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Abstract
The numerical and computation aspects of the Knife-edge Equivalent Contact (KEC) con-
straint and lookup table (LUT) methods are compared in this paper. The LUT method im-
plementation uses a penetration-based elastic contact model for the flange and a constraint-
based formulation at the wheel tread. For the KEC method, where an infinitely narrow rail
contacts an equivalent wheel, regularization of the tread-flange transition is adopted to si-
multaneously account for tread and flange contacts using constraints. A comparison between
the two methods is carried out using well-known numerical integrators to show the applica-
bility and limitations of both methods.

Two fixed-step-size integrators, the explicit Runge–Kutta (RK4) and the predictor–
corrector Adam–Bashforth–Moulton (ABM) methods, and two variable-step-size Matlab
built-in function integrators, the explicit ode45 and implicit ode15s, were applied to get
the numerical solutions to the dynamic problems and study the relative numerical perfor-
mance of the two contact description methods. To complete the railway vehicle model, both
contact methods were implemented for the multibody model of a benchmark railway vehi-
cle (the Manchester wagon 1). Numerical results were obtained for different railway tracks
with and without irregularities. Profiles of the S1002 wheel and LB-140-Area rail, which
demonstrate the two-point contact phenomenon, were considered. Both methods were im-
plemented in Matlab and validated against commercial simulation software. The kinematic
results for both approaches show good agreement, but the KEC method was up to 20% more
efficient than the LUT method regardless of integrator used.

Keywords Time integration · Lookup table · KEC method · Manchester wagon ·
Wheel–rail contact

Nomenclature

At Rotation matrix from a track frame with respect to the global frame
Abti Rotation matrix of the body track frame with respect to the global frame
Abti,i Rotation matrix of body frame with respect to the body track frame
Awti,wi Rotation matrix of wheelset frame with respect to the wheelset track frame
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Awti,wIi Rotation matrix of wheelset intermediate frame with respect to the wheelset track
frame

AwIi,wi Rotation matrix of wheelset frame with respect to the wheelset intermediate frame
At,rp Rotation matrices of the rail profile frames with respect to the track frame
CLUT

q Jacobian matrix of LUT constraints

CLUT LUT constraint equations
CKEC KEC constraint equations
Ddamp Nonlinear damping constant for flange contact in LUT method [kN · s/m2]
D Damping coefficient [kN·s/m]
d Deformation length of the spring [m]
ḋ Time derivative of spring deformation [m/s]
f susp Magnitude of the suspension force
f lk Value of the wheel equivalent profile
f k

klt KEC-lookup table of wheel equivalent profiles
hr Functions that define railhead profiles
hw Functions that define wheel profiles
K Spring stiffness [kN/m]
Khertz Hertzian stiffness for flange contact in LUT method [N/m1.5]
K series Damper series stiffness [kN/m]
Kbend Bending stiffness [kN/rad]
K shear Shear stiffness [kN/m]
l0 Undeformed spring length [m]
Lw Wheel profile positioning with respect to the track centerline [m]
Lr Rail profile positioning with respect to the track centerline [m]
M Vehicle generalized mass matrix
N Matrix that represents the direction of the reaction forces
n̄wi

c Unit normal vector with respect to the wheel surface at the contact point
n̂rp

c Unit normal vector with respect to the railhead surface at the contact point defined in
rail profile frame

n̄rp
c Unit normal vector of the contact point to the railhead surface defined in wheelset track
frame

n̄rp
c,fla Unit normal vector at flange contact point to the rail surface defined in wheelset track
frame

q Vector of multibody system coordinates
qwi Vector of relative wheelset track frame coordinates
Q Vectors of generalized applied forces and generalized quadratic-velocity inertia forces
Qsusp Vector of generalized suspension forces
Qnor

fla Vector of generalized wheel–rail normal flange forces

Qnor,wi, Qnor,wi
tre , Qnor,wi

fla Vector of generalized wheel–rail normal contact forces, general-
ized wheel–rail normal contact forces at tread and flange

Qtang Vector of generalized tangential tread and flange forces
R Radius of curved track [m]
Rt Position vector of a track frame with respect to the global frame
Rt

x, Rt
y, Rt

z Position components of the position vector Rt in X, Y , and Z direction
Rbti Position vector of the body track frame with respect to the global frame
Rijt Relative distance vector from body track frames it to jt
RP Absolute position vector of an point P in global frame
r̄ir Position vectors of rail irregularity vectors of rail profile frames with respect to ideal rail
profile frames
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r̄rp Position vectors of ideal railhead frames with respect to track frame
ri
P Position vector of point P that belongs to body i with respect to the global frame

r̄i Position vector of body frame with respect to its the body track frame
r̄wi Position vector of wheelset frame with respect to the wheelset track frame
r̄wi
c Position vectors of contact points with respect to the wheelset track frame

˙̄rwi
c Time derivative of the position vector r̄wi

c

r̄wi
c,fla Position vectors of flange contact points with respect to the wheelset track frame

r̄rp
c Position vectors of contact points with respect to the track frame

˙̄rrp
c Time derivative of the position vector r̄rp

c

r̄rp
c,fla Position vectors of flange contact points with respect to the track frame

r0 Rolling radius of the wheel when centered in the track [m]
s Vector of wheel and rail surface parameters
sfla Vector of flange surface parameters
s Arc-length associated with the track centerline [m]
�s Increment of the arc-length [m]
�ŝ, �s̄ Increment of the transition lengths of the regularization for the tread–flange tran-
sition [mm]

swi Arc-length associated with the wheelset track centerline [m]
sw

1 Transverse wheel surface parameter [m]
sw

2 Angular wheel surface parameter [m]
sr

1 Longitudinal rail surface parameter [m]
sr

2 Transverse rail surface parameter [m]
sw

fla, sr
fla Transverse wheel surface and rail surface parameters associated with flange contact

[m]
sk Lateral positions of the contact point in the KEC-equivalent profiles [m]
sw

clt, sr
clt Contact lookup table of wheel and rail surface parameters [m]

sw
klt, sr

klt KEC-lookup table of wheel and rail surface parameters [m]

t̂
wIi

c Unit tangential vector with respect to the wheel surface at the contact point

t̄
wi
c Unit tangential vector defined in wheelset track frame

t̄
wi
c,fla Unit tangential vector for flange contact point defined in wheelset track frame

ûi
P Position vector of point P with respect to body frame for body i in the body frame

ûwIi
c Position vectors of the contact points at left and right wheel with respect to the wheelset
intermediate frame

ûrp
c Position vectors of contact points with respect to rail profile frames

V Forward velocity [m/s]
y ir Position components of rail irregularity in lateral direction
ywi Lateral displacement of the wheelset frame with respect to the wheel track frame (ideal
track centerline)

ȳwi Lateral displacement of the wheelset frame with respect to the irregular track centerline
ywi

max, ywi
min Maximum and minimum values of the lateral displacements of wheelset

�ywi Increment of the lateral displacements of wheelset
zir Position components of rail irregularity in vertical direction
zwi Vertical displacement of the wheelset frame with respect to the wheel track frame
z̄wi Vertical displacement of the wheelset frame with respect to the irregular track centerline
zclt Contact lookup table of wheelset vertical displacement
λ Array of Lagrange multipliers
β Orientation angle of the rail profiles
δ Linearized rotation angle due to the irregularity
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δwi, δ̇wi Wheel–rail penetration at the flange contact and its rate
ϕt , θ t , ψt Euler angles which define the orientation of track centerline with respect to
global frame

ϕwi, θwi, ψwi Euler angles which define the orientation of relative wheel frame with respect
to wheelset track frame

ϕ̄wi Roll angle of the wheelset frame with respect to the irregular track centerline
ϕclt Contact lookup table of wheelset roll angle
μ Coefficient of friction
ξa Alignment of the railhead centerlines’ irregularities [mm]
ξc Cross level of the railhead centerlines’ irregularities [mm]
ξg Gauge variation of the railhead centerlines’ irregularities [mm]
ξg,max, ξg,min Maximum and minimum values of the gauge variation the railhead center-
lines’ irregularities [mm]

�ξg Increment of the gauge variation [mm]
ξv Vertical profile of the railhead centerlines’ irregularities [mm]
〈O;X,Y,Z〉 Global frame
〈Ot ;Xt,Y t ,Zt 〉 Track frame
〈Oi;Xi,Y i,Zi〉 Body frame
〈O lrp;Xlrp, Y lrp,Zlrp〉 Left rail profile frame
〈Orrp;Xrrp, Y rrp,Zrrp〉 Right rail profile frame
〈Obti;Xbti, Y bti,Zbti〉 Body track frame for body i

〈Owi;Xwi, Y wi,Zwi〉 Wheelset frame
〈OwIi;XwIi, Y wIi,ZwIi〉 Wheelset intermediate frame

1 Introduction

A railway vehicle is a complex mechanical system that consists of a large number of bodies,
wheel/rail contacts, and complicated suspension elements. Because of the high computa-
tional loads, the real-time simulation of the railway vehicle is challenging [1], especially
with respect to the wheel–rail contact [2]. Computationally efficient and physically accurate
simulations can be used for a wide variety of applications, such as optimization problems
and embedded models. Moreover, to analyze the validity and efficiency of different numer-
ical methods, benchmark problems can be found in the literature. Examples include the
Manchester benchmark [3] and the switches and crossings benchmarks [4].

In computational railway dynamics, a number of formalisms have been introduced to
analyze wheel/rail contact. Among these, two well-known approaches are commonly used
in multibody railway simulations. The first is the elastic approach [5–7], where interpen-
etration between wheel/rail surfaces is allowed, and normal contact forces are computed
based on interpenetration and Hertzian parameters. However, the large magnitude Hertzian
parameters that come about when applying the elastic approach can result in a stiff sys-
tem of ordinary differential equations. Therefore, implicit integrators with small time steps
are used, which increases computational cost. In [8], Liu and Bruni compared Hertzian and
non-Hertzian wheel/rail contact models for multibody simulation. In [6], the Hertzian and
non-Hertzian models are studied and compared to give the insight of proper selection of
the parameters for better computational accuracy and efficiency. The second approach is the
constraint method, which is also called Lagrange multiplier method. In this approach, the
contact between wheel and rail is described with a set of kinematic constraint equations [9]
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Fig. 1 (a) Real S1002 wheel profile and LB.140-AREA rail profile geometry, (b) contact points on real
wheel/rail profiles and corresponding KEC-equivalent wheel/rail profiles, the real wheel/rail profiles corre-
spond to the profiles in the dashed boxes on the left

to ensure both surfaces are in contact without penetration or separation. In this way, the nor-
mal contact forces can be computed using the Lagrange multipliers that are associated with
the constraint equations.

Two constraint-based formulations for the wheel/rail contact in a multibody simulation
have been studied here. The first is the LUT method. The LUT method is an offline constraint
approach where the contact detection part of the analysis is carried out in a preprocessing
stage and the solution is stored in a lookup table. In the subsequent dynamic simulations,
the contact points are obtained by interpolating between the stored data points [10–12]. In
the work of [10], an offline contact lookup table is used to predict tread contact point and an
online elastic approach is used to predict flange contact. This algorithm was later extended to
cover the combination of nodal and nonconformal contact detection to solve contact point
jumps that can occur in turnouts [11]. The authors of [12] propose a constraint contact
LUT method that accounts for track irregularities with two entries, lateral displacement, and
track gauge variation. Using the Kalker book of tables for non-Hertzian contact (KBTNH)
to build the lookup table is proposed [13] to generate the fast creep force. In that study, a
regularization of the nonelliptical contact patch is introduced to solve the wheel/rail normal
contact problem with non-Hertzian methods. In addition, the KBTNH is extended to include
the full symmetry relations for creep forces and moment [14]. A comprehensive analysis to
improve accuracy and efficiency when interpolating the lookup tables with multiple input
parameters is presented in [15].

The second approach is the KEC method. The KEC method used here is an online con-
straint approach that was first proposed [16] to model wheel/rail contact. In the KEC method,
the wheel/rail profile combination (see Fig. 1(a)) is established using an equivalent wheel
profile (see solid lines in Fig. 1(b)) in contact with an infinitely narrow rail, which yields
the equivalent allowable relative motion. This equivalent profile combination produces the
same wheel/rail contact kinematics as the real wheel/rail profiles. As shown in Fig. 1(b), the
contact points for a set of discrete values of the wheelset lateral displacement are located
at the real wheel/rail profiles (dotted–dashed lines in Fig. 1(b)). The wheelset with wheels
S1002 profile and rails LB.140-AREA profile are considered in the figure, and the geometry
parameters for both wheel/ rail profiles are listed in Table 1. Accordingly, the corresponding
contact points can be found on the KEC-equivalent profiles. See the solid lines in Fig. 1(b).
The exact position of the contact points can be determined from the online solution of the
KEC constraints. In addition, [17] proposed a regularization method to apply a continuous
transition from tread to flange between each wheel/rail pair for the dynamic simulation of
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Table 1 Parameters for the wheel/rail profile combination that illustrate the two-point contact scenario

Model Lw (m) Lr (m) r0 (m) β (rad)

Parameters 0.7515 0.7555 0.457 1/40

a two-point contact scenario. This regularization method can help avoid the finite contact
point jumps that occur between tread and flange.

Active research to develop computationally efficient models for multibody simulation of
railroad vehicles is ongoing. Focus areas include linearizing the equations of motion [18], es-
tablishing an appropriate time integration method [18], efficiently detecting wheel/rail con-
tact, and formalizing corresponding contact computation [10, 19, 20]. An explicit predictor–
corrector integration method has been developed to solve the large-scale coupling dynamics
of a railway vehicle and track system using the explicit method as the predictor and the
implicit Newmark method as a corrector [21]. A quasielastic contact model proposed in
[19] employs a two-dimensional spline approximation of contact solutions and stores the
spline coefficients as a table in a pre–processing stage. The method is implemented in the
wheel/rail module of the commercial software SIMPACK. In addition, a modal substructur-
ing approach is proposed in [22] to improve the computational efficiency of a vehicle–track
simulation by using a reduced number of modal coordinates. A hybrid contact detection al-
gorithm is developed in [10] to eliminate the online iterative search for the second contact
point. Moreover, a differential contact model is presented in [20] to reduce the computation
cost by integrating the differential modeling of the wheel/rail contact problem with multi-
body modeling of the railway dynamics. The work reported in [18] proves that a simplified
model based on weakly coupled lateral and vertical dynamics solves about four times faster
than the full three-dimensional (3D) coupled dynamic model.

Several works have been published to study the pros and cons of the LUT and KEC meth-
ods with respect to computational efficiency. In the case of vehicle ML95 (Lisbon subway
company) negotiating a curved track without irregularities in [12], a numerical solution is
reached six times faster using the LUT method instead of directly applying contact con-
straints using the Matlab integrator ode45, ode113, and ode4. The authors of [16] conclude
that the KEC method reduces computational cost up to 20% compared to the LUT method
using Matlab implicit integrator ode15s. And in [17], the KEC method proved to be 12.6
times more efficient than the 3D elastic contact simulation with the Matlab implicit inte-
grator ode15s. Expanding on this preceding research, the objective of this work is to study
the numerical and computational aspects of both methods using the multibody model of the
Manchester wagon 1 proposed in [3]. Since efficient and stable time integration is a key issue
[23] for the computational multibody dynamics of railroad vehicles, different well-known
numerical integrators have been studied and compared in this paper. Two fixed-step-size
integrators, RK4 and a predictor–corrector based ABM, and two variable-step-size Matlab
integrators, ode15s and ode45, are applied to solve railway dynamic problems. This will
reveal numerical and computational aspects of the constraint-based contact approaches and
will look at ways an accurate physics-based wheel/rail vehicle system could be analyzed in
real-time.

The following Sect. 2 of this paper briefly introduces the multibody modeling of railway
vehicles. Computer simulation of railway vehicles is presented in Sect. 3. Different integra-
tion methods are briefly introduced in Sect. 4. Sect. 5 compares the kinematics solutions of
the modeled Manchester Wagon 1 with those obtained using standard commercial software
and investigates the numerical and computational aspects of the KEC and LUT methods in
detail. Finally, Sect. 6 provides a summary and offers conclusions.
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Fig. 2 Kinematics of the bodies i

and j of a railway vehicle with
relative body track frame
coordinates, vectors Rbti and
Rbtj are the absolute position
vectors of body track frames
〈Ot ;Xt ,Y t ,Zt 〉 with respect to
global frame 〈O;X,Y,Z〉, r̄i and
r̄j are position vectors of body i

and j with their track frames

2 Multibody modeling of railway vehicles

This section introduces details of the multibody modeling of railway vehicles. To this end,
track kinematics vehicle kinematics and wheel/rail contact will be discussed. More insight
into the kinematics and contact mechanism can be found in [12, 16, 24].

2.1 Track geometry and kinematics

In the multibody simulation of railway vehicles, the use of moving coordinate systems that
follow the vehicles motion along the track centerline has been widely used in the litera-
ture [25, 26]. This method has advantages in the interpretation of the results because sys-
tem coordinates are referred to track geometry. This work uses the so-called ‘track frame’
〈Ot ;Xt,Y t ,Zt 〉 for each vehicle body. The ‘track frame is defined along the track center-
line and has the Xt axis parallel to the tangential line of the track centerline, the Y t axis
connecting the centerline of the two rails and the Zt axis perpendicular to the plane of the
rails. See Fig. 2.

The absolute position vector and rotation matrix from a track frame to the global frame
can be expressed as the functions of the arc-length s as follows:

Rt (s) =
⎡
⎢⎣

Rt
x(s)

Rt
y(s)

Rt
z(s)

⎤
⎥⎦ ,

At (s) =
⎡
⎢⎣

cos(θ t ) cos (ψt ) sin(ϕt ) sin(θ t ) cos (ψt ) − cos(ϕt ) sin (ψt ) sin(ϕt ) sin (ψt ) + cos(ϕt ) sin(θ t ) cos (ψt )

cos(θ t ) sin (ψt ) cos(ϕt ) cos (ψt ) + sin(ϕt ) sin(θ t ) sin (ψt ) cos(ϕt ) sin(θ t ) sin (ψt ) − sin(ϕt ) cos (ψt )

− sin(θ t ) sin(ϕt ) cos(θ t ) cos(ϕt ) cos(θ t )

⎤
⎥⎦,

(1)

where Rt
x , Rt

y , Rt
z are the components of the position vectors in the X, Y , and Z direction,

ψt (azimut or heading angle), θ t (vertical slope, positive when downwards in the forward
direction), and ϕt (cant or superelevation angle) are Euler angles which define the track
centerline orientation.

With the description of the track frame, the geometry of the left and right rails cen-
terlines can be obtained by defining two additional profile frames (left rail profile frame
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Fig. 3 Description of track
irregularity geometry: r̄lrp and
r̄rrp are position vectors of ideal
left and right railhead frames
with respect to track frame, r̄lir

and r̄rir are irregular vectors of

left and right rail heads, ûlrp
lc and

ûrrp
rc are position vectors of

contact points with respect to rail
profile frames, β is the
orientation angle of the rail
profiles, δ is the linearized
rotation angle due to the
irregularity, and Lr is the rail
profile positioning with respect to
the track centerline

Fig. 4 Procedure of building
track preprocessor

〈O lrp;Xlrp, Y lrp,Zlrp〉 and right rail profile frame 〈Orrp;Xrrp, Y rrp,Zrrp〉) at the railheads.
Both rail profiles are separated a distance 2Lr and rotated an angle β in the ideal track
configuration, as it is shown in Fig. 3. In addition, this ideal geometry description allows a
straightforward definition of the irregular track by means of the left and right irregularity
vectors r̄lir and r̄rir and the linearized irregularity angle δ defined as δ = (zlir − zrir)/2Lr .
See Fig. 3. Note that the components of the irregularity vectors can be extracted from the
following well-known centerlines’ irregularities measured in the railway industry:

• Alignment (ξa) ξa(s) = (y lir + yrir)/2,

• Vertical profile (ξv) ξv(s) = (zlir + zrir)/2,

• Gauge variation (ξg) ξg(s) = y lir − yrir,

• Cross level (ξc) ξc(s) = zlir − zrir.

All of these components can be implemented in a track preprocessor subroutine to param-
eterize the three-dimensional (3D) ideal track centerline and track irregularities as continu-
ous functions (cubic splines in this work) of the longitudinal arc-length trajectory coordinate
s. A schematic representation of the procedure used for the track preprocessor is presented
in Fig. 4.
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Fig. 5 Frames for rigid wheelset kinematics: r̄wi is the position vector of wheelset frame with respect to the
wheelset track frame in the wheelset track frame, ûwIi

lc is the position vector of the left contact point at left
wheel with respect to the wheelset intermediate frame

In this work, the track preprocessor for track centerline is discretized with constant step
�s = 0.5 m, which results in a Matlab storage size of around 200 kB (matrix size 2000 × 7)
for 1000 m track. As for track irregularities, the track preprocessor is discretized with �s =
0.1 m, which results in a Matlab storage size of around 300 kB (matrix size 10000 × 5) for
1000 m track.

2.2 Wheel/rail contact

As shown in Fig. 2, a body track frame 〈O ti;Xti, Y ti,Zti〉 can be associated with body i

at any time-instant, when a body moves along the track with arc length si . Therefore, the
position and orientation of the body track frame can be computed according to Eq. (1), as:

Rti = Rt (si), Ati = At (si). (2)

Similarly, a wheelset track frame 〈Owti;Xwti, Y wti,Zwti〉 is associated with the wheelset
i and with time. See Fig. 5. The position and orientation of the wheelset track frame can be
calculated by replacing si with swi in Eq. (2).

The set of relative wheelset track frame coordinates of a rigid wheelset i (superscript wi)
is given by:

qwi = [
swi ywi zwi ϕwi θwi ψwi

]T
, (3)

where ywi is the lateral displacement and zwi is the vertical displacement of the wheelset
frame with respect to the wheel track frame, respectively, and the X-component along the
track centerline is zero; ϕwi, θwi, and ψwi are Euler angles which define the orientation of
relative wheel frame with respect to wheelset track frame.
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The position vectors of right and left contact points, defined in the right and left railheads
as shown in Fig. 3, are written with respect to wheelset track frame:

r̄rrp
rc = r̄rrp + r̄rir + At,rrpûrrp

rc ,

r̄lrp
lc = r̄lrp + r̄lir + At,lrpûlrp

lc ,
(4)

where lr and rr represent left rail and right rail, r̄rrp and r̄lrp are position vectors of ideal left
and right railhead frames with respect to wheelset track frame, r̄lir and r̄rir are rail irregular-
ity vectors of rail profile frames with respect to ideal left and right rail profile frames, At,lrp

and At,rrp are rotation matrices from the railhead frames to the wheelset track frame, ûrrp
rc

and ûlrp
lc contain the components of the position vector of contact points in the rail profile

frames as shown in Fig. 3. The vectors and matrices are written as

r̄lrp =
⎡
⎣

0
Lr

0

⎤
⎦ , r̄rrp =

⎡
⎣

0
−Lr

0

⎤
⎦ , r̄lir(swi) =

⎡
⎣

0
y lir

zlir

⎤
⎦ , r̄rir(swi) =

⎡
⎣

0
yrir

zrir

⎤
⎦ ,

At,lrp(swi) =
⎡
⎣

1 0 0
0 cos (β + δ) − sin (β + δ)

0 sin (β + δ) cos (β + δ)

⎤
⎦ ,

At,rrp(swi) =
⎡
⎣

1 0 0
0 cos (−β + δ) − sin (−β + δ)

0 sin (−β + δ) cos (−β + δ)

⎤
⎦ ,

(5)

The position vectors of contact points ûrrp
rc and ûlrp

lc in the rail profiles from Eq. (4) are
parametrized according to the railhead profile geometry as shown in Fig. 6:

ûrrp
rc =

⎡
⎣

0
srr

2
hrr(srr

2 )

⎤
⎦ , ûlrp

lc =
⎡
⎣

0
s lr

2
hlr(s lr

2 )

⎤
⎦ , (6)

where s lr
2 and srr

2 are left and right transverse rail surface parameters, respectively, and hlr

and hrr are the functions that define the railhead profiles.
Also, special treatment is given to the railway vehicle wheelset bodies in a railway ve-

hicle. An additional frame called ‘wheelset intermediate frame’ (wI) is defined as shown
in Fig. 5. The wI-frame is defined as a body frame but shows no pitch rotation. As will
be shown in the following section, it is a convenient frame to define contact point position
vectors, because they are not influenced by the wheelset pitch rotation, which is particu-
larly high in these bodies. More details about body and wheelset kinematics can be found in
[12, 16, 24]. The position vector of contact points on the surface of the left and right wheel
profile in Fig. 5 can be obtained in wheelset track frame, such as

r̄wi
lc = r̄wi + Awti,wIiûwIi

lc ,

r̄wi
rc = r̄wi + Awti,wIiûwIi

rc ,
(7)

where vector r̄wi = [
0 ywi zwi

]T
is the position vector of the wheelset frame with respect

to the wheelset track frame, ûwIi
lc and ûwIi

rc are the position vectors of the contact points at
the left and right wheels with respect to the wheelset intermediate frame, and Awti,wIi is the
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Fig. 6 Wheel profile and rail profile geometry: sw
1 and sw

2 are transverse and angular wheel surface parame-
ters, and sr

1 and sr
2 are longitudinal and transverse rail surface parameters, respectively

rotation matrix of the wheelset intermediate frame with respect to the wheelset track frame,
which is given by the following equation:

Awti,wi = Awti,wIiAwIi,wi, (8)

where Awti,wIi is the rotation matrix of the wheelset intermediate frame with respect to the
wheelset track frame, AwIi,wi is the rotation matrix of the wheelset frame with respect to the
wheelset intermediate frame. These are given by

Awti,wIi =
⎡
⎣

1 −ψwi 0
ψwi 1 −ϕwi

0 ϕwi 1

⎤
⎦ , AwIi,wi =

⎡
⎣

cos (θwi) 0 sin (θwi)

0 1 0
− sin (θwi) 0 cos (θwi)

⎤
⎦ . (9)

The position vectors of contact points ûwIi
rc and ûwIi

lc in the wheel profiles from Eq. (7) are
parametrized according to the wheel profile geometry as shown in Fig. 6:

ûwIi
rc =

⎡
⎣

hrw(srw
1 ) cos (srw

2 )

−Lw + srw
1

−hrw(srw
1 ) sin (srw

2 )

⎤
⎦ , ûwIi

lc =
⎡
⎣

hlw(s lw
1 ) cos (s lw

2 )

Lw + s lw
1

−hlw(s lw
1 ) sin (s lw

2 )

⎤
⎦ , (10)

where sw
1 and sw

2 are the transverse and angular wheel surface parameters, respectively, and
hlw and hrw are the functions that define the wheel profiles.

Based on the parameterization of the wheel and rail surfaces, contact can be modeled
using the already defined elastic or constraint approach. For both approaches, 3D surface-
to-surface contact can be reduced to a planar two-dimensional (2D) curve-to-curve contact
assuming that the contact points lie in the Y wti–Zwti plane of the wheelset track frame. This
decreases the number of surface parameters from four to two, since the contact points at
the left and right rails have the same arc-length parameter as the wheelset (sr

1 = swi), and
the angular wheel parameters of the contact points are constant (sw

2 = π/2) in the wI-frame.
Therefore, the simplified nomenclature sw = sw

1 and sr = sr
2 can be and is used in the rest

of this paper. However, the main implication of this planar contact is that the wheelset yaw
angle is neglected for the location of the contact points, which avoids the consideration of
the so-called lead-lag contacts (flange contact points that are longitudinally displaced with
respect to tread contacts). These contacts have an effect when the vehicle is negotiating very
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narrow curves, which usually occurs at very low velocities. Nevertheless, the planar contact
approach is sufficiently accurate for most practical applications as shown in [12].

The use of 2D wheel/rail contact using the constraint approach is considered in the fol-
lowing. To this end, the following subsections briefly describe the basis of the following two
planar constraint contact methods: contact lookup tables and the KEC method.

2.3 LUT method

Creation of constraint contact lookup table

The procedure to build a constraint contact lookup table starts by solving the contact
constraints for different values of the wheelset relative position with respect to the track.
The algorithm is summarized as follows:

1. Two sets of discrete numerical values are assigned to the lateral displacement of the
wheelset ywi and gauge variation ξg :

ywi = ywi
min + �ywi, ywi ∈ [ywi

min, ywi
max],

ξg = ξg,min + �ξg, ξg ∈ [ξg,min, ξg,max],
(11)

where �ywi and �ξg are increments.
2. The wheelset coordinates swi, θwi, and ψwi are set to zero (contact points are assumed to

lie in the Y wti–Zwti plane of the wheelset track frame).
3. For a one-point contact scenario (when two wheel/tread contacts occur at both wheels),

the six contact constraint equations of Eq. (12) are solved for different values of ywi and
the nominal distance 2L∗

r = 2Lr + ξg in two for-loops to obtain six outputs: the wheelset
kinematics zwi, ϕwi, and the vector of tread surface parameters s,

f(zwi, ϕwi, s) =

⎡
⎢⎢⎢⎢⎣

r̄wi
lc − r̄lrp

lc

(t̄
wi
lc )T n̄lrp

lc

r̄wi
rc − r̄rrp

rc

(t̄
wi
rc )

T n̄rrp
rc

⎤
⎥⎥⎥⎥⎦

= 0, (12)

where rc represents right wheel and lc left wheel for one wheelset, s = [s lw s lr srw srr]T
is the vector of the surface parameters, t̄

wi
c is the unit tangential vector, and n̄rp

c is the
normal vector defined in the wheelset track frame, which can be expressed as follows:

t̄
wi
c = Awti,wIi t̂

wIi

c ,

n̄rp
c = At,rpn̂rp

c ,
(13)

where t̂
wIi

c is the unit tangential vector with respect to the wheel surface at the contact
point and n̂rp

c is the unit normal vector with respect to the railhead surface at the contact
point [16, 25]. In Eq. (12), given the value of lateral displacement ywi, six contact con-
straints for one wheelset are solved to get six outputs: the wheelset coordinates zwi and
ϕwi, and the surface parameters s of the contact points at the tread.

4. The solution of Eq. (12) is stored in a lookup table with two entries. The lookup table
defines the following functions:
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Fig. 7 (a) Wheelset vertical displacement with respect to track centerline for different values of gauge irreg-
ularity; (b) Contact lookup table for wheelset vertical displacement zwh with two entries. As it is observed,
there is no wheel climbing due to the nature of the elastic flange contact used

zwi = zclt(y
wi, ξg), ϕwi = ϕclt(y

wi, ξg),

s lw = s lw
clt(y

wi, ξg), s lr = s lr
clt(y

wi, ξg), srw = srw
clt (y

wi, ξg), srr = srr
clt(y

wi, ξg),
(14)

where clt refers contact lookup table. Figure 7(a) shows the wheelset vertical displace-
ment coordinate zwi with respect to the track centerline within a range of track gauge
variations ξg and Fig. 7(b) illustrates the contact lookup table.

Contact detection for two-point contact scenario

For the two-point contact scenario, contact detection at the flange is addressed using the
maximum relative-indentation condition [5]. Therefore, two nonlinear equations are solved
to obtain two flange surface parameters sfla = [sw

fla sr
fla]T as follows:

f(sfla) =
[

(t̄
wi
c,fla)

T (r̄wi
c,fla − r̄rp

c,fla)

(t̄
wi
c,fla)

T n̄rp
c,fla

]
= 0, (15)

where t̄
wi
c,fla and n̄rp

c,fla are unit tangential and normal vectors, r̄wi
c,fla and r̄rp

c,fla are position
vectors of the contact points on the wheel and railhead, all the above vectors are associated
with the wheel–flange contact, and c represents left contact lc or right contact rc. Contact
point detection at both the tread and flange for the LUT method is determined in a pre-
processing stage that builds the contact lookup tables. During the dynamic simulations, the
contact lookup table is used to interpolate the stored discrete data to get the contact point
location.

Contact force computation for two-point contact scenario

For the LUT method, constraint contact is not appropriate when the number of contact
points varies (i.e., from one contact point to the two-contact point scenario). For this rea-
son, when flange contact occurs in the two-point contact scenario (before wheel climbing),
a hybrid method is usually adopted [12]. In this approach, wheel/tread contact with the rail
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is considered using the constraint method and the wheel/flange contact with the rail is con-
sidered using the elastic method. The equations of motion for a railway vehicle subject to
contact lookup table constraints can be written in the form of the following differential-
algebraic equation (DAE):

Mq̈ + (CLUT
q )T λ = Q + Qnor

fla + Qtang + Qsusp,

CLUT(q, t) = 0,
(16)

where M is the vehicle generalized mass matrix, CLUT includes the LUT constraint equa-
tions Cwi,LUT for the wheelset and forward velocity holonomic constraints, CLUT

q is the cor-
responding Jacobian matrix, λ is the array of Lagrange multipliers, Qtang is the vector of
generalized tangential tread and flange forces, Qsusp is the vector of generalized suspension
forces, and Q includes the vectors of generalized applied forces and generalized quadratic-
velocity inertia forces. The wheelset LUT constraint equations contain two independent non-
linear equations using the lookup tables for vertical displacement and roll angle as presented
in [12],

Cwi,LUT(qwi) =
[

z̄wi − zclt(ȳ
wi, ξg)

ϕ̄wi − ϕclt(ȳ
wi, ξg)

]
= 0, (17)

where ȳwi, z̄wi, and ϕ̄wi are wheelset kinematics with respect to the irregular track centerline,
which have the relationship with respect to those related to the ideal track centerline:

ȳwi = ywi − ξa, z̄wi = zwi − ξv, ϕ̄wi = ϕwi − ξc

2Lr

. (18)

The normal contact forces in the tread are computed as reaction forces associated with
contact constraints from Eq. (16). Therefore, those forces are computed using Lagrange
multipliers

Qnor,wi
tre = −

(
Cwi,LUT

q
)T

λ, (19)

where Cwi,LUT
q is the LUT constraint Jacobian matrix associated with wheelsets.

In addition, the normal contact forces for the flange are included in the right-hand side
of the equations of motion as the applied force from Eq. (16) and it is computed using a
Hertzian model based on interpenetration and interpenetration rate:

Qnor,wi
fla =

( ∂δwi

∂qwi

)T

f
nor,wi
fla ,

f
nor,wi

fla = Khertz(δwi)1.5 + Ddampδ̇wiδwi,

(20)

where Khertz and Ddamp are Hertzian contact stiffness and damping coefficients, the Hertzian
stiffness is computed based on the curvatures at the wheel/rail surface and material proper-
ties [25, 27] under the assumption that the contacting bodies behave like infinite semispaces.
The variables δwi and δ̇wi from Eq. (20) are the wheel/rail penetrations at the flange and rate
at the flange contact. These are given by

δwi =
[
r̄wi
c − r̄rp

c

]T

n̄wi
c , δ̇wi =

[ ˙̄rwi
c − ˙̄rrp

c

]T

n̄wi
c , (21)
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Fig. 8 Wheelset with knife-edge constraints

where n̄wi
c is the unit normal vector with respect to the wheel surface at the contact point;

δ̇wi is not the time derivative of δwi because the time derivative of normal vector n̄wi
c has not

been considered.
When the two-point contact scenario occurs, the wheel–flange contact event suddenly

appears and is treated as an impact. Therefore, the elastic flange contact event may require
small time step size for the time integration [28] and the flange contact stiffness controls
numerical simulation performance [24].

2.4 KEC method

The KEC method is a computationally efficient online constraint-based method, in which an
equivalent wheel profile that contacts an infinitely narrow rail provides the same wheelset
kinematics as the real wheel/rail profiles. See Fig. 8.

Construction of KEC-lookup table

To use the KEC method, the equivalent wheel profiles must be obtained first. To this end,
the results of Eq. (14) are needed to relate the location of the contact points in the KEC and
real profiles by building a KEC-lookup table [16]. This algorithm is summarized as follows:

1. The track irregularities y lir , zlir yrir , and zrir are set to zero.
2. For a one-point contact scenario, the six contact constraint equations of Eq. (12) are

solved in one “for-loop” to obtain six outputs: the two wheelset coordinates and the four
wheel surface parameters.

• When two wheel/tread contacts occur at both wheels, lateral displacement ywi is used
as the independent coordinate to find the wheelset kinematic values zwi, ϕwi, and the
tread surface parameters s = [s lw s lr srw srr]T .

• When one wheel/tread contact occurs at one wheel and one wheel–flange contact oc-
curs at another one (wheel climbing), vertical displacement zwi is used as an indepen-
dent coordinate to find the wheelset kinematic values of ywi, ϕwi, two tread surface
parameters s = [sw sr ]T and two flange surface parameters sfla = [sw

fla sr
fla]T .
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Fig. 9 Regularization of the
transverse curve parameter
relation for the left equivalent
and real wheels when the
KEC-method is used

3. The KEC constraint equations are solved with different values of ywi in one for-loop [16],

f(sk, fk) =

⎡
⎢⎢⎢⎣

ywi + s lk + ϕwi(r0 + f lk) − y lir

ywi + srk + ϕwi(r0 + f rk) − yrir

zwi + ϕwi(Lw + s lk) − f lk − r0 − zlir

zwi + ϕwi(−Lw + srk) − f rk − r0 − zrir

⎤
⎥⎥⎥⎦ = 0, (22)

where sk = [s lk srk]T and fk = [f lk f rk]T , sk and f k are lateral positions of the contact
point in the KEC-equivalent profiles and the value of the wheel equivalent profile for that
lateral displacement (see Fig. 8 on the right), and r0 is the rolling radius of the wheel
when centered in the track. The four KEC-equivalent profile constraints for the wheelset
given in Eq. (22) are solved to get four outputs: s lk, f lk and srk, f rk associated with the
contact points.

4. The equivalent wheel profiles (f lk, f rk) and the location of the contact points in the real
profiles (s lw, srw, s lr , srr) as functions of their location in the equivalent s lk, srk are stored
in the KEC-lookup table as follows:

s lw = s lw
klt(s

lk), s lr = s lr
klt(s

lk), f lk = f lk
klt(s

lk),

srw = srw
klt (s

rk), srr = srr
klt(s

rk), f rk = f rk
klt (s

rk),
(23)

where klt represents the KEC-lookup table. These functions are used to find the position
of the contact points in the real profiles once the position in the KEC profile has been
obtained. The surface parameter’s s lw location of contact points in the real left-wheel
profile is plotted as a function of the lateral position s lk of the contact point in the KEC
profile in Fig. 9.

The computation of KEC-equivalent wheel profiles requires solving Eq. (22) including
no track irregularity. The authors of [16] state that the area of allowable motion for the wheel
with null irregularity cannot be guaranteed to be the same as for wheels with irregularities.
Later, in [24], the KEC-equivalent wheel profiles were proved to be acceptable for use in
irregular tracks with accuracy.
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Contact detection for two-point contact scenario

As shown in Fig. 9, with a specific value of the equivalent parameter s lk
f , two simultane-

ous contact points in the real profile s lw
f and s lw

t appear, which corresponds to a two-point
contact scenario (before wheel climbing). However, this discontinuity in Fig. 9 might gen-
erate an unstable numerical integration problem. Therefore, the two-point contact scenario
can be simulated by adopting a smoothed transition from tread to flange with the help of a
regularization approach [17]. Using the transition lengths [17] of the regularization for the
tread–flange transition to account for the two-point contact scenario is critical for simula-
tion stability and accuracy. In this work, the transition lengths used are �ŝ = 0.5 mm and
�s̄ = 1 mm. If the transition lengths are too small, the equation of motion matrix will be ill-
conditioned, and the simulation will stall. Alternatively, if the transition lengths are larger,
the simulation results may be less accurate.

Contact force computation for two-point contact scenario

One advantage of the KEC method is that contact forces on the tread and flange can be
treated equally as reaction forces. The equations of motion of a railway vehicle subject to
KEC constraints can also be written in the following DAE form:

Mq̈ + Nλ = Q + Qtang + Qsusp,

CKEC(q, t) = 0,
(24)

where CKEC includes the KEC constraint equations for wheelset Cwi,KEC and forward veloc-
ity holonomic constraints, the matrix N includes the holonomic constraint Jacobian matrix
and the matrix Nwi, which represents the direction of the reaction forces and is associated
with all the wheelsets in the vehicle. The wheelset KEC constraint equations Cwi,KEC in the
dynamic simulation are the same as in Eq. (22). In this case, lateral displacement is treated
as an independent coordinate, and the outputs of the nonlinear constraint equations from
Eq. (22) become the vector of wheelset dependent coordinates xwi = [zwi ϕwi s lk srk]T
[16].

The normal contact forces for the wheels are computed as the reaction forces as follows:

Qnor,wi = −Nwiλ, (25)

where Nwi represents the direction of the reaction forces and torques and is associated with
the wheelset. Due to the nonlinearity, the lateral position vector sk cannot be eliminated from
Eq. (22). Therefore, the reaction forces for the wheelset Qnor,wi cannot be obtained using the
KEC constraint Jacobian matrix Qnor,wi �= −Cwi,KEC

q λ in Eq. (19) [17, 24].
As shown in the left and right of Fig. 10, points A and B represent the wheel/tread

and wheel/flange contacts when a two-point contact scenario occurs. The transition length
between points A and B in the left of Fig. 10 corresponds to the forbidden area between
points A and B on the left wheel profile in the right. However, in the numerical simulation,
the lateral position of point C in the transition length s lk of the KEC-equivalent profile (see
left of Fig. 10) might be obtained by solving Eq. (22). In this case, the contact forces will
be directly applied at the contact point C in the forbidden area in the right of Fig. 10. Using
contact force Qnor,wi at point C directly, the vehicle dynamic behavior might not be accurate.
Therefore, the normal contact force Qnor,wi is transformed into two normal contact forces at
the tread-end point Qnor,wi

tre and the flange starting point Qnor,wi
fla ,

Qnor,wi = Qnor,wi
tre + Qnor,wi

fla . (26)
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Fig. 10 (Left) Regularization of the transverse curve parameter relation for the left equivalent and real
wheels; (Right) Two-point wheel/rail normal contact force computation while a regularization approach is
used

2.5 Computation of tangential contact forces

In the dynamic simulation of the rail vehicle, the tangential forces and spin moment are
generated between wheels and rails due to the relative motion of rolling and sliding [25].
Because it offers good computational efficiency and accuracy, the tangential contact force
here was computed using Polach creep contact theory [29, 30] and treated as applied forces
in the equations of motion Eqs. (16) and (24). In general, the computation of tangential
contact forces requires the inputs of: (a) normal contact forces acting on the contact points,
(b) relative contact velocity, (c) Kalker’s constants, and (d) coefficients of friction. In this
work, the coefficient of friction was considered constant. The relative contact velocity and
Kalker’s constants were computed based on the rail and wheel surface curvatures, which can
be stored in a lookup table. The normal contact forces used here depends on two different
situations:

1. If the normal contact force is computed as the reaction forces, such as the normal tread
contact force with LUT method (see Eq. (19)) and normal tread or/and flange contact
force with KEC method (see Eq. (25)), the normal forces obtained last time-step is used
to find tangential contact force. This assumption can work is simply due to the small
time-steps used in railway dynamic simulation.

2. If the normal contact force is computed as the applied forces, such as the normal flange
contact force with LUT method (see Eq. (20)), current time-step normal contact forces
are implemented for tangential contact force computation.

2.6 Computation of suspension forces

This work considers that each modeled body is accompanied by a track frame along the track
centerline such that the body coordinates are defined with respect to this frame. See Fig. 11.
However, when computing suspension forces, it is more convenient to employ a master track
frame. Therefore, the relative kinematics for all moving bodies can be projected on the same
track frame.

This way, the absolute position vector of a point P and Q in the global frame (see Fig. 11)
are given by:

RP = Rbti + Abti(r̄i + Abti,i ûi
P ),

RQ = Rbti + Rijt + Abtj(r̄j + Abtj,j ûj

Q),
(27)



Comparison of numerical and computational aspects between. . . 321

Fig. 11 Kinematics projected to
master track frame: Rijt is the
relative distance vector from
body track frames it to jt, ûi

P and

ûj
Q

are the position vectors of the
points P and Q with respect to
their body frames, r̄i

P
and r̄i

Q
are

the position vectors of point P

and Q, which is projected into
master track frame i

where Rijt = Rbtj −Rbti is the relative distance vector from body track frames it to jt, vectors
Rbti and Rbtj are the position vectors of body track frames with respect to global frame,
matrices Abti and Abtj are rotation matrices of body track frames, r̄i and r̄j are position
vectors of body i and j with their track frames, ûi

P and ûj

Q are the position vectors of
the points P and Q with respect to their body frames, and matrices Abti,i and Abtj,j are
the rotation matrices of body frames with respect to the body track frames. If the position
vectors of points P and Q are referenced with respect to the master track frame with their
components expressed with respect to this frame, Eq. (27) can be expressed as

r̄i
P = r̄i + Abti,i ûi

P ,

r̄i
Q = (Abti)T [Rijt + Abtj(r̄j + Abtj,j ûj

Q)].
(28)

Therefore, the suspension force of the spring–damper in parallel in Fig. 11 is computed as
follows:

Qsusp
i =

( ∂d

∂qi

)T

f susp,

f susp = Kd + Dḋ,

(29)

where qi is the set of generalized coordinates for body i, K is the spring stiffness, D is the
damping coefficient, and the deformation length of the spring d is defined as:

d =
√

(r̄i
P − r̄i

Q)T (r̄i
P − r̄i

Q) − l0, (30)

where l0 is the undeformed length of the spring. The time derivative ḋ is expressed as [31]

ḋ = ∂d

∂qi
q̇i . (31)

The calculations of suspension forces with different suspension elements in the Manch-
ester wagon 1 are given in Appendix A.
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Fig. 12 Flow chart of simulation procedure

3 Computer simulation

The dynamic simulation of a railway vehicle integrates Eq. (16) or (24) forward in time.
This procedure, developed in the framework of multibody dynamics, is described here as a
function of the two wheel/rail contact methods used in this work and illustrated in Fig. 12
as follows:

1. Set initial conditions for the system generalized coordinates and velocities.
2. If using the contact LUT method, interpolate stored discrete data from the contact lookup

table with two entries, ȳwi = ywi − ξa and ξg , and obtain the wheelset coordinates z̄wi =
zwi + ξv , ϕ̄wi = ϕwi + ξc/2Lr , and surface parameters s lw, s lr , srw, srr . Normal contact
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forces in the tread are computed as reaction forces associated with contact constraints,
while in this work, the normal contact forces for the flange are computed as a Hertzian
penetration-based model.

3. If using the KEC method, solve the KEC constraint equations from Eq. (22) to get the
wheelset coordinates zwi, ϕwi, and KEC-profile positions s lk, srk with inputs ywi and track
irregularities y lir , yrir , zlir , zrir . Interpolate stored discrete data from the KEC-lookup
table to get surface parameters s lw and s lr with the entry of s lk and srw and srr with the
entry of srk. Normal contact forces on the tread and the flange are treated equally as the
reaction forces. The two-point contact scenario can be simulated with a smooth transition
of the normal contact forces from tread to flange.

4. Include the contact force vectors at each wheel, suspension force vectors (primary and
secondary), Newton–Euler generalized forces and quadratic-velocity generalized inertia
forces into the vector of external forces of the system. Solve the equations of motion of
the railway vehicle to get the generalized accelerations q̈.

5. Return the new generalized positions q and velocities q̇ at time t +�t with the numerical
integration subroutine.

6. Go to step 2 or 3 until the analysis is finished.

4 Integration methods

The numerical integration method can be divided into explicit and implicit integration. The
decision to use an explicit or implicit method depends on the studied system. In the explicit
method, the calculation of the variables at each time step requires the solution of the linear
equations that are functions of the values of the variables in previous time steps. In the
implicit method, the calculation of the variables at each time step requires the solution of
the nonlinear equations that are functions of the values of the variables in the current and
the previous time steps. Therefore, the implicit method uses iteration to solve nonlinear
equations at each time step.

This study uses a fourth order Runge–Kutta method as the fixed-step-size explicit inte-
grator [32]. It is a single step method, and four function evaluations are required in each
integration step. As an alternative time-integration scheme, the predictor–corrector ABM
method is used as the fixed-step-size in this work. It allows determining the errors in each
iteration step (local truncation error) and a correction term can be included. The Adams–
Bashforth–Moulton scheme can be written as follows:

(Predictor) yn+1 = yn + �t(55f(tn,yn) − 59f(tn−1,yn−1) + 37f(tn−2,yn−2)

− 9f(tn−3,yn−3))/24,

(Corrector) yn+1 = yn + �t(9f(tn+1,yn+1 + 19f(tn,yn) − 5f(tn−1,yn−1))/24,

(32)

where tn−0..3 and yn−0...3 are the three previous time steps and state variables.
The ABM is a multistep method that has two function evaluations in each integration

step, the predictor and the corrector. Compared to the RK4 with four function evaluations,
the ABM should be twice as fast.

The Matlab built-in function ode45 is typically selected as the variable-step-size explicit
integrator, as it can provide an acceptable solution in most cases. It is a single-step explicit
integrator based on the Runge–Kutta (4,5) formula (Dormand–Prince method). For stiff sys-
tems, the solution time with ode45 increases, and other Matlab built-in time integrators
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Table 2 Simulation parameters for the vehicle

Wheelsets Parameters Bogies Parameters Car Parameters

Mass mwh 1813 kg Mass mb 2615 kg Mass mc 32000 kg

Roll inertia Iwh
xx 1120 kg·m2 Roll inertia Ibxx 1722 kg·m2 Roll inertia Icxx 56800 kg·m2

Pitch inertia Iwh
yy 112 kg·m2 Pitch inertia Ibyy 1476 kg·m2 Pitch inertia Icyy 1970000 kg·m2

Yaw inertia Iwh
zz 1120 kg·m2 Yaw inertia Ibzz 3067 kg·m2 Yaw inertia Iczz 1970000 kg·m2

schemes such as ode15s can perform better; ode15s is a variable order and variable-step-
size implicit solver based on numerical differentiation formulas (NDFs) of orders 1 to 5.
Optionally, the maximum order (5) can be reduced or a backward difference formulation
can be used [33].

The railway vehicle models usually contain stiff springs for suspension components or
contact forces modeling. The explicit integration methods, such as RK4, are not suitable
for a stiff problem. In many cases, the explicit integration method is conditionally stable
and it need least effort for one time integration step. However, the method requires a small
time-step size to solve the stiff problem and makes the simulation less efficient [34]. Fur-
thermore, the predictor–corrector ABM method includes the previous step information to
prevent the numerical instability. The Matlab ode45 is based on Runge–Kutta algorithm and
has similar features as the RK4 for a stiff problem. The Matlab ode15s is based on NDF for-
mulation, where the time-step and solution order can be changed. These features are desired
in the stiff problem solution, as dynamically adjusting these parameters allows obtaining the
solution efficiently. However, it requires the iterative solution for the nonlinear equations
and the update of the Jacobian matrix at each time step. As the number of unknowns gets
larger, the numerical effort for the update of Jacobian matrices starts to be more expensive
[23].

5 Simulation results

5.1 Vehicle model description

This section describes the vehicle model used in the numerical simulations of Sect. 3, which
is based on the Manchester wagon used in Iwnick [3] as a benchmark. Figure 13 illustrates
the various components of the vehicle formed by one carbody, two bogie frames and four
wheelsets with primary and secondary suspension elements.

The mass and inertia properties of the different bodies are presented in Table 2. The wheel
and rail profiles used for the contact lookup table and computation of the KEC profiles are
the S1002 wheel and LB140-Area rail profiles shown in Fig. 14, which present a unique
two-point contact scenario in the tread–flange transition. Wheel and rail profile positioning
with respect to the track centerline (Lw , Lr ), rail inclination (β) and wheel nominal radius
(r0) are given in Table 1. The coefficient of friction for the wheel rail tangential contact force
is μ = 0.2364 and the Hertzian stiffness and damping constant for flange contact with the
LUT method are listed in Table 3.

The primary and secondary suspension shown in Fig. 13 involves a total of 48 elements
classified into springs and dampers in series, spring and dampers in parallel, and bumpstops,
with their stiffness and damping properties given in Table 4.
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Fig. 13 Three-dimensional Manchester wagon: (a) side view; (b) front view

Table 3 Hertzian stiffness and damping constant for flange contact with LUT method

Model Parameters

Stiffness Khertz (N/m1.5) 7.075 · 1013 1 · 1012 1 · 1011 1 · 1010 1 · 109

Damping Ddamp (N·s/ m2) 7.075 · 1011 1 · 1010 1 · 109 1 · 108 1 · 107

Track irregularities are generated using analytical expressions of the power spectral den-
sity functions (PSD) [35]. The alignment, vertical profile, gauge variation, and cross level
are shown in Fig. 15.

5.2 Validation

In this section, the 3D multibody model of the railway vehicle is implemented in commer-
cial simulation software, Universal Mechanism (UM) [36] to validate that implemented in
Matlab software. For both the KEC and LUT methods in Matlab software and UM commer-
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Fig. 14 Real wheel/rail profile combination that shows two-point contact scenario and LB-140-area rail pro-
file with S1002 wheel profile

Table 4 Main parameters of suspension elements in the simulation

Suspension Parameter Number of elements

Secondary vertical stiffness Ksz 430 kN/m 2/bogie

Secondary longitudinal shear stiffness Kshear
sx 160 kN/m 2/bogie

Secondary lateral shear stiffness Kshear
sy 160 kN/m 2/bogie

Secondary bending stiffness Kbend 10.5 kN/rad 2/bogie

Secondary vertical damper rate Dsz 4 kN·s/m 2/bogie

Secondary vertical damper series stiffness Kseries
sz 1000 kN/m 2/bogie

Secondary longitudinal stiffness Ksx 5000 kN/m 1/bogie

Secondary longitudinal damper rate Dsx 25 kN·s/m 1/bogie

Secondary lateral stiffness Ksy 6000 kN/m 2/bogie

Secondary lateral damper rate Dsy 32 kN·s/m 2/bogie

Primary vertical stiffness Kpz 1220 kN/m 4/bogie

Primary vertical damper rate Dpz 4 kN·s/m 4/bogie

Primary vertical damper series stiffness Kseries
pz 1000 kN/m 4/bogie

Primary longitudinal stiffness Kpx 31391 kN/m 4/bogie

Primary longitudinal damper rate Dpx 15 kN·s/m 4/bogie

Primary lateral stiffness Kpy 3884 kN/m 4/bogie

Primary lateral damper rate Dpy 2 kN·s/m 4/bogie

Bumpstop
�lbump 0 25 30 35 40 45 50 55 60 65/mm

Fbump 0 0 0.6 1.76 3.73 6.87 11.58 17.17 29.2 230.0/kN

cial simulation software, the fixed-step-size integrator ABM with time step size �t = 1 ms
is used for all approaches. In addition, the Hertzian contact stiffness at the flange for the
LUT method is Khertz = 1 · 1010 N/m1.5. A numerical comparison of three different case
studies is presented: (1) single wheelset on a curved track without track irregularities, (2)
the Manchester vehicle on a curved track without track irregularities, and (3) the Manchester
vehicle on a curved track with track irregularities.

Single wheelset on a curved track without track irregularities

In the first case, the single wheelset is simulated at a constant forward velocity of V =
10 m/s (36 km/h) on a 120 m track without irregularities constructed of the following three
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Fig. 15 Track irregularities

Fig. 16 Track geometries with 120 m traveled distance. Lines perpendicular to the track geometry show the
transition points of the track segments

segments: a 30 m tangent, a 50 m transition, and a 40 m left curve segment with different
values of curve radius as shown in Fig. 16.

Figure 17 shows the comparison of the lateral displacement and yaw angle of the
wheelset with the KEC and LUT methods and UM. The achievement of the steady curving
can be observed when the vehicle enters into transition curve (see grey area). In addition,
with different values of curve radius, the traveled distance where steady curving starts is
different. The steady curving results are quantified in Table 5. The results of lateral dis-
placement and yaw angle show good agreement between both of the examined methods and
UM, except for the yaw angle, which is about 2 mrad bigger when using UM on the radius
R = 300 m curve track. That is mainly because the planar contact approach is implemented
into the KEC and LUT methods, but in UM, the 3D elastic contact approach is utilized for
the tread and flange contacts.



328 X. Yu et al.

Fig. 17 Comparison of the lateral displacement and yaw angle of the single wheelset vehicle as it negotiates
different radius tracks with constant forward velocity V = 10 m/s. The white area represents the tangent
segment, the grey area represents the transition curve segment, and the blue area represents the left curve
segment

Table 5 Vehicle coordinates during steady curving, when a single wheelset vehicle negotiates different radius
tracks with constant forward velocity V = 10 m/s

Radius R = 300 m Radius R = 500 m Radius R = 700 m Radius R = 900 m

ywh

(mm)
ψwh

(mrad)
ywh

(mm)
ψwh

(mrad)
ywh

(mm)
ψwh

(mrad)
ywh

(mm)
ψwh

(mrad)

KEC −8.8569 −4.5566 −8.8303 −3.5689 −8.8476 −1.4441 −8.8374 −0.8383

LUT −9.0468 −4.0368 −9.0324 −3.3389 −9.0401 −1.3149 −9.0353 −0.7775

UM −8.8266 −6.3745 −8.7994 −3.0023 −8.7829 −1.7665 −8.7538 −1.0950

Manchester wagon on a curved track without track irregularities

In the second case, the Manchester wagon is simulated at a constant forward velocity
of V = 20 m/s (72 km/h), on a 500 m track without irregularities formed by the following
three segments: a 100 m tangent, a 50 m transition, and a 350 m left curve of R = 500 m
radius segment (see Fig. 18).
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Fig. 18 Track geometries on the 500 m traveled distance with an R = 500 m radius curved track

Fig. 19 Comparison of kinematics of four wheelsets when the vehicle negotiates the R = 500 m radius track
without track irregularities with constant forward velocity V = 20 m/s

Figures 19 and 20 show a comparison of lateral displacements and yaw angles for the
vehicle wheelsets, bogies, and car body, when using the KEC and LUT methods and UM.
Table 6 lists the quantities of the steady curving results. Again, the results of lateral dis-
placement and yaw angle show good agreement. A steady curving motion is achieved when
the vehicle enters into the transition curve. According to the lateral displacement of the four
wheelsets, the front wheelsets of both bogies can experience flange contact when negotiating
the curve (blue area in the figure), and the rear wheelsets do not.



330 X. Yu et al.

Fig. 20 Comparison of kinematics of bogies and car body – the information is the same as that shown by
Fig. 19

Table 6 Vehicle coordinates during steady curving when a Manchester wagon negotiates an R = 500 m
radius curved track without irregularities with constant forward velocity V = 20 m/s

Front wh.,
front bog.

Rear wh.,
front bog.

Front wh.
rear bog.

Rear wh.,
rear bog.

Front bog. Rear bogie Car

ywh (mm) KEC −8.8291 −4.6144 −8.8294 −4.6242 −6.3153 −6.3191 41.8464

LUT −9.0966 −4.5718 −9.0970 −4.5469 −6.4958 −6.4676 41.0944

UM −8.6057 −4.7402 −8.3450 −4.5669 −3.5763 −3.3553 41.3972

ψwh (mrad) KEC −4.7822 0.2586 −4.7911 0.2495 −2.1481 −2.1570 −0.1997

LUT −4.7474 0.3042 −4.7752 0.2799 −2.1474 −2.1730 −0.1200

UM −4.5372 0.3430 −4.0380 0.8763 −2.0372 −1.5205 −0.0276

Manchester wagon on a curved track with track irregularities

In the last case, the Manchester wagon is simulated at a constant forward velocity of
V = 20 m/s (72 km/h) on a 500 m track (see Fig. 18) with irregularities. Figures 21 and 22
show a comparison of the lateral displacement and yaw angle for the vehicle wheelsets,
bogies, and car body when using the KEC and LUT methods and UM. The results of lateral
displacement and yaw angle are almost identical with the results on the irregular track.
According to the lateral displacement of the two wheelsets, steady curving motion is not
achieved because of the track irregularities.

5.3 Computational efficiency

In this case, the Manchester wagon is simulated at a constant forward velocity of V =
20 m/s (72 km/h), on the same 500 m track as shown in Fig. 18 with irregularities. The
computational efficiency of the LUT method is compared to that of the KEC method using
different integration methods. The comparison was carried out on an Intel Core i5 laptop
with a 2.5 GHz CPU and Matlab 2018b. The Mex functions written in C or Fortran were not
used to improve computational efficiency in Matlab. To determine the computational time,
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Fig. 21 Comparison of kinematics of four wheelsets when the vehicle negotiates the R = 500 m radius track
with track irregularities and constant forward velocity V = 20 m/s

Fig. 22 Comparison of kinematics of bogies and car body, the information is same as in Fig. 21

each case is simulated five times, and the calculated simulation time was as the average
value of the five runs. The computation times for the five runs for each case are listed in
Appendix B. Two fixed-step-size integrators, explicit RK4 and predictor–corrector ABM,
and two variable-step-size Matlab built-in function integrators, explicit ode45 and implicit
ode15s, were applied to compare computational efficiency.

According to the Hertz contact theory [25], the flange Hertzian stiffness for the wheel–
rail profile combination shown in Fig. 14 is Khertz = 7.075 · 1013 N/m1.5 with the Pois-
son’s ratio ν = 0.28 and Young’s modulus E = 2.1 · 1011 N/m2. Since the location of the
flange contact points remains the same when the two-point contact scenario occurs, the con-
stant flange contact stiffness parameters are considered for the hybrid method in the con-
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Table 7 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on a 500 m track
using LUT method with different integrators – the Hertzian stiffness at the flange for LUT method is 7.075 ·
1013 N/m1.5

Integrators Tol LUT method

CPU time (s) Func- eval-

ode15s 1 · 10−7 11192.74 1125730

ode45 1 · 10−8 16909.05 2171100

RK4 – –

ABM – –

tact lookup table. Computational costs and function evaluations of the vehicle simulation
with flange Hertzian stiffness Khertz = 7.075 · 1013 N/m1.5 for the LUT method are listed
in Table 7. With step size �t = 1 ms, RK4 and ABM failed to converge at same time as
when flange occurs. In addition, the variable-step-size explicit integrator ode45 only suc-
ceeds when the absolute and relative tolerance is smaller than 1 · 10−8 and the variable-
step-size implicit integrator ode15s only succeeds when the absolute and relative tolerance
is smaller than 1 · 10−7. This is because having the high-magnitude Hertzian parameter,
Khertz = 7.075 · 1013 N/m1.5, results in a stiff system of ordinary differential equations, and
some variations of the equation significantly impact the solution. If the time step and/or tol-
erances are too large, the first impact between the wheel flange and rail head may result in a
substantial penetration depth, which leads to a numerically instability and failure of the time
integration. Therefore, a large number of time steps are needed to solve the problem, which
results in high computational cost.

Under the assumption that the contacting bodies behave like infinite semispaces, the
Hertzian stiffness of Khertz = 7.075 · 1013 N/m1.5 might be higher than the real value. In
fact, reducing the value of Hertzian stiffness is realistic because the influence of flange
flexibility is not considered. In what follows, different values of flange contact stiffness will
be presented. Computational cost and function evaluations of the vehicle simulation with
different values of flange Hertzian stiffness for LUT method are compared against KEC
method in Fig. 23. The computation time of five runs for each case are listed in Tables 12, 13,
14, 15, 16. When using variable-step-size integrators, ode15s and ode45, the KEC method
is much superior to the LUT method with higher flange contact stiffness (such as Khertz =
1 · 1011 N/m1.5 and 1 · 1012 N/m1.5). This is due to the large value of stiffness that leads
to a stiff system of ordinary differential equations and increases the computational effort
during the simulation. It is true that stiff integrators (ode15s) are more expensive. But in
case of stiff systems, they lead to a stable solution that is not sometimes possible or take
even more time in the case of nonstiff integrators (ABM and RK4). When working with
lower flange stiffness Khertz = 1 · 1010 N/m1.5 and 1 · 109 N/m1.5, the LUT method shows
better performance in computational efficiency.

5.4 Accuracy

Table 8 lists a comparison of maximum and average errors of lateral displacement between
LUT and KEC methods when using different integrators, with the Manchester wagon simu-
lated at a constant forward velocity of V = 20 m/s (72 km/h) on a 500 m track with irregu-
larities. See Fig. 18. Different values of flange stiffness are considered at the wheel flange.
The fixed step sizes are �t = 1 ms for fixed-step-size integrators RK4 and ABM. The max-
imum step size is �t = 1 ms for Matlab integrators ode45 and ode15s. The absolute and
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Fig. 23 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on a 500 m track
by using both methods with different integrators

relative tolerance for ode45 and ode15s is 1 · 10−6. The error between both methods is
computed as

Error = |ywh
KEC − ywh

LUT |
max(|ywh

LUT |) , (33)

where ywh
KEC is the lateral displacement for the KEC method within a 25 s simulation, and

ywh
LUT is for the LUT method. Some conclusions can be made based on the numerical results

from Table 8:

• For all integrators, the lower flange stiffness for the LUT method (especially Khertz =
1 · 109 N/m1.5) results in higher maximum and average absolute errors. This is due to the
low flange stiffness that results in large flange to rail head indentations.

• Compared to the other integrators, the ABM errors are much higher when selecting a large
value of the flange contact stiffness Khertz = 1 ·1012 N/m1.5. This is because constant time-
step integrators are not appropriate for impact problems. As shown in Fig. 24, the flange
indentation and normal contact forces become artificially large for the ABM integrator.

As shown in Fig. 25, the use of a low stiffness (Khertz = 1 · 109 N/m1.5) helps to simulate
the vehicle motion. However, low stiffness results in high indentations (around 0.75 mm)
that can be considered as physically inadmissible. Even though the flange indentations are
different for different flange contact stiffnesses Khertz in Fig. 25, the resulting flange normal
contact forces Fhertz are on average almost the same. However, the higher the stiffness, the
higher the force oscillations.
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Table 8 Maximum and average errors of lateral displacement between the LUT and KEC methods

5.5 The effect of the refinement for the KEC and LUT tables on the computational
efficiency

The use of lookup table for both LUT and KEC approaches requires generating a pre-
calculated table which tabulates the values of the different parameters and variables into
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Fig. 24 Comparison of lateral displacement, flange indentation, and normal contact force with the LUT
method when using ABM, RK4, ode45 and ode15s. The fixed step sizes are �t = 1 ms for fixed-step-
size integrators RK4 and ABM. The maximum step size is �t = 1 ms for the Matlab integrators ode45
and ode15s. The absolute and relative tolerance for ode45 and ode15s is 1 · 10−6. Flange contact stiffness
Khertz = 1 · 1012 N/m1.5

Fig. 25 Comparison of flange indentation and normal contact force with LUT method when using ABM with
step size �t = 0.1 ms. Different flange contact stiffnesses are considered

a set of nodal points. Later in the dynamic simulations, the required parameters or vari-
ables for the dynamic analysis are obtained by using linear interpolation between the stored
data. The KEC table has only one entry, the lateral wheel parameter s lk or srk. In addi-
tion, the LUT table has two entries, gauge variation irregularity ξg and wheelset lateral
displacement yw . In this section, each KEC table is refined by increasing the number of
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Table 9 Notes of lookup table information for KEC tables before and after refinement

Before refinement After refinement

• For each KEC table shown in Eq. (23),
wheel lateral parameters slk and srk are dis-
cretized from −46.4 mm to +46.4 mm with
constant steps �slk = 0.2 mm and �srk =
0.2 mm.

• For each KEC table, the matrix size is 465×
1 with Matlab storage of 4 kB each.

• For each KEC table shown in Eq. (23), the
wheel lateral parameters slk and srk are dis-
cretized from −46.4 mm to +46.4 mm with
constant step �slk = 0.018 mm and �srk =
0.018 mm.

• For each KEC table, the matrix size is
5001 × 1 with Matlab storage of 12 kB.

Table 10 Notes of lookup table information for both LUT and KEC tables

Before refinement After refinement

• For each LUT table shown in Eq. (14),
the gauge variation ξg is discretized from
−5 mm to +5 mm with constant step �ξg =
1 mm, and the wheelset lateral displacement
ywi is discretized from −18 mm to +18 mm
with constant step �ywi = 0.1 mm.

• For each LUT table, the matrix size is 361×
11 with Matlab storage of 25 kB each.

• For each LUT table shown in Eq. (14),
the gauge variation ξg is discretized from
−5 mm to +5 mm with constant step �ξg =
1 mm, and the wheelset lateral displacement
ywi is discretized from −18 mm to +18 mm
with constant step �ywi = 0.05 mm.

• For each LUT table, the matrix size is 721×
11 with Matlab storage of 46 kB.

points from 465 × 1 to 5001 × 1 as listed in Table 9. Furthermore, each LUT table is
refined by increasing the number of points from 361 × 11 to 721 × 11 as listed in Ta-
ble 10.

The refinement of lookup tables tends to increase the precalculation time and the com-
puter storage while it is assumed to improve the accuracy of the interpolated values [15]. To
verify if the refinement of lookup tables can improve the computational efficiency, Fig. 26
compares the computation cost by using KEC and LUT methods with the flange Hertzian
stiffness 1 · 1010 N/m1.5. The computation time of five runs for each refinement case are
listed in Tables 17–18. The results indicate that the refinement of both KEC and LUT tables
can slightly improve the computational efficiency in most particular cases (14 out of 18).

Table 11 lists the computational costs and function evaluations of the vehicle simulation
with flange Hertzian stiffness Khertz = 7.075 · 1013 N/m1.5 for the LUT method after refine-
ment. Compared to the result before refinement from Table 7, it can be concluded that the
refinement only helps ode15s and ode45 to smooth the numerical integration that increases
the maximum tolerance to 10 times bigger.

6 Conclusion

Two constraint-based formulations for the wheel/rail contact simulation were studied in
terms of their accuracy and computational efficiency based on the Manchester wagon 1
model. Two fixed-step-size integrators, RK4 and predictor–corrector-based ABM, and two
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Fig. 26 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track by
using both KEC and LUT methods with and without refinement

Table 11 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method after refinement, the Hertzian stiffness at flange is 7.075 · 1013 N/m1.5

Integrators Tol LUT method

CPU time (s) Func- eval-

ode15s 10−6 9316.95 s 100394

ode45 10−7 11137.77 s 1354320

RK4 – –

ABM – –

variable-step-size Matlab integrators, ode15s and ode45, were used to carry out the com-
parison.

The studied contact models are the KEC and LUT methods. The differences between
each approach can be summarized as follows:

1. Contact detection for the LUT method is based on an offline approach where the contact
points are determined by interpolating a predefined lookup table. The KEC method is an
online contact detection approach where the exact position of the contact points can be
determined from the online solution of the KEC constraints.

2. The second difference is the computation of normal contact forces at the flange. For the
LUT method, the normal contact forces are defined in terms of stiffness and damping
ratio using Hertz’s contact theory. This implies that computational efficiency and numer-
ical stability will be affected by the large magnitude values of the stiffness parameters.
However, with using the KEC method, the normal contact forces are determined through
Lagrange multipliers that avoid the numerical disadvantages in the case of stability using
high values of contact stiffnesses.

Numerical simulations of vehicle dynamics have been carried out in different case studies
with and without track irregularities. Comparison between the kinematic results obtained by
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Matlab and the commercial simulation software UM has allowed a reliable validation of
both the LUT and KEC methods. The performance of both approaches is compared in terms
of efficiency and accuracy. The KEC method is faster (more computationally efficient) than
the LUT method when using all the studied integrators (up to 20%). Also, as expected for
the LUT method, results are more accurate when Hertzian stiffness is lower. The integrators
ode15s and ode45 showed better efficiency compared to the integrators RK4 and ABM,
only when flange contact stiffness Khertz is lower than 1 · 1010 N/m1.5. As for the KEC
method, the integrators ode15s and ode45 are faster than the fixed-step-size case under
some specific tolerances.

Appendix A: Elements used for the suspension systems

Element name Example Calculation

Spring–damper in
parallel

f susp = Kd + Dḋ

Spring–damper in
series

ḟ susp(t) + Kseries

D
f susp(t) = Kseries ḋ,

f susp(t = 0) = f
susp
0

Shear spring f susp = Ksheard

Bending spring Msusp = Kbendθ

The bumpstop forces f can be parameterized as a continuous functions (cubic splines in
this work) of the relative displacement d , as shown in Fig. 27.
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Fig. 27 The nonlinear stiffness
for longitudinal bumpstop

Appendix B: Computational time for five runs

Table 12 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method with Hertzian stiffness at flange 1 · 109 N/m1.5

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 493.00 71273 487.82 71273 492.93 71273 475.32 71273 461.72 71273

1 · 10−5 143.24 17928 127.81 17928 127.20 17928 118.06 17928 118.16 17928

1 · 10−4 85.79 12405 82.95 12405 76.48 12405 79.29 12405 96.90 12405

ode45 1 · 10−6 344.74 48511 327.76 48511 374.03 48511 382.00 48511 339.08 48511

1 · 10−5 282.84 33811 242.49 33811 245.72 33811 259.78 33811 257.95 33811

1 · 10−4 324.93 37045 282.51 37045 273.45 37045 283.15 37045 267.22 37045

RK4 734.72 100000 688.87 100000 683.98 100000 692.36 100000 724.20 100000

ABM 408.18 50011 354.05 50011 368.91 50011 360.75 50011 353.15 50011

Table 13 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method with Hertzian stiffness at flange 1 · 1010 N/m1.5

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 653.89 85968 610.55 85968 686.72 85968 653.18 85968 679.43 85968

1 · 10−5 372.46 51736 391.47 51736 385.11 51736 389.24 51736 367.10 51736

1 · 10−4 226.51 32614 216.81 32614 216.61 32614 266.12 32614 225.54 32614
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Table 13 (Continued)

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode45 1 · 10−6 615.99 77011 637.96 77011 624.77 77011 582.01 77011 578.58 77011

1 · 10−5 386.61 49579 442.25 49579 410.13 49579 369.58 49579 467.99 49579

1 · 10−4 271.93 38155 258.03 38155 264.98 38155 286.16 38155 315.09 38155

RK4 698.43 100000 694.88 100000 744.67 100000 735.31 100000 729.37 100000

ABM 401.47 50011 398.92 50011 337.01 50011 364.40 50011 399.35 50011

Table 14 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method with Hertzian stiffness at flange 1 · 1011 N/m1.5

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 1728.10 244144 1740.00 244144 1600.56 244144 1579.49 244144 1591.98 244144

1 · 10−5 1202.83 161772 1073.86 161772 1033.54 161772 1005.55 161772 1056.18 161772

1 · 10−4 1051.29 147154 1046.50 147154 985.35 147154 1103.24 147154 1062.70 147154

ode45 1 · 10−6 1591.40 203887 1426.20 203887 1429.11 203887 1675.47 203887 1413.85 203887

1 · 10−5 1210.50 136729 1105.41 136729 928.60 136729 962.59 136729 1141.31 136729

1 · 10−4 673.39 91519 686.47 91519 683.42 91519 669.41 91519 660.82 91519

RK4 697.31 100000 823.04 100000 698.23 100000 707.15 100000 688.72 100000

ABM 361.99 50011 349.87 50011 363.83 50011 352.48 50011 307.80 50011

Table 15 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method with Hertzian stiffness at flange 1 · 1012 N/m1.5

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 3373.78 453170 3330.28 453170 2879.76 453170 3262.34 453170 3116.91 453170

1 · 10−5 2741.32 380241 2849.83 380241 2632.71 380241 2596.08 380241 2604.17 380241

1 · 10−4 2392.28 337975 2278.72 337975 2499.16 337975 2856.17 337975 2667.23 337975

ode45 1 · 10−6 2781.03 370171 3030.14 370171 3315.77 370171 3688.98 370171 4606.37 370171

1 · 10−5 1697.65 236533 1779.44 236533 1699.05 236533 1991.37 236533 1875.88 236533

1 · 10−4 1099.14 158281 1068.69 158281 1242.76 158281 1314.16 158281 1162.69 158281

RK4 675.77 100000 657.59 100000 593.76 100000 621.64 100000 686.72 100000

ABM 302.10 50011 319.09 50011 350.46 50011 387.78 50011 395.54 50011
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Table 16 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the KEC method with different integrators

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 700.25 123172 792.50 123172 730.71 123172 757.94 123172 862.18 123172

1 · 10−5 422.75 67333 425.98 67333 405.24 67333 360.47 67333 465.68 67333

1 · 10−4 236.68 39941 202.67 39941 203.95 39941 204.57 39941 204.55 39941

ode45 1 · 10−6 644.04 112201 582.96 112201 568.18 112201 561.73 112201 566.01 112201

1 · 10−5 297.70 52927 271.51 52927 262.21 52927 263.17 52927 307.22 52927

1 · 10−4 217.60 38719 217.53 38719 203.34 38719 193.46 38719 191.67 38719

RK4 590.29 100000 613.67 100000 565.60 100000 591.42 100000 584.59 100000

ABM 269.76 50011 246.61 50011 253.45 50011 293.95 50011 262.63 50011

Table 17 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the KEC method with different integrators after refinement

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 611.46 124788 608.69 124788 602.46 124788 603.86 124788 631.08 124788

1 · 10−5 318.63 66208 331.12 66208 321.29 66208 318.57 66208 318.35 66208

1 · 10−4 180.91 37596 181.90 37596 188.10 37596 200.18 37596 196.00 37596

ode45 1 · 10−6 610.96 113005 603.39 113005 602.96 113005 606.14 113005 579.53 113005

1 · 10−5 297.06 52747 264.96 52747 263.59 52747 266.39 52747 265.84 52747

1 · 10−4 207.29 38287 204.34 38287 192.58 38287 194.58 38287 196.09 38287

RK4 484.88 100000 485.44 100000 472.32 100000 480.49 100000 489.68 100000

ABM 281.09 50011 292.30 50011 268.26 50011 270.96 50011 277.85 50011

Table 18 Computation cost for track radius R = 500 m with forward velocity V = 20 m/s on 500 m track
by using the LUT method with Hertzian stiffness at flange 1 · 1010 N/m1.5 after refinement

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode15s 1 · 10−6 632.44 86595 645.81 86595 665.05 86595 639.87 86595 687.02 86595

1 · 10−5 349.64 49964 413.11 49964 390.06 49964 351.50 49964 447.04 49964

1 · 10−4 252.74 32594 247.04 32594 221.31 32594 255.72 32594 253.14 32594
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Table 18 (Continued)

Integ- Tol CPU
time
1st (s)

Func-
eval-
1st

CPU
time
2nd (s)

Func-
eval-
2nd

CPU
time
3rd (s)

Func-
eval-
3rd

CPU
time
4th (s)

Func-
eval-
4th

CPU
time
5th (s)

Func-
eval-
5th

ode45 1 · 10−6 566.49 77323 537.21 77323 528.05 77323 537.56 77323 542.45 77323

1 · 10−5 346.01 49315 317.53 49315 305.15 49315 309.19 49315 351.40 49315

1 · 10−4 250.43 38137 241.77 38137 274.68 38137 265.75 38137 265.79 38137

RK4 606.72 100000 597.32 100000 607.46 100000 644.40 100000 683.03 100000

ABM 342.94 50011 314.21 50011 335.81 50011 393.37 50011 356.16 50011
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