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A B S T R A C T   

In this work, we address the Truck-multi-Drone Team Logistics Problem (TmDTL), devoted to visit a set of points 
with a truck helped by a team of unmanned aerial vehicles (UAVs) or drones in the minimum time, starting at a 
certain location and ending at a different one. It is an enhanced version of the multiple Flying Sidekicks Traveling 
Salesman Problem (mFSTSP) presented in Murray and Raj (2020) wherein drones are allowed to visit several 
customers per trip. 

In order to cope with large instances of the complex TmDTL, we have developed a novel agent-based method 
where agents represent the points that are going to be visited by vehicles. Agents evolve by means of movement 
inside a grid (locations vs. vehicles) according to a set of rules in the seek of better objective function values. 
Each agent needs to explore only a fraction of the complete problem, sharing its progress with the rest of the 
agents which are coordinated by one central agent which helps to maintain an asynchronous memory of solutions 
– e.g. on the control of the mechanism to escape from local minima. 

Our agent-based approach is firstly tested using the largest instances of the single TDTL problem reported in 
the literature, which additionally serves as upper bounds to the TmDTL problem. Secondly, we have solved 
instances up to 500 locations with up to 6 drones in the fleet. Thirdly, we have tested the behavior of our 
approach in 500 locations problems with up to 8 drones in order to test the fleet size sensitivity. 

Our experiments demonstrate the ability of the proposed agent-based system to obtain good quality solutions 
for complex optimization problems that arise. Further, the abstraction in solutions coding applied makes the 
agent-based approach scalable and flexible enough to be applied to a wide range of other optimization problems.   

1. Introduction 

There are a variety of practical applications where the use of drones 
promises an improved service, taking advantage of their travel speeds 
and reduced costs (Campbell et al., 2017). The drone’s ability to travel 
directly between two points of interest is leading more and more to the 
conceptualization of new working models in certain logistics scenarios, 
mostly assuming that a moving truck acts as a base, which allows the 
enlargement of the action radius of the drone’s operation. 

In this paper, we assume a set of locations to which we need either 
deliver lightweight relief items or visit for an intelligence, surveillance 
and reconnaissance (ISR) mission. We extend the seminal Truck Drone 
Team Logistics (TDTL) model in (Gonzalez-R et al., 2020) to consider a 
fleet of multiple Unmanned Aerial Vehicles (UAVs) or drones along with 
a truck. Since the optimization problem that arises has to find the 
optimal routes for the vehicles in the system to achieve a given objective 
–e.g. minimizing the total mission time-, the applications under study 

are within the category “routing for a set of locations” (Otto et al., 2018). 
In contrast to other works that assume the truck to act solely as a 
mothership where drones change batteries and payload (Poikonen & 
Golden, 2020b; Salama & Srinivas, 2020; Wang et al., 2017) we consider 
that the truck plays an active role in the delivery process since it can 
serve the locations as in (Ha et al., 2018; Murray & Chu, 2015). 

There are other studies on the multi-drone field (Luo et al., 2021; 
Murray & Raj, 2020; Poikonen & Golden, 2020a; Schermer et al., 2019), 
but they are typically focused on addressing small to medium size in-
stances. Differently, our main contribution here is gaining the ability to 
solve large instances in the assumption that multiple customer visits are 
allowed for drones, which according to (Chung et al., 2020) is a more 
general approach. While this feature is also in Poikonen & Golden 
(2020a), they did not apply the drone sortie policy that we incorporate 
in this paper. Further flexibility is attained by allowing drones to come 
back to the truck at a different location than the one they were launched 
from. 
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2. Related work 

The literature on coordinating the logistics operations using a truck- 
drone combination focuses predominantly on extending classical rout-
ing problems – a variant of the traveling salesman problem with drones 
(TSP-D) (Agatz et al., 2018; Bouman et al., 2017; Ha et al., 2018; Jeong 
et al., 2019; Mathew et al., 2015; Murray & Chu, 2015; Roberti & 
Ruthmair, 2021; Vásquez et al., 2021), and a generalization of vehicle 
routing problems to include drones (VRP-D) (Poikonen et al., 2017; 
Sacramento et al., 2019; Schermer et al., 2018; Wang et al., 2017; Wang 
& Sheu, 2019). For a comprehensive recent review of the current 
research in this area, the reader is referred to the works by Rojas Viloria 
et al. (2020), Chung et al. (2020), Macrina et al. (2020) and Moshref- 
Javadi & Winkenbach (2021). As claimed in our seminal work (Gon-
zalez-R et al., 2020), we cover some of the gaps identified in the liter-
ature. In particular, we stated the TDTL for applications where a drone 
trip (every trip comprises launching and visiting a typically small 
number of locations and a landing in the ground vehicle at the next 
rendezvous point) is capable of serving several locations. This differs 
from the commonly accepted hypothesis in last-mile delivery literature 
which considers that only one single location is visited at each drone’s 
trip – except for only a few works, see e.g. (Karak & Abdelghany, 2019; 
Luo et al., 2021; Murray & Raj, 2020; Poikonen & Golden, 2020a; Sal-
ama & Srinivas, 2020; Wang et al., 2019). However, notice that this 
limitation is not necessarily applicable; for instance, current drone 
technology allows for picking-up small items –e.g. vaccines, water pu-
rification tablets, or medicines– and delivering them one-at-a-time 
following a sequence of visits during the same drone’s trip. In our 
approach to the problem: (i) every location stands for a customer that 
can be served either by drone or by truck; (ii) the truck stops occur at 
certain customer sites (which are not predefined) and hence, drones are 
only allowed to merge with the ground vehicle at these locations; (iii) 
Once landed, the drone always gains a fully-charged battery and would 
then be ready to start a new trip or stay at the truck until the truck carries 
it to a new serving area. 

We consider all the locations are open to be visited either by drone or 
by truck, therefore all of them are potential points for both stop and 
rendezvous. (Luo et al., 2017; Wang et al., 2019) assume that both the 
truck and the drone can serve the locations, although both works limit 
the locations wherein the synchronization among trucks and drones can 
occur: (Wang et al., 2019) schedules it at the docking hubs –i.e. spacious 
areas to make a controlled landing– whereas (Luo et al., 2017) schedules 
the rendezvous points at truck stops among a preselected subset of 
candidate locations. This is a simplification that also appears in (Sac-
ramento et al., 2019) and (Karak & Abdelghany, 2019). (Sacramento 
et al., 2019) consider that some points are to be served by the truck 
owing to the weight of the load, and limits the synchronization at truck 
stops among a preselected subset of candidate locations. (Schermer 
et al., 2019) have recently considered the possibility of launching and 
retrieving drones along a route – i.e. at discrete locations others than the 
customer locations – and has reported experimental results for their 
VNS/Tabu search heuristic applied on up to 50 customer instances: they 
claimed the potential of a reduced makespan and a higher utilization of 
drones. Some other authors (Caggiani et al., 2017; Carlsson & Song, 
2018) adopted a continuous approach to allow the drones to meet the 
truck at any point of the route between two locations. Notwithstanding, 
we use the common assumption that synchronizations only occur while 
the truck stops at one of the discrete locations. Apart from this, the 
flexibility of our approach resides in that we do not fix a priori which of 
the points are going to be visited by the truck and which of them are 
going to be visited by drones, in contrast to completely prefixed routes 
for the truck (Othman et al., 2017) or partially prefixed routes (Luo 
et al., 2017; Mathew et al., 2015; Murray & Chu, 2015). Besides, while 
Sacramento et al. (2019) prohibits the truck from waiting for the drone 
at the same location it was launched, in our approach, we get the same 
result differently: owing to the active role-play of the truck and thinking 

of visiting all the locations as soon as possible, launching a drone and 
rendezvousing the same drone at the same location is of no interest. 
Indeed, for the addressed problem, the synchronization issue is crucial 
since it turns the problem into finding the chain of customers to be 
served by each vehicle, while specifying the sites where the battery 
swaps will take place. 

A variety of single-truck multi-UAV works have been published in 
the last years. (Chang & Lee, 2018; Ferrandez et al., 2016; Moshref- 
Javadi & Lee, 2017) consider a system in which the truck deploys 
multiple drones from distributed launch sites along the truck’s route. In 
this case, the drones return to the truck before the truck departs to its 
next destination. Clustering heuristics have been developed, such that 
the truck is routed to each cluster and nearby customers are served using 
UAVs. Conversely, others (Murray & Raj, 2020; Yoon, 2018) consider a 
single truck that may launch multiple UAVs, with the UAVs returning to 
the truck at a different location. (Yoon, 2018) provides a MILP formu-
lation, which is tested on instances with up to 10 customers. (Murray & 
Raj, 2020) states the multiple flying sidekicks traveling salesman 
problem (mFSTSP) using an arbitrary number of heterogeneous UAVs 
that may be deployed from the depot or the delivery truck, although 
they adopt an overly-constrained approach for our target problem, 
particularly due to being limited to the one-customer per fly case. Most 
papers addressing the truck-drone cooperative system assume that 
during each trip a drone can only visit one customer, except for (Ham, 
2018; Luo et al., 2017) for the flying sidekick traveling salesman prob-
lem (FSTSP) and (Cheng et al., 2018) for the parallel drone scheduling 
traveling salesman problem (PDSTSP) (the latter involving just drone 
deliveries, with no truck at all). (Ham, 2018) is a generalization of the 
multiple drones, multiple trucks and multiple depots case, and (Cheng 
et al., 2018) a pure drone-delivery scenario where no truck intervenes at 
all, thereby being far from our target problem scope. In (Moshref-Javadi, 
Hemmati, et al., 2020; Moshref-Javadi, Lee, et al., 2020) computational 
studies are presented where the movements of the truck and UAVs are 
synchronized. In these problems, the truck stops at a customer location 
and can launch one or more UAVs. Each UAVs delivers only one parcel to 
one of the clients and meets the truck at a client location different from 
the first one. In (Moshref-Javadi, Hemmati, et al., 2020) the authors 
propose a Mixed Integer Linear Programming (MILP) model, demon-
strating on four sets of problems with up to 101 customers that this 
model can obtain considerable waiting time savings compared to the 
truck-only model. 

Considering solution approaches, a variety of methods have been 
developed to address multidrone-truck combined operations (see 
(Chung et al., 2020)). (Phan et al., 2018) developed the TSP with mul-
tiple drones (TSP-mD) that was solved by an adaptive large neigh-
bourhood search heuristic (ALNS), while (Murray & Raj, 2020) solved 
the mFSTSP by a three-phased heuristic solution approach. Further-
more, they state a very constrained model whose resolution is reduced to 
a medium size set of customers. In (Moshref-Javadi & Lee, 2020) the 
problem analysed in (Moshref-Javadi, Hemmati, et al., 2020) is 
addressed by a hybrid Tabu Search-Simulated Annealing algorithm. 
Among several parameter values, the number of drones and the drone to 
truck speed ratio affect the results more significantly. (Wang et al., 
2017) proves several bounds to the potential savings in the total tour 
time that can be achieved for several scenarios with multiple trucks, 
multiple UAVs, as well as equal and unequal UAVs and truck speeds. 

Recent works by (Poikonen & Golden, 2020a) and (Luo et al., 2021) 
exhibit certain similarities with our TmDTL problem. (Poikonen & 
Golden, 2020a) presented an interesting TSP-D with multiple drones 
with consideration of adjustable speeds and battery consumption rate as 
a function of the payload, although they assumed the truck serves solely 
as a mobile depot (drone primary) which does not deliver packages to 
customers. (Luo et al., 2021) includes also the fact that the battery 
endurance depends not only on the flight time, but on the self-weight of 
the drone and the total weight of the carried packages. They solve their 
model using a heuristic approach and report its performance only for a 
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small fleet of two drones cooperating with the truck. In contrast, we aim 
our research at getting an efficient resolution method for coping with a 
big number of targeted points which will typically require a higher fleet 
size. 

The TmDTL problem we consider, increases the complexity of the 
TDTL problem as it increases the number of UAVs carried by the ground 
vehicle. Thus, since the TDTL problem is an NP-hard one, our problem is 
also NP-hard. For a study of the computational complexity of truck and 
drone problems, see (Boysen et al., 2018) where the truck route is pre-
fixed and, for a more similar problem but only for one drone, the TDTL 
problem, see (Gonzalez-R et al., 2020). In this paper, we focus on the 
application of a multi-agent system (MAS) to the problem of multiple 
drone TDTL. According to the definition in (Barbati et al., 2012), in 
which there is no difference between MAS and Agent-based models 
(ABMs), these systems consitst of “elements (agents) characterized by 
some attributes, which interact with each other through the definition of 
appropriate rules in a given environment”. MAS are sometimes preferred 
to the more common heuristics for addressing challenging optimization 
problems. The intelligence of agents will make them choose between 
different methods to obtain the best global improvement, as each agent 
has information about its neighbourhood in the solution space. The 
knowledge about movements to nearby positions in the sequence, the 
distributed nature of MASs, and the information sharing between agents 
make this approach scalable and suitable for different problem config-
urations, sizes, and complexities, see (Barbati et al., 2012; Kulkarni & 
Tai, 2010; Leitão et al., 2013). Notwithstanding, (Leitão et al., 2013) and 
(Pěchouček & Mařík, 2008) also highlight issues related to the appli-
cation of MAS in the industry, such as the difficulty in evaluating the 
return on investment, lack of standards, skilled personnel to apply these 
models, knowledge about their potential, success cases, large scale in-
dustrial MAS applications and tools. 

MASs have been used to tackle routing and logistics problems. As 
stated in (Thangiah et al., 2001), an intelligent agent architecture gains 
the advantage of a distributed way of addressing VRPs rather than the 
centralized way of most metaheuristics. Like the former authors, (Bar-
bucha & Jedrzejovicz, 2007) also takes advantage of the intelligence and 
cooperation of agents to improve a population-based metaheuristic for 
solving instances of the vehicle routing problem with time windows 
(VRPTW). (Kaul, 2018) improves an Ant Colony Optimization ACO by 
using an agent based metaheuristic applied to the last mile delivery 
problem in which vehicles, orders and clients are modeled as agents. For 
instance, (Davidsson et al., 2005; Gath et al., 2015) have taken advan-
tage of this feature when approaching transportation logistics problems. 
(Gath et al., 2015) simulate and optimize logistics problems using 
vehicle agents and order agents: order agents look for a transportation 
service provider and vehicle agents try to maximize the number of 
shipments while satisfying constraints, and so they negotiate with other 
agents. We refer to (Gath et al., 2015) for a review of MAS applications 
to transport and logistics problems. In most of these applications, the 
transportation actors (e.g. vehicles or clients) perceive individual in-
formation, and make individual decisions, while being situated in and 
interacting with an environment (e.g. the transportation network or the 
information sources) on which they have partial and incomplete 
information. 

Routing related optimization problems have been faced by the hy-
bridization of agent systems and metaheuristics, as in (Talukdar & 
Ramesh, 1992; Thangiah et al., 2001) for the VRP, in (Zeddini et al., 
2008) for the Dynamic VRP or in (Kalina et al., 2015; Lopes Silva et al., 
2019) for the VRPTW (Vehicle Routing Problem with Time Windows). 
The common approach is to think of vehicles as agents (Barbucha, 2012; 
Kalina et al., 2015; Lopes Silva et al., 2019; Thangiah et al., 2001; 
Zeddini et al., 2008). Each agent uses a meta-heuristic, like evolutionary 
methods in (Dazhi & Shixin, 2010) or an iterated local search (ILS) in 
(Lopes Silva et al., 2019). The latter concluded that an improvement in 
the quality of solutions was attained by increasing the number of agents 
and the learning capacity from their interaction. This interaction or 

cooperation between agents can be synchronous or asynchronous 
(Barbucha, 2012). The asynchronous type of communication implies the 
use of a central pool of solutions or a central agent coordinating com-
munications (Talukdar et al., 1983) or (Talukdar & Ramesh, 1992). 
Another way of implementing this asynchronous collaboration between 
agents uses an auction mechanism in which an auctioneer agent gathers 
client data, distributes them to vehicle agents, and receives bids from 
those agents in order to choose the best one and assign an agent to the 
appropriate client (Thangiah et al., 2001; Zeddini et al., 2008). Syn-
chronous communications are of two main types: The first one, with 
optimization agents running in parallel, (Barbucha, 2012), and the 
second one, with a reinforced learning mechanism, (Alipour et al., 2018; 
Lopes Silva et al., 2019). 

Regarding drones/UAVs related problems, the use of MAS has been 
mainly focused on the real-time coordination of fleets or swarms of 
UAVs considering each one as an intelligent agent, and has led to a 
myriad of MAS approaches concerning military missions control tasks – 
see (Baxter et al., 2008) – and the cooperation of logistic service pro-
viders (Hasan & Niyogi, 2020) but also in the planning of UAVs’ routes – 
see (Semsch et al., 2009) – where our research is focused. An application 
to the Drone TSP (DSTSP) is developed in (Houseknecht, 2019) using ant 
colony optimization (ACO) and trying to maximize drone’s usage. More 
similarities arise in the approach in (Khalid & Chankov, 2020; Kim & 
Matson, 2017), when addressing a delivery problem with drones in 
collaboration with public transport buses. Their ground vehicle and the 
multi-UAV optimization problem is different from ours, since we 
consider that drones take off from the depot or the truck at one point and 
land at a different one. 

There have been many efforts to build architectures and protocols for 
agents’ communication such as FIPA – The Foundation of Intelligent 
Physical Agents (FIPA - The Foundation of Intelligent Physical Agents, n. 
d.), KQML – Knowledge Querying and Manipulation Language (KQML, 
1993) and others mentioned in (Dickinson, 1997). Unfortunately, many 
of these efforts are discontinued nowadays. There are also frameworks 
for Agent-Based simulation and modelling (Mualla et al., 2018) such as 
AirSim (Shah et al., 2018), Flame (Kiran et al., 2010), Gazebo (Nathan 
Koenig, 2004), JADE (Bellifemine et al., 2001), JaSIM (Galland et al., 
2009), NetLogo (Wilensky, 1999), Repast Simphony (North et al., 2005) 
or OpenABM (Janssen et al., 2008). For a more comprehensive review of 
Agent-Based Modelling and simulation, the works of Allan (2009) and 
Lopes Silva et al. (2018) are of interest. While many of those frameworks 
are Java-based, there are a few Python-based such as SPADE – Smart 
Python multi-Agent Development Environment (Palanca & Alemany, 
2017), a Python version of Agent Evolution (AgE) (Faber et al., 2012; 
Kazirod & Knapik, 2016) and MESA (Kazil et al., 2020), an agent-based 
modelling framework. At the time we began this research MESA was 
easier and better documented than SPADE, hence that was our choice. 
This environment is heavily based on NetLogo (Wilensky, 1999). 

In this paper, we contribute with a MAS to approximately solve the 
challenging TmDTL. Our approach is novel with respect to other routing 
problems, since we have an abstract use of multiagent systems assigning 
each agent to a location instead of a vehicle, an order or all of them 
(vehicles + orders + clients) as in (Kaul, 2018). We have followed the 
old cellular automata scheme in which agents move in a lattice or grid 
environment to generate neighbourhoods, precedences and feasibility 
(Macal & North, 2010) – i.e. avoiding locations to be served by the truck 
and later by another drone. Each agent has a set of rules based on which 
it takes the best decision to move inside the grid while trying to obtain 
the best objective function improvement. Agents are coordinated by one 
central agent or manager which maintains an asynchronous memory of 
solutions and assists the escape from local minima. 

The main contributions of our paper are: 
• We present an improvement over the TDTL problem described in 

(Gonzalez-R et al., 2020) in which a truck gets help from a drone in order 
to visit a set of points in the minimum time. The difference with the 
problem in (Gonzalez-R et al., 2020) lies in the number of drones carried 
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by the truck, the solution approach and the size of the problems we are 
dealing with. Regarding the multiple flying sidekick TSP (mFSTSP) 
described in (Murray & Raj, 2020) the differences are twofold. We 
reduce complexity by a) supposing that all drones are identical, b) 
supposing the time needed for landing, recharging, take-off is negligible 
and c) supposing a linear endurance model for the drones. We increase 
complexity by letting drones visit more than one point in each flight; 
that is, carry more than one parcel. 

• We propose a novel agent-based approach for the truck-drones 
routing problem in which agents represent points or clients instead of 
orders or vehicles. Our solution is represented in a two-dimensional grid. 
Agents try to move on this grid to positions that lead to an improvement 
in the total mission time. This abstraction leads to faster computing the 
fitness, since each agent only computes the improvement in quality 
caused by its own movement. This abstraction also leads to a more 
flexible solution coding as it can be applied to problems with more than 
one truck. This is an ongoing extension of this work. We have imple-
mented this approach by using the MESA framework in Python. 

• We compare the resolution of the instances with those presented in 
(Gonzalez-R et al., 2020) in a set of 86 instances (available in [dataset] 
(Bouman et al., 2020)) with sizes varying between 50 and 500 locations. 
The agent-based model obtains good results in larger instances. 

The rest of this paper is organized as follows: Section 3 provides the 
problem description and the main hypotheses in the TmDTL. Section 4 
describes the developed MAS approach and Section 5 presents a 
computational study and the numerical results. Finally, Section 6 con-
cludes the paper. 

3. Problem description 

The Truck-multi-Drone Team Logistics Problem (TmDTL) can be 
formally described as follows. A complete directed graph G = (N,A), 
which represents a set of locations distributed in a wide area are to be 
served by a truck and multiple identical UAVs, is given. The vertex set N 
is defined as N = {o,1,⋯,n − 2,e}, where o represents the departure node 
(a single truck, equipped with multiple drones, is initially located at 
node o) and e corresponds to the destination node, where all the vehicles 
must finally meet. Nodes {1,⋯, n − 2} represent the set of customers 
locations to be served (i.e., visiting and collecting data typically in ISR 

missions, as in (Hu et al., 2019) or delivering relief items in emergency 
situations or goods as in (Murray & Raj, 2020)). Every location needs to 
be served once by, at least, one of the vehicles, the truck, one of the 
drones or could be a rendezvous point where the truck and one or more 
drones meet. The arc set A is defined as A = {(i, j) : i, j ∈ N} . The truck 
moves at a speed sgv while drones flight speed is supposed to be sav . A 
UAV launched from the truck can sequentially visit and serve multiple 
locations in a single flight route. Due to the constraint of limited battery 
capacities, a UAV can only travel a quite limited distance in one route (e. 
g., 7 km). We suppose that all the drones have the same battery 
endurance, of value Q, measured in time units. The truck is used to 
transport, launch, and recycle the UAVs, serving as a mobile platform. 
Since a truck can typically travel over 500 km without refuelling, 
without loss of generality, we assume that the vehicle can travel un-
limited distances within the region. The drones can be launched from 
and return back to the truck at customer locations, and they cannot take 
off and then land at the same location. The drones and the truck must 
coordinate when they arrive at the same location. If the drones arrive 
earlier than the truck or other drones, they wait hovering until the truck 
arrives. See location 3 in Fig. 1. Likewise, the truck must wait for the last 
drone to arrive at that location. This supposes a difficulty in the total 
mission time and the drone endurance calculations. The goal of the 
TmDTL is to find a set of routes, starting at o and ending at n, with 
minimum completion time, serving all customers either by truck or 
drone, allowing multiple visits per drone’s flight, without imposing any 
restriction to the truck route and determining the number and location 
of the synchronization nodes. 

In Fig. 1 we show an example solution, representing 20 locations and 
the routes traversed by truck, carrying drones or not, depicted with 
continuous lines, and the flights of drones, drawn by dashed lines. Here 
we use different dashed types to distinguish between paths flown by 
different drones. Thus, truck departs from depot 0 carrying drones 1 and 
2 and visits location 4. Drone 0 takes off from the depot and after visiting 
locations 16 and 5 meets the truck at location 4. From that location, the 
truck, carrying drone #2, departs to location 11 while drones #0 and #1 
take off. After visiting location 11, at location 3, the truck meets drone 
#0, which has visited locations 9 and 13 and drone #1, which has visited 
locations 8 and 14, and so on. 

While there are similarities between the problem in our research and 

Fig. 1. Example solution for a problem with 20 locations and a truck helped by three drones.  
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those addressed in (Murray & Raj, 2020) and in (Salama & Srinivas, 
2020), it is necessary to highlight important differences between our 
research and those works. (Salama & Srinivas, 2020) contemplates a 
truck acting as a moving depot, carrying more than one drone. It moves 
near customer locations – a focal point – deploys drones that visit 
customer locations and waits until they complete their task. They state 
their approach maximizes drone utilisation and therefore minimises the 
necessary number of drones. In our case, and in (Murray & Raj, 2020), 
the truck continues the route once drones have taken off. But the work of 
(Murray & Raj, 2020) is different in that drones serve only one location 
in each flight. They also note a decrease in the reduction of the total 
mission time when increasing the number of UAVs in the fleet. This is on 
account of unproductive flight-time spent by the drones, which can be 
explained two-fold: (i) the truck roof may be in use by a different drone 
when a particular drone needs to land; and (ii) the drones have to wait 
for the truck to arrive at the recovery location. In contrast with them, as 
stated in our seminal work (Gonzalez-R et al., 2020), we are concerned 
with a more general approach where each drone is capable of visiting 
one or more points in each flight before having to return to the truck to 
change its battery. Whereas this tends to diminish the effect of (i), we 
still can assume that a kind of saturation appears in the enhancement 
one can expect from increasing the fleet size. 

With the help of the vehicle, the UAVs can serve locations distributed 
over a large region. The vehicle carrying multiple UAVs and enough 
UAV replacement batteries departs from the base and proceeds along an 
a priori unknown route. Along the route, we select a set of locations 
where the vehicle launches and/or retrieves UAVs. When a UAV returns, 
its battery is replaced on the vehicle. After visiting all the locations, the 
ground vehicle arrives at the ending location. Without loss of generality, 
the following assumptions are made: 

• The coordinates on a 2D plane of every location are known to us a 
priori. The road network lying in the target region is modelled as a fully 
connected graph, so it is possible to go directly from every location to a 
different one. 

• Both the ground vehicle and the UAVs travel at constant speeds, 
which are denoted as sgv (ground vehicle speed) and sav (air vehicle 
speed) respectively. It is assumed that sav = 2sgv . In general, in the 
literature sav > sgv, but this is not a requirement for our solution method. 
We will also assume that when drones arrive earlier than the truck to a 
rendezvous or meeting point, they wait for the truck hovering. Thus, 
when drones arrive at a location earlier than the truck, the waiting time 
also drains the battery charge. 

• The time required by the UAV to serve a customer, the time needed 
for replacing a UAV’s battery and other maintenance tasks are negli-
gible. It is supposed that when the last vehicle arrives to a location, 
drones and truck start their next trip immediately 

• We consider a homogeneous fleet of drones with the same battery 
endurance. Batteries drain uniformly depending on the distance 
travelled. 

• The objective function consists of minimizing the total mission time 
needed for visiting all the locations. The vehicles start from an initial 
location and arrive at a different one. Each location must be visited at 
least once by one vehicle, and drones must respect their battery 
endurance. 

The main difficulties derived from this problem configuration are 
manifold. First, it is essential to model as in other routing problems, the 
order in which locations are visited, which vehicle visits each location 
and, related to the former, which of the drones is flying each arc or is 
traveling on the truck. Other common constraints are battery endurance, 
the avoidance of both visiting twice a location or leaving locations un-
visited. Also, cycles in drone flights or in truck travels must be avoided. 

4. Agent-based approach 

In this section, the agent-based proposed approach to solve the 

TmDTL problem is presented. We first describe the abstraction of 
mapping locations to agents, then the construction of the initial solution, 
and finally the set of actions governing the behaviour of each agent. 

As proposed in (Barbati et al., 2012) we have chosen a mediator 
architecture, since in large problems, our approach will work with a 
high number of agents. In such situations, mediator architectures show 
better effectiveness than autonomous agents’ architectures in terms of 
computational simplicity and overall solution quality. Since the TmDTL 
is such a complex problem, we have chosen to keep the method as simple 
as possible, keeping in mind the agent’s behaviour but trying to avoid an 
additional complexity. 

To address the difficulties found in this type of drone routing prob-
lem, we have modelled solutions as a grid where agents are placed, thus 
specifying precedencies between locations’ visits. In addition to the 
position on the grid, agents have an attribute to model, at locations 
visited by truck, if it is accompanied there by zero, one or more drones. 
The allowed positions of agents in the grid will guarantee that locations 
are visited once and only once by a drone or by the truck (alone or 
carrying/meeting drones). Other constraints such as battery endurance, 
or cycles in routes will be considered when computing the mission time. 

4.1. Locations as agents 

We propose a cooperative asynchronous agent system as classified in 
(Barbucha & Jedrzejovicz, 2007). We use a manager agent acting as a 
mediator between all agents. The rest of the agents represent the loca-
tions that are going to be visited, including the initial and final ones. This 
is a novel approach in contrast whith those that suppose vehicles or even 
orders as agents. If the sequence contains n locations, n agents will be 
created apart from the manager. These agents try to improve the current 
solution by moving around a finite bi-dimensional grid or lattice being 
similar to the classical simulations of social groups in (Schelling, 1958). 
They also follow the beliefs, desires, intentions (BDI) model; first 
deciding what to do in order to improve the solution quality and then 
acting in consequence. 

When the truck arrives at a location, it can meet drones and replace 
their batteries. These meetings may include the truck and zero or more 
drones. We have added an attribute to agents to model the type of 
meeting. In the case that the location represented by an agent is visited 
by the truck, the type of meeting indicates which drone or drones meet 
the truck. If the location is visited only by a drone, the meeting attribute 
is empty. The meeting attribute uses a binary coding to represent which 
drone or drones meet the truck: meeting = dndr− 1dndr− 2dndr− 3⋯d0. For 

Table 1 
Coding of possible meeting types.  

Type d2 d1 d0 Comments 

0 0 0 0 Only truck visits that location 
1 0 0 1 Drone number 0 meets truck 
2 0 1 0 Drone number 1 meets truck 
3 0 1 1 Drones 0 and 1 meet truck 
4 1 0 0 Drone number 2 meets truck 
5 1 0 1 Drones 0 and 2 meet truck 
6 1 1 0 Drones 1 and 2 meet truck 
7 1 1 1 All drones meet truck  

Fig. 2. A grid representing a 10 location + 3 drones problem.  
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instance, in the case of a three drones’ mission, possible meeting values 
are shown in Table 1. As, in our model, the time needed for battery 
change and other drone setup tasks is supposed neggligible, we assume 
that when the last vehicle arrives at a meeting location, drones and truck 
start their next trip immediately. 

Agents can move in a bi-dimensional grid (see for illustration pur-
poses the Fig. 2). The horizontal grid dimension is the number of agents 
and the vertical one corresponds to the number of vehicles. Each of the 
columns contains one and only one agent representing one of the loca-
tions to be visited and which vehicle visits it. The bottom row represents 
the sequence of locations visited by the truck. The meeting attribute of 
each agent models which drones are with the truck in that location. It 
also helps in modeling drones’ landing and taking off locations. The rest 
of the rows represent the sequence of locations visited by each drone. 
The only agents not moving around the grid are the first one and the last 
one, corresponding to the initial and final locations. 

For instance, in a 10 locations problem (including the initial and final 
one) in which 3 drones are used with the truck to visit all locations, the 
grid is represented in Fig. 2. 

The rows indicate the order in which each vehicle visits the locations. 
When the bottom row includes an agent, it is needed to know the 
meeting attribute of the agent to see whether a drone has landed on the 
truck at that location. In the first and last locations, the depots, all drones 
are in the truck. To know where a drone took off, it is needed to know the 
last location where it was in the truck, reading the meeting attribute. 
Thus, in Fig. 2 drone 0, after starting at location 0, visits location 2, and 
then location 1. Drone 2 visits location 7 before visiting location 3. This 
coding scheme sometimes leads to equivalent solutions with different 
grid distributions as shown in Fig. 3, for a problem with 5 locations. 

Although these solutions are equivalent, they are not in the same 
neighbourhood, since the possible agents’ movements avoid these so-
lutions to be directly interchangeable. 

4.2. Initial solution. Examples 

Initial agents’ positions are generated by the manager agent using a 
constructive procedure that seeks a feasible solution in terms of drones’ 
battery endurance. Considering a problem with n agents and ndr drones, 
the grid cells are numbered from (0, 0) to (ndr − 1, n) . Agent 0 is assigned 
to the mission starting location and it is placed at cell (0, 0) whereas the 
agent ndr − 1 is assigned to the ending location and placed into the cell 
(ndr − 1, n) . The construction procedure assigns a maximum of ndr 
nearest locations to drones, holding their endurance requirements, and 
assigning the last one to the truck, where it meets all of the drones. This 
procedure is repeated with the next ndr nearest locations till all locations 
are covered by drones or by the truck. 

To illustrate the procedure of constructing an initial solution we will 
use a small problem with n = 6 locations and ndr = 2 drones. We will 
suppose a battery endurance of 72.93 s, and a drone speed of 2 m/s, 
double that of the truck’s speed, 1 m/s. As an intermediate step, an 
infeasible solution in terms of endurance is shown in the first graph in 
Fig. 4. This figure shows the vehicles traversing each arc and the times 
needed. Drones are represented by dashed lines and solid lines represent 
the truck’s movements. As drone 1 exceeds its endurance when travel-
ling from location 2 to location 5, in order to repair feasibility, it is 
transported on the truck and the truck will also visit location 4, the 
farthest from the two nearest locations (1 and 4) to location 2. Drone 
0 visits location 1 and eventually meets truck and drone 1 at location 4. 

Fig. 3. Equivalent solutions.  

Fig. 4. Initial solution.  

Fig. 5. Grid of complete initial feasible solution.  
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The resulting initial solution is shown in the second graph in Fig. 4 and 
the resulting grid for this new solution is illustrated in Fig. 5. 

The mission time is calculated as the time needed in the truck’s route, 
from the depot to the final location, but taking into account the syn-
chronization processes in those locations where the truck acts as a base 
for the drones. In initial solutions, all locations visited by the truck are 
meeting points with all the drones. In this example, from Fig. 5, the arcs 
0-3 and 3-2 are traversed at truck speed. Thus, t(3) = t(0)+tgv03 =

35.31s and t(2) = t(3) + tgv32 = 83.86s Then, drone #0 takes off from 
the truck at location 2, visits location 1 and then lands on the truck at 
location 4. The flight time is tav(4) = tav(2,1)+ tav(1,4) = 59.93s, the 
truck time is tgv(4) = tgv(2,4) = 71,59s so drone #0 must wait hovering 
at location 4 till the truck arrives there and then it will meet the truck. 
There is no battery endurance problems since it is 72.93 s and the total 
flight time is the same as the ground vehicle time, 71.59 s. So, t(4) =
t(2) + tgv(2, 4) = 155.45s . Finally, the total mission time is t(5) =
t(4)+111.77 = 267.22s . This initial solution is always feasible due to 
the construction procedure that has been followed. 

4.3. Agents’ behaviour 

Once the initial solution has been generated by the manager agent, 
the solution is broadcasted to the rest of the agents that, to improve the 
solution quality, will try to move in their neighborhood positions on the 
grid. An schema of this behaviour is shown in Fig. 6. 

The manager agent is the only one that maintains a pool of generated 
solutions, acting as a central asynchronous memory and setting the pace 
of the rest of the agents. After reading the problem data and generating a 
feasible initial solution, the manager performs the following set of tasks 
during a prefixed number of iterations: 

1. Tells agents to run a step (best movement) 
If there is no improvement in the agents’ step (grid movement), 

generates a new solution 
2. Stores and broadcasts the current solution 
The rest of the agents evaluate the possible improvement in the so-

lution quality by moving to neighbouring positions in the grid. In each 
step (grid movement), as explained before, they evaluate the improve-
ment that would take place using three possible movements, vertical, 
horizontal and to the nearest arc (joining a nearby route). Next, they 
share the best improvement with the manager. We call this the first 
stage of the step. Then, in a second stage, agent 0 selects the agent that 
will move and eventually, in a third stage, the selected agent makes the 
movement, possibly involving other agents in that movement, and 
shares the result with the manager. These three stages of agents’ steps 
are summarized in Fig. 7: 

In what follows we describe in detail the possible movement of 
agents. We must highlight that, agents 0 and n − 1 do not perform any 
kind of movements as they represent the initial and final locations. 
Agent 0 will be used in the second stage to select which of the other 
agents will move. 

Fig. 6. Schema of multi-agent algorithm.  

Fig. 7. Stages in agents’ steps.  
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4.3.1. Vertical movement evaluation – yMove()
The agent evaluates the improvement of the current sequence when 

moving vertically in the grid. This movement supposes a change in the 
vehicle that visits a location or in the type of meeting between truck and 
drones that takes place at that location. To reduce the computation time, 
the agent only evaluates the change that this movement implies in the 
mission time. These variations are a result of changes in some arcs of the 
current solution. To take all possible modifications into account, the sub- 
sequence of locations between the previous complete meeting and the 
next complete meeting, both included, is calculated. For example, if 
agent 1 is going to move, the sub-sequence that includes all the arcs 
affected by that movement spans from meeting at location 2 to meeting 
at location 4 (see Fig. 8). Only arcs 2-1, 1-4 and 2-4 are considered. This 
policy saves a long computation effort in larger problem instances. 

4.3.2. Horizontal movement evaluation – 2opt()
In this movement, searching for a solution improvement, the agent 

changes its position with rear agents in the sequence. We have called this 
procedure 2opt() due to its similarities with the algorithm by (Croes, 
1958). Since it is a horizontal movement, if the agent represents a truck 
visited location, it will try a change with the next truck visited location. 
If it represents a drone visited location, it will change position with 
agents/locations visited by the same drone in the same flight. If the 
movement goes further towards the immediate position in the sequence, 
intermediate agents will also change their positions (see example in 
Fig. 9). 

A parameter max r is used to limit this movement. To make this 
parameter less sensitive to changes in problem size, the maximum 
number of positions an agent can move in this horizontal movement, 
which we will call radius, has been modeled as a function of the problem 
size (WIDTH): radius = WIDTH//max r. This limit will reduce an excess 
in computation time that, according to our pilot tests, does not provide 
further improvement in the objective function quality. 

In our research, this type of movement only obtains improvements 
occasionally because the swap between locations visited by the truck 
implies rebuilding drones’ flights, which usually worsens the solution’s 
quality. Furthermore, the swap between locations visited by drones 
seldom improves the solution’s quality as their routes are short (due to 

endurance limitations) visiting only two or three locations. 

4.3.3. Movement to the nearest arc evaluation (joining a nearby route)– 
node2arc()

In this case, agents try to improve the total mission time by moving to 
the intermediate position between two locations visited consecutively 
by the same vehicle. To this end, the agent needs to find the nearest arc 
in the nearest sequence or route. For instance, if agent g is going to move 
to arc c − e (see Fig. 10): 

If an agent movement changes a location from being visited by a 
drone to being visited by the truck, the meeting type must be re- 
calculated. A graphical example of this movement is shown in Fig. 11 
(again drone movements are represented in dashed lines and truck 
movements in solid line), where agent b changes from being visited by a 
drone to being visited by the truck. As shown, the meeting type changes, 
and the movement over the grid is represented in Fig. 12 Note the 
change in the meeting code of agent b according to the contents of 
Table 1. 

Here we show another example of an agent movement to the nearest 
arc. Agent 2 tests if there is a travel time improvement when location 2 
changes to being visited by the truck in its route between locations 4 and 
5. The two graphs in Fig. 13 represent vehicles, locations and distances 
between locations. The drone speed is supposed to be 2 m/s, the truck 
speed is 1 m/s and the battery endurance is 72.93 s (see also the cor-
responding movement in the grid in Fig. 14). 

Initial situation: total mission time: 261.07 s (feasible). The nearest 
arc to location 2 is 4–5. 

Modified situation: total mission time 277.78 s (non-feasible, penalty 
time: 57.71 s due to drone 0 flight 0–3-1–4). 

Fig. 8. yMove() example.  

Fig. 9. Example of agent b’s horizontal movement.  

Fig. 10. Movement of agent g from its current location to a near arc in the grid.  

Fig. 11. Movement of agent b from its current location to a nearby arc.  
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4.3.4. Selection of the agent to move – select()
In the second stage of each agent’s step, the static agent 0 performs 

the task of choosing between other agents which one will move. If there 
is at least one agent that can improve the quality of the solution, agent 
0 reads from the manager the list of agents that allow an improvement in 

the objective function solution together with the values of these im-
provements. Then, it assigns to each agent a probability proportional to 
the improvement that each agent allows. Eventually, it throws the dice 
to choose one of the agents using these probabilities. After having 
selected the index of the agent, agent 0 shares this information with the 
manager; in this way, in the third stage, all the agents will know which 
of them will move. 

4.3.5. Making the best movement 
In the third stage of each agent’s step, the selected agent will make 

its best movement and will share it with the manager agent, which in 
turn will let all agents know the result of that movement. 

4.3.6. Sharing the resulting movement with the manager 
To share the movement with the manager agent, the agent commu-

nicates the improvement to the manager as well as the final position of 
the rest of the agents (since some of the movements imply not only the 

Fig. 12. Grid representation of the movement represented in Fig. 11.  

Fig. 13. Agent no. 2 location2arc() movement.  

Fig. 14. Agent no. 2 location2arc() grid movement.  

Fig. 15. rand sol() procedure.  
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movement of the affected agent but also the movements of other ones), 
and the penalty value implied by these positions. 

4.4. Rules to escape from local minima 

At the end of each step, if no agent has improved the quality of the 
solution, the search is stuck at a local minimum. Then, the manager 
agent generates a solution (see procedure rand_sol() in Fig. 15), in trying 
to get out of this minimum. For this task, the manager uses two 
parameters:  

• nout : is the number of agents extracted from the solution and 
returned to it in different positions. To facilitate its adjustment, it is 
calculated as an integer fraction of the sequence length (WIDTH of 
the grid, nout = WIDTH//R), where R is a parameter needed to 
initiate the procedure.  

• max its : Maximum allowed number of iterations in the procedure 
rand sol() . This parameter allows tuning the computation time vs the 
solution quality obtained in this procedure. 

The manager agent uses three variables in this procedure:  

• model time → Best time (mission completion time) found by agents 
and stored in the manager.  

• total time → Time found after applying the current procedure (in this 
case, rand sol()).  

• iteration → Current iteration in rand sol() procedure. 

Once the agents have been extracted from the solution, the solution 
must be rebuilt by reinserting these agents in the grid. The procedure is 
shown in Fig. 16, being:  

• extracted → Set of nout agents removed from the solution 

To calculate the value of the objective function (in our problem, the 
total mission time needed to complete a mission), as other authors do 
(Murray & Chu, 2015), we assume the drones continue flying when 
waiting for the truck or another drone, until they arrive at the meeting 
point. This point is relevant due to the limited endurance of drones. 

Intending to improve the search procedure in the solution space, our 
algorithm allows solutions in which the maximum endurance constraint 
is neglected. For these solutions, a time value penalty is added to the 
flight time. Each time a drone arrives at a meeting point, its flight time is 
compared with its endurance. If the time is greater than the endurance, 
we suppose that the drone continues flying but at a slower speed (see 

Fig. 17). At each meeting point, the maximum excess time of all drones 
arriving at that point is calculated and added to an excess time variable. 

The penalty time is obtained by considering that the over-endurance 
distance is travelled by the aerial vehicle at the speed of the ground 
vehicle (truck) sgv < sav. 

The penalty time expression, tpenal, is calculated as follows (1, 2): 

tpenal =
sav

sgv
× pfactor ×

∑

i
exci (1)  

exci = max
j

(
tflightij − Q

)
(2) 

Where:  

• sgv – Represents the ground vehicle speed  
• sav – Corresponds to the drone speed  
• Q – Is the drone time endurance  
• pfactor ≥ 1 – Is an algorithm tuning parameter  
• exci – Represents the excess in flying time over endurance for all 

drones landing on location i  
• tflightij – Is the flying time for drone j landing on location i 

Thus, the maximum excess in flying time at each location is added up 
to obtain the total penalty time. We decided to use a correction pfactor 
since, in some instances, the gain in the mission time allowing the excess 
in the drones’ endurance was greater than the total penalty obtained 
without this correction. 

5. Results and discussions 

We have tested the behaviour of our agent-based algorithm when 
applied to a set of different size instances from the literature. The ex-
periments have been carried out on a desktop personal computer 
running Windows, with an Intel Core i7 2.8 GHz processor and 16 GB of 
RAM. The algorithm has been coded in Python 3 using the Mesa agent 
library (Kazil et al., 2020). 

First, we compared the results obtained using the agent-based 
approach algorithm with the results obtained using the iterated greedy 
approach from (Gonzalez-R et al., 2020) in medium-size instances (those 
from 50 to 250 locations) and using only one drone. Then, we used our 
agent-based algorithm for solving larger size instances using more than 
one drone. For these instances we compared the results with those ob-
tained by using only one drone. 

As expected, the agent-based approach helps to find solutions for 
large-size instances in a short computation time, whereas it is less 
competitive in small size problems. In these small instances, concerning 
the computation time, there is no advantage when compared with the 
iterated greedy approach for the same order in the quality of solutions. 
On the contrary, we report the results also for 375 and 500 locations 
problems using a fleet up to 6 drones, allowing them to visit more than 
one location per flight and allowing the truck to serve locations, which 
have not been reported in the literature before, as seen in the exhaustive 
review in (Moshref-Javadi & Winkenbach, 2021). In medium and small 
size instances (<20 locations), agent-based methods are less competitive 

Fig. 16. Solutions’ rebuilding procedure.  

Fig. 17. Schema of over-endurance flying time penalty.  
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than simpler heuristics, obviously for small instances (<10 locations) 
they are also less competitive than exact methods. 

5.1. Global results 

As in our previous work (Gonzalez-R et al., 2020), the set of instances 
used in this research is based on the one available in [dataset](Bouman 
et al., 2020). We have only considered the uniform set of instances; 
where locations are situated in a two-dimensional plane, distances are 
the Euclidean distances, and the locations are distributed uniformly over 
a (1, 100) square. 

Parameter tuning has been made by using the Iterated Racing (Irace) 
algorithm by (López-Ibáñez et al., 2016). The considered values for 
these parameters are summarized in Table 2. 

The parameter pfactor is used in equation (1) to impose the penalty 
time in which a non-feasible solution is augmented. max r is used to 
limit horizontal movement of agents (see Fig. 9). R is used to calculate 
nout , the number of agents extracted in the rand sol() procedure (see 
Fig. 15) to escape from local minima. Finally, max its is the maximum 
number of iterations in the rand sol() procedure, to balance computation 
time and quality of solutions. 

The maximum computation time was set to 600 s in the first set of 
experiments. We took a sample of 100 problems between 50 and 500 
locations. 14 of these problems, 2 for each problem size, are reserved for 
the statistical searching of the best parameter configurations. The best- 
attained configurations are shown in Table 3. 

A Wilcoxon signed pair rank test between the best parameter 

configurations provides significant differences between configurations 8 
and 16 but not between 1 and 8, so finally we chose configuration 
number 1. 

We made 10 runs for each of the instances available in [dataset] 
(Bouman et al., 2020) with an alpha parameter value equal to 2. Each 
problem size was run changing the number of drones from 1 to 6. (Since 
there are 10 instances for each problem size from 50 to 175 locations, 20 
instances of size 250, 15 instances of 375 and 11 of 500 locations and 
each problem size was run changing the number of drones from 1 to 6, 
the total number of experiments was of 5160). Remember that our al-
gorithm admits non-feasible solutions, in terms of drones’ battery 
endurance, allowing the exploration of different regions of the search 
space. 

The average objective function value (total mission time in seconds) 
and its coefficient of variation for problem sizes, varying from 50 to 500 
locations and fleet sizes from 1 to 6 drones, are shown in Table 4: 

The averages in the mission time show a decrease as the number of 

Table 2 
Tested parameter values.  

Parameter Type Values 

Penalty parameter (pfactor)  Categorical {1.5, 2.0, 
2.5} 

Parameter to build maximum swapping radius 
(max r)  

Integer [4, 6] 

Parameter to build maximum extracted locations (R)  Integer [8, 10] 
Maximum iterations to escape from local minima 

(max its)  
Integer [1, 2]  

Table 3 
Best parameter configurations found by Irace package.  

config pfactor  max r  R  max its  

1  2.5 4 10 1 
8  2.5 5 10 1 
15  2.5 4 9 2 
16  2.0 6 10 2  

Table 4 
Mission time averages (m.t.avg.) and their coefficients of variation (c.v.) (%) for the agent-based TmDTL problem using 1 to 6 drones.  

Problem sizes  Number of drones   

1 2 3 4 5 6 

50 m.t.avg.  312.3  270.2  254.7  238.0  231.0  228.2  
c.v.  (7.04%)  (10.86%)  (10.39%)  (10.76%)  (12.66%)  (11.29%) 

75 m.t.avg.  375.7  314.8  291.6  271.4  270.7  266.7  
c.v.  (7.26%)  (11.55%)  (11.56%)  (12.32%)  (12.89%)  (13.69%) 

100 m.t.avg.  441.5  370.9  340.8  321.6  323.4  329.7  
c.v.  (5.99%)  (9.75%)  (11.53%)  (13.15%)  (14.20%)  (13.91%) 

175 m.t.avg.  606.0  525.3  488.2  491.9  481.1  484.5  
c.v.  (8.00%)  (10.16%)  (11.44%)  (15.89%)  (15.84%)  (21.31%) 

250 m.t.avg.  747.8  653.9  643.3  623.5  627.9  622.6  
c.v.  (6.55%)  (7.81%)  (7.59%)  (7.91%)  (10.67%)  (8.90%) 

375 m.t.avg.  912.3  912.8  834.1  820.9  822.3  816.5  
c.v.  (8.21%)  (8.15%)  (14.18%)  (18.25%)  (21.50%)  (24.57%) 

500 m.t.avg.  1166.1  1150.6  1140.6  1136.0  1130.3  1115.8  
c.v.  (17.01%)  (15.83%)  (15.20%)  (16.45%)  (17.20%)  (17.04%)  

Fig. 18. Mission time averages for small problems.  

Fig. 19. Mission time averages for large problems.  
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drones increases and an increase as the problem size enlarges. The 
decrease in the mission time when the fleet size expands is less impor-
tant for small-size problems, indicating the limit in the optimal fleet size. 
This effect is better shown in Fig. 18 and Fig. 19. 

To validate these results, they are compared with those obtained in 
our previous research (Gonzalez-R et al., 2020) for the TDTL problem, 
where the truck only carried one drone and the problem was addressed 
with an iterated greedy meta-heuristic. As shown in Table 5, for small 
size problems and similar computing times, the average quality of so-
lutions, though being slightly poorer is of the same order of magnitude. 
This is a good result in medium size, less complex problems (up to 250 
locations and only one drone fleet) since the behavior and intelligence of 

agent-based systems involve greater computational complexity. This 
added complexity is balanced with the problem partitioning made by 
agents. 

Table 6 shows the improvement obtained in the mission time t when 
the fleet size ndr increases in comparison with the time obtained when 
only one drone helps the truck (3): 

Δt1,ndr =
t(1) − t(ndr)

t(1)
(3) 

These improvements can be better interpreted when the comparisons 
are made considering the improvement obtained when using one drone 
less (4), as reported in Table 7 and Fig. 20.Table 8. 

Δtndr− 1,ndr =
t(ndr − 1) − t(ndr)

t(ndr − 1)
(4) 

Table 7 reports the incremental improvement in the total mission 
time when adding a new drone to the fleet with respect to the total 
mission time using one drone less – i.e. the average improvement in the 
mission time for 250 locations instances when using 4 drones with 
respect to using 3 drones is of 3%. 

We have carried out ANOVA tests in order to analyze the differences 
between mission times averages when the variation in the number of 
drones is statistically meaningful. Here, for the sake of clarity, we only 
show the P-values results. A more complete set of results is included in 
Appendix 1. 

These results show how the improvement decreases as the number of 
drones used increases. This improvement is smaller for larger size in-
stances. The P-values are smaller than 0.05 in all cases except in the last 
one, corresponding to the 500 locations instances, in line with the ex-
pected behaviour of our algorithm. In our opinion, since the computa-
tion time is limited to 600 s, for these kinds of complex problems, the 
agents’ ability to evolve in the search for better quality solutions is 
constrained. Thus, in order to assess whether this behaviour is due to 
limitations in computing time, we have re-run the experiments, this time 
allowing the algorithm to run for 2400 s for the larger size instances. 

5.2. Analysis of large-size instances 

As previously mentioned, a set of additional experiments extending 
the computation time to 2400 s have been carried out for problems with 

Table 5 
Objective function obtained by the iterated greedy (IG) and by the 
agent-based system (ABS) both using only one drone.  

n IG ABS 

50  311.4  312.3 
75  359.3  375.7 
100  406.4  441.5 
175  511.5  606.0 
250  605.9  747.8  

Table 6 
Mission time improvement with the number of drones with respect to one drone.   

Number of drones 

Δt1,ndr  2 3 4 5 6 

50  13.48%  18.46%  23.81%  26.04%  26.95% 
75  16.22%  22.38%  27.77%  27.96%  29.01% 
100  15.99%  22.81%  27.16%  26.75%  25.33% 
175  13.32%  19.43%  18.83%  20.62%  20.05% 
250  12.55%  13.97%  16.62%  16.03%  16.74% 
375  − 0.05%  8.57%  10.02%  9.86%  10.51% 
500  1.33%  2.19%  2.58%  3.07%  4.31%  

Table 7 
Mission time incremental improvement compared with one drone less.   

Number of drones 

Δtndr− 1,ndr  2 3 4 5 6 

50  13.48%  5.76%  6.56%  2.92%  1.23% 
75  16.22%  7.35%  6.94%  0.26%  1.46% 
100  15.99%  8.12%  5.63%  − 0.56%  − 1.94% 
175  13.32%  7.05%  − 0.75%  2.20%  − 0.72% 
250  12.55%  1.62%  3.08%  − 0.71%  0.85% 
375  − 0.05%  8.62%  1.58%  − 0.18%  0.71% 
500  1.33%  0.87%  0.40%  0.50%  1.28%  

Fig. 20. Mission time improvement when adding a drone to the fleet.  

Table 8 
One-way ANOVA test results for mission time grouped by 
number of drones from 1 to 6, number of locations from 50 to 
500 and 600 s computing time per run.  

Number of locations P-value 

50  6.2793*10− 101 

75  1.8632*10− 104 

100  3.98202*10− 95 

175  8.91217*10− 40 

250  1.0853*10− 108 

375  5.61603*10− 22 

500  0.54168935  

Table 9 
Experiment design for 2400 s computing time and problems containing 250, 375 
& 500 locations.  

Variable parameters Type Values 

Penalty parameter (pfactor)  Categorical {1.5, 2.0, 
2.5} 

Parameter to build maximum swapping radius 
(max r)  

Integer [4, 6] 

Parameter to build maximum extracted locations (R)  Integer [10, 15, 20] 
Maximum iterations to escape from local minima 

(max its)  
Integer [1, 2]  
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250, 375, and 500 locations. For these new experiments, the maximum 
number of drones’ steps has been removed as a stopping condition. The 
parameters were adjusted again as summarized in Table 9: 

The best parameter values obtained by the Irace package for the new 
set of experiments are:  

• pfactor : 1.5  
• max r : 6  
• R : 20  
• max its : 1 

For each one of the instances, 20 runs have been carried out by 
varying the fleet size from 1 to 6 drones. This supposes a total of 920 ×

6 = 5520 experiments and approximately 3680 h of computation time. 
The results show, as expected, an improvement in the solutions 

quality and a reduction in their variability (Table 10. 
In this case, Table 11 and Table 12 show the improvement in the 

mission time when the fleet size increases. Table 11 represents these 
increments when comparing with the use of only one drone whereas 
Table 12 depicts the case when comparing the use of one drone less (see 
also Figure 21). 

To validate the differences observed in average mission times when 
varying the number of drones, we carried out a new set of ANOVA tests 
(see Table 13), separated by problem size. 

Now, differences are meaningful for P values, corroborating that, for 
our method, 600 s is a too short time. 

5.3. Fleet size analysis for complex problems 

To confirm the results obtained for the larger size instances, we made 
a new test in which the algorithm was run for 2400 s, varying the fleet 
size between 6 and 8 drones, and testing only the 11 instances with 500 
locations, running again 20 times in each instance. The objective func-
tion reduced its values as expected, but the variability continues to be 
relatively high (Table 14) and no improvement is observed with more 
than 6 drones, which implies a limit in fleet size for this configuration 
(see also Fig. 22). 

Although we can now see a great improvement between 5 and 6 
drones, again the increasing complexity of these large problems makes it 
difficult to achieve reasonable improvements when considering a higher 

Table 10 
Mission time averages (m.t.avg.) and their coefficients of variation (c.v.) (%) for the agent-based TmDTL problem using 1 to 6 drones for 250 to 500 locations problems.  

Problem sizes  Number of drones   

1 2 3 4 5 6 

250 m.t.avg.  683.05  600.16  582.32  574.29  552.70  542.32  
c.v.  (5.63%)  (7.92%)  (7.74%)  (8.09%)  (10.37%)  (9.91%) 

375 m.t.avg.  862.11  865.62  852.82  756.73  746.14  730.53  
c.v.  (5.83%)  (6.52%)  (6.68%)  (9.48%)  (8.06%)  (10.46%) 

500 m.t.avg.  1005.11  998.84  1016.37  1007.85  939.87  889.74  
c.v.  (9.90%)  (8.54%)  (11.97%)  (10.58%)  (16.54%)  (15.49%)  

Table 11 
Average mission time improvement when compared with the mission time using 
only one drone.   

Number of drones 

Δt1n  2 3 4 5 6 

250  12.14%  14.75%  15.92%  19.08%  20.60% 
375  − 0.41%  1.08%  12.22%  13.45%  15.26% 
500  0.62%  − 1.12%  − 0.27%  6.49%  11.48%  

Table 12 
Average mission time improvements when compared with the mission time 
using one drone less.   

Number of drones 

Δt(n− 1)n  2 3 4 5 6 

250  12.14%  2.97%  1.38%  3.76%  1.88% 
375  − 0.41%  1.48%  11.27%  1.40%  2.09% 
500  0.62%  − 1.75%  0.84%  6.75%  5.33%  

Fig. 21. Mission time improvement when adding one drone to the fleet in 
large problems. 

Table 13 
ANOVA test for mission time grouped by number of 
drones from 1 to 6 and 250 to 500 locations problems.  

Locations P-value 

250 0 
375 1.7932*10− 254 

500 1.62729*10− 39  

Table 14 
Mission time averages (s) and coefficient of variation (%) for 500 locations 
problems, 5 to 8 drones and 2400 s comp. time.  

Number of drones 

5 6 7 8  

939.87  889.74  905.28  912.18  
(16.54%)  (15.49%)  (19.53%)  (22.86%)  

Fig. 22. Total mission time averages in 500 locations and 5–8 drones problems.  
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number of drones, between 6 and 8. The ANOVA tests corroborate the 
differences obtained between 5 and 6 drones and the similarities be-
tween mission times when using 6 to 8 drones (Table 15). 

One more time, we have tested these results to assess the progress in 
the mission time when adding drones to the fleet: 

And again, notwithstanding the misssion times are statistically 
different for each number of drones, the P-values confirm that, the 
variation is less marked than the ones in less complex problems so, we 
can think again in a shortage in testing time. 

This variability in the quality of solutions can be better seen in the 
following boxplot graphics (Figs. 23 and 24). They represent the total 
mission time for each run of each instance and highlight that instances 6, 
12 and 21, showing an important dispersion in their results no matter 
the size of the fleet. 

6. Conclusions 

We have designed a novel agent-based system capable of addressing 
complex routing problems, such as the Truck multi-Drone Team Logistic 
problem, in which a set of locations or nodes must be visited by a team 
composed of a truck and several UAVs for ISR (Intelligence, Surveil-
lance, and Reconnaissance) or logistics missions. The locations must be 

visited once, either by truck or by one of the drones. The drones have a 
limited endurance due to their limited battery capacity, whereas the 
truck is supposed to have unlimited endurance. Unlike other works, each 
drone may visit an a priori unknown number of locations during each 
flight. Moreover, no a priori route is defined for the truck. 

We have followed an approach in which locations are modelled as 
software agents seeking to find good quality solutions by moving 
themselves in an abstract grid to represent the problem’ solutions. They 
follow a communication scheme managed by one agent and choose their 
allowed movements with certain probabilities, avoiding early conver-
gence to local minima. In the case that an agent does not find im-
provements in the objective function value, the manager agent corrects 
other agents positions, shaking them and allowing them to move to a 
different region of the search space. This process is repeated a pre- 
determined number of steps or during a pre-determined amount of time. 

The algorithm has been tested by using a well-known benchmark set 
by varying the number of drones and the problem sizes. To validate the 
proposed approach, the results obtained with only one drone have been 
compared to those obtained with our previous metaheuristic. The results 
are promising since our agent-based algorithm has found solutions of a 
similar quality to the ones found in our former study for 50 locations 
problems, and in similar computation times. Moreover, for larger-size 
problems, the algorithm has found solutions in reasonable computa-
tion times. 

We have also detected an increase on the variability of results, as the 
complexity of the problem increases, both with the number of locations 
and the size of the fleet. In our opinion, this variability could be reduced 
by simply enlarging the computation time. 

As a future research line, we consider a direct enhancement of our 
agent-based system by deeping into development of a parallel version. If 
the communication between agents is fluent, the advantage of this 

Table 15 
ANOVA test for mission time grouped by number of 
drones from 5 to 6 and from 6 to 8, 500 locations 
problems.   

P-value 

5 to 6 drones  0.00062667 
6 to 8 drones  0.45150698  

Fig. 23. Boxplot graphic for 500 locations problems experiments, 1 truck, 5 and 6 drones.  

Fig. 24. Boxplot graphic for 500 locations problems experiments, 1 truck and 7 drones.  
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inherently parallel architecture would benefit the speedup in compu-
tation time, which could be superlinear with the number of agents. 
These improvements of the algorithm will allow it to address not only 
the studied problem, finding the optimum fleet size in the largest 
problem instances but also the inclusion of more than one ground 
vehicle. The parallel programming of the algorithm will further allow to 
consider constraints that would approximate the problem to other real- 
life situations such as differences between vehicles, payload or battery 
depletion laws, as they have been considered in the literature. 
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Leitão, P., Mařík, V., & Vrba, P. (2013). Past, present, and future of industrial agent 
applications. IEEE Transactions on Industrial Informatics, 9(4), 2360–2372. https:// 
doi.org/10.1109/TII.2012.2222034 

Lopes Silva, M. A., de Souza, S. R., Freitas Souza, M. J., & Bazzan, A. L. C. (2019). 
A reinforcement learning-based multi-agent framework applied for solving routing 
and scheduling problems. Expert Systems with Applications, 131, 148–171. https:// 
doi.org/10.1016/j.eswa.2019.04.056 

Lopes Silva, M. A., de Souza, S. R., Freitas Souza, M. J., & de França Filho, M. F. (2018). 
Hybrid metaheuristics and multi-agent systems for solving optimization problems: A 
review of frameworks and a comparative analysis. Applied Soft Computing Journal, 
71, 433–459. https://doi.org/10.1016/j.asoc.2018.06.050 
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