
Trabajo de Fin de Máster:

Métodos de Orden Reducido para
Ecuaciones Diferenciales/

Reduced Order Methods for
Differential Equations

Alejandro Bandera Moreno
Máster Univesitario en Matemáticas

Tutorizado por:
Soledad Fernández García
Macarena Gómez Mármol

Diciembre 2020

DPTO. ECUACIONES DIFERENCIALES Y ANÁLISIS NUMÉRICO - US

To my parents

Resumen
Gracias al desarrollo tecnológico de los ordenadores durante el siglo XX, las simula-
ciones numéricas se han convertido en un campo fundamental en la mayoría de las
Ciencias, y son particularmente importantes en el campo de las Ecuaciones Diferen-
ciales, como consecuencia de sus múltiples aplicaciones. Las simulaciones nos ofrecen
una plataforma virtual para la realización de tests, de gran utilidad para compren-
der la dinámica de distintos sistemas, o para la construcción de simuladores de todo
tipo, entre otras muchas aplicaciones. Para que los modelos sean realistas y puedan
ser utilizados de manera efectiva, es necesario resolver problemas complejos con una
alta precisión (high-fidelity), lo que puede conllevar un alto coste computacional.
El modelado de orden reducido entra en juego ya que reemplaza el sistema high-
fidelity por otro en el que se puede evaluar la solución para cualquier nuevo caso con
un coste computacional bajo, mientras se mantienen las propiedades cualitativas y
cuantitativas principales de la solución. En este trabajo consideraremos dos méto-
dos para el modelado de orden reducido: Proper Orthogonal Decomposition (POD)
y una adaptación del método Greedy. Como aplicación, comprobaremos en primer
lugar los resultados en el caso de las Ecuaciones en Derivadas Parciales (EDPs),
donde realizaremos modelado de orden reducido respecto de los parámetros físicos.
Por último, aplicaremos el método POD para aproximar los datos obtenidos al re-
solver Sistemas Diferenciales Ordinarios (SDO) como primer paso para la creación
del sistema reducido asociado.

iii

iv

Abstract
Thanks to the technological development of computers in the 20th century, numerical
simulations have become a fundamental field in most of the Sciences, and they are
especially important in the field of Differential Equations, because of their multiple
applications. Simulations provide us a virtual platform to perform tests, with great
utility in order to understand the dynamics of different systems, or to build all kind
of simulators, among many other applications. For the models to be realistic and
can be used effectively, it is necessary to solve complex problems with high precision
(high-fidelity), this can carry a high computational cost. Reduced order modelling
comes into play as it replaces the high-fidelity system with another, in which we
can evaluate the solution for any new parameter instance with low computational
cost, while capturing its main qualitative and quantitative features. In this work, we
consider two methods of reduced order modelling, Proper Orthogonal Decomposition
and an adaptation of the Greedy method. As an application, we will first check the
results for Partial Differential Equations (PDEs), we apply reduced order modelling
with respect to physical parameters. At last, we apply the POD method in order to
approximate data obtained by solving Systems of Differential Equations (SDEs), as
the first step to build the associated reduced system.

v

Contents

Introduction xi

1 Formulation, Analysis and Approximation of Variational Problems 3
1.1 Strongly Coercive Problems . 4

1.1.1 Formulation . 4
1.1.2 Approximation . 5
1.1.3 Algebraic Form . 6

1.2 Weakly Coercive (or Inf-Sup Stable) Problems 8
1.2.1 Formulation . 8
1.2.2 Approximation . 10
1.2.3 Algebraic Form . 11

1.3 Saddle-Point Problems . 14
1.3.1 Formulation . 14
1.3.2 Approximation . 15
1.3.3 Algebraic Form . 17

2 Basic Reduced Order Methods 19
2.1 High-Fidelity Technique . 19

2.1.1 Parametric Formulation . 20
2.1.2 High-Fidelity Discretization 21
2.1.3 Finite Element Method . 23

2.2 Reduced Basis Methods . 25
2.2.1 Galerkin Reduced Basis Method 27
2.2.2 Least-Squares Reduced Basis Method 31
2.2.3 Petrov-Galerkin Reduced Basis Method 34

2.3 Offline/Online Decomposition . 35
2.3.1 Offline Phase . 35
2.3.2 Online Phase . 36

2.4 A Posteriori Error Estimation . 38
2.4.1 Error-Residual Relationship 38
2.4.2 Error Bound . 39

vii

2.4.3 Computation of Error Bounds 40

3 Construction of Reduced Basis Spaces 45
3.1 SVD-POD . 46

3.1.1 Basic Notions on Singular Value Decomposition 46
3.1.2 Proper Orthogonal Decomposition 49

3.2 Greedy Algorithm . 59
3.2.1 Behind Greedy Algorithm . 59
3.2.2 The Weak Greedy Algorithm 60

4 Resolution of Laplace Equation by POD Method 63
4.1 Presentation . 63

4.1.1 Physical Equations . 64
4.1.2 Geometry . 64
4.1.3 Parameters . 65

4.2 Variational Formulation . 66
4.2.1 Affine Decomposition . 67

4.3 Computation . 68
4.3.1 Offline Computation . 68
4.3.2 Online Computation . 75

4.4 Results . 77
4.4.1 Comparison with High-Fidelity Solutions 78
4.4.2 Homogeneous Domain and Boundary Condition 86
4.4.3 Homogeneous Boundary and Fixed Source 87
4.4.4 Fixed Source and Homogeneous Domain 91

4.5 Conclusion . 93

5 Resolution of Laplace Equation by Greedy Method 95
5.1 Computation . 95

5.1.1 Offline Phase . 95
5.1.2 Online Phase . 101

5.2 Results . 101
5.2.1 Offline Phase . 101
5.2.2 Online Phase . 102

5.3 Conclusion . 105

6 ODE Application 107
6.1 Presentation . 107

6.1.1 POD method for ODEs . 107
6.1.2 HIRES Problem . 108
6.1.3 ICC Problem . 110

viii

6.2 Computation . 112
6.2.1 HIRES Problem . 115
6.2.2 ICC Problem . 116

6.3 Results . 117
6.3.1 HIRES Problem . 117
6.3.2 ICC Problem . 124

6.4 Conclusion . 133
6.4.1 HIRES Problem . 133
6.4.2 ICC Problem . 134

Bibliography 135

Notation 137

List of Algorithms 145

ix

Introduction

Due to the achievements of numerical analysis and scientific computing, numerical
simulations of Differential Equations have gained a great importance. They provide
a virtual platform to perform tests, with great utility in order to understand the
dynamics of different systems or to build all kind of simulators, among many other
applications.
The increase of computational power along with the improvements of algorithms
for solving large linear systems, make possible numerical simulations of complex,
multiscale and Multiphysics phenomena, through high-fidelity approximation tech-
niques, such as the finite element method. A high-fidelity approximation means a
solution as faithful as the original solution. However, this can be quite demanding,
as they involve up to O(106− 109) degrees of freedom and several CPU on powerful
hardware parallel architectures. Therefore, they can be prohibitive when expect-
ing to deal quickly and efficiently with repetitive solutions of PDEs, which is the
case of parametrized PDEs. There can be different types of parameters involved
in a parametrized PDE, physical parameters, those that change the formulation of
the PDE, geometric parameters, those that modify the definition of the domain,
temporal parameters, etc.
There are problems that show patterns in function of the parameters, with no sig-
nificant qualitative change inside a range of parameters. For this class of problems,
reduced order modelling is any approach aimed at replacing the high-fidelity prob-
lem by one with lower numerical complexity. Then, we can evaluate the solution,
for any new parameter instance, with a low computational cost independent of the
original dimension. This is key to the success of any Reduced Order Model (ROM).
Reduced order modelling quickly captures essential features of a structure. In an
early stage, the most basic properties must already be present in the smaller ap-
proximation and when the reduction process is stopped, all necessary properties of
the original model must be captured with sufficient precision.
Proper Orthogonal Decomposition (POD) and Reduced Basis (RB) are remarkable
instances, as they exploit the parametric dependence by combining a handful of
high-fidelity solutions (or snapshots) computed for a set of parameter values. POD
relies in the Singular Value Decomposition and in the fact that the larger eigenvalues

xi

retain more information about the behaviour of the solution, while RB relies in an
error estimator and in the local maximum improvement of the approximation. The
strong computational speedup achievable by these methods allows to tackle a wide
range of problems, due to very short CPU times and limited storage capacities
demanded.
In order to study reduced order models, we first need to recall some fundamental
results of functional analysis, essential for a correct variational formulation of a
broad variety of boundary value problems. The outline of this work is as follows. In
Chapter 1, we review three types of boundary problems: strongly coercive, weakly
coercive and saddle-point problems.
In Chapter 2, we introduce the high-fidelity discretization techniques for PDEs and
give a major example of a high-fidelity approximation technique, the Finite Element
Method (FEM). Then, we describe the RB approximation, that approximates the
high-fidelity solution of a given elliptic PDE, for any choice of the parameter within
a described parameter set and is computationally much cheaper. We also introduce
two examples, Galerkin and Least-Squares Reduced Basis methods. Furthermore,
we analyse the offline/online decomposition to reduce the computational complexity,
and we give an error estimator for the solution of these methods.
After that, Chapter 3 is entirely dedicated to the construction of Reduced Basis
Spaces. We present two different methods in order to generate the Reduced Basis
spaces, construction by Proper Orthogonal Decomposition (POD) using a Singular
Value Decomposition analysis (SVD) and Greedy algorithm, that consists in an iter-
ative sampling from the parameter space fulfilling at each step a suitable optimality
criterion, which relies on the a posteriori error estimate.
We apply the theoretical results to a parametrized elliptic PDE in Chapter 4 (POD)
and Chapter 5 (Greedy). We consider the 2-dimensional Laplace problem occur-
ring in surfaces of different materials characterized by a particular parameter, with
both homogeneous Dirichlet boundary conditions and non-homogeneous Neumann
boundary conditions.
Finally, we discuss the use of the POD technique for model order reduction in the
field of the Ordinary Differential Equations. More precisely, we apply the POD
technique on the temporal variable, considered as the parameter, so we end with
a low number of modes, which linear combination gives a representation of the
solution, the first step in order to create the reduced order model of a System of
Differential Equations. In particular, we study two nonlinear stiff problems: the
High Irradiance Responses (HIRES) problem included in [10], and the Intracellular
Calcium Concentration (ICC) problem, studied in [7].

xii

Modelos de Orden Reducido
para Ecuaciones Diferenciales

Reduced Order Methods
for Differential Equations

Chapter 1

Formulation, Analysis and
Approximation of Variational
Problems

In this chapter, we introduce some basic results of functional analysis, essential for
a correct variational formulation of a broad variety of boundary value problems.
First, we review three types of boundary problems:

• Strongly coercive problems (section 1.1).

• Weakly coercive problems (section 1.2), where a relaxation of the coercivity
property is performed.

• Saddle-point problems (section 1.3), where the solution is not restricted to just
one space.

For each of them, we follow the following scheme,

1. Introduction of the functional setting.

2. Well-posedness results.

3. Numerical approximation.

4. Results of existence, uniqueness, stability and convergence.

5. Presentation of an algebraic form.

For the construction of this chapter we have mainly used reference [12].

3

1.1 Strongly Coercive Problems
First of all, we start studying strongly coercive problems, the simplest of all, in order
to present the main ideas for the study of boundary value problems.

1.1.1 Formulation

Let V be a Hilbert space along with its norm. By introducing a bilinear form
a : V × V → R and a linear functional f ∈ V ′, we consider the following abstract
variational problem: {

Find u ∈ V such that

a(u, v) = f(v), ∀v ∈ V.
(1.1)

The bilinear form a(·, ·) is said to be

• Continuous if there exists γ > 0 such that

|a(u, v)| ≤ γ‖u‖V ‖v‖V , ∀u, v ∈ V,

where γ is named the continuity constant of a(·, ·).

• Coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V , ∀v ∈ V,

where α is named the coercivity constant of a(·, ·).

• Symmetric if
a(u, v) = a(v, u), ∀u, v ∈ V.

The following result states under which assumptions the problem (1.1) is well-posed.
Theorem 1.1 (Lax-Milgram)

Let V be a Hilbert space, a : V × V → R a continuous, coercive, bilinear form
and f : V → R a bounded linear functional.
Then (1.1) has unique solution and satisfies the stability estimate

‖u‖V ≤
1

α
‖f‖V ′ .

Moreover, if a is symmetric, problem (1.1) is equivalent to a minimization prob-
lem for the functional:

J(v) =
1

2
a(v, v)− f(v).

4

�

Now that we know the assumptions necessary for the problem (1.1) to be well-posed,
we turn to its numerical approximation.

1.1.2 Approximation

Problem (1.1) as formulated is infinite-dimensional, making it impossible to solve
computationally. We build a finite dimensional approximation for the problem (1.1),
as follows.
Let for every h > 0, Vh ⊂ V be a finite-dimensional subspace of V , such that
dimVh = Nh; the subscript h is related to a characteristic discretization parameter.
The approximate problem or Galerkin problem of (1.1) takes the form{

Find uh ∈ Vh such that

a(uh, vh) = f(vh), ∀vh ∈ Vh.
(1.2)

The solution uh of this problem is often known as the Galerkin approximation of
u. From the following property, the Galerkin problem (1.2) is said to be strongly
consistent.
Remark 1.1

Since Vh ⊂ V , the exact solution u satisfies the weak problem (1.1) for each
element v = vh ∈ Vh, hence we have

a(u, vh) = f(vh), ∀vh ∈ Vh.

From this equality and the problem statement (1.2), we obtain that uh satisfies
the Galerkin orthogonality

a(u− uh, vh) = 0, ∀vh ∈ Vh.

Remark 1.2

Indeed, should a(·, ·) be symmetric, the previous equality can be interpreted as
the orthogonality condition with respect to the scalar product induced by the
form a(·, ·) between the approximation error, u− uh, and the subspace Vh.
Thus, uh can be seen as the orthogonal projection of u onto Vh.

With these premises, the following result of existence, uniqueness, stability and
convergence of the numerical approximation easily follows.
Theorem 1.2

Let the space V, the bilinear form a(·, ·) and the linear functional f(·) satisfy
5

the hypotheses of Theorem 1.1 and let Vh ⊂ V be a closed subspace.
Then, a(·, ·) is continuous on Vh×Vh with continuity constant γh ≤ γ and coercive
on Vh × Vh with coercivity constant αh ≥ α.
Therefore, for every h > 0, the discretized problem (1.2) has a unique solution
uh ∈ Vh, that satisfies the stability estimate

‖uh‖V ≤
1

αh
‖f‖V ′ .

Furthermore, if u ∈ V denotes the unique solution of (1.1), the following optimal
error inequality is satisfied

‖u− uh‖V ≤
γ

α
inf
vh∈Vh

‖u− vh‖V ,

where γ and α are the continuity constant and the coercivity constant of a(·, ·),
respectively. �

Remark 1.3

Optimality means that the error in a finite-dimensional approximation ‖u−uh‖V
is bounded from above by the error of the best approximation out of the same
finite-dimensional subspace, multiplied by a constant independent of h.

However, this condition is not sufficient to ensure the convergence ‖u − uh‖V → 0
when h → 0. In fact, an additional property related to the approximability of the
discrete spaces is required. In order for the method to converge it will be sufficient
to require that, for h → 0, the space Vh tends to "fill" the entire space V , or that
Vh is a inner approximation of V .
In the following subsection, we present a technique to simplify calculations when
solving problem (1.2)

1.1.3 Algebraic Form

Trying to solve problem (1.2) directly is difficult, so in this subsection, we introduce
a simpler way to study the numerical approximation problem (1.2), which is the one
we will use in our applications. It is immediate to prove that,
Remark 1.4

The discrete variational problem (1.2) is equivalent to the solution of a linear
system of equations.

6

Indeed, if we denote by {ϕj}Nh
j=1 a basis for the finite-dimensional space Vh, then

every vh ∈ Vh has a unique representation,

vh =

Nh∑
j=1

v
(j)
h ϕj, with v = (v

(1)
h , . . . , v

(Nh)
h)T ∈ RNh .

By setting uh =

Nh∑
j=1

u
(j)
h ϕj, and denoting by uh the vector having as components

the unknown coefficients u(j)
h , problem (1.2) is equivalent to

Find uh ∈ RNh such that
Nh∑
j=1

a(ϕj, ϕi)u
(j)
h = f(ϕi), ∀ i = 1, . . . , Nh,

that is,
Ahuh = fh,

where Ah ∈ RNh×Nh is the matrix of the system with elements (Ah)ij = a(ϕj, ϕi)
and fh ∈ RNh is the vector with components (fh)i = f(ϕi).
Remark 1.5

The coercivity condition states that for every h > 0 the matrix of the system
is positive definite. Furthermore, if a(·, ·) is symmetric so is the matrix of the
system.
Other properties, such as the condition number or the sparsity structure of the
matrix of the system depend on the chosen basis of Vh.

In the context of a posteriori error estimation for reduced basis approximations is
required to compute the best discrete coercivity constant,

αh = inf
vh∈Vh

a(vh, vh)

‖vh‖2
V

.

Our goal now is to find an algebraic representation of αh. To this end, let us denote
by Xh the symmetric positive definite matrix associated to the scalar product in V ,
i.e.

(Xh)ij = (ϕi, ϕj)V ,

so that,
‖vh‖2

V = vTXhv, ∀vh ∈ Vh.
We can now rewrite the best discrete coercivity constant as

αh = inf
v∈RNh

vTAhv
vTXhv

,

7

i.e. αh is in fact the minimum of a generalized Rayleigh quotient. Since, for any
v ∈ RNh , we have,

vTAhv = vTAS
hv, with A

S
h =

1

2
(Ah +AT

h) the symmetric part of Ah,

we obtain that αh is the smallest eigenvalue λ such that (λ,v) ∈ R+ ×RNh ,v 6= 0,
satisfy

AS
hv = λXhv.

By left-multiplying this equality by X−1/2
h and performing the change of variable

w = X
1/2
h v, we then obtain

αh = λmin(X
−1/2
h AS

hX
−1/2
h).

In the following section we relax the coercivity condition in order to consider a more
general boundary value problem.

1.2 Weakly Coercive (or Inf-Sup Stable) Problems
Asking a bilinear form to be coercive is a very restrictive assumption, so we relax
the coercivity property to its weak formulation. By doing this, we will be able to
model a wider variety of boundary value problems. In this section we study weakly
coercive problems, also named as inf-sup stable problems.

1.2.1 Formulation

Given two Hilbert spaces V and W along with their dual V ′ and W ′, respectively,
the bilinear form a : V ×W → R and the linear functional f ∈ W ′, we consider the
following abstract variational problem,{

Find u ∈ V such that

a(u,w) = f(w), ∀w ∈ W.
(1.3)

The bilinear form a(·, ·) is said to be

• Continuous on V ×W if there exists γ > 0 such that

|a(v, w)| ≤ γ‖v‖V ‖w‖W , ∀v ∈ V,w ∈ W,

where γ is named the continuity constant of a(·, ·).

8

• weakly coercive (or inf-sup stable) if there exists a constant β > 0 such that

inf
v∈V

sup
w∈W

a(v, w)

‖v‖V ‖w‖W
≥ β,

where β is named the inf-sup stability constant of a(·, ·), and

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
> 0.

Remark 1.6
Weakly coercive conditions can be reformulated as

∃β > 0 : sup
w∈W

a(v, w)

‖w‖W
≥ β‖v‖V , ∀v ∈ V.

and
if w ∈ W is such that a(v, w) = 0, ∀v ∈ V, then w = 0.

The following theorem, known as Nečas theorem [11], shows under which assump-
tions weakly coercive problems are well-posed.
Theorem 1.3 (Nečas)

Let V and W be two Hilbert spaces, a : V × W → R a continuous, weakly
coercive bilinear form on V ×W , and f : W → R a bounded linear functional
on W.
Then, the variational problem (1.3) has a unique solution which satisfies the
stability estimate

‖u‖V ≤
1

β
‖f‖W ′ .

�

Remark 1.7

Since strong coercivity implies weak coercivity, Lax-Milgram theorem (Theorem
1.1) is a special case of Nečas theorem (Theorem 1.3).

Very often, we deal with noncoercive bilinear forms defined on V ×V (i.e. W = V).
The following result can be helpful in these cases.
Proposition 1.4

Let us suppose that H1
0 (Ω) ⊂ V ⊂ H1(Ω) and the bilinear form a : V × V → R

fulfills the following conditions

9

1. Gärding inequality. For some constants α > 0 and λ > 0,

a(v, v) ≥ α‖v‖2
H1(Ω) − λ‖v‖2

L2(Ω), ∀v ∈ V.

2. If u ∈ V is such that a(u, v) = 0 for any v ∈ V , then u = 0.

Then there exists a constant β > 0 such that

sup
w∈W

a(v, w)

‖w‖V
≥ β‖v‖V , ∀v ∈ V,

i.e. a is weakly coercive. �

Thanks to this result, a bilinear form fulfilling Gärding inequality is often referred
to as weakly coercive.

1.2.2 Approximation

Weakly coercive problems naturally leads to using two different approximation
spaces Vh ⊂ V and Wh ⊂ W . Furthermore, in some cases it may be convenient
to introduce different approximation spaces even if V = W .
Let Vh ⊂ V and Wh ⊂ W be two nontrivial subspaces of V and W , respectively,
with dimVh = dimWh = Nh < +∞. We consider the following variational problem{

Find uh ∈ Vh such that

a(uh, wh) = f(wh), ∀wh ∈ Wh.
(1.4)

The solution uh of problem (1.4) is known as the Petrov-Galerkin approximation of
the solution u of problem (1.3).
The well-posedness of problem (1.4) is guaranteed by the following theorem, known
as Babuška theorem [2].

Theorem 1.5 (Babuška)

Let the space V and W , the form a(·, ·) and the functional f(·) satisfy the
hypotheses of Theorem 1.3 and let Vh ⊂ V andWh ⊂ W be two closed subspaces.
Then a(·, ·) is continuous on Vh ×Wh.
Assume also that the bilinear form a(·, ·) satisfies the discrete inf-sup condition

βh = inf
vh∈Vh

sup
wh∈Wh

a(vh, wh)

‖vh‖V ‖wh‖W
> 0.

Then, for every h > 0, problem (1.4) has a unique solution uh ∈ Vh. Moreover,

10

that solution satisfies the stability estimate

‖uh‖V ≤
1

βh
‖f‖W ′ ,

and, if u ∈ V denotes the unique solution of (1.3), the following optimal error
inequality holds

‖u− uh‖V ≤
γ

βh
inf
vh∈Vh

‖u− vh‖V .

�

Remark 1.8

While the continuity of the bilinear form a(·, ·) over Vh×Wh (respectively, Vh×Vh)
is automatically inherited from the continuity property over V ×W (V ×V), we
note that:

• in the coercive case, coercivity of a(·, ·) over Vh × Vh automatically follows
from the coercivity property fulfilled over V × V , so that the conformity
property Vh ⊂ V is the only property which is needed to ensure the stability
of the discrete variational problem,

• in the weakly coercive case, the inclusions Vh ⊂ V and Wh ⊂ W are not
sufficient to ensure the fulfillment of the discrete inf-sup condition.

Consequently, the discrete inf-sup assumption must be explicitly required, as done
in Theorem (1.5). In other words, Vh and Wh must be built in such a way that the
discrete inf-sup condition holds.

1.2.3 Algebraic Form

As done for problem (1.2), we can derive an equivalent algebraic formulation of
problem (1.4). We remember that {ϕj}Nh

j=1 denotes a basis for the space Vh and we
indicate by {φj}Nh

j=1 a basis for the space Wh, so that the functions of Vh and Wh

have a unique representation,

vh =

Nh∑
j=1

v
(j)
h ϕj, with v = (v

(1)
h , . . . , v

(Nh)
h)T ∈ RNh , ∀vh ∈ Vh,

wh =

Nh∑
j=1

w
(j)
h φj, with w = (w

(1)
h , . . . , w

(Nh)
h)T ∈ RNh , ∀wh ∈ Wh.

11

By setting uh =
∑NH

j=1 u
(j)
h ϕj and denoting by uh the vector having as components

the unknown coefficients u(j)
h , (1.4) is equivalent to

Find uh ∈ RNh such that
Nh∑
j=1

a(ϕj, φi)u
(j)
h = f(φi), ∀i = 1, . . . , Nh,

that is,
Ahuh = fh,

where (Ah)ij = a(ϕj, φi) and (fh)i = f(φi), for 1 ≤ i, j ≤ Nh.

Remark 1.9
The inf-sup condition states that the matrix Ah is nonsingular for every h > 0,
without any further implication on the sign of its eigenvalues.

As we did for the coercivity constant, we want to find an algebraic formula suitable
to compute the discrete inf-sup constant βh. To this end, we first introduce the
following operator.
Definition 1.10

The discrete supremizer operator Th : Vh → Wh is defined as

(Thvh, wh)W = a(vh, wh), ∀wh ∈ Wh.

Then, we obtain the following characterization of the discrete inf-sup constant,

βh = inf
vh∈Vh

‖Thvh‖W
‖vh‖V

,

or, equivalently,

β2
h = inf

vh∈Vh

‖Thvh‖2
W

‖vh‖2
V

.

Let us denote by Yh the matrix asociated with the scalar product in W as we did
for the scalar product in V , that is,

(Yh)ij = (φj, φi)W ,

so that,
‖wh‖W = wTYhw, ∀wh ∈ Wh.

If we denote by t the vector of coefficients in the expansion of Thvh ∈ Wh with
respect to the basis of Wh, by the definition of the supremizer we obtain,

wTYht = wTAT
hv, ∀w ∈ RNh ,

12

whence t = Y−1
h Ahv since w is arbitrary. Substituting in the characterization of

the square of the discrete inf-sup constant, we obtain,

β2
h = inf

v∈RNh

tTYht
vTXhv

= inf
v∈RNh

vTAT
hY
−T
h YhY

−1
h Ahv

vTXhv
= inf

v∈RNh

vTAT
hY
−1
h Ahv

vTXhv
.

We have expressed the square of the discrete inf-sup constant β2
h as the minimum

of the generalized Rayleigh quotient of the symmetric matrix AT
hY
−1
h Ah. Then, for

the inf-sup constant we obtain βh =
√
λmin, where λmin is the smallest eigenvalue λ

such that (λ,v) ∈ R+ ×RNh , v 6= 0, satisfy,

AT
hY
−1
h Ahv = λXhv.

Remark 1.11

The singular values of a generic square matrix B ∈ Rn×n are defined as

σi(B) =
√
λi(BTB), 1 ≤ i ≤ n.

By left-multiplying the previous equation by X−1/2
h and performing the change of

variable w = X
1/2
h v, we then obtain,

βh = σmin(Y
−1/2
h AhX

−1/2
h).

Remark 1.12
In particular, if Vh = Wh and the matrix Ah is symmetric, the discrete inf-sup
constant becomes

βh = λmin(X
−1/2
h AhX

−1/2
h),

as in the strong coercive case.

Remark 1.13
In an analogous way, we can also characterize the discrete continuity constant
as

γh = sup
vh∈Vh

sup
wh∈Wh

a(vh, wh)

‖vh‖V ‖wh‖W
= σmax(Y

−1/2
h AhX

−1/2
h).

To finish this chapter, we now turn to a very relevant class of problems, called mixed
variational problems or saddle point problems. Several problems can be formulated
and analysed within this framework.

13

1.3 Saddle-Point Problems
The previous results for strongly (1.1) and weakly coercive problems (1.3) do not
hold if our solution is not restricted to just one space. So we come to another variety
of problems, that we describe subsequently.

1.3.1 Formulation

Given two Hilbert spaces X and Q along with their dual X ′ and Q′, respectively, the
bilinear forms d : X ×X → R, b : X × Q → R, and the linear functionals f1 ∈ X ′
and f2 ∈ Q′, we consider the following mixed variational (or saddle-point) problem,

Find (x, p) ∈ X ×Q such that
d(x,w) + b(w, p) = f1(w) ∀w ∈ X,
b(x, q) = f2(q) ∀q ∈ Q.

(1.5)

The following theorem due to Brezzi [4] establishes sufficient conditions for the
saddle-point problem (1.5) to be well-posed.

Theorem 1.6 (Brezzi)
Under the following assumptions:

1. Continuity of the bilinear form d(·, ·),
there exists a constant γd > 0 such that

|d(x,w)| ≤ γd‖x‖X‖w‖X , ∀x,w ∈ X,

2. Weakly coercivity of the bilinear form d(·, ·) on X0 ×X0,

there exists a constant α0 > 0 such that

inf
x∈X0

sup
w∈X0

d(x,w)

‖x‖X‖w‖X
≥ α0, inf

w∈X0

sup
x∈X0

d(x,w)

‖x‖X‖w‖X
> 0,

3. Continuity of the bilinear form b(·, ·),
there exists a constant γb > 0 such that

|b(w, q)| ≤ γb‖w‖X‖q‖Q, ∀w ∈ X, q ∈ Q,

4. The bilinear form b(·, ·) satisfies the inf-sup condition

βS = inf
q∈Q

sup
w∈X

b(w, q)

‖w‖X‖q‖Q
≥ βS0 > 0,

14

there exists a unique solution (x, p) ∈ X × Q to the mixed variational problem
(1.5). Moreover the following stability estimates hold:

‖x‖X ≤
1

α

[
‖f1‖X′ +

α0 + γd
βS0

‖f2‖Q′
]
,

‖p‖Q ≤
1

βS

[(
1 +

γd
α0

)
‖f1‖X′ +

γd(α0 + γd)

α0 + βS0
‖f2‖Q′

]
.

�

Where, in order to simplify the notation we have introduced the following subspace
of X.
Definition 1.14

We define the subspace of X where the bilinear form b(·, q) is null for every q ∈ Q

X0 = {w ∈ X : b(w, q) = 0, ∀q ∈ Q} ⊂ X.

There is a connection between saddle point problems (1.5) and weakly coercive
problems (1.3), as stated in the following remark.
Remark 1.15

Mixed variational problems are a special case of weakly coercive problems. In
fact, by setting V = W = X ×Q, defining the bilinear form a : V × V → R

a((x, p), (w, q)) = d(x,w) + b(w, p) + b(x, q),

and the functional
f((w, q)) = f1(w) + f2(q),

we can rewrite (1.5) in the form of (1.3).

1.3.2 Approximation

Let Xh ⊂ X and Qh ⊂ Q be two subspaces of X and Q, respectively. We consider
the Galerkin approximation of the mixed variational problem (1.5)

Find (xh, ph) ∈ Xh ×Qh such that
d(xh, wh) + b(wh, ph) = f1(wh) ∀wh ∈ Xh,

b(xh, qh) = f2(qh) ∀qh ∈ Qh.

(1.6)

As done in the continuous case, we define the following subspace of Xh in order to
simplify notation.

15

Definition 1.16

We define the subspace of Xh where the bilinear form b(·, qh) is null for every
qh ∈ Q

Xh
0 = {wh ∈ Xh : b(wh, qh) = 0, ∀qh ∈ Qh} ⊂ Xh.

The well-posedness of (1.6) follows by the discrete counterpart of Brezzi theorem
[3], that is,
Theorem 1.7 (Brezzi)

Let the space X and Q, the bilinear forms d(·, ·), b(·, ·) and the functionals f1(·),
f2(·) satisfy the hypotheses of Theorem 1.6 and let Xh ⊂ X and Qh ⊂ Q be two
finite dimensional subspaces.
Then d(·, ·) and b(·, ·) are continuous on Xh ×Xh and Xh ×Qh, respectively.
Assume that the bilinear form d(·, ·) is weakly coercive on Xh

0 ×Xh
0 , i.e.

αh = inf
xh∈Xh

0

sup
wh∈Xh

0

d(xh, wh)

‖xh‖X‖wh‖X
≥ α̂ > 0,

inf
wh∈Xh

0

sup
wh∈Xh

0

d(xh, wh)

‖xh‖X‖wh‖X
> 0.

Moreover, suppose that the bilinear form b(·, ·) verifies the discrete inf-sup con-
dition for a suitable constant β̂S > 0 independent of h,

βSh = inf
qh∈Qh

sup
wh∈Xh

b(wh, qh)

‖wh‖X‖qh‖Q
≥ β̂S.

Then, for every h > 0, problem (1.6) has a unique solution (xh, ph) ∈ Xh ×Qh,
which satisfies the stability estimates

‖xh‖X ≤
1

α̂

[
‖f1‖X′ +

α̂ + γd

β̂S
‖f2‖Q′

]
,

‖ph‖Q ≤
1

β̂S

[(
1 +

γd
α̂

)
‖f1‖X′ +

γd(α̂ + γd)

α̂ + β̂S
‖f2‖Q′

]
.

If (x, p) ∈ X×Q denotes the unique solution of (1.5), the following optimal error
inequality holds

‖x− xh‖X + ‖p− ph‖Q ≤ C

(
inf

wh∈Xh

‖x− wh‖X + inf
qh∈Qh

‖p− qh‖Q
)
,

where C = C(α̂, β̂S, γd, γb) independent of h. �

16

As done for problems (1.2) and (1.4), we can derive an equivalent algebraic for-
mulation of the problem (1.6). We finish this chapter by presenting the algebraic
formulation in the following subsection.

1.3.3 Algebraic Form

If {ϕj}Nh
j=1 and {ηj}Mh

j=1 denote two bases for the finite dimensional spaces Xh and
Qh respectively, being Nh = dimXh and Mh = dimQh, then (1.6) is equivalent to
the following linear system, [

Dh BTh
Bh 0

] [
xh
ph

]
=

[
f1h
f2h

]
,

where i, j = 1, . . . , Nh, k = 1, . . . ,Mh,

• xh =

Nh∑
j=1

x
(j)
h ϕj, ph =

Mh∑
k=1

p
(k)
h ηk, xh and ph are the vectors having as compo-

nents the unknown coefficients x(j)
h , p

(k)
h ,

• (Dh)ij = d(ϕj, ϕi), (Bh)kj = b(ϕj, ηk), are the elements of the matrices Dh and
Bh,

• f1h and f2h denotes the vectors with components (f1h)i = f1(ϕi) and (f2h)k =
f2(ηk).

Remark 1.17
Theorem 1.7 ensures that the matrix appearing in the linear system is nonsin-
gular.

17

Chapter 2

Basic Reduced Order Methods

In the previous chapter, we have seen that in order to solve a problem computation-
ally, it is necessary to obtain a discretization of the working space. So we introduce
the high-fidelity discretization techniques for elliptic PDEs and give a major example
of a high-fidelity approximation technique, the Finite Element (FE) method.
Although this method approximates the solution, in some cases it is computationally
excessive to solve, so we study the Reduced Order Model (ROM) approximation,
which is a (Petrov-)Galerkin projection onto a lower dimensional space, the Reduced
space, that approximates the high-fidelity solution of a given PDE, for any choice of
the parameter within a described parameter set where the behaviour of the solutions
does not change qualitatively and is computationally much cheaper. We describe
the Reduced Basis methods and introduce two examples,

• Galerkin Reduced Basis method and

• Least-Squares Reduced Basis method.

Furthermore, we analyse the offline/online decomposition to reduce the computa-
tional complexity and we give an error estimator for the solution of these methods.
For the construction of this chapter we have mainly used reference [12].

2.1 High-Fidelity Technique
In all this chapter we consider

• An open subset Ω of Rd, with d = 1, 2, 3.

• V = V (Ω) along with its norm is a Hilbert space and V ′ denotes its dual.

19

• µ = (µ1, . . . , µP)T is the input parameter vector collecting the physical µph,
and the geometric ones µg.1

• The set of all possible inputs P ⊂ RP , is compact. We also consider that the
behaviour of the solution does not change qualitatively for different values of
the parameter µ ∈ P .

• For all µ ∈ P , L(µ) : V → V ′ is a second order differential operator, usually
the laplacian operator.

• For all µ ∈ P , f(µ) : V → R is a linear and continuous form on V.

Remark 2.1
If we have geometrical parameters, µg, we consider a change of variables that
reformulates the domain to a reference domain Ω = Ω̃(µref), where we solve it.

2.1.1 Parametric Formulation

When trying to solve a PDE depending on a parameter vector we normally face the
following problem{

Given µ ∈ P , find the solution u(µ) ∈ V of

L(µ)u(µ) = f(µ) in V ′.
(2.1)

Usually (2.1) is often referred to as the strong formulation of the problem. Defining
the following

• a(·, ·;µ) : V × V → R as

a(u, v;µ) = V ′〈L(µ)u, v〉V ,

• and f(·;µ) : V → R as

f(v;µ) = V ′〈f(µ), v〉V ,

we can reformulate (2.1) as{
Given µ ∈ P , find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V.
(2.2)

this formulation is called the weak formulation of (2.1). We assume that
1Each type of parameter require a different mathematical treatment, in this work we will focus

on the physical ones.

20

• a(·, ·;µ) is continuous over V × V , that is, there exists γ > 0 such that

γ(µ) = sup
v∈V

sup
w∈V

a(v, w;µ)

‖v‖V ‖w‖V
< γ, ∀µ ∈ P ,

where γ(µ) is named the continuity factor of a(·, ·;µ).

• f(·;µ) is continuous, that is, there exists γF > 0 such that

γF (µ) = sup
w∈V

f(w;µ)

‖w‖V
< γF , ∀µ ∈ P . (2.3)

where γF (µ) is named the continuity factor of f(·;µ).

Regarding stability, we assume that there exists β0 such that

β(µ) = inf
v∈V

sup
w∈V

a(v, w;µ)

‖v‖V ‖w‖V
≥ β0,

and
inf
w∈V

sup
v∈V

a(v, w;µ)

‖v‖V ‖w‖V
> 0.

β(µ) is the inf-sup stability factor of a(·, ·;µ) and we say that a(·, ·;µ) is inf-sup
stable.
Proposition 2.1

Provided the continuity properties and the stability assumptions are verified,
problem (2.2) admits a unique solution thanks to Theorem 1.3 and the following
stability estimate holds for all µ ∈ P

‖u(µ)‖V ≤
1

β(µ)
‖f(·;µ)‖V ′ ≤

1

β0

‖f(·;µ)‖V ′ .

�

2.1.2 High-Fidelity Discretization

When it is not analytically possible to find a solution for (2.2) we can try build-
ing a numerical approximation of the solution. However, as we cannot work in a
infinite dimensional space with computers, we need to introduce high-fidelity dis-
cretizations, where a finite dimensional approximation of the infinite dimensional
space is performed.

21

The Galerkin high-fidelity approximation of a problem under the form (2.2) reads{
Find uh(µ) ∈ Vh such that

a(uh(µ), vh;µ) = f(vh;µ), ∀vh ∈ Vh.
(2.4)

We can also recover the strong formulation of the problem in the finite dimensional
space.
Remark 2.2

If the problem is under the form (2.1), then problem (2.4) can be equivalently
written as {

Find uh(µ) ∈ Vh such that

L(µ)uh(µ) = f(µ) in V ′.
(2.5)

For the discrete problem (2.4) to be well-posed, as done for problem (1.4) we need
to assume that there exists β0,h > 0 such that

βh(µ) = inf
vh∈Vh

sup
wh∈Vh

a(vh, wh;µ)

‖vh‖V ‖wh‖V
≥ β0,h, ∀µ ∈ P . (2.6)

We also define the discrete continuity factor of a(·, ·;µ)

γh(µ) = sup
vh∈Vh

sup
wh∈Vh

a(vh, wh;µ)

‖vh‖V ‖wh‖V
≤ γ(µ). (2.7)

Proposition 2.2

Under the above assumptions, thank to Theorem 1.5 problem (2.4) admits a
unique solution and the following stability estimate holds

‖uh(µ)‖V ≤
1

β0,h

‖f(·;µ)‖V ′ .

Furthermore, ∀µ ∈ P

‖u(µ)− uh(µ)‖V ≤
γ

β0,h

min
zh∈Vh

‖u(µ)− zh‖V .

�

As stated in Chapter 1 the Galerkin high-fidelity approximation (2.4) is equivalent
to the solution of the following linear system

Ah(µ)uh(µ) = fh(µ)

22

where, if {ϕj}Nh
j=1 denotes a basis for Vh, then (Ah(µ))ij = a(ϕj, ϕi;µ) and (fh(µ))i =

f(ϕi,µ).
The following remark states an easy way to assemble and solve the linear system
equivalent to the high-fidelity approximation (2.4) when affine dependence on the
parameters is provided for Ah(µ) and fh(µ).
Remark 2.3

When Ah(µ) and fh(µ) both depend affinely on the parameters, i.e.

Ah(µ) =

Qa∑
q=1

θqa(µ)Aq
h, and fh(µ) =

Qf∑
q=1

θqf (µ)fqh

the linear system can be solved using Algorithm 1.

Algorithm 1 High-Fidelity system assembling and solving
1: function SolveHF(Aq

h, f
q
h, θ

q
a, θ

q
f ,µ)

2: Ah(µ) = O; fh(µ) = 0
3: for q = 1 : Qa

4: Ah(µ)← Ah(µ) + θqa(µ)Aq
h

5: end for
6: for q = 1 : Qf

7: fh(µ)← fh(µ) + θqf (µ)fqh
8: end for
9: solve linear system Ah(µ)uh(µ) = fh(µ)
10: return uh(µ)
11: end function

2.1.3 Finite Element Method

In this section, we present the most common method in order to obtain the Galerkin
high-fidelity approximation of problems under the form (2.2), the Finite Element
Method. This method relays on a triangulation on the domain to discretize the
evaluation points and obtain a finite dimensional approximation of the problem.
First, we define the most common spaces where we find the solution of problem
(2.2).
We normally search for the solution inside the Hilbert space H1(Ω), i.e.
Definition 2.4

We define the Hilbert space H1(Ω) as

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)d},
23

along with its norm

|u|H1(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω)d .

In many problems we must enforce the solution to be zero over the boundary of Ω,
∂Ω so we can define the following Hilbert space:
Definition 2.5

We define the Hilbert space H1
0 (Ω) as

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0},

along with its norm
|u|H1

0 (Ω) = ‖∇u‖L2(Ω)d .

The spaces H1(Ω) and H1
0 (Ω) are infinite dimensional spaces, so we need to define

approximations for both spaces. In order to do so, let us introduce first a triangu-
lation of the domain Ω that depend on a parameter h.
Definition 2.6

A triangulation, Th of Ω ⊂ Rd is a subdivision of Ω into d-dimensional simplices
(triangles for d = 2, tetrahedra for d = 3), such that

• h = max
K∈T

hK , where hK is the diameter of K ∈ Th,

• any two simplices in Th intersect in a simplex of any lower dimension or
not at all,

• any bounded set in Ω intersects only finitely many simplices in Th.

The most natural strategy to define a finite element space is to consider globally
continuous functions that are polynomials of degree r on the single triangles of the
triangulation Th and null anywhere else, that is, to define the following test spaces
Definition 2.7

Let Ω ⊂ Rd be an open set and V a Hilbert space, we define the test spaces of
polynomials of degree r ∈ N over a triangulation Th of Ω as

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Pr, ∀K ∈ Th}, Vh = V ∩Xr

h,

Xr
0h = {vh ∈ Xr

h : vh|∂Ω = 0}, V0h = V ∩Xr
0h.

24

We state in the following theorem that the solution of (1.1) and its high-fidelity ap-
proximation satisfy a result of convergence which only depends on the discretization
parameter h, and the degree of the polynomials r.
Theorem 2.3

Let u ∈ V be the exact solution of (1.1) and uh its finite element approximation
of degree r. If u ∈ V ⊂ Hr+1(Ω) then the following a priori error estimates hold:

|u− uh|H1(Ω) ≤ C

(∑
K∈Th

h2r
K |u|2Hr+1(K)

)1/2

,

|u− uh|H1(Ω) ≤ Chr|u|Hr+1(Ω).

�

The previous result states that in order to increase accuracy, two different strategies
can be pursued:

• decreasing h, i.e. refining the grid.

• increasing r, i.e. using finite elements of higher degree (only if u is regular
enough).

However, both strategies increase the computational cost for solving the problem
(2.4). In the next section, we present a method in order to reduce the computational
costs for solving the problem (2.4).

2.2 Reduced Basis Methods
First of all, we state why and how a Reduced Basis Methods must be constructed.
Then, we present two major examples of Reduced Basis methods,

• Galerkin Reduced Basis Method (subsection 2.2.1).

• Least-Squares Reduced Basis Method (subsection 2.2.2).

As we said in the introduction of this chapter, solving the discrete problem using
a high-fidelity technique is computationally expensive, as it involves solving a Nh-
dimensional linear system, and for that reason, in order to reduce the computational
costs, the Reduced Basis approximations have been built.
The idea is to choose a set of N � Nh of functions that construct the Reduced Basis
and solving the problem in this new basis. Setting a Reduced Basis method entails:

25

1. Construction of a basis of the reduced space VN ⊂ Vh.

We start from a set of high-fidelity solutions, usually called snapshots

{uh(µ1), . . . , uh(µ
N)},

corresponding to a set of N selected parameters

SN = {µ1, . . . ,µN} ⊂ P .

Then, we generate a set of N functions, called the reduced basis,

{ζ1, . . . , ζN},

by orthonormatization of the snapshots. Finally, we construct the reduced
space

VN = span(ζ1, . . . , ζN) = span(uh(µ
1), . . . , uh(µ

N)).

Remark 2.8

Generally, the reduced basis functions, ζm m ∈ {1, . . . , N}, are no longer
solutions for the high-fidelity problem (2.4).

2. Computation of the Reduced Basis solution uN(µ) ∈ VN .
We solve the following linear system

uN(µ) =
N∑
m=1

u
(m)
N (µ)ζm,

where uN(µ) = (u
(1)
N (µ), . . . , u

(N)
N (µ)) ∈ RN , are called the Reduced Basis

coefficients or generalized coordinates.

3. Setup of a reduced problem for determining the unknown coefficients uN(µ) ∈ RN .

The reduced problem will consist of a set of N equations that are obtained by
imposing N independent conditions.

The latter enforce the orthogonality of the residual of the high-fidelity problem (2.4)
computed on the Reduced Basis solution,

r(µ) = f(µ)− L(µ)uN(µ),

to the functions of a subspace WN ⊂ Vh, where WN is called the test subspace. This
yields the following Petrov-Galerkin Reduced Basis (PG-RB) problem{

Find uN(µ) ∈ VN such that

V ′〈L(µ)uN(µ)− f(µ), wN〉V = 0, ∀wN ∈ WN ,
(2.8)

26

or equivalently,{
Find uN(µ) ∈ VN such that

a(uN(µ), wN ;µ) = f(wN ;µ), ∀wN ∈ WN .
(2.9)

We study now two examples of the Reduced Basis Method, the Galerkin and the
Least-Squares Reduced Basis Method, corresponding to different choices of the test
subspace WN .
Remark 2.9

The Galerkin Reduced Basis (G-RB) problem correspond to the case WN = VN .

Remark 2.10

The Least-Squares Reduced Basis (LS-RB) problem correspond to the caseWN =
R−1
Vh
L(µ)VN , where RVh : Vh → V ′h is the Riesz map.

2.2.1 Galerkin Reduced Basis Method

When the reduced space VN , is chosen as the test subspace, i.e. WN = VN , we
obtain what is named the Galerkin Reduced Basis method.
Given µ ∈ P , G-RB approximation of (2.2) reads{

Find uN(µ) ∈ VN such that

a(uN(µ), vN ;µ) = f(vN ;µ), ∀vN ∈ VN .
(2.10)

When a(·, ·;µ) is coercive for any µ ∈ P , a straightforward application of the Lax-
Milgram theorem (see Theorem 1.1) provides the following,
Theorem 2.4

Under the assumptions of Theorem 1.1 for any µ ∈ P the G-RB problem (2.10)
has a unique solution uN(µ) ∈ VN , which satisfies the stability estimate

‖uN(µ)‖V ≤
1

αN(µ)
‖f(·;µ)‖V ′ ,

where αN(µ) = inf
v∈VN

a(v, v;µ)

‖v‖2
V

is the stability factor. �

If the high-fidelity problem (2.4) is well-posed, so is the G-RB problem (2.10) as
stated in the following remark,

27

Remark 2.11
Since VN ⊂ Vh, then

αN(µ) ≥ αh(µ), ∀µ ∈ P .

That is, the well-posedness of the G-RB problem (2.10) is therefore inherited
from of the high-fidelity problem (2.4).

If we denote the energy norm as ‖ ·‖µ =
√
a(·, ·;µ), we obtain the following optimal

property,
Proposition 2.5

If a(·, ·;µ) is symmetric and coercive, then the solution uN(µ) ∈ VN , satisfies,

uN(µ) = arg min
v∈VN
‖uh(µ)− v‖2

µ

�

We can choose other norms defined over V .
Remark 2.12

By choosing the V -norm instead of the energy norm, we obtain,

‖uh(µ)− uN(µ)‖V ≤
(
γh(µ)

αN(µ)

)1/2

inf
w∈VN

‖uh(µ)− w‖V .

If a(·, ·;µ) is non-coercive over Vh × Vh, then we cannot use Lax-Milgram Theorem
(Theorem 1.1). In this situation, we are forced to use the more general Babuška
Theorem (Theorem 1.5).
Theorem 2.6

Assume (2.3) and (2.7) hold. Moreover, assume that a(·, ·;µ) satisfies the fol-
lowing inf-sup condition, i.e. there exists β0,N > 0 such that

βN(µ) = inf
vN∈VN

sup
wN∈WN

a(vN , wN ;µ)

‖vN‖V ‖wN‖V
≥ β0,N .

Then, for any µ ∈ P the G-RB problem (2.10) has a unique solution uN(µ) ∈ VN ,
which satisfies the stability estimate

‖uN(µ)‖V ≤
1

βN(µ)
‖f(·;µ)‖V ′ .

�

28

Once we have a reduced basis, {ζ1, . . . , ζN}, of VN , we can study the algebraic form
of the Galerkin Reduced Basis case,

N∑
m=1

a(ζm, ζn;µ)u
(m)
N (µ) = f(ζn;µ), 1 ≤ n ≤ N,

if we dentote AN(µ) ∈ RN×N , so that, (AN(µ))nm = a(ζm, ζn;µ) and fN(µ) ∈ RN ,
so that, (fN(µ))n = f(ζn;µ), then the algebraic form of the Galerkin Reduced Basis
case is equivalent to the following linear system,

AN(µ)uN(µ) = fN(µ).

Matrix AN is full, whereas Ah is in general sparse. However, since N � Nh it is in
principle much faster and less computationally intensive to solve.
Remark 2.13

The Reduced Basis matrix AN(µ) inherits the properties of symmetry and pos-
itivity of Ah.

Unfortunately, the assembly of AN(µ) and f(µ) still involves computations whose
complexity depends on Nh. To overcome this drawback we make the affine para-
metric dependence assumption, so we require a and f to be affine with respect to
the parameter µ, that is,

a(w, v;µ) =

Qa∑
q=1

θqa(µ)aq(w, v), ∀v, w ∈ V, ∀µ ∈ P

f(v;µ) =

Qf∑
q=1

θqf (µ)fq(v), ∀v ∈ V, ∀µ ∈ P .

Remark 2.14
The affine parametric dependence is inherited by the algebraic problem

AN(µ) =

Qa∑
q=1

θqa(µ)Aq
N ; fN(µ) =

Qf∑
q=1

θqf (µ)fqN ,

where (Aq
N)nm = aq(ζm, ζn) and (fqm) = fq(ζm).

Remark 2.15
Often, the affine parametric dependence automatically follows by the definition

29

of the problem.

Expanding each ζm with respect to the basis functions {ϕj}Nh
i=1 of Vh, we get

ζm =

Nh∑
j=1

ζ(j)
m ϕj for 1 ≤ m ≤ N,

so ζm = (ζ
(1)
m , . . . , ζ

(Nh)
m)T .

Definition 2.16

We define the transformation matrix V ∈ RNh×N as

V = [ζ1| . . . |ζN]→ (V)jm = ζjm, 1 ≤ m ≤ N, 1 ≤ j ≤ Nh.

By the bilinearity of a(·, ·;µ) and the linearity of f(·;µ) it follows,

aq(ζm, ζn) =

Nh∑
i=1

Nh∑
j=1

ζ(i)
m aq(ϕ

j, ϕi)ζ in; fq(ζn) =
∑
i=1

fq(ϕ
i)ζ(i)

n .

Remark 2.17
Equivalently, in matrix form

A
q
N = VTA

q
hV; fqN = VT fqh,

where (Aq
h)ij = aq(ϕ

j, ϕi) and (fqh)i = fq(ϕ
i).

We end this section with an observation on the spectral condition number for this
method.
Definition 2.18

The spectral condition number of a matrix B ∈ RN×N is defined as

κ(B) =
σmax(B)

σmin(B)
.

Proposition 2.7
The spectral condition number κ, measures how much the output value can
change for a small change in the input argument. According to the spectral
condition number a problem can be,

• Well-conditioned. If the condition number is low.

30

• Ill-conditioned. If the condition number is high.

If a(·, ·;µ) is symmetric and coercive and the basis functions ζm are V -orthogonal,
the spectral condition number κ(AN(µ)) can be bounded uniformly, since,

κ(AN(µ)) ≤ γh(µ)

βh(µ)
.

Remark 2.19
If ζm are not V -orthonormal, we have

κ(AN(µ)) ≤ γh(µ)

βh(µ)
κ(VTXhV).

2.2.2 Least-Squares Reduced Basis Method

A special instance of PG-RB problem is the Least-Squares Reduced Basis (LS-RB)
method which corresponds to choosing the test space as WN = R−1

Vh
L(µ)VN . Here

R−1
Vh

: V ′h → Vh; (R−1
Vh
f, y)V = V ′〈f, v〉V , ∀f ∈ V ′h, ∀v ∈ Vh,

is the inverse of the Riesz map RVh : Vh → V ′h, given by

V ′〈RVhx, y〉V = (x, y)V , ∀x, y ∈ Vh.

For a generic Hilbert space V , w = R−1
Vh
f is the Riesz representative of f ∈ V ′

obtained by solving
(w, v)V = V ′〈f, v〉V , ∀v ∈ V.

Remark 2.20
The Riesz representative depends on the choice of the inner product over V .

In the case of an inner product produced by a symmetric, coercive bilinear form
a(·, ·) this yields the variational problem

a(w, v) = V ′〈f, v〉V , ∀v ∈ V.

Given µ ∈ P , the LS-RB approximation of (2.2) reads{
Find uN(µ) ∈ VN such that

a(uN(µ), wN ;µ) = f(wN ;µ), ∀wN ∈ WN = R−1
Vh
L(µ)VN .

(2.11)

We state in the following proposition when the LS-RB problem (2.11) has a unique
solution.

31

Proposition 2.8

Assume that (2.3), (2.6) and (2.7) hold. If WN = R−1
Vh
L(µ)VN , then

βN = inf
vn∈VN

sup
wN∈WN

a(vN , wN ;µ)

‖vN‖V ‖wN‖V
≥ βh(µ) > 0, ∀µ ∈ P ,

and the LS-RB problem (2.11) has a unique solution uN(µ) ∈ VN for any µ ∈ P
which satisfies the stability estimate

‖uN(µ)‖V ≤
1

βN(µ)
‖f(·;µ)‖V ′ .

�

Note that WN = WN(µ) and that operator R−1
Vh
L(µ) represents the parametrized

version of the supremizer operator, Th(·;µ) : Vh → Vh, in this case

Th(v;µ) = arg sup
w∈Vh

a(v, w;µ)

‖w‖V
.

Remark 2.21
Indeed, for any v, w ∈ V , it holds,

(R−1
Vh
L(µ)v, w)V = V ′〈L(µ)v, w〉V = a(v, w;µ) = (TVh(v;µ), w)V .

This property provides an indication on how to generate the basis functions of WN

from those of Vh. {
Find ηi(µ) ∈ WN such that

(ηi(µ), z)V = a(ζi, z;µ), ∀z ∈ Vh.
(2.12)

Therefore, WN is generated as

WN = span(η1(µ), . . . , ηN(µ)).

The LS-RB approximation (2.11) enjoys some remarkable optimality properties that
we present below.
Proposition 2.9

If a(·, ·;µ) is inf-sup stable andWN = R−1
Vh
L(µ)VN then the solution uN(µ) ∈ VN

32

to (2.11) satisfies the following optimality property

uN(µ) = arg min
v∈VN
‖L(µ)v − f(µ)‖2

V ′h
.

Moreover, the following best approximation property holds

uN(µ) = arg min
v∈VN
‖uh(µ)− v(µ)‖2

µ,

where (v, w)µ = (Th(v,µ), Th(w,µ))V = (R−1
Vh
L(µ)v,R−1

Vh
L(µ)w)V . �

Because of the optimality property, the LS-RB method is also referred to as minimum
residual method.
Different choices for the norm over V yield different optimal inequalities.
Remark 2.22

By choosing the V -norm instead of the energy norm, we would find the following
optimal error inequality thanks to Theorem 1.5,

‖uh(µ)− uN(µ)‖V ≤
γh(µ)

βN(µ)
inf
v∈VN
‖uh(µ)− v‖V .

We can now study the algebraic form of LS-RB problem (2.11). SinceWN is spanned
by the basis {ηn(µ)}Nn=1 the problem (2.11) is equivalent to

Find uN(µ) ∈ RN such that
N∑
m=1

a(ζm, ηn(µ);µ)u
(m)
N (µ) = f(ηn(µ);µ) 1 ≤ n ≤ N.

(2.13)

If we denote AN(µ) ∈ RN×N with (AN(µ))nm = a(ζm, ηn(µ);µ) and fN(µ) ∈ RN

with (fN(µ))m = f(ηm(µ);µ), then this is equivalent to the linear system,

AN(µ)uN(µ) = fN(µ).

Remark 2.23

Matrix AN(µ) is closely related to the WN basis and the V -inner product,

(AN(µ))nm = (ηm(µ), ηn(µ))V .

Let us introduce now ηn(µ) ∈ RNh , solution of the following Nh-dimensional linear
system,

Xhηn(µ) = Ah(µ)ζn,

33

so that,
ηn(µ) = X−1

h Ah(µ)ζn.

As a result,
AN(µ) = VTAT

h (µ)X−1
h Ah(µ)V.

Similary, we obtain,
fN(µ) = VTAT

h (µ)X−1
h fh(µ).

Finally, in this case the affine parametric dependence yields the following decompo-
sition for AN(µ) and fN(µ),

AN(µ) =

Qa∑
q1=1

Qa∑
q2=1

θq1a (µ)θq2a (µ)Aq1,q2
N ,

fN(µ) =

Qf∑
q1=1

Qa∑
q2=1

θq1f (µ)θq2a (µ)fq1,q2N ,

where the Q2
a matrices Aq1,q2

N and the QaQf vectors fq1,q2N are given by

A
q1,q2
N = VTA

q2T
h X−1

h A
q1
h V, fq1,q2N = VTA

q2T
h X−1

h fq1h .

2.2.3 Petrov-Galerkin Reduced Basis Method

For the more general PG-RB problem (2.9), where the test subspace WN is free, the
uniqueness and existence of the solution is stated in the following theorem.
Theorem 2.10

Assume that conditions (2.3), (2.7) hold and that a(·, ·;µ) satisfies the following
inf-sup condition, i.e. there exists β0,N > 0 such that,0

βN(µ) = inf
vN∈VN

sup
wN∈WN

a(vN , wN ;µ)

‖vN‖V ‖wN‖V
≥ β0,N .

Then, for any µ ∈ P the PG-RB problem (2.9) has a unique solution uN(µ) ∈ VN
which satisfies the stability estimate

‖uN(µ)‖V ≤
1

βN(µ)
‖f(·;µ)‖V ′

and the optimal error inequality

‖uh(µ)− uN(µ)‖V ≤
γh(µ)

βN(µ)
inf
v∈VN
‖uh(µ)− v‖V .

�

34

Remark 2.24
Theorem 2.10 encompasses the Galerkin and the Least-Squares cases as special
cases.

2.3 Offline/Online Decomposition
Now that we have presented the theoretical results of the most important RB meth-
ods, we proceed to analyse them from a computational standpoint. We seek to take
advantage of the affine parametric dependence property by splitting the assembly
of the reduced matrix and vector into two different phases.

• An offline phase, where the expensive computations which do not depend on
the parameter are performed, such as the assembling of the reduced matrices
and vectors.

• An online phase, where the reduced basis system which is parameter-dependent
is assembled and solved.

In order to analyse the computational complexity of the operations presented in this
section, let us denote by

• nvv: number of operations required to compute a scalar product between two
Nh-dimensional vectors.

• nmv: number of operations for a matrix vector product.

• nls: number of operations to solve a linear system (Xhx = y).

2.3.1 Offline Phase

We assemble and store the reduced matrices and vectors according to the results
shown in sections 2.2.1 and section 2.2.2, see Algorithm 2.
Analysing the computational complexity of these operations we get

� Case G-RB: we must compute Qa matrices Aq
N and Qf vectors fqN with

O(QfNnvv +Qa(Nnnm +N2nvv)) operations.

� Case LS-RB: we must compute Q2
a matrices Aq1,q2

N and QfQa vectors fq1,q2N with

O(Qa(Nnmv +Nnls) +QfQaNnvv +Q2
a(Nnnm +N2nvv)) operations.

Remark 2.25
Note that the LS-RB method in addition of being more expensive than G-RB
method requires more storage.

35

Algorithm 2 Offline computation of reduced matrices and vectors
1: function OffAssemble(Aq

h, f
q
h,V,Xh,method)

2: switch method
3: case G-RB
4: for q = 1 : Qa

5: A
q
N = VTA

q
hV . O(Nnmv +N2nvv)

6: end for
7: for q = 1 : Qf

8: fqN = VT fqh . O(Nnvv)
9: end for
10: end case
11: case LS-RB
12: for q1 = 1 : Qa

13: compute Z = X−1h A
q1
h V . O(Nnmv +Nnls)

14: for q2 = 1 : Qa

15: A
q1,12
N = ZTA

q2
h V . O(Nnms +N2nvv)

16: end for
17: for q2 = 1 : Qf

18: fq1,q2N = ZT fq2h . O(Nnvv)
19: end for
20: end for
21: end case
22: end switch
23: return [Aq

N , f
q
N]

24: end function

2.3.2 Online Phase

Once we have assembled the reduced matrices and vectors we can start taking ad-
vantage of the affine parametric dependence. Given µ ∈ P , we first form the RB
matrix AN(µ) and vector fN(µ). This requires

• For G-RB case
O(QaN

2 +QfN) operations,

• For LS-RB case
O(Q2

aN
2 +QfQaN) operations.

Remark 2.26
G-RB method is always faster than LS-RB method.

36

Then, we solve the dense N -dimensional RB system with complexity O(N3). This
is all summarized in Algorithm 3.

Algorithm 3 Online RB system assembling and solving
1: function SolveRB(Aq

N , f
q
N , θ

q
a, θ

q
f ,µ,method)

2: AN(µ) = O, fN(µ) = 0
3: switch method
4: case G-RB
5: for q = 1 : Qa

6: AN(µ)← AN(µ) + θqa(µ)Aq
N . O(N2)

7: end for
8: for q = 1 : Qf

9: fN(µ)← fN(µ) + θqf (µ)fqN . O(N)
10: end for
11: end case
12: case LS-RB
13: for q1 = 1 : Qa

14: for q2 = 1 : Qa

15: AN(µ)← AN(µ) + θq1a θ
q2
a A

q1,q2
h . O(N2)

16: end for
17: for q2 = 1 : Qf

18: fN(µ)← fN(µ) + θq1a θ
q2
f f

q1,q2
N . O(N)

19: end for
20: end for
21: end case
22: end switch
23: solve linear system AN(µ)uN(µ) = fN(µ) . O(N3)
24: return uN(µ)
25: end function

Remark 2.27
As a result, if N and Qa are small enough, we can achieve very fast response
both for real-time problems and many-query contexts.

In the following section, we study if the solution for these problems (2.10) and (2.11),
obtained via Algorithms 2 and 3 is a good approximation to the high-fidelity solution
of the high-fidelity problem (2.5) obtained via Algorithm 1.

37

2.4 A Posteriori Error Estimation
In order to study if the solution of (2.10) and (2.11) is a good approximation to the
high-fidelity solution of the high-fidelity problem (2.5), it is necessary to compute
an error estimator and it has to be computed in the online phase, so we call it an a
posteriori error estimator.
A posteriori error estimators play an essential role at two different stages,

• They guarantee the reliability of the reduction process.

• They guarantee the efficiency of the method.

In the online stage, it allows to bound the error between the RB solution, uN(µ),
and the underlying high-fidelity solution uh(µ), for each µ ∈ P . In this context, an
error estimator is required to be:

• Sharp, i.e. as close as possible to the actual error.

• Asymptotically correct, when increasing N this error should tend to zero with
the same rate as the actual error.

• Computationally cheap, inexpensive to compute with respect to the total com-
putational costs.

To derive such an estimator, an equivalence will be established between the norm
of the error and a corresponding dual norm of the residual. The latter only involves
the arrays of the high-fidelity problem together with the computed RB solution, but
not the high-fidelity solution.
Remark 2.28

The equivalence between the norm of the error and a corresponding dual norm of
the residual is a direct consequence of the stability of the high-fidelity problem.

2.4.1 Error-Residual Relationship

Establishing an error-residual relationship is crucial to derive a posteriori error es-
timates.
We denote the error between the high-fidelity and reduced solutions by

eh(µ) = uh(µ)− uN(µ) ∈ Vh.

From (2.4) and (2.9) we get the error representation

a(eh(µ), v;µ) = f(v;µ)− a(uN(µ), v;µ), ∀v ∈ Vh. (2.14)

38

Remark 2.29
By setting

r(v;µ) = f(v;µ)− a(uN(µ), v;µ), ∀v ∈ Vh,

we note that r(v;µ) = 〈r(µ), v〉.

Thanks to the continuity of a(·, ·;µ) we get

|r(v;µ)| ≤ γh(µ)‖eh(µ)‖V ‖v‖V , ∀v ∈ Vh,

‖r(·;µ)‖V ′h ≤ γh(µ)‖eh(µ)‖V .

On the other hand, from the error representation and the stability estimate from
Proposition 2.1 we obtain

βh(µ)‖eh(µ)‖V ≤ ‖r(·;µ)‖V ′h .

1

γh(µ)
‖r(·;µ)‖V ′h ≤ ‖eh(µ)‖V ≤

1

βh(µ)
‖r(·,µ)‖V ′h . (2.15)

Remark 2.30

Since r(·;µ) only involves the high-fidelity arrays and the computed reduced
solution uN(µ), but not uh(µ), its norm well serves as an a posteriori error
estimator.

2.4.2 Error Bound

Thanks to (2.15), the quantity,

∆N(µ) =
‖r(·;µ)‖V ′h
βh(µ)

, (2.16)

can play the role of error estimate.
Definition 2.31

We define the associate effectivity factor as

ςN(µ) =
∆N(µ)

‖eh(µ)‖V
.

It is a measure of the quality of the proposed estimator.

For sharpness, we pretend the associate effectivity factor to be as close to 1 as
possible.

39

Remark 2.32

Equivalence (2.15) directly implies

1 ≤ ςN(µ) ≤ γh(µ)

βh(µ)
, ∀µ ∈ P .

Remark 2.33

Since the stability factors βh(µ) and γh(µ) are the minimum and maximum
generalized singular values of the matrix Ah(µ) (see Remarks 1.11, 1.12 and
1.13), the effectivity upper bound is in fact the condition number of the high-
fidelity problem (2.4).

Remark 2.34
The upper bound is independent of N , i.e. is stable to N -refinement.

However, we can expect large effectiveness when the underlying high-fidelity problem
(2.4) is ill-conditioned.

2.4.3 Computation of Error Bounds

To finish this chapter, in order to obtain an algebraic equivalent of the error bound
(2.16), we start by deriving the algebraic counterpart of the error representation
(2.14). Let us define the discrete error between the reduced basis and high-fidelity
solutions,

eh(µ) = uh(µ)−VuN(µ),

and the discrete residual,

rh(uN(µ);µ) = fh(µ)−Ah(µ)VuN(µ).

Remark 2.35

Recalling that Ah(µ)uh(µ) = fh(µ), we obtain

Ah(µ)eh(µ) = rh(uN ;µ),

where left-multiplying by A−1
h (µ) we get

eh(µ) = A−1
h (µ)rh(uN ;µ).

Taking the 2-norm on both sides we obtain the following upper bound,

‖eh(µ)‖2 ≤ ‖A−1
h (µ)‖S‖rh(uN(µ);µ)‖2 ≤

1

σmin(Ah(µ))
‖rh(uN(µ);µ)‖2,

40

where σmin(Ah(µ)) denotes the smallest singular value of Ah(µ).
Similarly, we can obtain a bound for the error in the V -norm, but first we have to
define the Xh-scalar product.
Definition 2.36

We define the Xh-scalar product of two vectors v and w as

(v,w)Xh
= wTXhv,

and its associate norm
‖v‖Xh

= vTXhv.

Taking this into account, we obtain

X
1/2
h eh(µ) = X

1/2
h A−1

h (µ)X
1/2
h X

−1/2
h rh(uN(µ);µ)→

→ ‖eh(µ)‖Xh
≤ ‖X1/2

h A−1
h (µ)X

1/2
h ‖S‖rh(uN ;µ)‖X−1

h
→

→ ‖eh(µ)‖Xh
≤ 1

σmin(X
−1/2
h Ah(µ)X

−1/2
h)

‖rh(uN ;µ)‖X−1
h
,

Remark 2.37
We recall that

σmin(X
−1/2
h Ah(µ)X

−1/2
h) =

√
λmin(X

−1/2
h AT

h (µ)X−1
h Ah(µ)X

−1/2
h) = βh(µ).

This provides the algebraic form of the error bound ∆N(µ) and we remark that (2.16)
only depends on the basis of VN , i.e. its definition does not depend on whether we
use Galerkin (2.10) or Least-Squares (2.11) projections.
To evaluate the dual norm of the residual, we exploit again the affine decomposition.
Remark 2.38

By the definition of the Xh-scalar product we get

‖rh(uN(µ);µ)‖2
X−1

h

= fh(µ)TX−1
h fh(µ)− 2fh(µ)TX−1

h Ah(µ)VuN(µ)

+uN(µ)TVTAT
hX
−1
h Ah(µ)VuN(µ).

41

Now using the affine decomposition

‖rh(uN(µ);µ)‖2
X−1

h

=

Qf∑
q1,q2=1

θq1f (µ)θq2f (µ) fq1Th X−1
h fq2h︸ ︷︷ ︸

cq1,q2

−2

Qa∑
q1=1

Qf∑
q2=1

θq1a (µ)θq2f (µ)uN(µ)T VTA
q1T
h X−1

h fq2h︸ ︷︷ ︸
dq1,q2

+

Qa∑
q1,q2=1

θq1a (µ)θq2a (µ)uN(µ)T VTA
q1T
h X−1

h A
q2
h V︸ ︷︷ ︸

Eq1,q2

uN(µ).

Algorithm 4 Offline computation of µ-independent terms of the dual norm of
residual
1: function OffResidual(Aq

N , f
q
N ,Xh,V)

2: for q1 = 1 : Qf

3: t = Xhf
q1
h

4: for q2 = 1 : Qf

5: cq1,q2 = tT fq2h
6: end for
7: end for
8: for q1 = 1 : Qa

9: compute Z = X−1
h A

q1
h V

10: for q2 = 1 : Qa

11: Eq1,q2 = ZTA
q2
h V

12: end for
13: for q2 = 1 : Qf

14: dq1,q2 = ZT fq2h
15: end for
16: end for
17: return cq1,q2 ,dq1,q2 ,Eq1,q2
18: end function

Remark 2.39
The µ-independent quantities

cq1,q2 ∈ R, dq1,q2 ∈ RN , Eq1,q2 ∈ RN×N ,

can be precomputed and store offline (see Algorithm 4).

42

Note that in the LS-RB case

dq1,q2 = fq1,q2N , Eq1,q2 = A
q1,q2
N .

For both cases studied before, the offline computational complexity scales as

O(Qfnls +Q2
fnvv +Qa(Nnls +Nnmv) +QfQaNnvv +Q2

a(Nnmv +N2nvv)),

while the online operation count yields

O(Q2
f +QfQaN +Q2

aN
2).

Finally, we focus now on the stability factor βh(µ) = σmin(X
−1/2
h Ah(µ)X

−1/2
h).

For any given µ ∈ P , the computation of the stability factor requires to solve the
generalized eigenvalue problem.This would require O(Nα

h) operations with α ∈ [1, 3],
an unaffordable task in a real-time context. Different strategies have been developed
to get rid of this Nh-dependence and enable a fast evaluation of the error bound.

• Successive Constraint Method
One strategy consists in computing a parameter-dependent lower bound βLBh (µ)
to βh(µ) by means of the Successive Constraint Method (SCM).
For both strongly and weakly coercive problems, the SCM-based lower bound
βLBh : P → R such that

0 < βLBh (µ) ≤ βh(µ), ∀µ ∈ P ,

whose online evaluation requires the solution of a small linear program with
computational complexity independent of Nh.
The resulting error bound is thus efficiently computable and rigorous. How-
ever, the offline-online strategy developed to build the lower bound is applica-
ble only in case of affine parametric dependence.
The SCM algorithm is rather involved to implement and requires a consider-
able computational effort, beyond the scope of the current work.

• Interpolatory method
An alternative strategy, targeted to computational efficiency, relies instead on
computing an interpolatory approximation βI(µ) of βh(µ).
Let us denote by Ξfine ∈ P a sample set whose dimension nfine = |Ξfine| is
sufficiently large. We select a set of parameters, called interpolation points,
ΞI = {µj}nI

j=1 and compute the stability factor βh(µ) for each µ ∈ ΞI . Then
we compute a suitable interpolant βI(µ), such that,

βI(µ) = βh(µ), ∀µ ∈ ΞI and βI > 0, ∀µ ∈ Ξfine.

43

The entire procedure for the online evaluation of the error estimator ∆N(µ) is sum-
marized in Algorithm 5.

Algorithm 5 Evaluation of the error estimator ∆N(µ)

1: function ErrorEstimate(cq1,q2 ,dq1,q2 ,Eq1,q2 , θqa, θ
q
f ,uN(µ),µ)

2: compute β(µ)
3: ε = 0
4: for q1 = 1 : Qf

5: for q2 = 1 : Qf

6: ε← ε+ θq1f (µ)θq2f (µ)cq1,q2
7: end for
8: end for
9: for q1 = 1 : Qa

10: for q2 = 1 : Qa

11: ε← ε+ θq1a (µ)θq2a (µ)uN(µ)TEq1,q2uN(µ)
12: end for
13: for q2 = 1 : Qf

14: ε← ε+ θq1a (µ)θq2f (µ)uN(µ)Tdq1,q2
15: end for
16: end for
17: return ∆N(µ) =

√
ε/β(µ)

18: end function

44

Chapter 3

Construction of Reduced Basis
Spaces

As we stated in the previous chapter, setting a Reduced Basis method entails three
things,

1. Construction of a Reduced Basis space.

2. Computation of the Reduced Basis solution.

3. Setup of a Reduced Basis problem.

We have already studied the latter two.
In this chapter we focus on the first step, the construction of the Reduced Basis
space. We present two different methods in order to generate the Reduced Basis
space.

• On the one hand, in section 3.1, we talk about the construction by Proper Or-
thogonal Decomposition (POD) using a Singular Value Decomposition analysis
(SVD).

• On the other hand, in section 3.2, we present the Greedy algorithm, that
consist in an iterative sampling from the parameter space fulfilling at each step
a suitable optimality criterion that relies on the a posteriori error estimate (see
section 2.4).

For the construction of this chapter we have mainly used reference [12].

45

3.1 SVD-POD
First of all, we recall the basic notions about the Singular Value Decomposition of
a matrix. Then we address the Proper Orthogonal Decomposition (POD) and we
elaborate on the use of POD to generate a Reduced Basis space.

3.1.1 Basic Notions on Singular Value Decomposition

Singular Value Decomposition of a matrix is a diagonalization process involving
left and right multiplication by orthogonal matrices. We summarize here the most
important results of the Singular Value Decomposition.
Proposition 3.1

IfA ∈ Rm×n is a real matrix, there exist two orthogonal matricesU = [ζ1| . . . |ζm] ∈
Rm×m and Z = [Φ1| . . . |Φn] ∈ Rn×n such that

A = UΣZT , (3.1)

with Σ = diag(σ1, . . . , σp) ∈ Rm×n and σ1 ≥ · · · ≥ σp ≥ 0, for p = min(n,m).
�

We have already defined in Remark 1.11 the singular values for a square matrix,
here we define them for a generic matrix.
Definition 3.1

We name

• σi = σi(A), the singular values of the matrix A.

• ζi, are the left singular vectors of A.

• Φj, are the right singular vectors of A.

We outline now the relationship between the singular values of a matrix A and an
associate eigenvalue problem.
Remark 3.2

Expression (3.1) implies the spectral decompositions,

AAT = UΣΣTUT and ATA = ZΣTΣZT ,

where,

ΣΣT = diag(σ2
1, . . . , σ

2
p,

m−p︷ ︸︸ ︷
0, . . . , 0), and ΣTΣ = diag(σ2

1, . . . , σ
2
p,

n−p︷ ︸︸ ︷
0, . . . , 0).

46

Remark 3.3

Since AAT and ATA are symmetric, the left (right) singular vectors of A turn
out to be the eigenvectors of AAT (ATA).

Remark 3.4
There is a very close relationship between the SVD of A and the eigenvalue
problems for ATA and AAT , since

σi =
√
λi(ATA), i = 1, . . . , p.

This is the same definition as given for square matrices in remark 1.11.

Remark 3.5

If A ∈ Rn×n is a symmetric matrix, then, σi(A) = |λi(A)| with λ1(A) ≥ · · · ≥
λn(A) being the eigenvalues of A.

Remark 3.6
The singular values of a matrix are related to both its norm and its condition
number

‖A‖S =
√
λmax(A∗A) = σmax, ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =

√√√√ p∑
i=1

σ2
i .

Remark 3.7

If A ∈ Rn×n is nonsingular, we obtain,

A−1 = ZΣ−1UT ,

with Σ−1 = diag(σ−1
1 , . . . , σ−1

n), this shows that σ−1
n , the inverse of the smallest

singular value of A, is the largest singular value of A−1, whence

‖A−1‖S =
1

σn
→ κ(A) = ‖A‖S‖A−1‖S =

σ1

σn
.

Now that we have presented the most important results of SVD theory, we focus on
low-rank approximations to a matrix A.
Since rank(A) = rank(Σ) and the latter is equal to the number of its nonzero
diagonal entries, if A ∈ Rm×n has r positive singular values, then rank(A) = r. Not
only, we can provide an orthonormal basis for both the kernel and the range of A,

47

as follows,

ker(A) = span(Φr+1, . . . ,Φn), and range(A) = span(ζ1, . . . , ζr).

Proposition 3.2

If A ∈ Rm×n has rank equal to r, then it can be written as the sum of r rank-1
matrices

A =
r∑
i=1

σiζiΦ
T
i

�

The next theorem states some optimality properties for low-rank approximations.
Theorem 3.3 (Schmidt-Eckard-Young)

Given a matrix A ∈ Rm×n of rank r, the matrix,

Ak =
k∑
i=1

σiζiΦ
T
i ,

satisfy the optimality property,

‖A−Ak‖F = min
B∈Rm×n

rank(B)≤k

‖A−B‖F =

√√√√ r∑
i=k+1

σ2
i ,

and
‖A−Ak‖2 = min

B∈Rm×n

rank(B)≤k

‖A−B‖2 = σk+1.

�

In Reduced Basis construction, the SVD of a matrix A ∈ Rm×n is often realized by
picking a rectangular left matrix U1 ∈ Rm×n instead of a squared matrix U ∈ Rm×m.
In such case, we obtain

A = U1Σ1Z
T with Σ1 ∈ Rn×n.

This represents the so-called thin SVD.
Remark 3.8

In this case U1 = U(:, 1 : n) = [ζ1| . . . |ζn] ∈ Rm×n and Σ1 = Σ(1 : n, 1 : n) =
diag(σ1, . . . , σn) ∈ Rn×n.

48

3.1.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is a technique for reducing the dimensionality
of a given dataset by representig it onto an orthonormal basis which is optimal
in a least-squares sense. The original variables are transformed into a new set
of uncorrelated variables, a lower dimensional representation of the data is thus
obtained by truncating the new basis to retain the first few modes.
For parametrized problems, we consider a set ΞS = {µ1, . . . ,µns} of ns parameter
samples and the corresponding set of snapshots {uh(µ1), . . . , uh(µ

ns)}, that is, the
solutions of the high-fidelity problem (2.4). We define the snapshots matrix S ∈
RNh×ns as,

S = [u1| . . . |uns],

where the vectors ui ∈ RNh , 1 ≤ i ≤ ns, represent the degrees of freedom of the
functions uh(µi) ∈ Vh.
The SVD of S reads

S = UΣZT ,

where
U = [ζ1| . . . |ζNh

] ∈ RNh×Nh , Z = [Φ1| . . . |Φns] ∈ Rns×ns ,

Σ = diag(σ1, . . . , σr) ∈ RNh×ns , σ1 ≥ · · · ≥ σr y r = min{Nh, ns} = rank(S).

Remark 3.9
Then, we can write

SΦi = σiζi → STSΦi = σ2
iΦi, i = 1, . . . , r,

STζi = σiΦi → SSTζi = σ2
i ζi, i = 1, . . . , r.

Definition 3.10

The matrix C = STS ∈ Rns×ns is known as the correlation matrix, and its
elements are given by (C)ij = uTi uj, 1 ≤ i, j ≤ ns.

For any N ≤ ns, the POD basis V ∈ RNh×N of dimension N is defined as the set of
the first N left singular vectors {ζ1, . . . , ζN} of U, or equivalently, the set of vectors
{ζj = 1

σj
SΦj, 1 ≤ j ≤ N}, obtained from the first N eigenvectors Φ1, . . . ,ΦN of

the correlation matrix.
Remark 3.11

By construction the POD basis is orthonormal.
Moreover, it minimizes, over all possible N -dimensional orthonormal basisW =
[w1| . . . |wN] ∈ RNh×N , the sum of squares of the error between snapshots vector
ui and its projection onto the space spanned by W.

49

More precisely, recalling that the projection ΠWx of a vector x ∈ RNh onto span(W)
is given by

ΠWx =
N∑
j=1

(x,wj)2wj = WWTx,

the following property holds.
Proposition 3.4

Let VN = {W ∈ RNh×N : WTW = 1N} be the set of all N -dimensional
orthonormal bases.
Then,

ns∑
i=1

‖ui −VVTui‖2
2 = min

W∈VN

ns∑
i=1

‖ui −WWTui‖2
2 =

r∑
i=N+1

= σ2
i . (3.2)

�

Remark 3.12

From (3.2), it follows that the error in the POD basis is equal to the sum of the
squares of the singular values corresponding to the neglected POD modes.

This result suggests a suitable criterion to select the minimal POD dimension N ≤ r
such that the projection error is smaller than a desired tolerance εPOD. Indeed, it
is sufficient to choose N as the smallest integer such that

I(N) =

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2
POD, (3.3)

that is, the energy retained by the last r −N nodes is equal or smaller than ε2
POD.

Remark 3.13

I(N) represents the percentage of energy of the snapshots captured by the first
N POD modes, and it is referred to as the relative information content of the
POD basis.

Remark 3.14

Equivalently, (3.3) ensures that the relative error between S and its N -rank
approximation SN is smaller than εPOD, i.e.

‖S− SN‖F
‖S‖F

≤ εPOD.

50

The procedure summarized in Algorithm 6 combines the definition of POD basis,
together with the optimality criterion (3.3).

Algorithm 6 POD algorithm
1: function POD(S, εPOD)
2: if ns ≤ Nh then
3: form the correlation matrix C = STS

4: solve the eigenvalue problem CΦi = σ2
iΦi, i = 1, . . . , r

5: set ζi = 1
σi
SΦi

6: else
7: form the matrix K = SST

8: solve the eigenvalue problem Kζi = σ2
i ζi, i = 1, . . . , r

9: end if
10: define N as the minimum integer such that I(N) ≥ 1− ε2

POD.
11: return V = [ζ1| . . . |ζN]
12: end function

Remark 3.15
We remark that computing the POD basis by solving an eigenvalue problem for
the correlation matrix C yields inaccurate results for the modes associated to
small singular values. This is due to the round off errors introduced while con-
structing C and the fact that κ(C) = (κ(S))2. In such cases, it is recommended
to construct the POD basis by means of stable algorithms for the computation
of the SVD.

Since the snapshots functions uh(µi) belong to Vh ⊂ V , it is natural to seek an
alternative POD basis which minimizes the Xh-norm of the projection error of the
snapshots vectors ui. In particular, we seek a basis W ∈ VXh

N with

VXh
N = {W ∈ RVh×N : WTXhW = 1N},

which minimizes the squares of the Xh-norm of the error between each snapshot
vector ui and its Xh-orthogonal projection onto the subspace spanned by W, i.e.

min
W∈VXh

N

ns∑
i=1

‖ui − ΠXh
W ui‖2

Xh
, (3.4)

here ΠXh
W x =

∑N
j=1(x,wj)Xh

wj = WWTXhx is the Xh-orthonormal projection of
x ∈ RNh onto span(W).

51

Remark 3.16
We have

ns∑
i=1

‖ui − ΠXh
W ui‖2

Xh
=

ns∑
i=1

‖ui −WWTXhui‖2
Xh

=

=
ns∑
i=1

‖X1/2
h ui −X1/2

h WWTXhui‖2
2 = ‖X1/2

h S−X1/2
h WWTXhS‖2

F .

Substituting in (3.4) and setting S̃ = X
1/2
h S and W̃ = X

1/2
h W, we finally obtain,

min
W∈VXh

N

ns∑
i=1

‖ui − ΠXh
W ui‖2

Xh
= min
W∈VN

‖S̃− W̃W̃T S̃‖2
F .

At this stage, Theorem 3.3 and Proposition 3.4 yields the following result,
Proposition 3.5

Let S = [ui| . . . |uns] ∈ RNh×ns be a given matrix of rank r ≤ min(Nh, ns),
Xh ∈ RNh×Nh a symmetric positive definite matrix, S̃ = X

1/2
h S and S̃ = ŨΣZ̃T

its singular value decomposition, where

Ũ = [ζ̃1| . . . |ζ̃Nh
] ∈ RNh×Nh , and Z̃ = [Φ̃1| . . . |Φ̃ns] ∈ Rns×ns ,

are the orthonormal matrices and Σ = diag(σ1, . . . , σr) ∈ RNh×ns , with σ1, . . . , σr.
Then, for N ≤ r, the POD basis V = [X

−1/2
h ζ̃1| . . . |X−1/2

h ζ̃N], is such that

ns∑
i=1

‖ui −VVTXhui‖2
Xh

= min
W∈VXh

N

ns∑
i=1

‖ui −WWTXhui‖2
Xh

=
r∑

i=N+1

σ2
i .

�

From a computational perspective, since

S̃T S̃Φ̃i = σ2
i Φ̃i, i = 1, . . . , r,

if ns ≤ Nh, we can conveniently obtain the POD basis without forming the matrix
X

1/2
h . Indeed, we first compute the correlation matrix C̃ = S̃T S̃ = STXhS and its N

eigenvectors Φ̃1, . . . , Φ̃N . Then, we define the POD basis as V = [ζ1| . . . |ζN], where

ζi = X
−1/2
h ζ̃i = X

−1/2
h

1

σi
S̃Φ̃i =

1

σi
SΦ̃i, 1 ≤ i ≤ N.

The complete procedure is summarized in Algorithm 7.

52

Algorithm 7 POD algorithm with respect to the Xh norm
1: function POD(S,Xh, εPOD)
2: if ns ≤ Nh then
3: form the correlation matrix C̃ = STXhS

4: solve the eigenvalue problem C̃Φ̃i = σ2
i Φ̃i, i = 1, . . . , r

5: set ζi = 1
σi
SΦ̃i

6: else
7: form the matrix K̃ = X

1/2
h SSTX

1/2
h

8: solve the eigenvalue problem K̃ζ̃i = σ2
i ζ̃i, i = 1, . . . , r

9: end if
10: define N as the minimum integer such that I(N) ≥ 1− ε2

POD.
11: return V = [ζ1| . . . |ζN]
12: end function

P-continuous version

The POD basis is the one which best approximates the set of solution snapshots
MS

h = {uh(µ1), . . . ,uh(µns)}. However, we still have to investigate,

• The approximation property of the POD basis with respect to the entire so-
lution setMh = {uh(µ), µ ∈ P}.

• How to select the parameter samples, ΞS = {µ1, . . . ,µns}, so that the corre-
sponding snapshots set is sufficiently representative of the solutions set.

If we are interested to find a POD basis of dimension N that approximates the entire
solutions set Mh, we are forced to work in the continuous setting. So we present
the continuous analogous for the discrete problems. First, we have to consider the
following minimization problem,

min
W∈VN

∫
P
‖uh(µ)−WWTuh(µ)‖2

2dµ. (3.5)

Let us suppose that uh(µ) ∈ L2(P ;RNh), i.e.
∫
P ‖uh(µ)‖2

2dµ < ∞, then uh(µ) is
called a Hilbert-Schmidt (H-S) kernel.
Remark 3.17

A continuous analogue to the snapshots matrix S is given by the operator T :
L2(P)→ RNh such that, ∀g ∈ L2(P),

Tg =

∫
P

uh(µ)g(µ)dµ.

53

Its adjoint T ∗ : RNh → L2(P) is defined as

(g, T ∗w)L2(P) = (Tg,w)2 ∀g ∈ L2(P),w ∈ RNh .

As a result,
T ∗w = (uh(µ),w)2 ∀w ∈ RNh ,

Remark 3.18

That is, T ∗ is the continuous analogue of the matrix ST .

Remark 3.19

Note that Tg ∈ RNh and rank(T) = r ≤ Nh, while T ∗w ∈ L2(P).

Remark 3.20

Since uh(µ) is a H-S kernel, T is a H-S operator and thus compact.
Moreover, the H-S norm of T coincides with the norm of its kernel, i.e.

‖T‖2
H−S = ‖uh(µ)‖2

L2(P;RNh)
.

Remark 3.21

Since T is compact, K = TT ∗ : RNh → RNh and C = T ∗T : L2(P)→ L2(P) are
self-adjoint, non-negative and compact operators, given by

Cg =

∫
P

(uh(µ),uh(µ′))2g(µ′)dµ′, ∀g ∈ L2(P),

Kw =

∫
P

uh(µ)(uh(µ),w)2dµ, ∀w ∈ RNh .

Remark 3.22
Operators K and C are the P-continuous analogue of the correlation matrices
K = SST and C = STS, respectively.

Actually, the following proposition holds.
Proposition 3.6

Since K is a linear mapping from RNh to RNh , it is represented by the Nh ×Nh

symmetric, positive definite matrix,

K =

∫
P

uh(µ)uTh (µ)dµ,

54

whose eigenvalues σ2
1 ≥ · · · ≥ σ2

r ≥ 0 and associated orthonormal eigenvectors
ζi ∈ RNh satisfy,

Kζi = σ2
i ζi, i = 1, . . . , r.

Moreover, the functions Φi ∈ L2(P) defined by

Φi =
1

σi
T ∗ζi, i = 1, . . . , r,

are the eigenvectors of C. �

Finally, the following results holds.
Proposition 3.7

As uh(µ) admits the expansion,

uh(µ) =
r∑
i=1

σiζiΦi(µ) =
r∑
i=1

ζi(uh(µ), ζi)2,

the following decomposition holds for T ,

T (·) =
r∑
i=1

σiζi(Φi(µ), ·)L2(P). (3.6)

�

Remark 3.23
As in the matrix context, it can be easily proved that

‖T‖L(L2(P);RNh) = σ1, ‖T‖H−S =

√√√√ r∑
i=1

σ2
i .

Moreover, truncating the sum (3.6) to first N terms, we obtain the best rank N
approximation to the operator T , as the following theorem states.
Theorem 3.8 (Schmidt)

The operator TN : L2(P)→ RNh defined by

TN(·) =
N∑
i=1

σiζi(Φi(µ), ·)L2(P), 0 ≤ N ≤ r,

satisfies the following optimality property,

55

‖T − TN‖H−S = min
B∈BN

‖T −B‖H−S =

√√√√ r∑
i=N+1

σ2
i ,

where BN = {B ∈ L(L2(P);RNh) : rank(B) ≤ N}. �

Proposition 3.9

The POD basis V = [ζ1| . . . |ζN] ∈ RNh×N is such that∫
P
‖uh(µ)−VVTuh(µ)‖2

2dµ = min
W∈VN

∫
P
‖uh(µ)−WWTuh(µ)‖2

2dµ. (3.7)

Moreover, ∫
P
‖uh(µ)−VVTuh(µ)‖2

2dµ =
r∑

i=N+1

σ2
i .

�

Remark 3.24
We can generalize Proposition 3.9 to the case where the Xh-norm, rather than
the Euclidean norm is considered.

Thanks to the previous analysis of the P-continuous version of the POD, we can
now answer the questions raised at the beginning concerning approximation and
sampling properties of POD basis functions.

Approximation and sampling properties

The key is to regard the discrete minimization problem (3.2) as an approximation
of the continuous minimization problem (3.5). To this end, we introduce a suitable
quadrature formula, ∫

P
f(µ)dµ ≈

ns∑
i=1

wif(µi),

to approximate the integrals over P for any continuous function f : P → R, where
wi > 0 and µi are weighting coefficients and suitable quadrature points, respectively.
Then, ∫

P
‖uh(µ)−WWTuh(µ)‖2

2dµ ≈
ns∑
i=1

wi‖uh(µi)−WWTuh(µi)‖2
2. (3.8)

The parameter samples location are thus defined by a suitable quadrature formula
in the parameter space.

56

Remark 3.25

Indeed, the right-hand side of (3.8) differs from (3.2) only by the weighting
coefficients wi.

However, by defining D = diag(w1, . . . , wns) ∈ Rns×ns ,
ns∑
i=1

wi‖uh(µi)−WWTuh(µi)‖2
2 = ‖SD1/2 −WWTSD1/2‖1/2

F . (3.9)

The POD basis associated to the snapshots set, MS
h = {uh(µ1), . . . ,uh(µns)}, is

given by

V = [ζ1| . . . |ζN], with ζi =
1

σ2
i

SD1/2Φ̂i,

and
ŜT ŜΦ̂i = σ2

i Φ̂i, with Ŝ = SD1/2.

The complete procedure to compute V is summarized in Algorithm 8.

Algorithm 8 POD algorithm with respect to the energy norm and quadrature
weights
1: function POD(S,Xh,D, εPOD)
2: if ns ≤ Nh then
3: set Ŝ = SD1/2

4: form the correlation matrix Ĉ = ŜTXhŜ

5: solve the eigenvalue problem ĈΦ̂i = σ2
i Φ̂i, i = 1, . . . , r

6: set ζi = 1
σi
ŜΦ̂i

7: else
8: form the matrix K̂ = X

1/2
h SDSTX

1/2
h

9: solve the eigenvalue problem K̂ζ̂i = σ2
i ζ̂i, i = 1, . . . , r

10: set ζi = X
−1/2
h ζ̂i

11: end if
12: define N as the minimum integer such that I(N) ≥ 1− ε2

POD.
13: return V = [ζ1| . . . |ζN]
14: end function

Let us now denote by V∞ the POD basis solution of the continuous minimization
problem (3.7) and by Vns the POD basis minimizing (3.9).
Moreover, we define,

E(W) =

∫
P
‖uh(µ)−WWTuh(µ)‖2

2dµ,

ES(W) =
ns∑
i=1

‖uh(µi)−WWTuh(µns)‖2
2.

57

Thanks to the optimality result (3.7), it follows that E(V∞) ≤ E(Vns). Furthermore,

E(Vns) ≤ |E(Vns)− ES(Vns)|+ ES(Vns) ≤ ES +
r∑

i=N+1

(σSi)2,

where ES denotes the quadrature (or sampling error).
Remark 3.26

The retained energy criterion (3.3) can serve as a reliable estimate of the projec-
tion error E(Vns), provided that an appropriate sampling of the parameter space
is performed.
If ES <

∑r
i=N+1(σSi)2 then,

E(Vns) .
r∑

i=N+1

(σSi)2 → E(Vns)

‖uh‖2
L2(P;RNh)

. ε2
POD.

Remark 3.27
The quadrature error ES depends on:

• The quadrature formula chosen.

• The number of quadrature points.

• The smoothness of the integrand.

• The dimension of the parameter space.

Once the reduced model is built, we compute the ingredients required by the online
evaluation of the a posteriori error estimate, as described in Algorithm 9.

Algorithm 9 RB approximation construction by POD algorithm
Require: Tolerance εPOD, train sample ΞS ⊂ P
1: for µ ∈ ΞS

2: uh(µ) = SolveHF(Aq
h, f

q
h, θ

q
a, θ

q
f ,µ)

3: S← [Suh(µ)]
4: end for
5: V = POD(S,Xh, εPOD,D)
6: [Aq

N , f
q
N] = OFFAssemble(Aq

h, f
q
h,V,Xh,method)

7: [cq1,q2 ,dq1,q2 ,Eq1,q2] = OFFResidual(Aq
h, f

q
h,Xh,V)

58

Remark 3.28
Different sampling strategies can be employed depending on the dimension of
the parameter space,

• Low dimension: Tensorial (full factorial) sampling.

• High dimension: Random sampling, Latin hypercube sampling, Sparse grids.

3.2 Greedy Algorithm
In the case of parametrized PDEs, the POD method for the construction of the
RB space might entail a severe computational cost. If the solution of the high-
fidelity problem is computationally demanding, performing POD can be excessively
expensive.
Greedy algorithms represent an efficient alternative. The goal of this method is to
evaluate N snapshots to construct a RB space of dimension N , by seeking at each
step the local optimum. However, there are two critical aspects:

• To be efficient, a greedy algorithm must be supported by an a posteriori error
estimate for the error ‖uh(µ)−uN(µ)‖V , whose evaluation must be performed
in a very inexpensive way for any µ ∈ P .

• A greedy algorithm is not necessarily cheaper than POD, since at each step a
maximization problem has to be solved.

3.2.1 Behind Greedy Algorithm

Instead than optimizing over all possible N -dimensional subspaces, a greedy algo-
rithm is a procedure for the construction of a subspace by iteratively adding a new
basis vector at each step satisfying a optimality condition.
More precisely, at the generic iteration 1 ≤ n ≤ N−1, we assume that we are given:

1. A sample set,
Sn = {µ1, . . . ,µn},

2. The corresponding subspace,

Vn = span{uh(µ1), . . . , uh(µn)},

3. An orthonormal basis for Vn,

V = [ζ1| . . . |ζn] ∈ RNh×n.

59

Remark 3.29
The latter is obtained by orthonormalization of the snapshots set,

S = [uh(µ1)| . . . |uh(µn)] ∈ RNh×n,

where (un(µi))j = u
(j)
h (µ), for 1 ≤ j ≤ Nh, 1 ≤ i ≤ n.

Then, we set,
µn+1 = arg max

µ∈P
‖uh(µ)−Vun(µ)‖Xh

, (3.10)

where un(µ) ∈ Rn denotes the solution of the RB problem (2.9).
Computing the Greedy algorithm as described before entails the solution of N op-
timality problems so we present a simplification of the procedure in order to reduce
the computational cost for the construction of the RB space.

3.2.2 The Weak Greedy Algorithm

The weak greedy algorithm is obtained by replacing in expression (3.10),

• The parameter set P , with a very fine sample Ξtrain ⊂ P , of cardinality
|Ξtrain| = ntrain.

• The approximation error ‖uh(µ) − Vun(µ)‖Xh
, with the a posteriori error

estimator built in the previous chapter, such that,

‖uh(µ)−Vun(µ)‖Xh
≤ ∆n(µ), ∀µ ∈ P .

Remark 3.30
Introducing the training sample enables to turn the optimality problem into a
simpler enumeration problem.

Hence, at each step, n = 1, . . . , N − 1, of the weak greedy algorithm, we need to:

1. Evaluate the a posteriori error bound ∆n(µ), for any µ ∈ Ξtrain.

2. Find, by solving an enumeration problem,

µn+1 = arg max
µ∈Ξtrain

∆n(µ).

In other words, at each step we add the particular candidate snapshot that the a
posteriori error bound predicts to be the worst approximated by the RB prediction
associated to Vn.

60

Then, the final size N of the RB space VN is such that

max ∆N(µ) ≤ εg,

where εg is a prescribed, sufficiently small, stopping tolerance. The algorithm details
are reported in Algorithm 10.

Algorithm 10 Weak Greedy Algorithm
Require: Maximum number of iterations Nmax, stopping tolerance εg, train sample

Ξtrain ⊂ P , starting point µ1 ∈ P
Ensure: Basis V ∈ RNh×n

1: Ξg = [], V = []
2: N = 0, δ0 = εg + 1
3: while N < Nmax & δN > εg do
4: N ← N + 1
5: compute uh(µN)
6: ζN = GramSchmidt(V,uh(µN),Xh)
7: V← [V|ζN]
8: Ξg ← Ξg ∪ {µN}
9: [δN , µN+1] = maxµ∈Ξtrain

∆N(µN)
10: end while

Remark 3.31

The weak greedy algorithm requires only O(N) calls to the high fidelity solver,
but yields O(Nntrain) evaluations of the a posteriori error bound, each one re-
quiring the solution of the RB problem.

As shown in the Algorithm 10, the basis V is kept orthonormal with respect to the
scalar product in Vh by iteratively orthonormalizing the new element appended to
the existing basis through a Gram-Schmidt procedure, see Algorithm 11.

Algorithm 11 Gram-Schmidt orthonormalization
1: function GramSchmidt(V,u,Xh)
2: if V = [] then
3: z = u
4: else
5: z = u−VVTXhu
6: end if
7: z← z/‖z‖Xh

8: end function

61

Remark 3.32
A similar procedure can be built with the energy norm.

Algorithm 12 details how to build the G-RB approximation by means of the Greedy
Algorithm 10.

Algorithm 12 RB approximation construction by greedy algorithm
Require: Maximum number of iterations Nmax, stopping tolerance εg, train sample

Ξtrain ⊂ P , starting point µ1 ∈ P
Ensure: Basis V ∈ RNh×n

1: Ξg = [], V = []
2: N = 0, δ0 = εg + 1
3: while N < Nmax & δN > εg do
4: N ← N + 1
5: uh(µN) = SolveHF(Aq

h, f
q
h, θ

q
a, θ

q
f ,µN)

6: ζN =GramSchmidt(V,uh(µN),Xh)
7: V← [V|ζN]
8: Ξg ← Ξg ∪ {µN}
9: [Aq

N , f
q
N] =OffAssemble(Aq

h, f
q
h,V,Xh,method)

10: [cq1q2 ,dq1q2 ,Eq1q2]=OffResidual(Aq
h, f

q
h,X

q
h,V)

11: for µ ∈ Ξtrain

12: uN(µ) =SolveRB(Aq
N , f

q
N , θ

q
a, θ

q
f ,µ,method)

13: ∆N(µ) =ErrorEstimate(cq1q2 ,dq1q2 ,Eq1q2 , θqa, θ
q
f ,uN(µ),µ)

14: end for
15: [δN , µN+1] = maxµ∈Ξtrain

∆N(µN)
16: end while

We end this section with an remark concerning the training sample, Ξtrain.
Remark 3.33

The choice of a good training sample is a delicate issue.
In fact, Ξtrain should be:

• Small for efficiency reasons, but,

• Sufficiently large in order to represent the parameter set as good as possible.

As a matter of fact, the performance of the greedy, and at a large extent, that of
the RB method, crucially depends on how well the training sample is chosen.
Now that we have presented the main theoretical results for the Reduced Basis
Methods, and in next chapters we apply them to different equations coming from
applications.

62

Chapter 4

Resolution of Laplace Equation by
POD Method

In the following chapters, we are going to apply the theoretical results shown before
to different practical applications.
In this chapter, we consider the, classical, 2-dimensional Laplace problem occurring
in surfaces of different materials characterized by a particular parameter, this pa-
rameter could represent the thermal conductivity, so it is a physical parameter. We
have chosen Laplace equation as it is a simple model of PDE, its behaviour is well
known and it has a great variety of applications.
To solve it, we apply the POD technique. A similar problem is studied in [12].
We present the scheme of this chapter,

1. Presentation of the problem (section 4.1), including the physical equations and
boundary conditions governing the problem, the geometry, and the parameter
set.

2. Calculation of the variational formulation of the problem (section 4.2) and its
affine decomposition.

3. Computation of the POD technique and analysis of the results (section 4.3).

4.1 Presentation
In this section we introduce the 2-dimensional Laplace problem.

1. First, we state the (parametrized) physical equations governing the problem,
along with the boundary conditions.

2. Then, we establish the domain where we solve the problem.

63

3. Finally, we define the parameters involved in the equations, as well as the
parameter set where they belong to.

4.1.1 Physical Equations

We consider the governing parametrized 2-dimensional Laplace equation, along with
the mixed boundary conditions, for the unknown u = u(µ) reads,

−∇ · (ν(µ)∇u) = f(µ), in Ω,

u = uext(µ), on ΓD,

−ν(µ)
∂u

∂n
= g(µ), on ΓN ,

(4.1)

where, ∂Ω = ΓD ∪ΓN and ΓD denotes the Dirichlet boundary, while ΓN denotes the
Neumann boundary.
Remark 4.1

So that the problem is well-defined, we need to impose some regularity on the
functions and on the domain:

• ν ∈ L∞(P).

• f(µ) ∈ L2(Ω) ∀µ ∈ P .

• g(µ) ∈ L2(ΓN) ∀µ ∈ P .

• Ω is an open and connected subset of Rn of which the boundary ∂Ω, is
polygonal.

Remark 4.2
Reduced Basis scheme does not support nonhomogeneous Dirichlet boundary
conditions, this is due to the fact that we compute a solution that is a linear
combination of functions that satisfy the nonhomogeneous Dirichlet boundary
condition, but unless the sum of coefficients is one, the solution does not satisfy
the nonhomogeneous Dirichlet boundary condition.

4.1.2 Geometry

We study the domain of the surface, Ω = (0, 1) × (0, 1), consisting of two different
subdomains, both with the same center, these will represent two materials with, for
example, two thermal conductivities or two viscosities.

Ω1 = (1/4, 3/4)× (1/4, 3/4) y Ω2 = Ω/Ω1.

64

Ω2

Ω1ΓN ΓN

ΓD

ΓN

Figure 4.1: Geometry, subdomains and boundaries for problem (4.1).

Concerning the boundary of the domain we set, the Dirichlet boundary ΓD = (0, 1)×
{0} and the Neumann boundary ΓN = ∂Ω/ΓD. See Figure 4.1.

4.1.3 Parameters

Once we have introduced the equations and the domain, we define the parameters
involved in the equations (4.1).
Before declaring the parameters, we come with a definition of a characteristic func-
tion of a domain.
Definition 4.3

χA denotes the characteristic function of the subdomain A ⊂ Ω.

Since these subregions are characterized by different parameters, ν(µ) can be ex-
pressed as,

ν(·,µ) = 1 + µ1χΩ1(·), in Ω. (4.2)

here 1 + µ1 is the particular parameter for Ω1, while for Ω2 we have normalized the
parameter as 1.
Furthermore, we set Ω1 to be the source element, and we represent it as

f(·,µ) = µfχΩ1(·), in Ω.

Concerning the boundary conditions, we have

uext(µ) = 0 and g(µ) = µN .

For the case at hand, the problem depends on 3 parameters:

65

• µ1 is the characteristic parameter of Ω1,

• µf is the intensity of the source in Ω1,

• µN represents the flux over the remaining walls of the domain ΓN .

4.2 Variational Formulation
As declared in the theoretical introduction, we have to obtain the variational for-
mulation of problem (4.1), so that we can exploit the affine decomposition of the
problem. This decomposition provides us an efficient offline/online decomposition
in order to solve the problem.
Denoting V = H1

ΓD
(Ω)1, we multiply the first equation of (4.1) by a test function

v ∈ V and integrate over the whole domain Ω. We get,∫
Ω

−∇ · (ν(µ)∇u)vdΩ =

∫
Ω

f(µ)vdΩ,

now we apply Green’s Formula in the first term and we obtain,∫
∂Ω

−ν(µ)
∂u

∂n
vdΓ +

∫
Ω

ν(µ)∇u · ∇vdΩ =

∫
Ω

f(µ)vdΩ,

splitting the first term in two integrals, one over ΓD and another over ΓN , we get,∫
∂Ω

−ν(µ)
∂u

∂n
vdΓ =

∫
ΓD

−ν(µ)
∂u

∂n
vdΓ︸ ︷︷ ︸

=0

+

∫
ΓN

−ν(µ)
∂u

∂n
vdΓ =

∫
ΓN

g(µ)vdΓ,

where the integral over ΓD is zero as v ∈ V = H1
ΓD

(Ω).
Organizing and renaming the terms, we get that the variational formulation of prob-
lem (4.1) over the domain Ω reads:{

Find u(µ) ∈ V = H1
ΓD

(Ω) such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V,
(4.3)

where

a(u, v;µ) =

∫
Ω

ν(µ)∇u · ∇vdΩ, (4.4)

f(v;µ) =

∫
Ω

f(µ)vdΩ−
∫

ΓN

g(µ)vdΓ. (4.5)

1H1
ΓD

(Ω) denotes the Hilbert space H1
ΓD

(Ω) = {u ∈ H1(Ω) : u|ΓD
= 0}.

66

Remark 4.4
By the regularity of the functions and of the domain the variational formulation
(4.3) has a solution and it is unique, thanks to Lax-Milgram Theorem (1.1).

Remark 4.5

Note that the bilinear form a(·, ·;µ), and the linear form f(·;µ), are param-
eter dependent, but the domain Ω, and the solution space V , are parameter
independent.

The setup, implementation and analysis of RB methods are carried out starting
from the weak formulation (4.3).

4.2.1 Affine Decomposition

In order to apply the theoretical results it is necessary to express the bilinear form
(4.4) and the linear form (4.5) in their affine expansion.
In the case at hand the bilinear form (4.4) admits an affine expansion. More precisely,

a(u, v;µ) =

Qa∑
q=1

θqa(µ)aq(u, v), (4.6)

where Qa = 2 and

θ1
a(µ) = µ1, a1(u, v) =

∫
Ω1

∇u · ∇vdΩ,

θ2
a(µ) = 1, a2(u, v) =

∫
Ω

∇u · ∇vdΩ.

In the same way, the linear form f(v;µ) can be expressed as

f(v;µ) =

Qf∑
q=1

θqf (µ)fq(v), (4.7)

where, again, Qf = 2 and

θ1
f (µ) = µf , f1(v) =

∫
Ω1

vdΩ,

θ2
f (µ) = −µN , f2(v) =

∫
ΓN

vdΓ.

We have thus succeeded to write the bilinear and linear forms as linear combinations
of µ-independent bilinear or linear forms, respectively, whose coefficients are suitable
µ-dependent scalar, real functions. Such a decomposition is at the basis of the
offline/online decoupling strategy, which is another distinguishing feature of RB
methods for parametrized PDEs.

67

4.3 Computation
In this section we construct a computational program in order to solve the problem
(4.1) in the form (4.3) numerically by means of the POD technique. We take ad-
vantage of the online/offline decomposition described in the previous chapter. We
split the computation into two phases:

1. Offline Phase. In this section, we compute all the µ-independent elements of
the problem (4.3):

• First of all, we declare the domain of the problem (see Figure (4.1)).
• Once the domain is declared, we compute the µ-independent bilinear and

linear forms of the decompositions (4.6) and (4.7), respectively.
• Then, we settle the parameter set, P , for the parameters µ1, µf and µN .
• After that, we construct the snapshots matrix, associated to a randomly
selected set of parameters vectors. Then, we use the POD algorithm (see
Algorithm 6) so that we can obtain the Reduced Basis.

• Finally, we follow Algorithm 2 to assemble and store the reduced matrices
and vectors related to the µ-independent bilinear and linear forms of the
decompositions (4.6) and (4.7), respectively.

2. Online Phase. Once we have assembled and stored the reduced matrices and
vectors, we can solve the reduced problem instead of the high-fidelity prob-
lem, so we reduce the computational complexity and cost. According to the
procedure described in Algorithm 3, we need to:

• Select a parameter vector µ ∈ P .
• Assemble of the µ-dependent matrix and vector, A(µ) and f(µ), respec-

tively.
• Solve of the reduced linear system to obtain the Reduced Basis solution,
uN(µ).

We use the FreeFEM++ software for the computation, assembling, storage, solving
and representation involved in all the the steps declared above [9].

4.3.1 Offline Computation

In this first step, we need to compute all the µ-independent elements of the program,
so that in the online phase we can get an actual computational speed improvement.
The main goal of this phase is to construct the reduced matrices and vectors asso-
ciated with the affine decompositions (4.6 and 4.7) of the forms of the variational
formulation (4.3).

68

Miscellaneous computations

In this introduction we show all the code associated to the computation of several
items, such as, the domain, the parameter set and the finite element space definition.
First of all, we declare the domain of the problem described in Section 4.1. The
procedure is included in Figure 4.2.

Figure 4.2: Commands used for the construction of the domain of the problem (4.1).

We can as well discretize and plot the previous domain. We divide each side of
the boundary of Ω in equal parts, we also do this to the boundary of Ω1, the
discretization of the domain obtained by this mean is called the mesh of the problem.
The procedure is shown in Figure 4.3 and the resulting mesh representation (for
nn = 25) can be seen in Figure 4.4.

Figure 4.3: Commands used for the discretization and plotting of the domain.

The discretization of the domain made by triangular elements, result in Nvh vertices
and Nth triangles.
Now we focus on the parameter set. We first need to establish the lower and upper
limits for each µ1, µf and µN . We define:

• Characteristic parameter of Ω1, µ1.

• Flux over the Neumann boundary, ΓN , µN .

69

Figure 4.4: Representation of the mesh obtained after computing the code in Figures 4.2
and 4.3.

• Intensity of the source, µf .

The code used is shown in Figure 4.5.
Finally, we declare the finite element space and its functions, see Figure 4.6. For
the high-fidelity approximation we use P1 finite elements. This yields a high-fidelity
space Vh of dimension Nh = Nvh.
In order to simplify the notation in the code, we define the gradient of a function
by means of a macro (see Figure 4.7).

Construction of the affine decomposition

At this point, we have all the necessary elements to start computing the µ-independent
bilinear and linear forms of the affine decompositions (4.6) and (4.7), respectively.
As well, we build the matrix and vector corresponding to the Dirichlet boundary
condition. Finally, we declare the matrix, Xh, associated to the scalar product over
Vh, see Figure 4.8.

Construction of the Snapshots matrix

In order to take computational advantage of the offline/online decomposition of this
problem, we need to construct the associated Reduced Space basis. To this end,
we need a set of suitable selected high-fidelity solutions, corresponding to given
parameter values, the so-called snapshots.
We have selected a total of ns snapshots (see Figure 4.9), for each iteration we obtain
a random vector µi = (µ1, µN , µf) ∈ P , then, we build the linear system associated

70

Figure 4.5: Commands used for the definition of the parameter set.

Figure 4.6: Commands used for the definition of the finite element space and its functions.

to the high-fidelity approximation. We solve the linear system and append the
corresponding solution to the snapshots matrix.

Determination of the Reduced Space Basis

Now that we have the snapshots matrix, we move onto obtaining the Reduced Basis
by means of the POD algorithm (see Algorithm 6).
We will built the code such that ns < Nh, so we are set in the first case in the
IF-ELSE part of the POD algorithm. First of all, we need to build the correlation
matrix associated to the snapshots matrix, the commands used are shown in Figure
4.10.
Now, we have to solve the eigenvalue problem associated to the correlation matrix,
see POD Algorithm 6. To this end, we use the command shown in Figure 4.11.
As command dggev is not one of the mainly used commands of FreeFEM++ lan-

Figure 4.7: Commands used for the definition of the gradient of a function.

71

Figure 4.8: Commands used for the computation of the elements of the affine decompo-
sitions (4.6) and (4.7), the Dirichlet boundary condition and the matrix associated to the
scalar product over Vh.

guage, we explain how we use it in order to obtain the eigenvalues of the correlation
matrix.

• This command solves the more general problem

Cv = λBv,

so in our case B = 1, i.e. the identity matrix.

• cev stores the (complex) eigenvalues associated to the general problem. They
are stored in absolute value (modulus) decreasing order.

• ev is an auxiliary vector with no further use in this work.

• eV stores the (complex) eigenvectors associated to the general problem. They
are stored in modulus decreasing order of its associated eigenvalues.

72

Figure 4.9: Commands used for the random election of parameter vectors and the con-
struction of the snapshots matrix.

According to POD Algorithm 6, now we have to left-multiply these eigenvectors by
the snapshots matrix and the inverse of the root of its associated eigenvalue in order
to obtain the left eigenvectors of the SVD. The commands used are shown in Figure
4.12.
At this point, we have all the necessary ingredients to determinate the Reduced
Space dimension, N 2. We set a tolerance ε2

POD, and we use the optimality criterion
(3.3), see Figure 4.13.
Obtaining the Reduced Basis is now very simple, as we only have to select the first
N left eigenvectors of the SVD snapshots matrix, see Figure 4.14.

2In the code shown in Figures 4.13 and 4.14 we name it as Nrb, because N is a protected
parameter for FreeFEM++ language

73

Figure 4.10: Commands used for the construction of the correlation matrix associated to
the snapshots matrix.

Figure 4.11: Command used for solving the eigenvalue problem associated to the correla-
tion matrix, see POD Algorithm 6.

Construction of the Reduced Space elements

Thanks to the Reduced Space Basis, obtaining the reduced matrices and vectors is
made by means of simple operations, as shown in Algorithm 2. The commands used
for these calculations are collected in 4.15.
As it can be seen in Figure 4.15, not only the reduced matrices and vectors are
obtained in this way, but also the reduced counterparts of the boundary conditions.
At this point, we have already computed all the µ-dependent, computational ex-
pensive, terms. Thanks to these calculations, we can exploit the offline/online de-
composition in order to save computational time. In the following section, we focus
on the Online part of the problem resolution.

Figure 4.12: Commands used for the computation of the left eigenvectors of the SVD of
the snapshots matrix.

74

Figure 4.13: Commands used for the determination of the Reduced Space dimension, by
means of the optimality criterion (3.3).

Figure 4.14: Commands used for the construction of the Reduced Basis.

4.3.2 Online Computation

In the previous section, we have managed to assemble and store the reduced versions
of the matrices and vectors appearing in the affine decomposition of the bilinear and
linear forms (4.6 and 4.7) of the variational form of our problem (4.3), as well as the
reduced counterparts of the boundary conditions.
In this section, we follow the procedure described in Algorithm 3, so we need to:

1. Obtain a parameter vector µ ∈ P .

2. Assemble the reduced problem by building the reduced µ-dependent matrix
and vector, AN(µ) and fN(µ), respectively.

3. Solve of the reduced linear system to obtain the Reduced Basis solution,
uN(µ). In order to represent the solution obtained we also need to compute
the finite element counterpart of the Reduced Basis solution.

75

Figure 4.15: Commands used for the construction of the reduced matrices and vectors.

Parameter acquisition

First of all, we need to acquire a parameter vector µ ∈ P . To that end, we ask the
user to write in the command window each of the parameters in order to built the
parameter vector, commands shown in Figure 4.16

Figure 4.16: Commands used for the acquisition of the parameter vector.

Reduced problem assembling and solving

Once we have the parameter vector for which we are resolving the reduced problem,
we can assemble the linear reduced problem. In order to assemble the reduced
problem, we build the µ-dependent matrix, AN(µ) and vector, fN(µ), using the
affine decompositions, (4.6) and (4.7), respectively. We note that the boundary
conditions are included in this step. Commands are shown in Figure 4.17.
Now solving the reduced matrix is very simple, first we compute the inverse of the
matrix AN(µ) and then we compute the reduced solution uN(µ). Commands shown
in Figure 4.18.

76

Figure 4.17: Commands used for the assembling of the Reduced Problem.

Figure 4.18: Commands used for the resolution of the Reduced Problem.

Solution recovery and representation

Finally, we have obtained a reduced vector, uN(µ), solution of the reduced problem
for the parameter vector µ. In order to represent the reduced solution inside the
FreeFEM++ software we need to compute it in the finite element space. To do so
we just left-multiply by the reduced basis, see Figure 4.19.

Figure 4.19: Commands used for the recovery of the solution and its representation.

We represent the reduced solution by its isolines over the domain Ω and we ask the
software to fill the space between isolines and to give their values. Commands shown
in Figure 4.19.
At this point, we have already presented the code that we are using in our calcula-
tions for this section. So in the next section we put everything shown in this chapter
in action.

4.4 Results
In this section of the chapter, we apply the offline/online decomposition in order to
achieve the reduction on the computational costs that we have been seeking, and we

77

also show how it can be used to compare solutions for a wide variety of parameter
vectors.

1. First, we compare the reduced solution we obtain for a determinated parameter
with the solution we would have obtained if we have used the high-fidelity
technique instead.

2. Then, we fix two of the parameters to study the behaviour of the solution over
just one of the parameters.

3. Last, we discuss the results obtained.

For each of the cases that we study in this chapter we set the following:

• Number of divisions of each side of the boundaries of Ω and Ω1, nn = 25. This
previous discretization yields a Finite Element space of dimension Nh = 1710
and Nth = 3318 triangles.

• Number of snapshots, ns = 50.

• Tolerance ε2
POD = 10−12.

4.4.1 Comparison with High-Fidelity Solutions

First of all, we compare the reduced solution to the high-fidelity solution obtained
for the same parameter vector and the setting established in the previous section,
(nn = 25, ns = 50, εPOD = 10−12). We study the following parameter set:

• Characteristic parameter of Ω1, µ1 ∈ [0, 2].

• Flux over the Neumann boundary, ΓN , µN ∈ [0, 1].

• Intensity of the source, µf ∈ [1, 10].

78

Offline Phase

For the construction of the snapshots matrix we need to randomly select ns param-
eter vectors, running the code shown in Figure 4.9, we obtain the parameter vectors
shown in Table 4.1.

Randomly Selected Parameter Vectors
µ1 (1.91573, 0.972112, 1.32061) µ2 (0.866439, 0.129131, 5.66473)
µ3 (0.719868 0.0870515 1.88298) µ4 (1.56529, 0.527958, 3.26208)
µ5 (0.338631, 0.0993453, 9.66794) µ6 (1.21081, 0.389715, 4.43043)
µ7 (1.94221, 0.110694, 9.54908) µ8 (1.30559, 0.750871, 5.07029)
µ9 (1.54308, 0.80818, 8.19068) µ10 (1.71812, 0.632508, 5.60191)
µ11 (0.182963, 0.0871058, 7.4865) µ12 (0.924562, 0.740505, 5.8847)
µ13 (0.872127, 0.746468, 3.29771) µ14 (0.502091, 0.247963, 2.85143)
µ15 (1.91325, 0.251652, 4.78105) µ16 (1.97794, 0.876998, 5.56969)
µ17 (0.211672, 0.727466, 4.95877) µ18 (0.610784, 0.79015, 5.91673)
µ19 (1.87707, 0.90623, 5.84642) µ20 (0.518796, 0.704476, 8.06587)
µ21 (0.0804587, 0.293897, 9.85975) µ22 (1.09899, 0.385632, 3.34527)
µ23 (1.46024, 0.732543, 8.6985) µ24 (0.774337, 0.138993, 7.8516)
µ25 (0.638169, 0.824043, 8.46365) µ26 (0.437955, 0.0184205, 8.67635)
µ27 (1.8978, 0.0385099, 6.59594) µ28 (0.491942, 0.866685, 9.80998)
µ29 (1.73521, 0.0581521, 7.13052) µ30 (0.252263, 0.755113, 8.30539)
µ31 (0.255392, 0.852327, 9.47965) µ32 (0.922484, 0.78353, 4.40366)
µ33 (1.07813, 0.84071, 6.21647) µ34 (1.03177, 0.948269, 2.29277)
µ35 (0.417683, 0.442611, 3.1341) µ36 (1.84362, 0.783143, 2.19388)
µ37 (0.0709919, 0.912566, 7.07242) µ38 (0.421041, 0.0974507, 8.37658)
µ39 (1.64655, 0.0864343, 5.3516) µ40 (1.58181, 0.582419, 9.20588)
µ41 (1.61068, 0.620541, 5.2395) µ42 (1.50519, 0.864642, 8.78801)
µ43 (0.804308, 0.0414592, 6.50109) µ44 (0.166018, 0.593897, 6.72676)
µ45 (0.166018, 0.593897, 6.72676) µ46 (1.84689, 0.551924, 2.10753)
µ47 (0.175355, 0.0745348, 8.91859) µ48 (1.98634, 0.772065, 4.59534)
µ49 (0.764941, 0.438768, 7.76508) µ50 (1.57032, 0.103838, 3.23487)

Table 4.1: Random parameter vectors used for the construction of the snapshot
matrix.

After assembling the Correlation matrix (code shown in Figure 4.10) and obtaining
its eigenvalues and eigenvectors (code shown in Figure 4.11), we determine the
Reduced Space dimension (by means of the code shown in Figure 4.13). In this case
the Reduced Space dimension is N = 8. The eigenvectors that build the Reduced
Basis are, hence, the ones shown in Figures 4.20 and 4.21.

79

Figure 4.20: From top to bottom and from left to right, representations of eigenvectors
1, 2, 3, 4 of the Correlation matrix.

We note that whereas the first eigenvectors are smooth and have representative
values over all the domain (see Figure 4.20), the last ones only have representative
values in the corners of the inner subdomain (see Figure 4.21). This give us the idea
that the corners of the boundary of the inner subdomain is going to be the part of
the domain that our program will approximate worse.
We also note that for the high-fidelity scheme we have to solve a linear problem of
dimension Nh = 1710 which complexity is O(N3

h), i.e. ∼ 5 · 109 operations, while

80

Figure 4.21: From top to bottom and from left to right, representations of eigenvectors
5, 6, 7, 8 of the Correlation matrix.

for the reduced scheme we have to solve a linear problem of dimension N = 8 which
complexity is O(N3), i.e. ∼ 5 ·102 operations. Although, the high-fidelity problem is
a sparse one, its number of operations is still much higher than the reduced problem
number of operations. We will discuss this topic at the end of the online phase when
we compare the computation times for both schemes.

81

Online Phase

Now that we have constructed the reduced matrices and vectors we can compare
the solutions obtained by both, the Reduced Basis method and the High-Fidelity
method.
As we have stated before, we expect that our program will approximate the worse
the boundary of the inner subdomain, so we compare the solutions for:

• First, a parameter vector µ = (1, 0.5, 2), so there is a non-smooth transition
between the characteristic parameters of the two subdomains.

• Second, a parameter vector µ = (0, 0, 5), so the characteristic parameters of
the two subdomains are equal, but the source is focused in the inner subdo-
main.

In the first case, we settle:

• µ1 = 1, so there is a non-smooth transition between the characteristic param-
eters of the two subdomains.

• µN = 0.5, a midway value for the parameter of the Neumann boundary.

• µf = 2, so the source has the same numerical value that the characteristic
value of the inner subdomain.

Figure 4.22: For µ = (1, 0.5, 2). Solution obtained by means of the Reduced Basis method
(left). Solution obtained by means of the High-Fidelity method (right).

Solving for this parameter vector we obtain:

82

• For the Reduced Basis method the solution represented in Figure 4.22, left.

• For the High-Fidelity method the solution represented in Figure 4.22, right.

We also represent the difference between both solutions in Figure 4.23. In this
representation we can clearly see that the major differences are placed on the corners
of the inner domain, as well as the middle points between two adjacent corner points.

Figure 4.23: For µ = (1, 0.5, 2). Difference between the Reduced Basis and High-Fidelity
methods.

83

In the second case, we settle:

• µ1 = 0, so the characteristic parameters of the two subdomains are equal.

• µN = 0, so the Neumann boundary does not affect the solutions.

• µf = 5, so the source plays a predominant role in the solution.

Solving for this parameter vector we obtain:

• For the Reduced Basis method the solution represented in Figure 4.24, left.

• For the High-Fidelity method the solution represented in Figure 4.24, right.

Figure 4.24: For µ = (0, 0, 5). Solution obtained by means of the Reduced Basis method
(left). Solution obtained by means of the High-Fidelity method (right).

We also represent the difference between both solutions in Figure 4.25. Again, in
the representation we can clearly see that the major differences are placed on the
corners of the inner domain, as well as the middle points between two adjacent
corner points, but the difference are spread over all the boundary not focused only
on the corners.

84

Figure 4.25: For µ = (0, 0, 5). Difference between the Reduced Basis and High-Fidelity
methods.

Comparison

In order to compare the Reduced Basis scheme with the High-Fidelity scheme, we
calculate the computation times for both of them and then we obtain the quotient.
We reproduce the problem for each parameter vector 104 times and we get:

• For µ = (1, 0.5, 2), we obtain tPOD = (0.0401 ± 0.201) · 10−3 s and tHF =
(7.50± 0.59) · 10−3 s, so the quotient is:

ρ =
tHF
tPOD

> 28.67.

• For µ = (0, 0, 5), we obtain tPOD = (0.0398 ± 0.201) · 10−3 s and tHF =
(7.49± 0.59) · 10−3 s, so the quotient is:

ρ =
tHF
tPOD

> 28.65.

85

Roughly speaking, both quotients are bounded from below by ρ∗ = 25, so we can
conclude that the high-fidelity scheme is twenty five times slower than the Reduced
Basis scheme. In other words, in the time we spend assembling and solving one high-
fidelity problem we could have assembled and solved 25 reduced basis problems. This
online time saving property is what makes the reduced basis technique a powerful
tool when solving real time or many-query problems.
We have compared the solutions obtained by means of both schemes, high-fidelity
and reduced basis when all the parameters are free. In the following of this section,
we fix two of the three parameters and study the dependence of the solution on the
free parameter.

4.4.2 Homogeneous Domain and Boundary Condition

We start fixing the characteristic parameter of the inner subdomain, Ω1 and the
Neumann boundary condition parameter. We set both parameters to be zero, so
the parameter set we are studying is:

• Intensity of the source, µf ∈ [−1, 1].

We use the same setting established in the previous section, (nn = 25, ns = 50,
ε2
POD = 10−12).

Offline Phase

For the construction of the snapshots matrix we need to randomly select ns source
parameters. Running the code shown in Figure 4.9 we obtain the source parameters
shown in Table 4.2.
After assembling the Correlation matrix (code shown in Figure 4.10) and obtaining
its eigenvalues and eigenvectors (code shown in Figure 4.11), we determine the Re-
duced Space dimension (see Figure 4.13). In this case, the Reduced Space dimension
is N = 1. The eigenvector that build the Reduced Basis is, hence, the one shown in
Figure 4.26.

Online Phase

In this special case, where N = 1, the reduced matrices and vectors degenerate to
be a scalar. So we expect the solutions to be qualitatively equivalent. In order to
compare some solutions, we settle µf to be -1, -0.5, 0, 0.5 and 1. The results are
shown in Figure 4.27.

86

Randomly Selected Source Parameters
(µf)1 -0.92874 (µf)2 0.0366076 (µf)3 -0.803781 (µf)4 -0.497314
(µf)5 0.926209 (µf)6 -0.237682 (µf)7 0.899795 (µf)8 -0.0954916
(µf)9 0.597929 (µf)10 0.0226461 (µf)11 0.441445 (µf)12 0.08549
(µf)13 -0.489397 (µf)14 -0.588571 (µf)15 -0.159767 (µf)16 0.0154877
(µf)17 -0.120273 (µf)18 0.0926069 (µf)19 0.0769812 (µf)20 0.570194
(µf)21 0.96883 (µf)22 -0.478829 (µf)23 0.710778 (µf)24 0.522578
(µf)25 0.658588 (µf)26 0.705856 (µf)27 0.243543 (µf)28 0.957774
(µf)29 0.362339 (µf)30 0.623421 (µf)31 0.884366 (µf)32 -0.243631
(µf)33 0.159215 (µf)34 -0.712718 (µf)35 -0.525756 (µf)36 -0.734694
(µf)37 0.349427 (µf)38 0.639241 (µf)39 -0.0329784 (µf)40 0.82353
(µf)41 -0.0578883 (µf)42 0.73067 (µf)43 0.222464 (µf)44 0.272613
(µf)45 -0.801326 (µf)44 -0.753882 (µf)47 0.759687 (µf)48 -0.201036
(µf)49 0.503352 (µf)50 -0.503362

Table 4.2: Random source parameters used for the construction of the snapshot
matrix.

In the representation, it can be clearly seen that all the solutions behave in a similar
way but they have a scale factor that depends on the source parameter.

• For µf > 0, we obtain non-negative solutions.

• For µf < 0, we obtain non-positive solutions.

• For µf = 0, we obtain the null solution, as expected.

4.4.3 Homogeneous Boundary and Fixed Source

Now, we fix the Neumann boundary condition parameter to be zero and the source
parameter to be the unity. So the parameter set now is:

• Characteristic parameter of Ω1, µ1 ∈ [−0.5, 0.5].

We use the same setting established in the previous section, (nn = 25, ns = 50,
ε2
POD = 10−12).

Offline Phase

For the construction of the snapshots matrix we need to randomly select ns char-
acteristic parameters. Running the code shown in Figure 4.9 we obtain the source
parameters shown in Table 4.3.

87

Figure 4.26: Representation of the first eigenvector of the Correlation Matrix.

Figure 4.27: Comparison of the solutions obtained (from up to bottom) for µf =
1, 0.5, 0,−0.5,−1. Oblique projection, left. Lateral view, right.

88

Randomly Selected Characteristic Parameters
(µ1)1 0.457867 (µ1)2 -0.0667806 (µ1)3 -0.140066 (µ1)4 0.282645
(µ1)5 -0.330684 (µ1)6 0.105404 (µ1)7 0.471104 (µ1)8 0.152793
(µ1)9 0.271542 (µ1)10 0.359059 (µ1)11 -0.408519 (µ1)12 -0.0377191
(µ1)13 -0.0639365 (µ1)14 -0.248955 (µ1)15 0.456627 (µ1)16 0.48897
(µ1)17 -0.394164 (µ1)18 -0.194608 (µ1)19 0.438535 (µ1)20 -0.240602
(µ1)21 -0.459771 (µ1)22 0.0494963 (µ1)23 0.230122 (µ1)24 -0.112831
(µ1)25 -0.180916 (µ1)26 -0.281022 (µ1)27 0.448902 (µ1)28 -0.254029
(µ1)29 0.367604 (µ1)30 -0.373868 (µ1)31 -0.372304 (µ1)32 -0.038758
(µ1)33 0.0390668 (µ1)34 0.0158867 (µ1)35 -0.291159 (µ1)36 0.421812
(µ1)37 -0.464504 (µ1)38 -0.289479 (µ1)39 0.323277 (µ1)40 0.290907
(µ1)41 0.30534 (µ1)42 0.252597 (µ1)43 -0.0978458 (µ1)44 -0.416991
(µ1)45 0.266539 (µ1)44 0.423444 (µ1)47 -0.412323 (µ1)48 0.493172
(µ1)49 -0.117529 (µ1)50 0.285161

Table 4.3: Random characteristic parameters used for the construction of the snap-
shot matrix.

Figure 4.28: From left to right, representations of eigenvectors 1, 2 of the Correlation
matrix.

After assembling the Correlation matrix (see Figure 4.10) and obtaining its eigenval-
ues and eigenvectors (code shown in Figure 4.11), we determine the Reduced Space
dimension (see Figure 4.13). In this case the Reduced Space dimension is N = 4.
The eigenvectors that build the Reduced Basis are, hence, the ones shown in Figures
4.28 and 4.29 .

89

Figure 4.29: From left to right, representations of eigenvectors 3, 4 of the Correlation
matrix.

Online Phase

Now that we have constructed the reduced matrices and vectors, we can compute
the reduced solutions for a subset of the parameter space. We choose the following
characteristic parameters of Ω1, µ1 ∈ {−0.5,−0.2, 0, 0.2, 0.5} and we obtain the
following solutions, see Figure 4.30 and 4.31.

Figure 4.30: Reduced Basis Solutions for the characteristic parameters of Ω1 selected as
µ1 = −0.5 (left) and µ1 = 0.5 (right).

Although we need more eigenvectors to capture the information about the behaviour

90

of the system, there is no big significant difference between both solutions.

Figure 4.31: Reduced Basis Solutions for the characteristic parameters of Ω1 selected as
µ1 = −0.2 (left), µ1 = 0 (center) and µ1 = 0.2 (right).

4.4.4 Fixed Source and Homogeneous Domain

At last, we fix the characteristic parameter of the inner subdomain to be zero and
the source parameter to be the unity. So the parameter set now is:

• Flux over the Neumann boundary, µN ∈ [−1, 1].

We use the same setting established in the previous section, (nn = 25, ns = 50,
ε2
POD = 10−12).

Offline Phase

For the construction of the snapshots matrix we need to randomly select ns char-
acteristic parameters, running the code shown in Figure 4.9 we obtain the source
parameters shown in Table 4.4.
After assembling the Correlation matrix (see Figure 4.10) and obtaining its eigenval-
ues and eigenvectors (code shown in Figure 4.11), we determine the Reduced Space
dimension (see Figure 4.13). In this case the Reduced Space dimension is N = 2.
The eigenvectors that build the Reduced Basis are hence the ones shown in Figures
4.32.

91

Randomly Selected Characteristic Parameters
(µ1)1 0.944225 (µ1)2 -0.741738 (µ1)3 -0.825897 (µ1)4 0.0559165
(µ1)5 -0.801309 (µ1)6 -0.220571 (µ1)7 -0.778613 (µ1)8 0.501741
(µ1)9 0.61636 (µ1)10 0.265016 (µ1)11 -0.825788 (µ1)12 0.48101
(µ1)13 0.492937 (µ1)14 -0.504074 (µ1)15 -0.496697 (µ1)16 0.753997
(µ1)17 0.454932 (µ1)18 0.580301 (µ1)19 0.81246 (µ1)20 0.408953
(µ1)21 -0.412205 (µ1)22 -0.228736 (µ1)23 0.465086 (µ1)24 -0.722015
(µ1)25 -0.883696 (µ1)26 0.510226 (µ1)27 0.704653 (µ1)28 0.56706
(µ1)29 0.681421 (µ1)30 0.896539 (µ1)31 -0.114778 (µ1)32 0.566286
(µ1)33 0.825131 (µ1)34 -0.805099 (µ1)35 -0.827131 (µ1)36 0.164838
(µ1)37 0.241083 (µ1)38 0.729283 (µ1)39 -0.917082 (µ1)40 0.187794
(µ1)41 0.233022 (µ1)42 0.103847 (µ1)43 -0.85093 (µ1)44 0.54413
(µ1)45 0.648086 (µ1)44 -0.963159 (µ1)47 -0.92298 (µ1)48 0.73337
(µ1)49 -0.122464 (µ1)50 -0.792323

Table 4.4: Random boundary parameters used for the construction of the snapshot
matrix.

Figure 4.32: Representations of eigenvectors 1 (left), 2 (right) of the Correlation matrix.

Online Phase

Now that we have constructed the reduced matrices and vectors, we can compute
the reduced solutions for a subset of the parameter space. We choose the following
parameters over the Neumann boundary µN ∈ {−0.5,−0.2, 0, 0.2, 0.5} and we obtain

92

the following solutions, see Figure 4.33.

Figure 4.33: Reduced Basis Solutions for different Neumann boundary parameter. From
left to right, µN = {−1,−0.5, 0, 0.5, 1}.

As can be seen the curvature of the solutions is reversed as the parameter varies
from negative to positive values.

4.5 Conclusion
We end this chapter outlying the main results of the numerical simulations that we
have performed.

Comparison with High-Fidelity Solutions

First of all, we have compared both solutions, the one obtained via a high-fidelity
method and the other one obtained via a reduced basis method. As can be seen in
Figures 4.23 and 4.25 the main differences are located in the corners of boundary of
the inner subdomain. This can be due to the distribution of the selected mesh in
that boundary.
We have calculated the quotient between the computation times obtained via both
methods. We have found that the calculated quotients are bounded from below by
ρ∗ = 25, so we can conclude that the high-fidelity method is twenty times slower
that the Reduced Basis scheme.
This time saving property is the main advantage of the reduced order techniques
and makes these methods an essential tool when solving real time or many-query
problems. In problems where the resolution of the high-fidelity problem is more
intricate the quotient is expected to rise so this property becomes more important.

93

Homogeneous Domain and Boundary Condition

In this case, we have obtained that the reduced basis dimension is N = 1.
This means that the solution dependence on the source parameter is simple, different
parameters give the same solution multiplied by a factor that depends on the source
parameter, as shown in Figure 4.27.

Homogeneous Boundary and Fixed Source

In this case, we have obtained that the reduced basis dimension is N = 4, the higher
of all the cases. However, our simulations suggest that the solutions does not really
change much for different characteristic parameter of the inner subdomain, as shown
in Figures 4.30 and 4.31.
The reduced model need so many eigenvectors to approximate the solution because
the differences between the solutions are located in the corners of the inner subdo-
main, where our method performs the worst. We can see the latter in the represen-
tation of the forth eigenvector in Figure 4.29. The main values are located in the
boundary of the inner subdomain and exhibits high-amplitude oscillations.

Fixed Source and Homogeneous Domain

In this case, we have obtained that the reduced basis dimension is N = 2. Moreover,
the solutions calculated are the ones that show more differences between them, with
highlights in the reversion of curvature as shown in Figure 4.33.

94

Chapter 5

Resolution of Laplace Equation by
Greedy Method

In this chapter, we continue with the, academical, 2-dimensional Laplace problem
occurring in surfaces of different materials characterized by a particular parameter.
To solve it, we apply the Greedy technique. A similar problem is studied in [12].

5.1 Computation
The only difference between the POD technique and the Greedy technique is how the
Reduced Basis is constructed. While in the previous chapter we have constructed
the snapshots matrix and then computed its singular values in order to select those
with more weight until a tolerance criterion is satisfied, in the Greedy case we need:

1. A parameter sample Ξtrain ⊂ P .

2. An estimator of the approximation error.

5.1.1 Offline Phase

This phase is mainly the same as the presented in Section 4.3.1. The changes arise
after the construction of the affine decomposition.
Remark 5.1

The construction of the Reduced Space elements is identical for both methods.

In the case of the application of the Greedy procedure after the construction of the
affine decomposition, we continue with:

95

Initialization

First, we need to define some aspects of the Greedy method, such as,

1. Train sample, Ξtrain, which is selected randomly from the parameter set.

2. Stopping criteria, this is, a maximum number of iterations, and a tolerance.

The commands are shown in Figure 5.1.

Figure 5.1: Commands used for the definitions of the train sample and the stopping
criteria.

Figure 5.2: Commands used for the computing of the µ-independent scalar terms of the
residual estimator.

Before we start to follow the Greedy algorithm, Algorithm 10, we need to compute
some of the µ-independent terms of the residual estimator, which will be needed
when evaluating the error estimator, see code shown in Figure 5.2. This should
be done after the affine decomposition is done, and before we start the Greedy
algorithm.
We also need a starting parameter vector of the parameter set, µ1, so we select the
middle point of P .
Following the Algorithm 10, we need to follow these steps:

96

1. First, we need to solve the High-Fidelity system to obtain the vector solution,
uh(µ).

2. Secondly, we apply the Gram-Schmidt orthonormalization to the vector ob-
tained, following Algorithm 11. So we obtain a vector ζ.

3. Then, we append ζ to the reduced basis, V.

4. With this new basis, we evaluate the error estimator for the parameter vectors
in Ξtrain.

5. Finally, we select the maximum error estimator and the corresponding param-
eter vector.

6. Repeat all the steps if the tolerance criteria are not satisfied.

The code presented in Figures 5.3-5.11 is, indeed, the software corresponding to the
Greedy procedure so, all of it is enclosed between the lines "while(Niter<Nmax &
deltaG>tolGreedy){" and "}".

Greedy Procedure. High Fidelity Solving

Once we have selected a parameter vector of P , our first step is to compute the
high-fidelity solution of problem 4.3, by means of the Finite Element Method.

Figure 5.3: Commands used for the beginning of the while loop and the obtaining of the
high-fidelity solution.

We assemble the involved associated matrices and vectors and solve the linear sys-
tem, as can be seen in Figure 5.3. The corresponding matrix A of the system is
sparse, so we select the sparse solver seeking speed and precision.

97

Greedy Procedure. Gram-Schmidt Orthonormalization

We have obtained the high fidelity solution by means of the Finite Element Method,
but we cannot append it to the reduced basis right away. We first need to apply the
Gram-Schmidt orthonormalization in order to keep the reduced basis as a projector
into the reduced space.

Figure 5.4: Commands used for the application of the Gram-Schmidt orthonormalization
with respect to the Xh-norm.

The Gram-Schmidt algorithm with respet to the Xh-norm is resumed in Algorithm
11 and the code we are using is shown in Figure 5.4.

Greedy Procedure. Basis Update

Figure 5.5: Commands used for the update of the reduced basis and the set of parameter
vectors.

With the new vector orthonormalized with respect to the previous reduced basis,
we can update both, the reduced basis, V and the set of parameter vectors selected
in the Greedy algorithm, Ξg.
Commands for this step are shown in Figure 5.5.

98

Greedy Procedure. Evaluation of the Error Estimator

The next step is to evaluate the error estimator for each of the remaining parameter
vectors of the training set. Before that, we need to compute the remaining of the µ-
independent terms of the residual estimator, which will be needed when evaluating
the error estimator, see Figure 5.2.

Figure 5.6: Commands used for the computation of the vectorial and matricial terms
involved in the residual error estimator.

Following Algorithm 5, we need to:

Figure 5.7: Commands used for the evaluation of the scalar terms involved in the residual
error estimator.

Figure 5.8: Commands used for the evaluation of the vectorial terms involved in the
residual error estimator.

1. First, we add an auxiliar term, ε the corresponding scalar terms. See Figure
5.7.

2. Then, we add the vectorial terms, see Figure 5.8.

3. Finally, we add the corresponding matricial terms, see Figure 5.9.

99

Figure 5.9: Commands used for the evaluation of the matricial terms involved in the
residual error estimator.

4. To compute the error estimator, ∆N(µ), we just need to divide the auxiliar
term ε, by the inf-sup constant, βh(µ). The code is shown in Figure 5.10.

Figure 5.10: Commands used for the computation of the residual error estimator.

Remark 5.2
In this case the inf-sup constant can be calculated to be µ-independent.

Figure 5.11: Commands used for the definitions of the train sample and the stopping
criteria.

Greedy Procedure. Maximum Error Selection

With all the error estimators calculated, what is left is to select the greatest one and
the corresponding parameter vector, as we have done in the code shown in Figure

100

5.11.

5.1.2 Online Phase

This phase is the one presented in the section 4.3.2.

5.2 Results
In this section, we present the results obtained when compiling the code shown in
the previous section. We are using the same set than the one used in Chapter 4 for
the POD case:

• Number of divisions of each side of the boundaries of Ω and Ω1, nn = 25. This
previous discretization yields a Finite Element space of dimension Nh = 1710
and Nth = 3318 triangles.

Thanks to the results obtained in the previous chapter, we can consider the car-
dinality of the parameter sample, |Ξtrain| = ntrain = 50, but the stopping criteria
to be much less, Nmax = 10. In this first approach to Greedy method, we will
consider the approximation error. The computation of the residual norm estimator,
computationally more efficient, is left for the near future.
We compare the reduced solution obtained by means of the Greedy method with the
solution obtained by means of the high fidelity technique. As done in the previous
chapter, we compare the solutions for µ = (1, 0.5, 2) and µ = (0, 0, 5).

5.2.1 Offline Phase

For the application of the Greedy technique, we need to select the training sample,
Ξtrain. As stated in the previous section we will only need |Ξtrain| = ntrain = 10 in
order to have a good approximation.

Randomly Selected Parameter Vectors
µ1 (1, 0.5, 5.5) µ2 (1.874488, 0.915550, 4.036574)
µ3 (0.124890, 0.917799, 6.181785) µ4 (0.453448, 0.364568, 9.233515)
µ5 (1.963821, 0.606405, 9.360574) µ6 (0.740735, 0.615922, 2.104873)
µ7 (1.181710, 0.567371, 1.788721) µ8 (1.780477, 0.382845, 7.416643)

Table 5.1: Parameters obtained after applying the Greedy algorithm.

We run the code shown in Figures 5.1 to 5.5 and we obtain the parameters vectors
shown in 5.1. We can now assemble the reduced matrices and vectors, following the
code shown in Figure 4.15.

101

Now, we have every ingredient to step into the online phase.

5.2.2 Online Phase

In this section, we present the results obtained in the online phase of the Greedy
technique application. We focus on the comparison between the solutions obtained
via the Greedy technique and those obtained via the High-Fidelity technique. We
study the same cases as in the previous chapter, µ = (1, 0.5, 2) and µ = (0, 0, 5), so
eventually we can compare both solutions obtained by means of an order reduction
technique.

Results for µ = (1, 0.5, 2).

Figure 5.12: For µ = (1, 0.5, 2). Solution obtained by means of the Greedy method (left)
and solution obtained by means of the High-Fidelity method (right).

In the first case, we settle:

• µ1 = 1, so that there is a non-smooth transition between the characteristic
parameters of the two subdomains.

• µN = 0.5, a midway value for the parameter of the Neumann boundary.

• µf = 2, so that the source has the same numerical value that the characteristic
value of the inner subdomain.

Solving for this parameter vector, we obtain:

• For the Greedy method, the solution represented in Figure 5.12, left.

102

• For the High-Fidelity method, the solution represented in Figure 5.12, right.

We also represent the difference between both solutions in Figure 5.13.

Figure 5.13: For µ = (1, 0.5, 2). Difference between the Reduced Basis and High-Fidelity
methods.

In this representation we can clearly see that the major differences are placed on
the corners of the inner domain, as well as the middle points between two adjacent
corner points.

Results for µ = (0, 0, 5).

In the second case, we settle:

• µ1 = 0, so the characteristic parameters of the two subdomains are equal.

• µN = 0, so the Neumann boundary does not affect the solutions.

• µf = 5, so the source plays a predominant role in the solution.

Solving for this parameter vector we obtain:

• For the Greedy method, the solution represented in Figure 5.14, left.

• For the High-Fidelity method, the solution represented in Figure 5.14, right.

We also represent the difference between both solutions in Figure 5.15.

103

Figure 5.14: For µ = (0, 0, 5). Solution obtained by means of the Greedy method (left)
and solution obtained by means of the High-Fidelity method (right).

Figure 5.15: For µ = (0, 0, 5). Difference between the Reduced Basis and High-Fidelity
methods.

Again, in the representation we can clearly see that the major differences are placed
on the corners of the inner domain, as well as the middle points between two adjacent
corner points, but the differences are spread over all the boundary not focused only
on the corners.

104

Comparison

In order to compare the Greedy technique with the High-Fidelity technique, we
calculate the computation times for both of them and then we obtain the quotient.
We reproduce the problem for each parameter vector 104 times and we get

• For µ = (1, 0.5, 2), we obtain tGreedy = (0.037 ± 0.190) · 10−3 s and tHF =
(7.55± 0.58) · 10−3, so the quotient is:

ρ =
tHF
tGreedy

> 29.2.

• For µ = (0, 0, 5), we obtain tGreedy = (0.039 ± 0.201) · 10−3 s and tHF =
(7.57± 0.59) · 10−3, so the quotient is:

ρ =
tHF
tGreedy

> 29.

Roughly speaking, both quotients are bounded from below by ρ∗ = 25, so we can
conclude that the high-fidelity scheme is twenty five times slower than the Reduced
Basis scheme. In other words, in the time we spend assembling and solving one high-
fidelity problem we could have assembled and solved 25 reduced basis problems. This
online time saving property is what makes the reduced basis technique a powerful
tool when solving real time or many-query problems.
We now compare the computation times for the POD scheme and the Greedy scheme.
We use the computations time shown above and in the POD application chapter.

• For µ = (1, 0.5, 2), we obtain tGreedy = (0.037 ± 0.190) · 10−3 s and tPOD =
(0.040± 0.201) · 10−3, so the quotient is:

ρ =
tGreedy
tPOD

∼ 1.

• For µ = (0, 0, 5), we obtain tGreedy = (0.039 ± 0.201) · 10−3 s and tPOD =
(0.039± 0.201) · 10−3, so the quotient is:

ρ =
tGreedy
tPOD

∼ 1.

This yields that for this particular problem both methods behave the similarly.

5.3 Conclusion
We end this chapter with some conclusions. Some of them are similar to the ones
of the POD technique.

105

Comparison with the High-Fidelity technique

First of all, we have compared both solutions, the one obtained via a high-fidelity
method and the other one obtained via a Greedy method, as can be seen in Figures
5.13 and 5.15 the main differences are set in the corners of boundary of the inner
subdomain, this can be due to the distribution of the selected mesh in that boundary.
We have calculated the quotient between the computation times obtained via both
methods, we have found that the calculated quotients are bounded from below by
ρ∗ = 25 so we can conclude that the high-fidelity method is twenty-five times slower
that the Greedy scheme.
This time saving property is the main advantage of the reduced order techniques
and makes these methods an essential tool when solving real time or many-query
problems. In problems where the resolution of the high-fidelity problem is more
intricate the quotient is expected to rise so this property becomes more important.

Comparison with the POD technique

We have also compared both schemes, Greedy and POD, and we have found that
for this particular problem both problems behave in a similar way in the Online
Phase. The differences are thus in the Offline Phase, and due to the fact that we
have considered the actual approximation error in the Greedy algorithm, the Offline
Phase of the POD scheme is faster that the one of the Greedy scheme.

106

Chapter 6

ODE Application

In this last chapter, we discuss the use of the POD technique for model order re-
duction in the field of the Ordinary Differential Equations.
More precisely, we apply the POD technique on the temporal parameter, so we end
with a low number of modes, which linear combination gives a representation of the
solution such that a priori error is below a prescribed tolerance. This is the first
step in the construction of the reduced system.
We study, the High Irradiance Responses (HIRES) problem [10], and the Intracel-
lular Calcium Concentration (ICC) problem, studied in [7].
For the construction of this chapter we have consulted [1], [13], and for the applica-
tions [10] for the HIRES problem and [7] for the ICC problem.

6.1 Presentation
In this section we present the following:

• First of all, the POD method adapted to ODEs.

• The High Irradiance Responses (HIRES) problem.

• The Intracellular Calcium Concentration (ICC) problem.

6.1.1 POD method for ODEs

Once we have defined the problems, its parameters and associated vector field, we
can apply the POD method, as described in [1]. The steps are:

1. Solve the system over a time interval [t0, Tmax] by means of a high-precision
solver, for instance, forth order Runge-Kutta solver or RADAU5.

107

2. Select a set of Nsnap data points for different time values {t1, . . . , tNsnap} in the
time interval [t0, Tmax]. The set of data points is then

{y(t1), . . . ,y(tNsnap)},

where y ∈ Rn, for a fixed n.

From now on, we denote yi = y(ti) and the j-th component of the vector yi
as (yi)j.

3. Construction of the correlation matrix C, whose elements are defined by

Ci,j = (yi − ȳ,yj − ȳ),

where ȳ =
1

Nsnap

Ns∑
i=1

yi, is the mean of the data points and (·, ·) is a scalar

product to be defined. In the following, we denote ỹi = yi − ȳ.

4. Then, we solve the eigenvalues problem for the correlation matrix and select
the higher eigenvalues until the relative weight of the selected eigenvalues is
above a prescribed tolerance as done for PDEs in Algorithm 6. At the end of
this step, we will have obtained a set of modes {φ1, ...,φNrb

}.

5. Finally, we obtain the temporal coefficients from the following projection

ar,i = (ỹi,φr), for i = 1, . . . , Nsnap.

Now that we have outlined the main steps of the PODmethod for the time parameter
in ODEs, we present the problems we are going to study.

6.1.2 HIRES Problem

For the construction of this section we have followed [10].
The problem we present in this section originates from plant physiology and describes
how light is involved in morphogeneisis. To be more precise, it explains the High
Irradiance Responses (HIRES) of photomorphogenesis on the basis of phytochrome,
by means of a chemical reaction involving eight reactants. HIRES is a stiff system
of 8 ODEs, for a detailed description, consult [8].
This problem is of the following form,

dy

dt
= f(y); y(0) = y0,

108

with y ∈ R8 and the function f(y) is defined by

f(y) =

−k1y1 + k2y2 + k6y3 + oks
k1y1 − (k2 + k3)y2

−(k1 + k6)y3 + k2y4 + k5y5

k3y2 + k1y3 − (k2 + k4)y4

−(k1 + k5)y5 + k2y6 + k2y7

−k+y6y8 + k4y4 + k1y5 − k2y6 + k−y7

k+y6y8 − (k2 + k∗ + k−)y7

−k+y6y8 + (k2 + k∗ + k−)y7

. (6.1)

Values of the parameters are given in Table 6.1, and the initial vector is

y0 = [1, 0, 0, 0, 0, 0, 0, 0.057]T .

Figure 6.1: Components 1 to 4 of the HIRES solution in [0, 30].

We consider a time interval, namely [0, 30], that captures the main behaviour of the
solution. After t = 30, the solution changes at a much slower rate. A plot showing

109

Model Parameters
k1 = 1.71 k3 = 8.32 k5 = 0.035 k+ = 280 k∗ = 0.69
k2 = 0.43 k4 = 0.69 k6 = 8.32 k− = 0.69 oks = 0.0007

Table 6.1: Model Parameters for the HIRES Model

the solution behaviour over the time interval is presented in Figures 6.1 and 6.2.
The solution is obtained by means of a forth order Runge-Kutta solver.

Figure 6.2: Components 5 to 8 of the HIRES solution in [0, 30].

6.1.3 ICC Problem

For the construction of this section we have followed [7].
The problem we present in this section originates from neural synchronization and
describes oscillations in intracellular calcium concentrations (ICC) of two coupled
neurons. To be more precise, the one cell model has been originally designed for

110

reproducing the changes in ICC of a single gonadotropin-releasing hormone (GnRH)
expressing neuron. For a more detailed explanation consult [7].
Again, the problem is of the following form

dw

dt
= f(w); w(0) = w0,

with w = {x, y, z,X, Y, Z} ∈ R6 and the function f(w) defined by

f(w) =

τ(−y + g(x)− φf (z)),

τ ε(z + a1y + a2 + c(x−X)),

τ ε

(
φr(x)− z − Cab

τCa

)
τ(−Y + g(X)− φf (Z)),

τ ε(X + a1Y + a2 + c(X − x)),

τ ε

(
φr(X)− Z − Cab

τCa

)

, (6.2)

where g is an odd cubic function such that r = g(x) is an cubic-shaped curve, g
admits a local minimum at x = −xf < 0 and a local maximum at x = xf > 0, and

φf (z) =
µz

z + Ca0

, φr(x) =
λ

1 + exp(−ρ(x− xon))
.

Moreover, the first three equations correspond to one of the neurons while the latter
three correspond to the other one.
For the simulations shown, in [7], they have used g(x) = −x3+4x, and the parameter
values are summarized in Table 6.2.

Model Parameters
a1 = −0.1 a2 = 0.8 τ = 37 Cab = 1 Ca0 = 5 τCa = 2
ε = 0.06 µ = 2.4 xon = −0.45 λ = 1.75 ρ = 4.5 c ∈ [−1, 1]

Table 6.2: Model Parameters for the ICC Model

We consider a time interval, namely [0, 40], that captures the main behaviour of the
solution. After t = 40, the solution is periodic in most of the cases. A plot showing
the solution behaviour for different values of c over the time interval is presented in
Figure 6.3. The solution is obtained by means of a forth order Runge-Kutta solver.

111

Figure 6.3: Comparison of the first and third components of each cell of ICC model for
c = 0 (uncoupling, left) and c = −0.25 (antiphase synchronization, right)

In the next section, we present the code used for the resolution of these problem.

6.2 Computation
In this section, we present the code used for the POD method application. We use
the MATLAB software, version 2020b.
First of all, we define the parameters involved in our ODE problem. After thatm
the code will be shown in each particular example.
First, we define the initial condition and the time interval where we solve the prob-
lem, as shown in Figure 6.4.

Figure 6.4: Code used for the definition of the initial condition (it will be changed for
each problem) and the time interval.

We now define the vector field (one for each problem) and solve over the time interval
with a high precision solver, in his case a forth order Runge-Kutta solver. This can
be seen in the code shown in Figure 6.5.

112

Figure 6.5: Code used for the definition of the vector field, and for the resolution of the
problem over the time interval by means of a high precision method.

We can now select a set of data points from the high-precision solution, if the points
are selected equally spaced in time, we use the code shown in Figure 6.6.

Figure 6.6: Code used for the data points selection.

The next step is to build the correlation matrix. We use the code shown in Figure
6.7.

Figure 6.7: Code used for the construction of the correlation matrix.

Now, we compute the eigenvalues and eigenvectors of the correlation matrix by
means of the code shown in Figure 6.8.

113

Figure 6.8: Code used for the determination of the eigenvalues and eigenvectors of the
correlation matrix.

Now, we select the eigenvalues until a minimum tolerance criterion is satisfied by
means of the code shown in Figure 6.9.

Figure 6.9: Code used for the selection of eigenvalues until a minimum tolerance criterion
is prescribed.

We have already presented the general software used for both problems. In the
following sections we present the proper software used for each problem in particular.
The differences are

• The dimension of the problem. We work inside R8 for HIRES problem and
inside R6 for the ICC problem.

• The parameters values involved in each model.

• The definition of the vector field.

114

6.2.1 HIRES Problem

We define the parameters involved in the HIRES model (see Table 6.1) and its
associated vector field (see Equation 6.1) as shown in Figures 6.10 and 6.11.

Figure 6.10: Code used for the definition of the parameters involved in the HIRES prob-
lem.

Figure 6.11: Code used for the definition of the vector field in HIRES problem.

115

6.2.2 ICC Problem

We define the parameters involved in the ICC model (see Table 6.2) and its associ-
ated vector field (see Equation 6.2) as shown in Figures 6.12 and 6.13.

Figure 6.12: Code used for the definition of the parameters involved in the ICC problem.

Figure 6.13: Code used for the definition of the vector field in ICC problem.

116

6.3 Results
In this section, we present the numerical results obtained while and after the use of
the POD method for ODEs.
For each problem, we follow the same path:

1. First, we set the initial condition and the time interval as well as the particular
elements of the problem.

2. Second, we select the number of selected data points, Nsnap, from the high
precision solution obtained via a forth order Runge-Kutta solver.

3. Third, we obtain the eigenvalues and eigenvectors of the correlation matrix,
built from the data points. Then, we select the higher eigenvalues until a
tolerance criterion is satisfied.

4. Eventually, we present some graphic representations and comparisons.

6.3.1 HIRES Problem

Computation scheme

1. First of all, we set the time interval [t0, Tmax] = [0, 30], the step for the high-
precision solution h = 10−3 and the initial condition y0. This is modified in
the code shown in Figure 6.4. Then we define the vector field, code shown in
Figure 6.11 and solve the problem by means of a high-precision method.

2. As done in [10] for the construction of the POD projection matrix, we select
Nsnap = 100 data points equally spaced in the interval [t0, Tmax] = [0, 30] by
means of the code shown in Figure 6.6.

3. The next step is to build the correlation matrix, code shown in Figure 6.7, and
compute its eigenvalues and eigenvectors, code shown in Figure 6.8. Now we
apply the POD technique and select the higher eigenvalues until the minimum
tolerance criterion is satisfied, code shown in Figure 6.9. We also compute the
coefficients of each mode.

Comparison

For the tolerance ε = 10−6, we obtain a reduced order space of dimension Nrb = 5.
We now present the differences between the Runge-Kutta solution and the solutions
obtained for Nrb ∈ {3, 4, 5}. We also compare the solutions with the one obtained
via another high-precision solver, RADAU solver, see Table 6.3.

117

Comparisons
RK4 Nrb = 3 Nrb = 4 Nrb = 5 RADAU

y1(0.9) 2,82755E-01 2,83380E-01 2,82906E-01 2,83052E-01 2,82754E-01
y1(30) 5,77881E-03 5,73001E-03 5,79412E-03 5,77882E-03 5,78424E-03
y2(0.9) 6,35866E-02 6,19568E-02 6,43788E-02 6,36594E-02 6,35863E-02
y2(30) 1,12975E-03 1,38189E-03 1,05442E-03 1,12979E-03 1,12976E-03
y3(0.9) 1,90327E-02 1,91969E-02 1,89498E-02 1,90359E-02 1,90327E-02
y3(30) 1,04302E-03 1,01897E-03 1,05238E-03 1,04336E-03 1,04302E-03
y4(0.9) 4,56473E-01 4,55706E-01 4,56392E-01 4,56421E-01 4,56473E-01
y4(30) 1,00132E-02 1,01090E-02 1,00163E-02 1,00132E-02 1,00133E-02
y5(0.9) 1,57766E-02 9,64160E-03 1,54152E-02 1,57349E-02 1,57766E-02
y5(30) 1,75780E-01 1,76594E-01 1,75814E-01 1,75780E-01 1,75780E-01
y6(0.9) 1,55536E-01 1,56523E-01 1,55343E-01 1,55268E-01 1,55536E-01
y6(30) 7,06247E-01 7,06082E-01 7,06241E-01 7,06249E-01 7,06246E-01
y7(0.9) 5,46310E-03 5,15447E-03 5,60250E-03 5,46587E-03 5,46306E-03
y7(30) 5,64830E-03 5,69456E-03 5,63399E-03 5,64830E-03 5,64830E-03
y8(0.9) 2,36900E-04 5,45527E-04 9,74971E-05 2,34134E-04 2,36937E-04
y8(30) 5,16981E-05 5,43681E-06 6,60129E-05 5,16982E-05 5,16992E-05

Table 6.3: Comparison of the solutions obtained via POD method for different Nrb

and RK4 and RANDAU solvers.

In Table 6.3, we can clearly see that for Nrb = 5 the reduced solutions approximates
very faithfully the data set. In Figure 6.14, we represent the relative error of the
solutions for Nrb ∈ {3, 4, 5} and we see that for Nrb = 5 a great improvement is
achieved.
We represent in Figure 6.15, the coefficients obtained after applying the POD tech-
nique. As it can be seen near Tmax = 30 all the modes are near to zero, that shows
that at that time the solutions doesn’t change radically.
In Figures 6.16 - 6.19, we represent the comparisons between the Runge-Kutta
solution and the ones obtained for different values of Nrb. Also a zoom of the time
interval [0, 3] is represented so we can spot more easily the differences between the
solutions.

118

Figure 6.14: Comparison of the relative error for different reduced order dimensions.

Figure 6.15: Representations of the coefficients over time obtained in the POD method.

119

Figure 6.16: Comparison of the first and second component of the HIRES model solutions:
Runge-Kutta solution (blue, continuous), Nrb = 3 solution (green, stars), Nrb = 4 solution
(yellow, circles) and Nrb = 5 solution (red, cross).

120

Figure 6.17: Comparison of the third and forth component of the HIRES model solutions:
Runge-Kutta solution (blue, continuous), Nrb = 3 solution (green, stars), Nrb = 4 solution
(yellow, circles) and Nrb = 5 solution (red, cross).

121

Figure 6.18: Comparison of the fifth and sixth component of the HIRES model solutions:
Runge-Kutta solution (blue, continuous), Nrb = 3 solution (green, stars), Nrb = 4 solution
(yellow, circles) and Nrb = 5 solution (red, cross).

122

Figure 6.19: Comparison of the seventh and eighth component of the HIRES model so-
lutions: Runge-Kutta solution (blue, continuous), Nrb = 3 solution (green, stars), Nrb = 4
solution (yellow, circles) and Nrb = 5 solution (red, cross).

123

6.3.2 ICC Problem

Computation scheme

1. First of all, we set the time interval [t0, Tmax] = [0, 40], the step for the high-
precision solution h = 10−3 and the initial condition w0. This is modified in
the code shown in Figure 6.4. Then we define the vector field, code shown in
Figure 6.13 and solve the problem by means of a high-precision method.

2. Due to the slow-fast nature of this model, we need more data points in order
to obtain a good approximation, so for the construction of the POD projec-
tion matrix, we select Nsnap = 400 data points equally spaced in the interval
[t0, Tmax] = [0, 40] by means of the code shown in Figure 6.6.

3. The next step is to build the correlation matrix, code shown in Figure 6.7, and
compute its eigenvalues and eigenvectors, code shown in Figure 6.8. Now we
apply the POD technique and select the higher eigenvalues until the minimum
tolerance criterion is satisfied, code shown in Figure 6.9. We also compute the
coefficients of each mode.

In this case we will solve the system for different values of the coupling parame-
ter c ∈ [−1, 1]. We select those values, which are representative of each different
synchronization pattern that appears in the article [7].

Uncoupled case. c = 0

Figure 6.20: Reduced order solution for the uncoupled case.

124

We start with the case in which the two identical cell are uncoupled so they should
behave similarly but independently (by taking different initial conditions).
In Figure 6.20, we represent the reduced solution obtained after the application of
the POD method to the data set.
In Figure 6.21, we represent the relative error of the solutions for Nrb ∈ {4, 5, 6} and
we see that for Nrb = 6 a great improvement is achieved.

Figure 6.21: Comparison of the relative error for different reduced order dimensions.

Figure 6.22: Representation of the coefficients over time obtained in the POD method.

We represent in Figure 6.22, the coefficients obtained after applying the POD tech-
nique.

125

Total oscillation death. c = −0.7

In Figure 6.23, we represent the reduced solution obtained after the application of
the POD method to the data set.

Figure 6.23: Reduced order solution for the total oscillation death case.

In Figure 6.24, we represent the relative error of the solutions for Nrb ∈ {2, 3, 4} and
we see that for Nrb = 4 a no such great improvement is achieved .This can be due
to the static behaviour of the solution.

Figure 6.24: Comparison of the relative error for different reduced order dimensions.

126

We represent in Figure 6.25, the coefficients obtained after applying the POD tech-
nique.

Figure 6.25: Representation of the coefficients over time obtained in the POD method.

Relaxation loss. c = −0.502

Figure 6.26: Reduced order solution for the relaxation loss case.

In Figure 6.26, we represent the reduced solution obtained after the application of
the POD method to the data set.

127

In Figure 6.27, we represent the relative error of the solutions for Nrb ∈ {4, 5, 6} and
we see that for Nrb = 6 a great improvement is achieved.

Figure 6.27: Comparison of the relative error for different reduced order dimensions.

We represent in Figure 6.28, the coefficients obtained after applying the POD tech-
nique.

Figure 6.28: Representation of the coefficients over time obtained in the POD method.

128

Antiphase synchronization. c = −0.25

In Figure 6.29, we represent the reduced solution obtained after the application of
the POD method to the data set.

Figure 6.29: Reduced order solution for the antiphase synchronization case.

In Figure 6.30, we represent the relative error of the solutions for Nrb ∈ {4, 5, 6} and
we see that for Nrb = 6 a great improvement is achieved.

Figure 6.30: Comparison of the relative error for different reduced order dimensions.

129

We represent in Figure 6.31, the coefficients obtained after applying the POD tech-
nique.

Figure 6.31: Representation of the coefficients over time obtained in the POD method.

Almost-in-phase synchronization. c = 0.1

In Figure 6.32, we represent the reduced solution obtained after the application of
the POD method to the data set.

Figure 6.32: Reduced order solution for the almost-in-phase synchronization case.

130

In Figure 6.33, we represent the relative error of the solutions for Nrb ∈ {4, 5, 6} and
we see that for Nrb = 6 a great improvement is achieved.

Figure 6.33: Comparison of the relative error for different reduced order dimensions.

We represent in Figure 6.34, the coefficients obtained after applying the POD tech-
nique.

Figure 6.34: Representation of the coefficients over time obtained in the POD method.

131

In-phase locking synchronization. c = 1

In Figure 6.35, we represent the reduced solution obtained after the application of
the POD method to the data set.

Figure 6.35: Reduced order solution for the in-phase locking synchronization case.

In Figure 6.36, we represent the relative error of the solutions for Nrb ∈ {4, 5, 6} and
we see that for Nrb = 6 a great improvement is achieved.

Figure 6.36: Comparison of the relative error for different reduced order dimensions.

132

We represent in Figure 6.37, the coefficients obtained after applying the POD tech-
nique.

Figure 6.37: Representation of the coefficients over time obtained in the POD method.

6.4 Conclusion
In this chapter, we have applied the POD method in order to obtain the best pro-
jection subspace that approximates a set of data points. These data points are the
evaluation of the solution of a particular ODEs system in a given time.
We have obtained a reduced number of modes or coefficients that represents the
main behaviour of the solution over the integration interval, [t0, Tmax].
We outline the main results obtained for each problem.

6.4.1 HIRES Problem

We start with the HIRES problem. We have obtained that for a tolerance of ε = 10−6

for the POD method, we obtain a reduced basis of dimension Nrb = 5. We have
represented the values of the reduced solutions in two particular times t = 0.9 and
t = 30 and we have compared them with the solutions obtained by means of two
high-precision solvers, forth order Runge-Kutta and RANDAU. In Table 6.3 we can
see clearly that the greater the reduced dimension is, the better is the approximation
and that for Nrb = 5 the differences are relatively low.
In Figure 6.14, it can be clearly seen that the relative error drops when we select a
reduced order dimension Nrb = 5. Also, in Figure 6.15 we can see that the modes

133

tend to zero when t increases. This means that the solution of the problem changes
in a much slower rate after t = 30, as said in the presentation of the HIRES problem.
To sum up, for this model we have reduced a set of a hundred of data points to just
five modes that approximates well the solution.

6.4.2 ICC Problem

In the case of the ICC problem we have solved the problem for different values of
the coupling parameter.
In the most of the cases we have obtained that for a tolerance of ε = 10−6 the best
reduced order dimension is Nrb = 6 with a great reduction in the relative error, as
can be seen in Figures 6.21, 6.27, 6.30, 6.33 and 6.36. In order to obtain a reduced
dimension Nrb = 6 in the total oscillation death case we need to increase the POD
tolerance to ε = 10−12 and again a great improvement is obtained when selecting a
reduced basis dimension Nrb = 6. We conclude that we only will need six modes in
order to have a great approximation of the solution, no matter what the coupling
parameter is.
We also have seen that the reduced solution behaves exactly in the same way as we
expected (see [7]). The modes seem to behave with great amplitude oscillations and
this can be due to the slow-fast behaviour of the system.

134

Bibliography

[1] M. Arienti, M. C. Soteriou, Time-resolved proper orthogonal decomposition of
liquid jet dynamics, Phys. Fluids 21, 112104, 2009.

[2] I. Babuška, Error-bounds for finite element method, Numer. Math. 16, 322–333,
1971.

[3] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Elements and Applications, 2013,
Springer-Verlag.

[4] F. Brezzi, On the existence, uniqueness, and approximation of saddle point prob-
lems arising from Lagrangian multipliers. R.A.I.R.O., Anal. Numér. 2, 129–151,
1974.

[5] F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition
for Advanced Numerical Simulations, 2014, Springer.

[6] M. D’Elia, L. Dedé, A. Quarteroni, Reduced Basis Method for Parametrized
Differential Algebraic Equations, 2009, Politecnico di Milano.

[7] S. Fernández-García, A. Vidal, Symmetric coupling of multiple timescale sys-
tems with Mixed-Mode Oscillations and synchronization, Physica D: Nonlinear
Phenomena, 401: 1321 29, 2020.

[8] E. Hairer, G. Wanner, Solving ordinary differntial equations II: Stiff and dif-
ferential Algebraic problems, 1987, Springer.

[9] F. Hecht, FreeFEM Documentation, (Release 4.6) 2020, Laboratoire Jacques-
Louis Lions, Université Pierre et Marie Curie, Paris.

[10] C. Homescu, L. Petzold, R. Serban, Error Estimation for Reduced Order Models
of Dynamical Systems, SIAM J. Numer. Anal. 43: 4, 1693–1714, 2005.

[11] J. Nečas, Les Methodes Directes en Theorie des Equations Elliptiques, 1967,
Masson, Paris.

135

[12] A. Quarteroni, A. Manzoni, F. Negri, Reduced Order Methods for Partial Dif-
ferential Equations, 2016, Springer.

[13] M. Rathinam, L. Petzold, A New Look at Proper Orthogonal Decomposition,
SIAM J. Numer. Anal. 41: 5, 1893–1925, 2003.

[14] W. Schilders, H. van der Vorst, J. Roomes, Model Order Reduction, 2008,
Springer.

136

Notation

General
• N denotes the set of natural numbers.

• R denotes the set of real numbers.

• R+ denotes the set of positive real numbers.

• Rd is the euclidean space with dimension d.

• Pr denotes the ring of polynomials of degree up to r.

• Ω is an open subset of Rd.

• AS = 1
2
(A+AT) denotes the symmetric part of the matrix A.

• λi(A) denotes the i-th eigenvalue of the matrix A.

• σi(A) denotes the i-th singular value of the matrix A.

• 1 is the identity matrix.

• O is the null matrix.

• 0 is the null vector.

• ‖ · ‖2 denotes the euclidean vector norm.

• ‖ · ‖S denotes the spectral matrix norm.

• ‖ · ‖F denotes the file matrix norm.

• rank(A) denotes the rank of the matrix A,i.e. the dimension of the vector
space spanned by its column vectors.

• ker(A) denotes the kernel of the matrix A, i.e. the set of solutions to the
equation Ax = 0.

137

• range(A) denotes the range of the matrixA, i.e. the span of its column vectors.

• (·, ·)V is the inner product defined over V .

• ‖ · ‖V is the norm induced by (·, ·)V , ‖v‖V = (v, v)
1/2
V for any v ∈ V .

• V is a Hilbert space on R along with its norm ‖ · ‖V .

• V ′ is the dual space of V , i.e. the space of linear and continuous functionals
over V .

• 〈G, v〉 = V ′〈G, v〉V , ∀G ∈ V ′, v ∈ V denotes the duality pairing between V ′
and V .

• a : V × V → R is a bilinear form.

• f ∈ V ′ is a linear functional.

• Lp(Ω) denotes the function space such that u ∈ Lp(Ω) ⇐⇒
∫

Ω
|u|pdx < +∞.

• H1(Ω) denotes the Hilbert space H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}.

• | · |H1(Ω) is the norm induced in the Hilbert space H1(Ω).

• H1
0 (Ω) denotes the Hilbert space H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}.

• | · |H1
0 (Ω) is the norm induced in the Hilbert space H1

0 (Ω).

• h > 0 is the characteristic discretization parameter.

• Vh ⊂ V is a finite-dimensional subspace of V , such that dimVh = Nh.

• {ϕj}Nh
j=1 denotes a basis for the finite-dimensional space Vh.

• Ah ∈ RNh×Nh is the stiffness matrix, i.e. (Ah)ij = a(ϕj, ϕi).

• fh ∈ RNh is the vector with components (fh)i = f(ϕi).

• Xh ∈ RNh×Nh is the symmetric positive definite matrix associated to the scalar
product in V , i.e. (Xh)ij = (ϕi, ϕj)V .

• uh denotes the high fidelity solution.

138

1 Formulation, Analysis and Approximation of Vari-
ational Problems

• α denotes the coercivity constant.

• γ denotes the continuity constant.

• β denotes the inf-sup stability constant.

• αh denotes the discrete coercivity constant.

• γh denotes the discrete continuity constant.

• βh denotes the discrete inf-sup stability constant.

• ‖ · ‖a is the energy norm, the norm induced by a symmetric bilinear form
a(·, ·), ‖v‖a =

√
a(v, v) for any v ∈ V .

2 Reduced Basis Methods
• µ = (µ1, . . . , µP)T is the input parameter vector collecting the physical, µph,

and the geometric ones, µg.

• P is the set of all possible inputs.

• L(µ) : V → V ′ is a second order differential operator, for all µ ∈ P .

• γ(µ) denotes the continuity factor.

• β(µ) denotes the inf-sup stability factor.

• Th is a triangulation of Ω.

• {ζ1, . . . , ζN} is the reduced basis.

• VN = span(ζ1, . . . , ζN) is the reduced space.

• uN(µ) denotes the reduced solution.

• r(µ) = f(µ) − L(µ)uN(µ) denotes the residual of the high fidelity problem
computed on the Reduced Basis solution.

• WN is the test subspace.

• ‖ · ‖µ =
√
a(·, ·;µ) denotes the energy norm.

139

• AN ∈ RN×N is reduced the stiffness matrix, i.e. (A(µ)h)ij = a(ζj, ζ i;µ).

• fN(µ) ∈ RN is the reduced vector with components (fh)i = f(ζ i;µ).

• θqa(µ) are the affine parametric coefficients of AN(µ).

• Qa denotes the number of affine parametric coefficients of AN(µ).

• θqf (µ) are the affine parametric coefficients of fN(µ).

• Qf denotes the number of affine parametric coefficients of fN(µ).

• V ∈ RNh×N is the transformation matrix, i.e. (V)jm = ζjm.

• κ(A) denotes the spectral condition number of the matrix A.

• R−1
Vh

denotes the inverse of the Riesz map.

• nvv: number of operations required to compute a scalar product between two
Nh-dimensional vectors.

• nmv: number of operations for a matrix vector product.

• nls: number of operations to solve a linear system (Xhx = y).

• eh(µ) = uh(µ) − uN(µ) ∈ Vh denotes the error between the high fidelity and
reduced solutions.

• ∆N(µ) = ‖r(·;µ)‖V ′h/βh(µ) denotes the error estimate.

• ςN(µ) = ∆N(µ)/‖eh(µ)‖V denotes the associate effectivity factor.

• (·, ·)Xh
denotes the Xh-scalar product, i.e. (v, w)Xh

= wTXhv.

• ‖ · ‖Xh
denotes the Xh-norm.

• cq1,q2 = fq1Th X−1
h fq2h ∈ R.

• dq1,q2 = VTA
q1T
h X−1

h fq2h ∈ RN .

• Eq1,q2 = VTA
q1T
h X−1

h A
q2
h V ∈ RN×N .

• βLBh (µ) denotes a parameter-dependent lower bound to βh(µ).

• Ξfine ⊂ P denotes a sample set whose dimension is sufficiently large.

• ΞI denotes a set of parameters, called, interpolation points.

• βI(µ) denotes an interpolatory approximation of βh(µ).

140

3 Construction of Reduced Basis Spaces
• ζi denotes the left singular vectors of a matrix.

• Φi denotes the right singular vectors of a matrix.

• U ∈ Rm×m denotes the matrix with columns U = [ζ1| . . . |ζm].

• Z ∈ Rn×n denotes the matrix with columns Z = [Φ1| . . . |Φm].

• Σ = diag(σ1, . . . , σp) ∈ Rm×n and σ1 ≥ · · · ≥ σp ≥ 0 for p = min(m,n).

• Ak denotes the best approximation matrix with rank(Ak) ≤ k.

• ns denotes the number of parameter samples.

• ΞS = {µ1 . . . ,µns} is the set of parameter samples.

• S ∈ RNh×ns denotes the snapshot matrix, i.e. S = [u1| . . . |uns].

• C = STS ∈ Rns×ns is the correlation matrix, its elements are given (C)ij =
uTi uj, 1 ≤ i, j ≤ ns.

• V = [ζ1| . . . |ζN] ∈ RNh×N is the POD basis.

• W ∈ RNh×N denotes a possible N -dimensional orthonormal basis.

• VN = {W ∈ RNh×N : WTW = 1N}.

• ΠWx =
N∑
j=1

(x,wj)2wj = WWTx is the projection of a vector x ∈ RNh onto

span(W).

• εPOD denotes a tolerance.

• I(N) =

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

represents the percentage of energy of the snapshots captured

by the first N POD modes.

• VXh
N = {W ∈ RNh×N : WTXhW = 1N}.

• ΠXh
W x =

∑N
j=1(x,wj)Xh

wj = WWTXhx.

• S̃ = X
1/2
h S.

• ζ̃i = X
1/2
h ζi.

141

• Mh = {uh(µ) µ ∈ P} is solution set.

• MS
h = {uh(µ1), . . . ,uh(µns)} is the set solution snapshots.

• T : L2(P)→ RNh is the continuous analogue to the snapshots matrix S.

• T ∗ : RNh → L2(P) is the continuous analogue of the matrix ST .

• ‖ · ‖H−S is the Hilbert-Schmidt operator norm.

• C = T ∗T : L2(P) → L2(P) is the continuous analogue of the correlation
matrix C = STS

• K = TT ∗ : RNh → RNh is the continuous analogue of the correlation matrix
K = SST .

• TN is the best rank N approximation to the operator T .

• BN = {B ∈ L(L2(P);RNh) : rank(B) ≤ N}.

• wi > 0 are the weighting coefficients.

• D = diag(w1, . . . , wns) ∈ Rns×ns .

• Ŝ = SD1/2.

• Φ̂i are the eigenvectors of ŜT Ŝ.

• V∞ denotes the POD basis solution of the continuous minimization problem
(3.7).

• Vns denotes the POD basis solution of the discrete minimization problem (3.9).

• E(W) =

∫
P
‖uh(µ)−WWTuh(µ)‖2

2dµ.

• ES(W) =
ns∑
i=1

‖uh(µ)−WWTuh(µ)‖2
2.

• ES denotes the quadrature or sampling error.

• Ξtrain ⊂ P denotes a training sample set.

• ntrain denotes the cardinality of the training sample set Ξtrain.

• Nmax is the maximum number of iterations for the greedy algorithm 10.

• εg denotes the fixed tolerance for the greedy procedure.

• δN = maxµ is the maximum of error estimators over Ξtrain.

142

4 & 5 PDE Application
• ∇ denotes the laplacian operator.

•
∂u

∂n
denotes the normal derivative of the function u.

• χΩ is the characteristic function of the domain Ω.

• Ω1 denotes the inner subdomain Ω1 = (1/4, 3/4)× (1/4, 3/4).

• ∂Ω denotes the boundary of the domain Ω.

• ΓD = (0, 1)× {0} is the part of the boundary with Dirichlet boundary condi-
tion.

• ΓN = ∂Ω/ΓD is the part of the domain with Newmann boundary condition.

• µ1 is the characteristic parameter of Ω1,

• µf is the intensity of the source in Ω1,

• µN represents the flux over the other walls of the domain ΓN .

• nn is the number of divisions of the boundary for the construction of the mesh.

• tRB is the computational time spent in the assembling and solving of the
reduced order model.

• tHF is the computational time spent in the assembling and solving of the
high-fidelity model.

• ρ is the ratio of tHF to tRB and ρ∗ is the low boundary of ρ.

143

6 ODE Application
• {y(t1), . . . , y(tNsnap)}, where y ∈ Rn is the set of data points.

• ȳ =
1

Nsnap

Ns∑
i=1

yi, is the mean of the data points.

• Ci,j = (yi − ȳ, yj − ȳ) is the correlation matrix, where ỹi = yi − ȳ.

• φi ∈ {φ1, ..., φNrb
} is the i-th mode.

• ar,i = (ỹi, φr) are the temporal coefficients.

• c ∈ [−1, 1] is the coupling parameter.

144

List of Algorithms

1 High-Fidelity system assembling and solving 23
2 Offline computation of reduced matrices and vectors 36
3 Online RB system assembling and solving 37
4 Offline computation of µ-independent terms of the dual norm of residual 42
5 Evaluation of the error estimator ∆N(µ) 44
6 POD algorithm . 51
7 POD algorithm with respect to the Xh norm 53
8 POD algorithm with respect to the energy norm and quadrature weights 57
9 RB approximation construction by POD algorithm 58
10 Weak Greedy Algorithm . 61
11 Gram-Schmidt orthonormalization . 61
12 RB approximation construction by greedy algorithm 62

145

	Introduction
	Formulation, Analysis and Approximation of Variational Problems
	Strongly Coercive Problems
	Formulation
	Approximation
	Algebraic Form

	Weakly Coercive (or Inf-Sup Stable) Problems
	Formulation
	Approximation
	Algebraic Form

	Saddle-Point Problems
	Formulation
	Approximation
	Algebraic Form

	Basic Reduced Order Methods
	High-Fidelity Technique
	Parametric Formulation
	High-Fidelity Discretization
	Finite Element Method

	Reduced Basis Methods
	Galerkin Reduced Basis Method
	Least-Squares Reduced Basis Method
	Petrov-Galerkin Reduced Basis Method

	Offline/Online Decomposition
	Offline Phase
	Online Phase

	A Posteriori Error Estimation
	Error-Residual Relationship
	Error Bound
	Computation of Error Bounds

	Construction of Reduced Basis Spaces
	SVD-POD
	Basic Notions on Singular Value Decomposition
	Proper Orthogonal Decomposition

	Greedy Algorithm
	Behind Greedy Algorithm
	The Weak Greedy Algorithm

	Resolution of Laplace Equation by POD Method
	Presentation
	Physical Equations
	Geometry
	Parameters

	Variational Formulation
	Affine Decomposition

	Computation
	Offline Computation
	Online Computation

	Results
	Comparison with High-Fidelity Solutions
	Homogeneous Domain and Boundary Condition
	Homogeneous Boundary and Fixed Source
	Fixed Source and Homogeneous Domain

	Conclusion

	Resolution of Laplace Equation by Greedy Method
	Computation
	Offline Phase
	Online Phase

	Results
	Offline Phase
	Online Phase

	Conclusion

	ODE Application
	Presentation
	POD method for ODEs
	HIRES Problem
	ICC Problem

	Computation
	HIRES Problem
	ICC Problem

	Results
	HIRES Problem
	ICC Problem

	Conclusion
	HIRES Problem
	ICC Problem

	Bibliography
	Notation
	List of Algorithms

