Inteligencia Artificial. Revista Iberoamericana

[n de Inteligencia Artificial

Nexista Tberoamericena de Intelipracia Artificial ISSN: 1137-3601
revista@aepia.org
Asociacion Espafiola para la Inteligencia
Artificial
Espafia

Pefia, Joaquin; Levy, Renato; Corchuelo, Rafael
Towards clarifying the importance of interactions in Agent-Oriented Software Engineering
Inteligencia Artificial. Revista Iberoamericana de Inteligencia Atrtificial, vol. 9, nim. 25, 2005, pp. 19-28
Asociacion Espafiola para la Inteligencia Atrtificial
Valencia, Espafia

Available in: http://www.redalyc.org/articulo.oa?id=92592504

How to cite [f @\ /"
Complete issue Scientific Information System
More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=925
http://www.redalyc.org/articulo.oa?id=92592504
http://www.redalyc.org/comocitar.oa?id=92592504
http://www.redalyc.org/fasciculo.oa?id=925&numero=10318
http://www.redalyc.org/articulo.oa?id=92592504
http://www.redalyc.org/revista.oa?id=925
http://www.redalyc.org

PAPER

Towards clarifying the importance of interactions in
Agent-Oriented Software Engineering

Joaquin Pena Renato Levy
The Distributed Group Intelligent Automation Inc.
University of Seville 15400 Calhoun Drive
Avda. de la Reina Mercedes, s/n. Suite 400, Rockville
Sevilla 41.012 (Spain) MD 20855, USA
{joaquinp}@tdg.Isi.us.es {rlevy}@i-a-i.com

Rafael Corchuelo

The Distributed Group
University of Seville
Avda. de la Reina Mercedes, s/n.
Sevilla 41.012 (Spain)
{corchu}@tdg.Isi.us.es

Abstract

Interactions between subparts of a system have been recognized as the source of complexity in many fields
ranging from physics, sociology, neurology, to software engineering. Agent-Oriented Software Engineering
(AOSE) was born under the promise of conquering complexity and enabling the development of more complex
software. However, current AOSE approaches do not provide enough engineering tools to deal with the
complexity derived from interactions. More mature fields such as economy or component-based software
systems have recognized that interactions present a predominant role in the determination of the desired
outcome providing mature background that can be applied to AOSE.

AOSE may improve its ability to deal with complex systems by improving the tools applied to manage
agent’s interactions in the overall design of the system. In this paper, we justify this assessment and propose
some principles to improve AOSE methodologies regarding complexity.

keywords: Complex MultiAgent Systems, organizational modeling, interaction taxonomy.

1 Introduction These facts indicate that we should pay special
attention to interactions when modeling a Multi-
Agent System (MAS). This focus is possible based

The importance of interactions can be supported on the premise, accepted in the enterprise orga-
over two main facts: i) interactions have been pre- nization field [12], and at later by the agent field,
sented as the main source of complexity by many that an organization can be observed from two
authors, and (i) the interaction is the central ab- different points of view: functional/interaction

straction in many mature fields.

Intelinencia Artificial Reviceta lbaroamericana de Intelicen cia Artificial No 258 (2008 nn 10-29

Inteligencia Artificial Vol. XX, N° XX, 2005

and structural. Roughly speaking, the model of
the functional organization is built of roles and
interactions while the model of the structural or-
ganization is built of agents and interactions.

Despite of their close relationship, both types
of organization views can be modeled indepen-
dently. This fact allows the designers to model
the interaction process ignoring the organiza-
tional structure until it is clearly understood how
it operates. This modeling process reduces the
complexity of models to be managed at first
stages of the software process and eases the com-
prehension of complex behaviors.

In addition, interactions do not present always
the same level of complexity. Consequently, their
modeling and implementation requires different
strategies depending on their complexity nature.

The main contributions of this paper are to show
the importance of interactions, provide a taxon-
omy that classifies interactions based on their
complexity, and outline some general guidelines
for facilitating the modeling process of Multi-
Agent Systems (MAS) that present different lev-
els of complexity. As a result, we also propose
future research lines in the field.

This paper is organized as follows: Sec-
tion 2 presents the related work that support
the importance of interactions regarding struc-
ture/architecture; Section 3 presents our taxon-
omy of interactions; Section 4 shows the facts
that allows the separation of interactions and
structure; Section 5 shows the main principles to
manage interaction complexity; Finally, Section 6
presents our main conclusions and outlines some
future research lines.

2 The importance of interac-
tions

The importance of interactions has been already
established in the agent literature as well as in
several other fields.

2.1 Interactions in other fields

Some advanced Object-Oriented Software Engi-
neering approaches, or even in the traditional so-
ciology field, already present a predominant role

regarding structural features to interactions to
the point in which all the modeling process is
focused on them. OOram [20] is a good exam-
ple of an Object-Oriented approach where the
whole development cycle is focused on interac-
tions. OOram’s authors state that the main ad-
vantages of focusing on interactions is the im-
provement of reuse, traceability and the ability
to cope with complexity [19].

Furthermore, in sociology, interactions have been
emphasized by important authors such as the
German sociologist Max Weber. Weber in his
concept of ideal bureaucracy emphasizes the form,
or in other words, the interrelationships between
the members of an organization. Reenskaug in
1988, the author of OOram, states in [19] that
object-orientation was born by the hand of We-
ber, as an argument for basing on his ideas, and
concluded that OO-methodologies must focus on
interactions.

In addition, this fact is also ratified by the re-
search done in other mature fields: 1) in the com-
ponent world, Syzpersky and D’Souza also em-
phasizes the importance of focusing on interac-
tion instead of architecture (structure in MAS)
in complex systems [22, pag. 124][4]; ii) In the
distributed field, several authors has also claimed
to approaches that focus on interactions, i.e.
Francez and Forman who claim for the impor-
tance of modeling complex interactions as a sin-
gleton and who also works on functional groups
of interacting elements [7]; iii) the last version
of UML provides also modeling artifacts to per-
form interaction-centered modeling emphasizing
and improving the role concept regarding previ-
ous versions [14, 18].

2.2 Interactions as the source of
complexity in AOSE

Several authors agree that the complexity of
MASs is a consequence of their interactions |9,
13]: Complexity is caused by the collective be-
havior of many basic interacting agents. In fact,
many authors point out that the complexity of
MASSs is the consequence of those interactions
among agents, and that these interactions can
vary at execution time, and cannot be predicted
thoroughly at design time, namely, emergent be-
havior. The reasons for the emergence can be
traced to two features present in MASs: self-
adaptation, and self-organization [8, page 20—
211][9, 13]. It is important to observe that this

Inteligencia Artificial Vol. XX, N° XX, 2005

capability of demonstrating emergent behavior is
the key factor that drove us to implement MAS
solutions in the first place, since this key capabil-
ity is essential to address solutions to the targeted
domains.

3 Characterizing complex in-
teractions

Known Knowable Complex Chaos

Future V ; V 4
Present & :
Past l l CL

Figure 1. Complexity and Predictability

Although in Section 2.2, we show that interac-
tions are seen as the main source of complexity in
MASES, a large MAS is usually composed of many
parts which do not present the same features.
Some parts of a MAS could be fully predictable
not presenting any emergent feature, while some
other parts of the same MAS could be highly com-
plex presenting a high-degree of self-adaptation
and self-organization. In the field of enterprise
organization, Snowden and Kurtz recognize this
fact [21]. These authors divide an organization
into the following domains whose main features
are summarized in Figure 1:

1) Ordered Domain: Stable cause and effect
relationship exist. In this domain, the se-
quence of events/actions of the organization
can be established as a cause/effect chain.
It represents the predictable part of the sys-
tem. This domain is further divided into:

1.1) Known Domain: [Figure 1] In this
domain, every relationship between
cause and effect is known. The part of
a MAS in this domain is clearly pre-
dictable and can be easily modeled.

1.2) Knowable Domain: This is the do-
main that while stable cause and effect
relationships exist, they may not be
fully known. In general, relationships
are separated over time and space in
chains that are difficult to fully un-
derstand. The key issue is whether,

or not, we can afford the time and re-
sources to move from the knowable to
the known domain. In Figure 1 this is
represented by a higher number of fu-
ture directions given a certain present
state.

: g
e 1z
- — 0
< o g
h—. S S = £a
g_o
ﬂ Complex f'.;.:’

@

Figure 2. Domain of a problem
depending on the abstraction level of
models

2) Un-ordered: This domain presents unstable
cause and effect relationships between in-
teractions in the system. It represents the
unpredictable part of the system. This do-
main is divided into:

2.1) Complex Domain: There are cause
and effect relationships between the
agents, but both the number of agents
and the number of relationships defy
categorization or analytic techniques.
Unfortunately, relationships between
cause and effect exist but they are not
predictable. This domain presents ret-
rospective coherence. That is to say,
coherence can be only established by
analyzing past history of the system.
Unfortunately, future directions, al-
though coherent, cannot be predicted.
In Figure 1 the past events/actions
can be understood as a single chain of
cause/effects, but when we try to ex-
trapolate and predict future changes,
the solution space is too wide to be
analyzed.

2.2) Chaos Domain: There are no per-
ceivable relationships between cause
and effect, and the system is turbulent;
we do not have the response time to in-
vestigate change. Despite some previ-
ous work in this area, chaotic domains
are still out of reach from the point of
control theory. Agents systems have
been used to model such domains, but
strictly limited to simulation.

Inteligencia Artificial Vol. XX, N° XX, 2005

The complexity characterization proposed by
Snowden and Karts cannot fully describe a MAS
from a software engineering perspective. In an
AOSE approach, complexity depends on the ab-
straction level in which we are working. Thus,
software models can be highly complex while re-
quirement models may be quite simple. In order
to fully describe the MAS from the point of view
of this paper, we must introduce another dimen-
sion: the level of abstraction of models. Figure 2
shows this dependency.

When studying a certain problem, we may need
more or less details of it. That is to say, there
exists a certain level of abstraction that provides
only the level of detail needed for the software
phase and the problem at hand. The level of ab-
straction is an important fact in the categoriza-
tion of the MAS. A MAS categorization may vary
anywhere from the known domain down to the
chaos domain depending on the level of abstrac-
tion at which the MAS is observed and depending
on its features.

Similarly, the complexity level of an interaction
depends on the level of abstraction in which its
features regarding emergence are observed. This
principle can be visualized by the following inter-
action categorization in Figure 3.

The complexity of an interaction, or set of in-
teractions, depends on their nature and on the
effort taken in understanding its details, such as,
their predictability and flexibility, and their level
of abstraction. Our proposed interaction catego-
rization is based in the space defined by these two
axes. Figure 3 shows the classification of interac-
tions in three categories: known, knowable, and
complex interactions.

Known interactions are the less flexible, they do
not present emergence, and all their details can be
identified. Complex interactions present a higher
degree of flexibility and can only be described
with higher level patterns emphasizing most im-
portant details. Knowable interactions represent
a middle point between both of them.

In addition, agents undertaking complex inter-
actions may present a high degree of autonomy,
proactivity, reactivity and, obviously, social abil-
ities. The further a subpart of an agent system
moves from known into complex interactions the
further its abilities, as described above, are in-
tensified. We must observe that the need to de-
scribe (and generate) complex behavior from sim-
pler constructs was the reason that drove us to

agent based systems in the first place, therefore
our goal, must be to describe the system as it
is perceived (complex), and increase details until
the desired behaviors can be synthesized.

Flexibility
& Predictability

Self-X Complex

interactions /chtions
multiParty .Knowa.ble \
interactions inte ra@

Known

Message § !
interactions interactions
Client/server
interactions ‘ ‘
! 1
ey few Level of
details details

abstraction

Figure 3. Proposed interactions taxonomy
regarding complexity

4 Isolating interactions

No agent is an island. Since agents are limited
to some environment and have limited abilities,
complex problems are usually solved by a set of
agents [3]. Hence, an organization represents a
group of agents formed in the system in order to
get benefits from one to another in a collaborative
or competitive manner.

Therefore, a sub-organization emerges only when
some kind of interaction between its participants
exists, either through direct communication by
means of speech acts or through the environment.
The structure of an organization is underlined by
the nature of their interactions; hence it is vi-
tal to clearly understand the interactions within
a MAS system in order to determine its sub-
organizations.

Other authors [2, 23, 6] have recognized this fact
and proposed to see the organization of MASs
from two different points of views:

The interaction point of view: it describes
the organization by the set of interactions
between its roles. The interaction view
corresponds to the functional point of view.

The structural point of view: it describes
the agents of the system and how they are
distributed into sub-organizations, groups,

Inteligencia Artificial Vol. XX, N° XX, 2005

and teams. In this view, agents are also pre-
sented into hierarchical structures showing
the social architecture of the system.

The former is called Acquaintance Organization,
and the later is called Structural Organization.
Both views are intimately related, but they show
the organization from radically different points of
view.

Since any structural organization must include in-
teractions between their agents in order to func-
tion, it is safe to say that the acquaintance or-
ganization is always contained in the structural
organization. Therefore, if we determine first the
acquaintance organization, and we define the con-
straints required for the structural organization, a
natural map is formed between the acquaintance
organization and the correspondent structural or-
ganization. This is the process of assigning roles
to agents [23]. Thus, we can conclude that any ac-
quaintance organization can be modeled orthog-
onally to its structural organization [11].

Maintain
safe
separation

Interactions
g

],
i .

Separation| Adjacent
Controller Keep adj. Zones Controller|

Acquaintance
Organization

zones safe
H
Structural
WAS relationships WAS
Airport i L Airport
' R —
]
=8 JFK BOS Flight Flight Flight
R Airport Airport US 1234 || AAL234 || CO1234
gL (W
4 (el S
ot i
E g — L Ji
23S [might Flight Flight i PG
US 1234 AA1234 CO 1234 ™~ < RS T
Roles played
Centralized Hierarchical Distributed Flat

Organizational Structure Organizational Structure

Figure 4. Acquaintance vs. Structural
Organization: US air traffic control example

Assuming the United States air traffic control
as an example, the functionality is to allow the
planes to fly, guiding them safely through airport
to airport.

Safety requirements force the air separation be-
tween flights to be kept at all times. The ac-
tual interaction in this case is between two fly-
ing airplanes in order to keep at least a min-
imum distance. At the acquaintance organiza-
tion, shown in the top of Figure 4, these planes

must be observed from the role they play in an
invasion of air space, that is to say, roles invader
and invaded in the figure. In addition, two con-
trollers are present: one for controlling safety in-
side a zone (Separation Controller), and another
for controlling safety between adjacent zones (Ad-
jacent Zones Controller).

The structural constraints of the system demand
a hierarchical structure, in which one Separation
Controller would observe all planes in a given
area and keep them safely apart. Furthermore,
since many of such areas exist and planes close to
the borders of the area may violate the airspace of
adjacent areas, interactions between Separation
Controller to Adjacent Zones Controller were
also needed. These constraints and the natural
consideration on lives and liabilities evolved into
a highly hierarchical structure. Despite the fact
that such structures decrease flexibility in proce-
dures and enforce mistake free organizations [12].
The result is a system with several layers of in-
teraction being the ones between the controllers
and pilots the base of the pyramid as it is shown
in the bottom-left corner of the figure.

The advent of GPS navigational systems and
other modern communication technologies have
changed the constraint map. Now, planes know
exactly where they are and can have a perception
of where its peers are. This allows the separation
responsibility of the system to be directed to the
interaction key player, namely, the flight itself,
leaving for the controller a less strenuous task, of
monitoring which was already present at the ac-
quaintance level. We must observe that in both
cases the acquaintance organization is the same,
the target interaction objective is still the aircraft
separation, but with the change of constraints, a
complete different structural organization is pos-
sible, e.g., such shown on the bottom-right corner
of the figure, where the role controller is played
by airplanes.

In addition, starting the analysis with a certain
organizational structure in mind (by means of
agents), even if based on a real organization, it
will drive the deployment of the MAS. Conse-
quently, the initial subdivision in interactions and
roles may not be optimal.

Real life organizations are known to present less
then optimal structures. The presence of such
organizational mistakes has been well studied in
economics [12], hence the field of operational re-
search. Using the real life organization as the

Inteligencia Artificial Vol. XX, N° XX, 2005

initial drive for the MAS system without further
consideration will mimic its mistakes and may
lead to some important misconstructions in terms
of agent systems. Some of the common errors
that can be induced are: agents coordinated by
more than one agent, agents introduced to cover
the relations between several sub-organizations,
redundant agents with the same profile placed in
different sub-organizations, etc.

As we show later, since interactions are the main
source of complexity, we should not bother about
organization structure at initial analysis. This
approach facilitates the process of understand-
ing the complex behavior of a MAS and minimize
structural mistakes. Thus, when we consider the
relationship between real organizations and their
constraints into the system architecture; we must
abstract the organization and let it be modeled by
means of roles and interactions during the analy-
sis phase. Later, these roles can be mapped into
the concrete agents and structured as the real or-
ganization trying to fit the real life organization
and trying to minimize structural mistakes.

Interactions and role-to-role relationship are
therefore the primary concept of the engineering
process of MASs and structural organization rises
because of them.

5 Managing complex and
knowable interactions

In this paper we will not cover known and chaotic
interactions since the former can be easily mod-
eled and implemented. Chaotic interactions are
the building blocks of systems whose behavior are
uncontrollable using only classic control theory.
Truly chaotic systems, as existent in nature, can
be seen as the higher order form of the complex
system. Once we can model a chaotic system in
attractors, such as the ones used in advanced con-
trol theory, the same principles used to compose
complex interactions can be used to compose the
interactions of the targeted chaotic system. This
level of Chaos theory is beyond the scope of this

paper.

In order to model and implement complex and
knowable interactions several conceptual tools
can be used. In [9], Jennings adapts the three
main principles to manage complexity in tra-
ditional Software Engineering, as proposed by
Booch in [1]: Abstraction, Decomposition and

Organization/Hierarchy. Reuse and Automation
are also two key powerful tools that help in mod-
eling and implementing this sort of interactions.

5.1 Abstraction

Abstraction consists on defining simplified mod-
els of the systems that emphasizes some details
avoiding others. The power of abstraction comes
from limiting the designer scope of interest, al-
lowing the attention to be focused on the most
important details. Abstraction can be applied to
interactions that fall in the complex and know-
able domains, enabling us to abstract from how
emergence can be obtained until the designer is
ready to address the issue.

Ground
Operations| | Air Space Schedule Air Space
Manag Controller]| Keeper Controller]|
Abstract Reschedule
Model ﬁ delayed ﬁ
igh
PAmEN "E/\ M /‘K\:‘. 27N
! Ft = i \
Detailed I LHH i " 1
Model 1 =) [}
\ H - = !
NS iy =7 W NC

Figure 5. Abstraction Example

In the air traffic example of figure 5, the airport
can be seen as a set of roles. The Ground Oper-
ation Manager group of roles manage resources
required to adapt to the delays, i.e. change of
gate. The Schedule Keeper group of roles need to
guarantee that the new schedule is feasible and
keep the schedule current, Air Space Controller
group of roles adjust airspace routes and are re-
sponsible of take off and landing. Finally, the last
group of roles involved, Cost Quantifier, are re-
sponsible of quantifying and prioritizing the set
of available reschedules. Thus, the actual airport
behavior is a composed effect of all these roles
executing concurrently. The final behavior is ex-
tremely complex, but each group of roles can be
defined well as a single abstract role within the
known domain. Once the details of the airport
are abstracted; its own internal make-up becomes
a feature of the system.

The same technique can be use at the interaction
design level. In the air traffic domain a simple
interaction in which a flight is delayed on its ar-
rival, may spawn a series of interactions which

Inteligencia Artificial Vol. XX, N° XX, 2005

are required to re-schedule all possible flights and
airports impacted by the original delay. However,
if we observe this set of interactions abstractedly
from the acquaintance organization point of view,
the problem can be reduced to a single interac-
tion between roles with active control over the
schedule, reschedule delayed flight abstract inter-
action as shown in figure 6. The actual airports
and flights and resources involved in the problem,
become less relevant, and can be re-introduced in
the picture, later in the design process.

5.2 Decomposition

Ground Reschedule Air Space
. Operations delayed Controller|
Initial Manager flight
Model
Costs Schedule
Quantifier Keeper
Evaluate
Delay
Ground Air Space
Operations Evaluate Controller|
Model with | | Manager Lesources
decomp. int.
Costs Schedule
Quantifier Compare Keeper

costs

Figure 6. Decomposition Example

Decomposition consists on the principle ”divide
and conquer”. It helps to limit the designer
scope to a portion of the problem. Regarding
interactions, it may help to decompose complex
and knowable interactions into finer grain inter-
actions. These finer grain interactions can be
added with details which can not be applied when
more abstract interactions are managed. In ad-
dition, using decomposition the interactions ob-
tained can be implemented with less effort.

Continuing with the practical example given be-
fore, we depict in Figure 6 how the complex in-
teraction of re-scheduling the outgoing flights due
to a delay of an incoming flight can be decom-
posed by the designer on several simpler interac-
tions. For example, we can decompose it on in-
teractions such as: assessment of delay impact of
outgoing flight in their own destinations (Evalu-
ate delay interaction in the figure), quantification
and prioritizing the assessments (Compare costs
interaction in the figure), evaluation of optional
resources (FEvaluate resources interaction in the
figure), etc.

In addition, a model that becomes too large and
complex can be also decomposed into several
models. This allows each sub-problem to be stud-
ied in isolation, ignoring the complexity derived
from the interactions between sub-problems. For
example, the model that shows how delays are
dealt with in the system could be decomposed
by designers into three models: one for modeling
the occurrence of the delay, another for showing
how the conflicts spread out, and a third one that
determines flights re-scheduling. Thanks to this
decomposition, the rescheduling problem for ex-
ample can be refined easier without taking into
account the reason of the reschedule.

5.3 Composition

“Stand by flight” model

Emergent {
interactions

Delay re-scheduling model

Figure 7. Composition Example

Composition consists on identifying and manag-
ing the inter-relationships between the various
subsystems in the problem. It makes possible
to group together various basic components and
treat them as higher-level units of analysis. Com-
position makes it possible to describe the high-
level relationships between several units. Com-
position helps to discover subtle interactions be-
tween several sub-organizations of the MAS.

In a sense, composition is the required mechanism
in order to recreate the abstract complex interac-
tions from their simpler components. In addi-
tion, the composition of acquaintance in a sub-
organization can be used as the means to build
the structural organization. As the components
of an agent are fused, we can draw a ”black box”
an overlook its internals based only on the inter-
faces (roles) that cross the boundaries of the box.

Inteligencia Artificial Vol. XX, N° XX, 2005

This process will lead to view a group of agents as
an agent on itself, and help build the hierarchical
structure of the organization.

A composition example can be observed in the
air traffic domain (see Figure 7), by considering
the mechanism that allows ”stand by” flight. In
”stand by flight”, a passenger is able to trans-
fer a ticket to another flight between the same
origin and destination, within the same airline, if
room is available. This mechanism is independent
from the delay re-scheduling problem. In this sit-
uation, the designer can compose both models
to discover the new interactions that interrelates
both systems, allowing all passengers from an im-
pacted flight to be re-scheduled into other flights.

The advantage of modeling both problems in iso-
lation abstracts these interactions and makes the
modeling process easier. In addition, it improves
the reuse of models, since their interdependencies
would limit the reuse of a combined solution only
into systems where both conditions occur.

The same principle applies into role composition.
Roles are artifacts that can be combined. These
artifacts may result on composed roles, or agents
playing several roles. When agents are defined as
a result of composition, the definition of a struc-
tural organization stars to be formed.

5.4 Reuse

Reuse is based on using previous knowledge in de-
signing MASs. Reuse may save significant time
and effort for modelers, allowing them to cus-
tomize parts of the system instead of construct-
ing them from scratch. This process has been
the holy grail of software engineering since its
inception and agents rather then facilitating the
process make it even more essential. The bene-
fits of reuse are many, such as errors avoidance,
reduced maintenance, and faster development of
highly complex models.

Reuse involves process, modeling artifacts, tech-
niques, guidelines, and models of previous
projects [4, 10]. For example, complex interac-
tions that require negotiation or self-adaptation
algorithms may be directly implemented by
reusing these algorithms. In addition, the reuse
of an interaction/algorithm provides encapsula-
tion which also abstracts their inner complexity.

If code reuse is an issue, we can compose models

to reach the macro level requirements of the sys-
tem from smaller behavior components. Most re-
quirements will only deal with the macro-level be-
havior; the abstract models generated from such
requirements must be incrementally built until an
implementable model is reached. If components
that implement parts of the behavior are already
available, then the designer may introduce their
abstract models within the analysis.

It is important to observe that the behavior of the
components used, may not have been originally
meant to be applied together. The automatic
composition of the reusable components may lead
to strange and unanticipated behavior. Hence,
we must compose them manually, as showed in
the composition principle, searching for the set of
emergent interactions and the changes that relate
them properly.

An example of a CASE tool that enforces the
reuse model is the Design of Interactions and Ver-
ification of Agents, known as DIVA. DIVA en-
forces the reusability by applying the composition
method known as Three-Tier-Architecture [5].

—DUTCHAUCTION— ENGLISH AUCTION- 1 ENGLISH AUCTION
ART BUYER ART BUYER CAR BUYER

Car

<

Figure 8. Three-tier architecture - reuse
example

As it is shown in Figure 8, in the Three-Tier-
Architecture roles are decomposed in syntax, con-
text and glue code. The syntax component is re-
sponsible to enforce the expected communication
and flow of the interaction, regardless of the do-
main in which this interaction occurs. For exam-
ple a Dutch auction interaction process is invari-
ant regardless of the product being negotiated.
Since the syntax tier is context free it can be for-
mally verified that it in fact achieve its goals, re-
ducing debugging and development time.

As we would expect, the participant agents imple-
menting the role must be able to understand the
domain. This is the task of the context tier. The

Inteligencia Artificial Vol. XX, N° XX, 2005

context tier may be standard domain algorithms
and even legacy code. Since syntax and context
tiers are built independently, the glue tier is nec-
essary to translate and adjust their interfaces.

The Three-Tier-Architecture accomplishes
reusability at two levels. In the first level, syntax
tiers that implement the protocol followed by its
role can be reused across domains. The second
level is the reuse of domain dependent libraries
or algorithms as components of the context tier.

5.5 Automation

The use of tools such as DIVA to enforce ar-
chitectures rich in reuse, underlines the impor-
tance of the last of the five principles presented
above. Automation consists on automating the
composition, decomposition and testing of mod-
els. CASE tools such as DIVA, organize the ex-
istent array of reusable code, and allow humans
to explore and quickly compose/decompose vari-
ations on the system under design, reducing the
development cycle significantly. Automation of
testing, such as the formal verification of the syn-
tax tier, can help us to uncover unexpected situa-
tions or interactions that prevent the participants
of the interaction to achieve a viable final state.

6 Conclusions

We have shown the importance of interactions
and we have outlined how complexity derived
from interactions can be managed from an en-
gineering perspective. Figure 9 summarizes how
abstraction, decomposition and composition can
be applied to transit between known, knowable
and complex interactions. Abstraction is lower
for known interactions since their details can be
easily modeled, while the level of abstraction re-
quired for complex interactions is higher, since
they can be only understood when observed by
their most important features. In addition, com-
plex interactions modeled abstractedly can be
transformed into knowable and known interac-
tions by means of decomposition. In the reverse
process, known interactions, such as those found
in code models, can be transformed into know-
able and complex interactions by means of com-
position. The composition process will uncover
emergent behaviors inherent to its internal com-
ponents. The final resulting complex interaction

can be further abstracted.

Flexibility
& Predictability
Self-X
interactions
multiParty
interactions
Message
interactions R
Client/server p /’
interactions <)
Abstraction
n I
T T
Implem. many few Level of
details details details

abstraction

Figure 9. Usage of conceptual tools to
manage taxonomy complexity of interactions

This paper opens us the path to a set of future re-
search lines. We have started working on several
of them while some others are still open.

We must explore the modeling artifacts to repre-
sents the acquaintance organization. In Ref. [16]
and in DIVA, we present and apply our first re-
sults on this topic. Abstract programming prim-
itives for representing the interactions between
several agents abstractedly are also quite valuable
for decreasing the complexity of code of MASs.
In this aspect, new design and architectural pat-
terns, such as the three-tier-architecture, should
be also studied. Automatic or semi-automatic
techniques to decompose and compose interac-
tions can also be rather valuable to delegate
the effort of modelling complex interactions to a
CASE tool. In Refs. [15, 17], we present our first
approaches toward automate the composition and
decomposition of acquaintance models. Finally,
automatic or semi-automatic techniques to map
the acquaintance organisation over the structural
organisation are also quite valuable to manage the
complexity derived from interactions.

References

[1] G. Booch. Object-Oriented Design with Ap-
plications. Benjamin/Cummings, Redwood

City, CA, 1990.

[2] G. Caire, F. Leal, P. Chainho, R. Evans,
F. Garijo, J. Gomez, J. Pavon, P. Kearney,
J. Stark, and P. Massonet. Agent oriented

10

Inteligencia Artificial Vol. XX, N° XX, 2005

[10]

analysis using MESSAGE/UML. In Proceed-
ings of Agent-Oriented Software Engineering
(AOSE’01), pages 101-108, Montreal, 2001.

C. Castelfranchi. Founding agent’s “auton-
omy” on dependence theory. In 1jth Fu-
ropean Conference on Artificial Intelligence,
pages 353-357. IOSPress, 2000.

D’Souza and A.C. Wills. Objects, Com-
ponents, and Frameworks with UML: The
Catalysis Approach. Addison—Wesley, Read-
ing, Mass., 1999.

Kutluhan Erol, Jun Lang, and Renato
Levy. Designing agents from reusable com-
ponents. In AGENTS ’00: Proceedings of
the fourth international conference on Au-
tonomous agents, pages 76-77. ACM Press,
2000.

J. Ferber, O. Gutknecht, and F. Michel:.
From agents to organizations: An organi-
zational view of multi-agent systems. In
Paolo Giorgini, Jorg P. Miiller, and James
Odell, editors, IV International Work-
shop on Agent-Oriented Software Engineer-
ing (AOSE’03), volume 2935 of LNCS, pages
214-230. Springer—Verlag, 2003.

N. Francez and I. Forman. Interacting pro-
cesses: A multiparty approach to coordinated
distributed programming. Addison—Wesley,
1996.

Jochen Fromm. The Emergence of Complex-
ity. Kassel university press, 2004.

N. Jennings. An agent-based approach for
building complex software systems. Commu-
nications of the ACM, 44(4):35-41, 2001.

A. Karageorgos and N. Mehandjiev. A design
complexity evaluation framework for agent-
based system engineering methodologies. In
A. Omicini, P. Petta, and J. Pitt, editors,
Fourth International Workshop Engineering
Societies in the Agents World, volume 3071
of Lecture Notes in Computer Science, pages
258-274. Springer, 2004.

E. A. Kendall. Role modeling for agent sys-
tem analysis, design, and implementation.
IEEE Concurrency, 8(2):34-41, April/June
2000.

H. Mintzberg. The Structuring of Organiza-
tions. Prentice-Hall, 1978.

J. Odell. Agents and complex systems. Jour-

[14]

[16]

[18]

[19]

Object Management Group (OMG). Unified
modeling language: Superstructure. version
2.0. Final adopted specification ptc/03-08-
02, OMG, August 2003. www.omg.org.

J. Pena, R. Corchuelo, and J. L. Arjona.
A top down approach for mas protocol de-
scriptions. In ACM Symposium on Ap-
plied Computing SAC’03, pages 45-49, Mel-
bourne, Florida, USA, 2003. ACM Press.

J. Pena, R. Corchuelo, and M. Toro. Rep-
resenting complex multi-agent organisations
in uml. In IX Jornadas de Ingenieria del
Software y Bases de Datos JISBD’0/, pages
159-170, Malaga, Spain, 2004.

J. Pena, R. Corchuelo, and J. L. Arjona.
Towards Interaction Protocol Operations for
Large Multi-agent Systems. In M. Hinchey,
J. Rash, W. Truszkowski, C. Rouff, and
D. Gordon-Spears, editors, Proceedings of
the Second International Workshop on For-
mal Approaches to Agent-Based Systems
(FAABS 2002), volume 2699 of LNAI, pages
79-91, NASA-Goddard Space Flight Center,
Greenbelt, MD, USA, 2002. Springer—Verlag.

T. Reenskaug. Modeling systems in uml 2.0
- a proposal for a clarified collaboration.

T. Reenskaug. A methodology for the de-
sign and description of complex, object- ori-
ented systems. Technical report, Center for
Industrial Research, Oslo, Norway, Novem-
ber 1.988.

T. Reenskaug. Working with Objects: The
OOram Software Engineering Method. Man-
ning Publications, 1996.

D. Snowden and C. Kurtz. The new dynam-
ics of strategy: Sense-making in a complex
and complicated world. IBM Systems Jour-
nal, 42(3):35-45, 2003.

C. Szyperski, D. Gruntz, and S. Murer.
Component Software: Beyond Object-
Oriented Programming. Addison—Wesley,
second edition edition, 2002.

F. Zambonelli, N. Jennings, and
M. Wooldridge. Developing multiagent
systems: The gaia methodology. ACM

Trans. Softw. Eng. Methodol., 12(3):317-
370, 2003.

