case fk�SgS2B ¼ fkSgS2B

and r ¼ 3:
Next table shows the optimal ordering plans and the corresponding cost plan

vectors for the problem ðT; dS; kN ; hN ; bN ; pNÞ for each coalition S 2 B.

The reader may notice that there always exist three feasible order plans for the

problem ðT ; dN ; kN ; hN ; bN ; pNÞ given by

These plans can be built by means of the following recursive procedure: for all

t ¼ 1; 2; 3; 4

– w1
t ¼ pSð1Þt such that Sð1Þ ¼ argmin PN

t ðpSÞ
� �

;

– w2
t ¼ pSð2Þt such that Sð2Þ ¼ argmin PN

t ðpSÞ : S 6¼ Sð1Þ
� �

;

– w3
t ¼ pSð3Þt such that Sð3Þ ¼ argmin PN

t ðpSÞ : S 6¼ Sð1Þ; Sð2Þ
� �

;

In addition, for all S 6¼ Sð1Þ; Sð2Þ; Sð3Þ; PN
t ðpSÞ�PN

t ðpSðjÞÞ ¼ PN
t ðw jÞ, for all t ¼

1; 2; 3; 4 and all j ¼ 1; 2; 3.

Theorem 1 Every SI-game (N, c) associated to a SI-situation (N, D, Z) is
balanced.

Proof Let B 	 2N be a balanced collection and kSf gS2B their corresponding

balancing coefficients. Then,

S pS1 pS2 pS3 pS4 PN
1 ðpSÞ PN

2 ðpSÞ PN
3 ðpSÞ PN

4 ðpSÞ

{1,2} 1 2 3 3 1 1 2 4

{1,3} 2 2 3 3 2 1 2 4

{2,3} 1 2 3 3 1 1 2 4

{1,2,3} 1 2 3 4 1 1 2 2

j w j
1 w j

2 w j
3 w j

4 PN
1 ðw

jÞ PN
2 ðw

jÞ PN
3 ðw

jÞ PN
4 ðw

jÞ

1 1 2 3 4 1 1 2 2

2 1 2 3 3 1 1 2 4

3 2 2 3 3 2 1 2 4
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X

S2B
kScðSÞ ¼

X

S2B
kS PSðrSÞ0dS þ dðrSÞ0kS
� �

�
X

S2B
kS PNðrSÞ0dS þ dðrSÞ0kN
� �

�
X

S2B
kS PNðpSÞ0dS þ dðpSÞ0kN
� �

;

where pS for each S 2 B is an optimal order plan for the SI-problem

ðT; dS; kN ; hN ; bN ; pNÞ.
Our goal is to prove that

X

S2B
kS PNðpSÞ0dS þ dðpSÞ0kN
� �

� cðNÞ: ð4Þ

According to the construction in Lemma 1, take ke
S

S as a rational number greater

than or equal to kS such that

ke
S

S � kS ¼ eS ¼ 0 if kS is rational

ke
S

S � kS ¼ eS [ 0 otherwise:

(
ð5Þ

There exists r 2 N being the smallest positive integer for which rke
S

S is integer for

all S 2 B. Then (4) can be rewritten as

X

S2B
rke

S

S PNðpSÞ0dS þ dðpSÞ0kN
� �

�
X

S2B
reS PNðpSÞ0dS þ dðpSÞ0kN
� �

� rcðNÞ: ð6Þ

Recall the set BA introduced in the proof of Lemma 1. For each coalition S 2 B,
consider lS ¼ rk�S replicas of S in the set BA. Therefore, we have in total m
coalitions in the new collection (see (1)). We assume an arbitrary ordering of these

coalitions so that we can refer, without confusion, to any coalition, say Sj, by its

index in such a sequence. Then, using this set the first term in the left-hand side of

(6) can be rewritten as

Xm

j¼1

PNðpSjÞ0dSj þ dðpSjÞ0kN
� �

¼
Xm

j¼1

XT

t¼1

PN
t ðpSjÞd

Sj
t þ dtðpSjÞkNt

� �
ð7Þ

¼
XT

t¼1

Xn

i¼1

dit
X

fk : Sj 3 ig
PN
t ðpSjÞ þ

XT

t¼1

Xm

j¼1

dtðpSjÞkNt : ð8Þ

Now, the expression in (8) is stated as:
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XT

t¼1

Xn

i ¼ 1

dit ¼ 0

dit
X

fk : Sj 3 ig
PN
t ðpSjÞ þ

Xn

i ¼ 1

dit [ 0

dit
X

fk : Sj 3 ig
PN
t ðpSjÞ

0
BBBBB@

1
CCCCCA

þ
XT

t¼1

Xm

j¼1

dtðpSjÞkNt :

ð9Þ

From the above formula and using the definition in (2) we get:

XT

t¼1

Xn

i ¼ 1

dit [ 0

dit
X

fk : Sj 3 ig
PN
t ðpSjÞ þ

XT

t¼1

Xm

j¼1

dtðpSjÞkNt �
XT

t¼1

Xn

i¼1

dit
Xr

j¼1

PN
t ðw

jÞ

þ
XT

t¼1

Xr

j¼1

dtðw jÞkNt

ð10Þ

Hence, since
Pn

i¼1 d
i
t ¼ dNt , the right-hand side of (10) equals the following:

¼
Xr

j¼1

XT

t¼1

PN
t ðw

jÞdNt þ dtðw jÞkNt
� �

�
Xr

j¼1

XT

t¼1

PN
t ðrNÞdNt þ dtðrNÞkNt

� �

¼
Xr

j¼1

cðNÞ ¼ rcðNÞ:

ð11Þ

Thus, finally from (7) and (11) we get the following inequality:

X

S2B
rke

S

S PNðpSÞ0dS þ dðpSÞ0kN
� �

� rcðNÞ; 8keSS satisfying ð5Þ: ð12Þ

Hence, taking limit in (12) when ke
S

S ! kS for all S 2 B we obtain:

X

S2B
kS PNðpSÞ0dS þ dðpSÞ0kN
� �

� cðNÞ;

what concludes the proof. h

We note in passing that every subgame of a SI-game is a new SI-game. Thus,

Theorem 1 implies that every SI-game is totally balanced and therefore
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subadditive1. Moreover, SI-games are neither monotonous (see example 5) nor

concave (see Example 4.4 in Guardiola et al. 2009).

Remark 1 From the central part of the proof of Theorem 1, we deduce that the

balanced character is ensured for any balanced collection with rational balancing

coefficients. Observe that from its definition any set of balancing coefficients of a

balanced collection of coalitions has to satisfy the conditions that define the feasible

set of the following linear program. Therefore, balancing coefficients are feasible

solutions of this problem.

max
X

S	N

kScðSÞ

s.t.
X

S:S3i
kS ¼ 1 i ¼ 1; . . .; n

kS � 0 8S 	 N:

Therefore, since the feasible region of the above problem is rational polytope and

thus, it has all its extreme points being rational numbers we deduce that bal-

ancedness holds for those choices. In addition, any non rational family of balanced

coefficients must be a convex combination of extreme points in this polyhedron.

Hence, once balancedness is proved for any rational collection of balancing coef-

ficients, we can apply the following construction to the general case of real coef-

ficients without taking limit of sequences as done in the proof of Theorem 1.

Let B be a balanced collection with non-rational balancing coefficients fkBSgS2B.
There exist B1; . . .;Bk balanced collections with rational balancing coefficientsn
fkB1

S gS2B1 ; . . .; fkB
k

S gS2Bk

o
and a ¼ ða1; . . .; akÞ� 0,

Pk
i¼1 a

i ¼ 1 such that B ¼
Sk

i¼1 B
i and kBS ¼

Pk
i¼1 a

ikB
i

S . (We assume that kB
i

S ¼ 0 whenever S 62 Bi.) Finally,

X

S2B
kBS cðSÞ ¼

X

S2B

Xk

i¼1

aikB
i

S cðSÞ ¼
Xk

i¼1

ai
�X

S2Bi

kB
i

S cðSÞ
�
� cðNÞ:

In fact, from the above argument we deduce something more general: proving

balancedness for collections with rational balancing coefficients suffices.

4 Extended Owen points

We have just proven the stability of the grand coalition, in the sense of the core. We

know that there always exists a core-allocation for SI-games but we do not know

how to construct it. This section is devoted to find sufficient conditions for the

extended Owen point to belong to the core.

The Owen point, introduced in Guardiola et al. (2009), is a core-allocation for PI-

games which represents the cost that each player has to pay when producing at the

minimum operational cost (see also Guardiola et al. (2008)). If we consider a SI-

1 It is well known that every totally balanced cost game is subadditive.
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situation (N, D, Z) with K ¼ 0, that is a PI-situation, the Owen point, o ¼ ðoiÞi2N , is
given by

oi :¼
XT

t¼1

PN
t ðrNÞdit; for all i 2 N:

In this section, we introduce a parametric family of cost allocations with the flavor

of the Owen point but appropriate to SI-games. We call it the family of extended

Owen points. The interested reader is referred to Perea et al. (2009, 2012) for

alternative extensions of the concept of Owen point. Before defining this new family

of cost allocations, we need to introduce some previous concepts.

Let (N, D, Z) be a SI-situation and (N, c) the associated SI-game. We define the

reduced SI-situation associated to (N, D, Z) as a SI-situation ðN;D; eZÞ with eZ :¼
ð eK ; eH ; eB; ePÞ where

eK :¼ ½kN ; . . .; kN �0; eH :¼ ½hN ; . . .; hN �0; eB :¼ ½bN ; . . .; bN �0; eP :¼ ½pN ; . . .; pN �0:

Note that reduced SI-situations are the simplest SI-situations in that all their costs

(the lowest possible costs for each period) are the same for all players in all periods.

We denote by ðN; ecÞ the cost game associated to the reduced SI-situation

ðN;D; eZÞ. Notice that ecðSÞ� cðSÞ for all S 	 N and ecðNÞ ¼ cðNÞ: Hence

CoreðN; ecÞ � CoreðN; cÞ: Clearly, each ELS-situation corresponds with a reduced

SI-situation for an appropriate choice of parameters since the costs involved in each

period are the same for all the players (see Van den Heuvel et al. 2007). Hence,

ELS-situations are particular cases of SI-situations.

Next we define the following sets:

– Set of ordering periods: TS :¼ t 2 T : dtðrSÞ ¼ 1
� �

for all S � N. It is easy to

check that,

XT

t¼1

dtðrSÞkSt ¼
X

t2TS

kSt :

– Set of consolidated periods: ! :¼ ft 2 T : 9i 2 Nsuch that dtðrSÞ ¼ 1

for all S � N with i 2 Sg: A period is consolidated if there exists at least one

player such that he forces placing an order at this period to any coalition that he

belongs to.

We can distinguish two classes of costs for every coalition S � N: Variable costs

PSðrSÞ0dS; which depends on demands, and non-consolidated fixed costsP
t2TSn! kSt . Next we define for each S � N

NðSÞ :¼ PNðrNÞ0dS � PSðrSÞ0dS;
MðSÞ :¼

X

t2TNn!
kNt �

X

t2TSn!
kSt :
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Notice that N(S) and M(S) represent the difference between the ordering plans rS

and rN related to variable and non-consolidated fixed costs.

We are ready now to define the family of extended Owen points.

xðaÞ 2 RN : a 2 RN
þ such that aðNÞ[ 0

� �
ð12Þ

where

xiðaÞ :¼
XT

t¼1

PN
t ðrNÞdit þ

X

t2!:i2Jt

kNt
Jtj j þ

ai
aðNÞ

X

t2TNn!
kNt

for all i 2 N and Jt :¼ fi 2 N : dtðriÞ ¼ 1g:
Notice that the above family of cost allocation is a parametric family depending

on a 2 RN
þ such that aðNÞ[ 0:

Next proposition shows that, if the optimal ordering plan for the grand coalition

reduces variable and non-consolidated fixed costs with respect to any coalition

S � N, then the family of extended Owen points is a core-allocation family.

Proposition 1 Let (N, D, Z) a SI-situation and (N, c) the corresponding SI-game. If

NðSÞ;MðSÞ� 0 for all S � N; then for each a 2 RN
þ such that aðNÞ[ 0; the

allocation xðaÞ ¼ ðx1ðaÞ; . . .;xnðaÞÞ defined in (12) is a core-allocation.

Proof Let (N, D, Z) be a SI-situation and (N, c) the corresponding SI-game. Then,

X

i2S
xiðaÞ ¼

XT

t¼1

PN
t ðrNÞdSt þ

X

i2S

X

t2!:i2Jt

kNt
Jtj j þ

aðSÞ
aðNÞ

X

t2TNn!
kNt ð13Þ

Note that,
P

i2S
P

t2!:i2Jt
kNt
Jtj j �

P
t 2 !

dtðrSÞ ¼ 1

Jtj j kSt
Jtj j since kNt � kSt and

i 2 S : i 2 Jtf gj j � Jtj j: Therefore (13) is less than or equal to:

XT

t¼1

PS
t ðrSÞdSt þ

X

t 2 !

dtðrSÞ ¼ 1

Jtj j k
S
t

Jtj j þ
aðSÞ
aðNÞ

X

t2TSn!
kSt þ NðSÞ þ aðSÞ

aðNÞMðSÞ
	 


�
XT

t¼1

PS
t ðrSÞdSt þ

XT

t¼1

dtðrSÞkSt ¼ cðSÞ:

It is easy to check that x is efficient. Hence, x 2 CoreðN; cÞ: h

The above result is illustrated in the next two examples.
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Example 2 Consider the following SI-situation with three periods and two players:

The corresponding SI-game is given by:

Next table shows the optimal ordering plans, the corresponding cost-plan vectors,

and the differences between the ordering plans:

Since NðSÞ;MðSÞ� 0 for all S � N; we can conclude that

ð2; 4Þ þ 1

aðNÞ ða1; a2Þ :
ai 2 Rþ 8i 2 N

with aðNÞ[ 0

� �
� CoreðN; cÞ:

The following example shows that the family of extended Owen points, at times,

can be a singleton.

Example 3 Consider the following SI-situation with three periods and three players:

Demand Production Inventory Backlogging Setup

P1 2 0 0 1 1 1 1 1 1 6 6 1 5 5 1

P2 0 2 2 1 1 1 0 0 1 0 0 1 5 5 5

dS

1 dS

2 dS

3 pS

1 pS

2 pS

3 hS

1 hS

2 hS

3 bS

1 bS

2 bS

3 kS

1 kS

2 kS

3 c(S)

{1} 2 0 0 1 1 1 1 1 1 6 6 1 5 5 1 7

{2} 0 2 2 1 1 1 0 0 1 0 0 1 5 5 5 9

{1,2} 2 2 2 1 1 1 0 0 1 0 0 1 5 5 1 7

rS1 rS2 rS3 PS
1ðrSÞ PS

2ðrSÞ PS
3ðrSÞ N(S) M(S)

{1} 1 0 0 1 0 0 0 -4

{2} 0 2 2 0 1 1 0 -4

{1,2} 3 3 3 1 1 1 0 0

Demand Production Inventory Backlogging Setup

P1 6 5 2 3 1 1 2 3 3 1 3 1 4 3 4

P2 4 1 1 5 1 4 2 1 3 1 3 1 0 2 5

P3 1 4 1 2 1 3 3 1 1 1 3 1 0 0 5
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The corresponding SI-game is given by:

Next table shows the optimal ordering plans, the corresponding cost-plan vectors,

and the differences between the ordering plans:

Since NðSÞ;MðSÞ� 0 for all S � N; we can conclude that

ð21; 11; 8Þ þ 0

aðNÞ ða1; a2; a3Þ :
ai 2 Rþ 8i 2 N

with aðNÞ[ 0

� �
� CoreðN; cÞ:

If we compare the Extended Owen point with other well-known solutions for TU

games as Shapley value (Shapley 1953) and nucleolus (Schmeidler 1969) some

differences arise. First of all, xðaÞ is not a game-theoretical solution, that is, if we

consider two different SI-situations that produce the same game, both the Shapley

value and the nucleolus will give the same solution. However, xðaÞ is not a game-

theoretical solution since its definition only applies on SI-situations. On the other

hand, the Extended Owen point, although it is not taking into account all the

contributions of the players, intend to allocate the costs in an equitable way: getting

the players to produce their demand at the lowest cost, distributing the setup costs of

dS

1 dS

2 dS

3 pS

1 pS

2 pS

3 hS

1 hS

2 hS

3 bS

1 bS

2 bS

3 kS

1 kS

2 kS

3 c(S)

{1} 6 5 2 3 1 1 2 3 3 1 3 1 4 3 4 36

{2} 4 1 1 5 1 4 2 1 3 1 3 1 0 2 5 21

{3} 1 4 1 2 1 3 3 1 1 1 3 1 0 0 5 8

{1,2} 10 6 3 3 1 1 2 1 3 1 3 1 0 2 4 44

{1,3} 7 9 3 2 1 1 2 1 1 1 3 1 0 0 4 29

{2,3} 5 5 2 2 1 3 2 1 1 1 3 1 0 0 5 19

{1,2,3} 11 10 4 2 1 1 2 1 1 1 3 1 0 0 4 40

rS1 rS2 rS3 PS
1ðrSÞ PS

2ðrSÞ PS
3ðrSÞ N(S) M(S)

{1} 1 2 3 3 1 1 -4 -4

{2} 2 2 2 4 1 2 -8 0

{3} 1 2 2 2 1 2 0 0

{1,2} 1 2 2 3 1 2 -10 0

{1,3} 1 2 2 2 1 2 0 0

{2,3} 1 2 2 2 1 2 0 0

{1,2,3} 1 2 2 2 1 2 0 0
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the consolidated periods equitably between the players who use them and

considering all possible ways to distribute the remaining setup cost. In addition,

the Extended Owen point, like the Shapley value, belongs to core under certain

conditions, and it is much easier to calculate than the nucleolus.

A weaker sufficient condition to ensure the cost allocation xðaÞ to be in the core

is given by the following corollary.

Corollary 1 Let (N, D, Z) a SI-situation and (N, c) the corresponding SI-game. If

there exists a 2 RN
þ such that aðNÞ[ 0 and NðSÞ þ aðSÞ

aðNÞMðSÞ� 0 for all S � N;

then xðaÞ is a core-allocation.

The example below illustrates the above condition.

Example 4 Consider the SI-situation described by the following table.

The corresponding SI-game is shown in the next table:

The optimal ordering plans, the corresponding cost-plan vectors, and the

differences between the ordering plans can be found in the last table:

rS1 rS2 rS3 PS
1ðrSÞ PS

2ðrSÞ PS
3ðrSÞ N(S) M(S)

{1} 2 2 3 3 1 1 -5 2

{2} 2 2 2 3 1 2 -5 2

{3} 2 2 2 3 1 3 -11 2

{1,2} 2 2 3 3 1 1 -9 2

{1,3} 1 2 3 2 1 1 0 0

{2,3} 1 2 2 2 1 2 -6 0

{1,2,3} 1 2 3 2 1 1 0 0

Demand Production Inventory Backlogging Setup

P1 5 5 2 3 1 1 2 3 3 1 2 1 3 1 2

P2 4 1 1 5 1 4 2 1 3 1 2 1 3 1 2

P3 1 4 5 2 1 3 3 2 1 1 2 1 2 1 2

dS

1 dS

2 dS

3 pS

1 pS

2 pS

3 hS

1 hS

2 hS

3 bS

1 bS

2 bS

3 kS

1 kS

2 kS

3 c

{1} 5 5 2 3 1 1 2 3 3 1 2 1 3 1 2 25

{2} 4 1 1 5 1 4 2 1 3 1 2 1 3 1 2 16

{3} 1 4 5 2 1 3 3 2 1 1 2 1 2 1 2 23

{1,2} 9 6 3 3 1 1 2 1 3 1 2 1 3 1 2 39

{1,3} 6 9 7 2 1 1 2 2 1 1 2 1 2 1 2 33

{2,3} 5 5 6 2 1 3 2 1 1 1 2 1 2 1 2 30

{1,2,3} 10 10 8 2 1 1 2 1 1 1 2 1 2 1 2 43
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It can be easily checked that NðSÞ þ aðSÞ
aðNÞMðSÞ� 0 for all a 2 RN

þ such that

aðNÞ[ 0 and all S � N: Hence

58

3
;
31

3
;
34

3

	 

þ 2

aðNÞ ða1; a2; a3Þ :
ai 2 Rþ 8i 2 N

with aðNÞ[ 0

� �
� CoreðN; cÞ:

We finish this section with a simpler sufficient condition to check core

membership.

Corollary 2 Let (N, D, Z) be a SI-situation and (N, c) the corresponding SI-game. If

the reduced SI-situation ðN;D; eZÞ satisfies one of the following conditions:

(i) eNðSÞ; eMðSÞ� 0;

(ii) there exists a 2 RN
þ such that aðNÞ[ 0 and eNðSÞ þ aðSÞ

aðNÞ
eMðSÞ� 0 for all

S � N;

where eNðSÞ; eMðSÞ are the corresponding values for the reduced SI-situation for all

S � N; then xðaÞ is a core-allocation.

5 Consolidated situations and stability

We focus now on those SI-situations that are consolidated. Then we analyze their

effect on the stability of the extended Owen points.

To do that, we recall the concept of consolidated period: a period t is

consolidated if for some player that would order in t any coalition where he is

included would also place an order in that period. This leads to the definition of

consolidated situation. A SI-situation is consolidated if all the periods where any

coalition places an order are consolidated. This idea of consolidation is a refinement

of the original scheme that makes coalitions perform like some of their players. The

concept is formalized in the following definition.

Definition 1 A SI-situation (N, D, Z) is consolidated if TS � ! for all S � N.

From the above definition, it is clear that in any consolidated SI-situation,

MðSÞ ¼ 0 for any coalition S � N, since
P

t2TSn! kSt ¼ 0. Based in this fact, we can

provide an extended Owen point in the core for consolidated SI-games. The

following technical lemma is needed to prove this result.

Lemma 2 Let (N, D, Z) be a consolidated SI-situation and (N, c) the correspond-

ing SI-game. Then PS
t ðrSÞ�PR

t ðrRÞ for all t 2 T with dSt 6¼ 0 and for all S � R � N:

Proof Suppose that 9t0 2 T with dSt0 6¼ 0 such that PS
t0 ðrSÞ\PR

t0 ðrRÞ then rSt0 ¼ r and

rRt0 ¼ r0 with r 6¼ r0: drðrSÞ ¼ 1 therefore drðrRÞ ¼ 1 since (N, D, Z) is a

consolidated SI-situation. If we take the next feasible plan,
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r� :¼
rRt if t 6¼ t0;

r if t ¼ t0;

8
><

>:

then PR
t0 ðr�Þ�PS

t0 ðrSÞ\PR
t0 ðrRÞ and dðr�Þ0kR � dðrRÞ0kR: Hence,

cðRÞ ¼ PRðrRÞ0dR þ dðrRÞ0kR [PRðr�Þ0dR þ dðr�Þ0kR;

and this is a contradiction because rR is an optimal ordering plan of coalition

R � N. h

Note that the above lemma exhibits a monotonicity property with respect to the

ordering policies. We mean that, the smaller the coalition, the greater the cost of

satisfying demand in each single period.

Proposition 2 Let (N, D, Z) be a consolidated SI-situation and (N, c) the asociated

SI-game. Then, the allocation w 2 RN given by

wi :¼
XT

t¼1

PN
t ðrNÞdit þ

X

t2!:i2Jt

kNt
Jtj j ;

for all i 2 N where Jt :¼ fi 2 N : dtðriÞ ¼ 1g; is a core-allocation.

Proof We suppose that (N, D, Z) is consolidated. Note that if TS � ! for S � N

then MðSÞ ¼ 0 and
P

t2TNn! kNt ¼ 0: We know rSt 2 ! for all t 2 T and for all

S � N with dSt 6¼ 0; then by Lemma , PSðrSÞ�PNðrNÞ: Hence NðSÞ� 0 for all

S � N, By Proposition 1 w is a core-allocation. h

Corollary 3 Let (N, D, Z) be a SI-situation and (N, c) the corresponding SI-game. If

the reduced SI-situation ðN;D; eZÞ is consolidated, then w 2 CoreðN; cÞ.

From now on, the allocation w will be called the extended Owen point for

consolidated SI-games (those which come from consolidated SI-situations). The

reader may notice that w ¼ xðaÞ for all a 2 RN
þ.

Recall that according to Sprumont (1990), a population monotonic allocation

scheme (pmas), for the game (N, c) is a collection of vectors yS 2 Rs for all S �
N; S 6¼ £ such that ySðSÞ ¼ cðSÞ for all S � N; S 6¼ £; and ySi � yTi for all S �
T � N and i 2 S: The reader may note that whenever ySð Þ£6¼S�N is a pmas for

(N, c), then yS is a core allocation for the game ðS; csÞ for all S � N; S 6¼ £: Thus,
cost allocations attainded through a pmas are a refinement of the core. This implies

that every cost TU game with a pmas is totally balanced but the reciprocal is not true

and there are many totally balanced cost TU games without pmas. A core-allocation

for (N, c), i.e. x 2 CoreðN; cÞ, is reached through a pmas if there exists ySð Þ£6¼S�N

for the game (N, c) such that yNi ¼ xi for all i 2 N:
The final result of the section explicitly constructs a pmas that realizes the

extended Owen point for consolidated SI-games.
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Theorem 2 Let (N, D, Z) be a consolidated SI-situation and (N, c) the corre-
sponding SI-game. Then, w can be realized through a pmas.

Proof Define for all i 2 S; S � N and S 6¼ £;

ySi :¼
XT

t¼1

PS
t ðrSÞdit þ

X

t2!S:i2JSt

kSt
JSt
�� �� :

where !S :¼ ft 2 T : 9i 2 S such that dtðrSÞ ¼ 1 for all S � N with i 2 Sg and

JSt :¼ fi 2 S : dtðriÞ ¼ 1g: Then for all S � N; S 6¼ £

X

i2S
ySi ¼

XT

t¼1

PS
t ðrSÞdSt þ

X

t2TS

kSt ¼ cðSÞ;

and for all S � R � N; S;R 6¼ £ and for all i 2 S;

ySi ¼
XT

t¼1

PS
t ðrSÞdit þ

X

t2!S:i2Jt

kSt
JSt
�� �� �

XT

t¼1

PR
t ðrRÞdit þ

X

t2!S:i2JSt

kRt
JSt
�� ��

�
XT

t¼1

PR
t ðrRÞdit þ

X

t2!R:i2JRt

kRt
JRt
�� �� ¼ yRi ;

since !R � !S and JSt
�� ��� JRt

�� �� for all t 2 T .

Finally, we see that yNi ¼ wi for all i 2 N: So, the extended Owen point for

consolidated SI-situations w can be reached through the pmas ySð Þ£6¼S�N : h

From the proof of the above theorem we deduce that for every consolidated SI-

game, a pmas can be built just taking the extended Owen point for each subgame

and gathering them all as a collection of vectors. Notice that this construction shows

a strong consistency, in terms of stability, of this point solution.

The final example illustrates all the above mentioned results. In addition, it shows

that the core of consolidated SI-games is not necessarily a singleton.

Example 5 Consider the following SI-situation with three periods and three players:

Demand Production Inventory Backlogging Setup

P1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 5

P2 2 1 1 2 3 4 1 1 1 1 1 1 1 1 5

P3 2 1 3 2 3 5 1 1 1 1 1 1 1 1 5
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The corresponding SI-game is given in the next table:

The reader may notice that it comes from a consolidate SI-situation since

The extended Owen point for the above consolidated SI-game is w ¼ 7; 11
2
; 19
2

� �
:

However, the core of this game does not reduce to it since also x ¼ ð7; 5; 10Þ 2
CoreðN; cÞ: In addition, the extended Owen point can be reached through the pmas

8ð Þf1g; 12ð Þf2g; 20ð Þf3g; 7; 6ð Þf1;2g; 7; 10ð Þf1;3g; 23

2
;
39

2

	 
f2;3g
; 7;

11

2
;
19

2

	 
f1;2;3g
 !

:

6 Concluding remarks

Cooperation in periodic review finite horizon inventory models has been already

analyzed in Guardiola et al. (2008, 2009) and Van den Heuvel et al. (2007). This

paper extends previous approaches in the literature considering a more general

model that includes non-homogeneous set up and backlogging costs. We prove that

this model of cooperation, by sharing technologies for the production, carrying of

goods and distribution channels, induces savings because the resulting game is

totally balanced. Moreover, we have introduced a parametric family of allocations

based on the Owen point (see Guardiola et al. 2008, 2009) and a subclass of games

that enjoys a population monotonic allocation scheme.

dS

1 dS

2 dS

3 pS

1 pS

2 pS

3 hS

1 hS

2 hS

3 bS

1 bS

2 bS

3 kS

1 kS

2 kS

3 c

{1} 1 3 1 1 1 1 1 1 1 1 1 1 1 1 5 8

{2} 2 1 1 2 3 4 1 1 1 1 1 1 1 1 5 12

{3} 2 1 3 2 3 5 1 1 1 1 1 1 1 1 5 20

{1,2} 3 4 2 1 1 1 1 1 1 1 1 1 1 1 5 13

{1,3} 3 4 4 1 1 1 1 1 1 1 1 1 1 1 5 17

{2,3} 4 2 4 2 3 4 1 1 1 1 1 1 1 1 5 31

{1,2,3} 5 4 5 1 1 1 1 1 1 1 1 1 1 1 5 22

rS1 rS2 rS3 PS
1ðrSÞ PS

2ðrSÞ PS
3ðrSÞ dðrSÞ0kS

{1} 2 2 2 2 1 2 1

{2} 1 1 1 2 3 4 1

{3} 1 1 1 2 3 4 1

{1,2} 1 2 2 1 1 2 2

{1,3} 1 2 2 1 1 2 2

{2,3} 1 1 1 2 3 4 1

{1,2,3} 1 2 2 1 1 2 2
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The stability property of the above mentioned mode of coordination leads us to

mention two related future research lines: (1) analyzing the cooperation aspects of

broader subclasses of inventory situations for which it is possible to provide explicit

solutions; and (2) studying the relationships between the cores that arise from

situations with and without set up costs.
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