
Expert Systems With Applications 195 (2022) 116604

Available online 31 January 2022
0957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

A multi-agent approach to the truck multi-drone routing problem

Jose Miguel Leon-Blanco a,*, P.L. Gonzalez-R a, Jose L. Andrade-Pineda b, D. Canca a, M. Calle a

a University of Seville, School of Engineering, Department of Industrial Engineering and Management Science I, C Descubrimientos s/n, 41092 Seville, Spain
b Robotics, Vision & Control Group, University of Seville, School of Engineering, C◦ Descubrimientos s/n, 41092 Seville, Spain

A R T I C L E I N F O

Keywords:
Unmanned aerial vehicle
Drone
Multi-agent system
Vehicle routing problem
Traveling salesman problem

A B S T R A C T

In this work, we address the Truck-multi-Drone Team Logistics Problem (TmDTL), devoted to visit a set of points
with a truck helped by a team of unmanned aerial vehicles (UAVs) or drones in the minimum time, starting at a
certain location and ending at a different one. It is an enhanced version of the multiple Flying Sidekicks Traveling
Salesman Problem (mFSTSP) presented in Murray and Raj (2020) wherein drones are allowed to visit several
customers per trip.

In order to cope with large instances of the complex TmDTL, we have developed a novel agent-based method
where agents represent the points that are going to be visited by vehicles. Agents evolve by means of movement
inside a grid (locations vs. vehicles) according to a set of rules in the seek of better objective function values.
Each agent needs to explore only a fraction of the complete problem, sharing its progress with the rest of the
agents which are coordinated by one central agent which helps to maintain an asynchronous memory of solutions
– e.g. on the control of the mechanism to escape from local minima.

Our agent-based approach is firstly tested using the largest instances of the single TDTL problem reported in
the literature, which additionally serves as upper bounds to the TmDTL problem. Secondly, we have solved
instances up to 500 locations with up to 6 drones in the fleet. Thirdly, we have tested the behavior of our
approach in 500 locations problems with up to 8 drones in order to test the fleet size sensitivity.

Our experiments demonstrate the ability of the proposed agent-based system to obtain good quality solutions
for complex optimization problems that arise. Further, the abstraction in solutions coding applied makes the
agent-based approach scalable and flexible enough to be applied to a wide range of other optimization problems.

1. Introduction

There are a variety of practical applications where the use of drones
promises an improved service, taking advantage of their travel speeds
and reduced costs (Campbell et al., 2017). The drone’s ability to travel
directly between two points of interest is leading more and more to the
conceptualization of new working models in certain logistics scenarios,
mostly assuming that a moving truck acts as a base, which allows the
enlargement of the action radius of the drone’s operation.

In this paper, we assume a set of locations to which we need either
deliver lightweight relief items or visit for an intelligence, surveillance
and reconnaissance (ISR) mission. We extend the seminal Truck Drone
Team Logistics (TDTL) model in (Gonzalez-R et al., 2020) to consider a
fleet of multiple Unmanned Aerial Vehicles (UAVs) or drones along with
a truck. Since the optimization problem that arises has to find the
optimal routes for the vehicles in the system to achieve a given objective
–e.g. minimizing the total mission time-, the applications under study

are within the category “routing for a set of locations” (Otto et al., 2018).
In contrast to other works that assume the truck to act solely as a
mothership where drones change batteries and payload (Poikonen &
Golden, 2020b; Salama & Srinivas, 2020; Wang et al., 2017) we consider
that the truck plays an active role in the delivery process since it can
serve the locations as in (Ha et al., 2018; Murray & Chu, 2015).

There are other studies on the multi-drone field (Luo et al., 2021;
Murray & Raj, 2020; Poikonen & Golden, 2020a; Schermer et al., 2019),
but they are typically focused on addressing small to medium size in-
stances. Differently, our main contribution here is gaining the ability to
solve large instances in the assumption that multiple customer visits are
allowed for drones, which according to (Chung et al., 2020) is a more
general approach. While this feature is also in Poikonen & Golden
(2020a), they did not apply the drone sortie policy that we incorporate
in this paper. Further flexibility is attained by allowing drones to come
back to the truck at a different location than the one they were launched
from.

* Corresponding author.
E-mail address: migueleon@us.es (J.M. Leon-Blanco).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.116604
Received 6 April 2021; Received in revised form 17 November 2021; Accepted 20 January 2022

mailto:migueleon@us.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.1016/j.eswa.2022.116604
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116604&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 195 (2022) 116604

2

2. Related work

The literature on coordinating the logistics operations using a truck-
drone combination focuses predominantly on extending classical rout-
ing problems – a variant of the traveling salesman problem with drones
(TSP-D) (Agatz et al., 2018; Bouman et al., 2017; Ha et al., 2018; Jeong
et al., 2019; Mathew et al., 2015; Murray & Chu, 2015; Roberti &
Ruthmair, 2021; Vásquez et al., 2021), and a generalization of vehicle
routing problems to include drones (VRP-D) (Poikonen et al., 2017;
Sacramento et al., 2019; Schermer et al., 2018; Wang et al., 2017; Wang
& Sheu, 2019). For a comprehensive recent review of the current
research in this area, the reader is referred to the works by Rojas Viloria
et al. (2020), Chung et al. (2020), Macrina et al. (2020) and Moshref-
Javadi & Winkenbach (2021). As claimed in our seminal work (Gon-
zalez-R et al., 2020), we cover some of the gaps identified in the liter-
ature. In particular, we stated the TDTL for applications where a drone
trip (every trip comprises launching and visiting a typically small
number of locations and a landing in the ground vehicle at the next
rendezvous point) is capable of serving several locations. This differs
from the commonly accepted hypothesis in last-mile delivery literature
which considers that only one single location is visited at each drone’s
trip – except for only a few works, see e.g. (Karak & Abdelghany, 2019;
Luo et al., 2021; Murray & Raj, 2020; Poikonen & Golden, 2020a; Sal-
ama & Srinivas, 2020; Wang et al., 2019). However, notice that this
limitation is not necessarily applicable; for instance, current drone
technology allows for picking-up small items –e.g. vaccines, water pu-
rification tablets, or medicines– and delivering them one-at-a-time
following a sequence of visits during the same drone’s trip. In our
approach to the problem: (i) every location stands for a customer that
can be served either by drone or by truck; (ii) the truck stops occur at
certain customer sites (which are not predefined) and hence, drones are
only allowed to merge with the ground vehicle at these locations; (iii)
Once landed, the drone always gains a fully-charged battery and would
then be ready to start a new trip or stay at the truck until the truck carries
it to a new serving area.

We consider all the locations are open to be visited either by drone or
by truck, therefore all of them are potential points for both stop and
rendezvous. (Luo et al., 2017; Wang et al., 2019) assume that both the
truck and the drone can serve the locations, although both works limit
the locations wherein the synchronization among trucks and drones can
occur: (Wang et al., 2019) schedules it at the docking hubs –i.e. spacious
areas to make a controlled landing– whereas (Luo et al., 2017) schedules
the rendezvous points at truck stops among a preselected subset of
candidate locations. This is a simplification that also appears in (Sac-
ramento et al., 2019) and (Karak & Abdelghany, 2019). (Sacramento
et al., 2019) consider that some points are to be served by the truck
owing to the weight of the load, and limits the synchronization at truck
stops among a preselected subset of candidate locations. (Schermer
et al., 2019) have recently considered the possibility of launching and
retrieving drones along a route – i.e. at discrete locations others than the
customer locations – and has reported experimental results for their
VNS/Tabu search heuristic applied on up to 50 customer instances: they
claimed the potential of a reduced makespan and a higher utilization of
drones. Some other authors (Caggiani et al., 2017; Carlsson & Song,
2018) adopted a continuous approach to allow the drones to meet the
truck at any point of the route between two locations. Notwithstanding,
we use the common assumption that synchronizations only occur while
the truck stops at one of the discrete locations. Apart from this, the
flexibility of our approach resides in that we do not fix a priori which of
the points are going to be visited by the truck and which of them are
going to be visited by drones, in contrast to completely prefixed routes
for the truck (Othman et al., 2017) or partially prefixed routes (Luo
et al., 2017; Mathew et al., 2015; Murray & Chu, 2015). Besides, while
Sacramento et al. (2019) prohibits the truck from waiting for the drone
at the same location it was launched, in our approach, we get the same
result differently: owing to the active role-play of the truck and thinking

of visiting all the locations as soon as possible, launching a drone and
rendezvousing the same drone at the same location is of no interest.
Indeed, for the addressed problem, the synchronization issue is crucial
since it turns the problem into finding the chain of customers to be
served by each vehicle, while specifying the sites where the battery
swaps will take place.

A variety of single-truck multi-UAV works have been published in
the last years. (Chang & Lee, 2018; Ferrandez et al., 2016; Moshref-
Javadi & Lee, 2017) consider a system in which the truck deploys
multiple drones from distributed launch sites along the truck’s route. In
this case, the drones return to the truck before the truck departs to its
next destination. Clustering heuristics have been developed, such that
the truck is routed to each cluster and nearby customers are served using
UAVs. Conversely, others (Murray & Raj, 2020; Yoon, 2018) consider a
single truck that may launch multiple UAVs, with the UAVs returning to
the truck at a different location. (Yoon, 2018) provides a MILP formu-
lation, which is tested on instances with up to 10 customers. (Murray &
Raj, 2020) states the multiple flying sidekicks traveling salesman
problem (mFSTSP) using an arbitrary number of heterogeneous UAVs
that may be deployed from the depot or the delivery truck, although
they adopt an overly-constrained approach for our target problem,
particularly due to being limited to the one-customer per fly case. Most
papers addressing the truck-drone cooperative system assume that
during each trip a drone can only visit one customer, except for (Ham,
2018; Luo et al., 2017) for the flying sidekick traveling salesman prob-
lem (FSTSP) and (Cheng et al., 2018) for the parallel drone scheduling
traveling salesman problem (PDSTSP) (the latter involving just drone
deliveries, with no truck at all). (Ham, 2018) is a generalization of the
multiple drones, multiple trucks and multiple depots case, and (Cheng
et al., 2018) a pure drone-delivery scenario where no truck intervenes at
all, thereby being far from our target problem scope. In (Moshref-Javadi,
Hemmati, et al., 2020; Moshref-Javadi, Lee, et al., 2020) computational
studies are presented where the movements of the truck and UAVs are
synchronized. In these problems, the truck stops at a customer location
and can launch one or more UAVs. Each UAVs delivers only one parcel to
one of the clients and meets the truck at a client location different from
the first one. In (Moshref-Javadi, Hemmati, et al., 2020) the authors
propose a Mixed Integer Linear Programming (MILP) model, demon-
strating on four sets of problems with up to 101 customers that this
model can obtain considerable waiting time savings compared to the
truck-only model.

Considering solution approaches, a variety of methods have been
developed to address multidrone-truck combined operations (see
(Chung et al., 2020)). (Phan et al., 2018) developed the TSP with mul-
tiple drones (TSP-mD) that was solved by an adaptive large neigh-
bourhood search heuristic (ALNS), while (Murray & Raj, 2020) solved
the mFSTSP by a three-phased heuristic solution approach. Further-
more, they state a very constrained model whose resolution is reduced to
a medium size set of customers. In (Moshref-Javadi & Lee, 2020) the
problem analysed in (Moshref-Javadi, Hemmati, et al., 2020) is
addressed by a hybrid Tabu Search-Simulated Annealing algorithm.
Among several parameter values, the number of drones and the drone to
truck speed ratio affect the results more significantly. (Wang et al.,
2017) proves several bounds to the potential savings in the total tour
time that can be achieved for several scenarios with multiple trucks,
multiple UAVs, as well as equal and unequal UAVs and truck speeds.

Recent works by (Poikonen & Golden, 2020a) and (Luo et al., 2021)
exhibit certain similarities with our TmDTL problem. (Poikonen &
Golden, 2020a) presented an interesting TSP-D with multiple drones
with consideration of adjustable speeds and battery consumption rate as
a function of the payload, although they assumed the truck serves solely
as a mobile depot (drone primary) which does not deliver packages to
customers. (Luo et al., 2021) includes also the fact that the battery
endurance depends not only on the flight time, but on the self-weight of
the drone and the total weight of the carried packages. They solve their
model using a heuristic approach and report its performance only for a

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

3

small fleet of two drones cooperating with the truck. In contrast, we aim
our research at getting an efficient resolution method for coping with a
big number of targeted points which will typically require a higher fleet
size.

The TmDTL problem we consider, increases the complexity of the
TDTL problem as it increases the number of UAVs carried by the ground
vehicle. Thus, since the TDTL problem is an NP-hard one, our problem is
also NP-hard. For a study of the computational complexity of truck and
drone problems, see (Boysen et al., 2018) where the truck route is pre-
fixed and, for a more similar problem but only for one drone, the TDTL
problem, see (Gonzalez-R et al., 2020). In this paper, we focus on the
application of a multi-agent system (MAS) to the problem of multiple
drone TDTL. According to the definition in (Barbati et al., 2012), in
which there is no difference between MAS and Agent-based models
(ABMs), these systems consitst of “elements (agents) characterized by
some attributes, which interact with each other through the definition of
appropriate rules in a given environment”. MAS are sometimes preferred
to the more common heuristics for addressing challenging optimization
problems. The intelligence of agents will make them choose between
different methods to obtain the best global improvement, as each agent
has information about its neighbourhood in the solution space. The
knowledge about movements to nearby positions in the sequence, the
distributed nature of MASs, and the information sharing between agents
make this approach scalable and suitable for different problem config-
urations, sizes, and complexities, see (Barbati et al., 2012; Kulkarni &
Tai, 2010; Leitão et al., 2013). Notwithstanding, (Leitão et al., 2013) and
(Pěchouček & Mařík, 2008) also highlight issues related to the appli-
cation of MAS in the industry, such as the difficulty in evaluating the
return on investment, lack of standards, skilled personnel to apply these
models, knowledge about their potential, success cases, large scale in-
dustrial MAS applications and tools.

MASs have been used to tackle routing and logistics problems. As
stated in (Thangiah et al., 2001), an intelligent agent architecture gains
the advantage of a distributed way of addressing VRPs rather than the
centralized way of most metaheuristics. Like the former authors, (Bar-
bucha & Jedrzejovicz, 2007) also takes advantage of the intelligence and
cooperation of agents to improve a population-based metaheuristic for
solving instances of the vehicle routing problem with time windows
(VRPTW). (Kaul, 2018) improves an Ant Colony Optimization ACO by
using an agent based metaheuristic applied to the last mile delivery
problem in which vehicles, orders and clients are modeled as agents. For
instance, (Davidsson et al., 2005; Gath et al., 2015) have taken advan-
tage of this feature when approaching transportation logistics problems.
(Gath et al., 2015) simulate and optimize logistics problems using
vehicle agents and order agents: order agents look for a transportation
service provider and vehicle agents try to maximize the number of
shipments while satisfying constraints, and so they negotiate with other
agents. We refer to (Gath et al., 2015) for a review of MAS applications
to transport and logistics problems. In most of these applications, the
transportation actors (e.g. vehicles or clients) perceive individual in-
formation, and make individual decisions, while being situated in and
interacting with an environment (e.g. the transportation network or the
information sources) on which they have partial and incomplete
information.

Routing related optimization problems have been faced by the hy-
bridization of agent systems and metaheuristics, as in (Talukdar &
Ramesh, 1992; Thangiah et al., 2001) for the VRP, in (Zeddini et al.,
2008) for the Dynamic VRP or in (Kalina et al., 2015; Lopes Silva et al.,
2019) for the VRPTW (Vehicle Routing Problem with Time Windows).
The common approach is to think of vehicles as agents (Barbucha, 2012;
Kalina et al., 2015; Lopes Silva et al., 2019; Thangiah et al., 2001;
Zeddini et al., 2008). Each agent uses a meta-heuristic, like evolutionary
methods in (Dazhi & Shixin, 2010) or an iterated local search (ILS) in
(Lopes Silva et al., 2019). The latter concluded that an improvement in
the quality of solutions was attained by increasing the number of agents
and the learning capacity from their interaction. This interaction or

cooperation between agents can be synchronous or asynchronous
(Barbucha, 2012). The asynchronous type of communication implies the
use of a central pool of solutions or a central agent coordinating com-
munications (Talukdar et al., 1983) or (Talukdar & Ramesh, 1992).
Another way of implementing this asynchronous collaboration between
agents uses an auction mechanism in which an auctioneer agent gathers
client data, distributes them to vehicle agents, and receives bids from
those agents in order to choose the best one and assign an agent to the
appropriate client (Thangiah et al., 2001; Zeddini et al., 2008). Syn-
chronous communications are of two main types: The first one, with
optimization agents running in parallel, (Barbucha, 2012), and the
second one, with a reinforced learning mechanism, (Alipour et al., 2018;
Lopes Silva et al., 2019).

Regarding drones/UAVs related problems, the use of MAS has been
mainly focused on the real-time coordination of fleets or swarms of
UAVs considering each one as an intelligent agent, and has led to a
myriad of MAS approaches concerning military missions control tasks –
see (Baxter et al., 2008) – and the cooperation of logistic service pro-
viders (Hasan & Niyogi, 2020) but also in the planning of UAVs’ routes –
see (Semsch et al., 2009) – where our research is focused. An application
to the Drone TSP (DSTSP) is developed in (Houseknecht, 2019) using ant
colony optimization (ACO) and trying to maximize drone’s usage. More
similarities arise in the approach in (Khalid & Chankov, 2020; Kim &
Matson, 2017), when addressing a delivery problem with drones in
collaboration with public transport buses. Their ground vehicle and the
multi-UAV optimization problem is different from ours, since we
consider that drones take off from the depot or the truck at one point and
land at a different one.

There have been many efforts to build architectures and protocols for
agents’ communication such as FIPA – The Foundation of Intelligent
Physical Agents (FIPA - The Foundation of Intelligent Physical Agents, n.
d.), KQML – Knowledge Querying and Manipulation Language (KQML,
1993) and others mentioned in (Dickinson, 1997). Unfortunately, many
of these efforts are discontinued nowadays. There are also frameworks
for Agent-Based simulation and modelling (Mualla et al., 2018) such as
AirSim (Shah et al., 2018), Flame (Kiran et al., 2010), Gazebo (Nathan
Koenig, 2004), JADE (Bellifemine et al., 2001), JaSIM (Galland et al.,
2009), NetLogo (Wilensky, 1999), Repast Simphony (North et al., 2005)
or OpenABM (Janssen et al., 2008). For a more comprehensive review of
Agent-Based Modelling and simulation, the works of Allan (2009) and
Lopes Silva et al. (2018) are of interest. While many of those frameworks
are Java-based, there are a few Python-based such as SPADE – Smart
Python multi-Agent Development Environment (Palanca & Alemany,
2017), a Python version of Agent Evolution (AgE) (Faber et al., 2012;
Kazirod & Knapik, 2016) and MESA (Kazil et al., 2020), an agent-based
modelling framework. At the time we began this research MESA was
easier and better documented than SPADE, hence that was our choice.
This environment is heavily based on NetLogo (Wilensky, 1999).

In this paper, we contribute with a MAS to approximately solve the
challenging TmDTL. Our approach is novel with respect to other routing
problems, since we have an abstract use of multiagent systems assigning
each agent to a location instead of a vehicle, an order or all of them
(vehicles + orders + clients) as in (Kaul, 2018). We have followed the
old cellular automata scheme in which agents move in a lattice or grid
environment to generate neighbourhoods, precedences and feasibility
(Macal & North, 2010) – i.e. avoiding locations to be served by the truck
and later by another drone. Each agent has a set of rules based on which
it takes the best decision to move inside the grid while trying to obtain
the best objective function improvement. Agents are coordinated by one
central agent or manager which maintains an asynchronous memory of
solutions and assists the escape from local minima.

The main contributions of our paper are:
• We present an improvement over the TDTL problem described in

(Gonzalez-R et al., 2020) in which a truck gets help from a drone in order
to visit a set of points in the minimum time. The difference with the
problem in (Gonzalez-R et al., 2020) lies in the number of drones carried

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

4

by the truck, the solution approach and the size of the problems we are
dealing with. Regarding the multiple flying sidekick TSP (mFSTSP)
described in (Murray & Raj, 2020) the differences are twofold. We
reduce complexity by a) supposing that all drones are identical, b)
supposing the time needed for landing, recharging, take-off is negligible
and c) supposing a linear endurance model for the drones. We increase
complexity by letting drones visit more than one point in each flight;
that is, carry more than one parcel.

• We propose a novel agent-based approach for the truck-drones
routing problem in which agents represent points or clients instead of
orders or vehicles. Our solution is represented in a two-dimensional grid.
Agents try to move on this grid to positions that lead to an improvement
in the total mission time. This abstraction leads to faster computing the
fitness, since each agent only computes the improvement in quality
caused by its own movement. This abstraction also leads to a more
flexible solution coding as it can be applied to problems with more than
one truck. This is an ongoing extension of this work. We have imple-
mented this approach by using the MESA framework in Python.

• We compare the resolution of the instances with those presented in
(Gonzalez-R et al., 2020) in a set of 86 instances (available in [dataset]
(Bouman et al., 2020)) with sizes varying between 50 and 500 locations.
The agent-based model obtains good results in larger instances.

The rest of this paper is organized as follows: Section 3 provides the
problem description and the main hypotheses in the TmDTL. Section 4
describes the developed MAS approach and Section 5 presents a
computational study and the numerical results. Finally, Section 6 con-
cludes the paper.

3. Problem description

The Truck-multi-Drone Team Logistics Problem (TmDTL) can be
formally described as follows. A complete directed graph G = (N,A),
which represents a set of locations distributed in a wide area are to be
served by a truck and multiple identical UAVs, is given. The vertex set N
is defined as N = {o,1,⋯,n − 2,e}, where o represents the departure node
(a single truck, equipped with multiple drones, is initially located at
node o) and e corresponds to the destination node, where all the vehicles
must finally meet. Nodes {1,⋯, n − 2} represent the set of customers
locations to be served (i.e., visiting and collecting data typically in ISR

missions, as in (Hu et al., 2019) or delivering relief items in emergency
situations or goods as in (Murray & Raj, 2020)). Every location needs to
be served once by, at least, one of the vehicles, the truck, one of the
drones or could be a rendezvous point where the truck and one or more
drones meet. The arc set A is defined as A = {(i, j) : i, j ∈ N} . The truck
moves at a speed sgv while drones flight speed is supposed to be sav . A
UAV launched from the truck can sequentially visit and serve multiple
locations in a single flight route. Due to the constraint of limited battery
capacities, a UAV can only travel a quite limited distance in one route (e.
g., 7 km). We suppose that all the drones have the same battery
endurance, of value Q, measured in time units. The truck is used to
transport, launch, and recycle the UAVs, serving as a mobile platform.
Since a truck can typically travel over 500 km without refuelling,
without loss of generality, we assume that the vehicle can travel un-
limited distances within the region. The drones can be launched from
and return back to the truck at customer locations, and they cannot take
off and then land at the same location. The drones and the truck must
coordinate when they arrive at the same location. If the drones arrive
earlier than the truck or other drones, they wait hovering until the truck
arrives. See location 3 in Fig. 1. Likewise, the truck must wait for the last
drone to arrive at that location. This supposes a difficulty in the total
mission time and the drone endurance calculations. The goal of the
TmDTL is to find a set of routes, starting at o and ending at n, with
minimum completion time, serving all customers either by truck or
drone, allowing multiple visits per drone’s flight, without imposing any
restriction to the truck route and determining the number and location
of the synchronization nodes.

In Fig. 1 we show an example solution, representing 20 locations and
the routes traversed by truck, carrying drones or not, depicted with
continuous lines, and the flights of drones, drawn by dashed lines. Here
we use different dashed types to distinguish between paths flown by
different drones. Thus, truck departs from depot 0 carrying drones 1 and
2 and visits location 4. Drone 0 takes off from the depot and after visiting
locations 16 and 5 meets the truck at location 4. From that location, the
truck, carrying drone #2, departs to location 11 while drones #0 and #1
take off. After visiting location 11, at location 3, the truck meets drone
#0, which has visited locations 9 and 13 and drone #1, which has visited
locations 8 and 14, and so on.

While there are similarities between the problem in our research and

Fig. 1. Example solution for a problem with 20 locations and a truck helped by three drones.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

5

those addressed in (Murray & Raj, 2020) and in (Salama & Srinivas,
2020), it is necessary to highlight important differences between our
research and those works. (Salama & Srinivas, 2020) contemplates a
truck acting as a moving depot, carrying more than one drone. It moves
near customer locations – a focal point – deploys drones that visit
customer locations and waits until they complete their task. They state
their approach maximizes drone utilisation and therefore minimises the
necessary number of drones. In our case, and in (Murray & Raj, 2020),
the truck continues the route once drones have taken off. But the work of
(Murray & Raj, 2020) is different in that drones serve only one location
in each flight. They also note a decrease in the reduction of the total
mission time when increasing the number of UAVs in the fleet. This is on
account of unproductive flight-time spent by the drones, which can be
explained two-fold: (i) the truck roof may be in use by a different drone
when a particular drone needs to land; and (ii) the drones have to wait
for the truck to arrive at the recovery location. In contrast with them, as
stated in our seminal work (Gonzalez-R et al., 2020), we are concerned
with a more general approach where each drone is capable of visiting
one or more points in each flight before having to return to the truck to
change its battery. Whereas this tends to diminish the effect of (i), we
still can assume that a kind of saturation appears in the enhancement
one can expect from increasing the fleet size.

With the help of the vehicle, the UAVs can serve locations distributed
over a large region. The vehicle carrying multiple UAVs and enough
UAV replacement batteries departs from the base and proceeds along an
a priori unknown route. Along the route, we select a set of locations
where the vehicle launches and/or retrieves UAVs. When a UAV returns,
its battery is replaced on the vehicle. After visiting all the locations, the
ground vehicle arrives at the ending location. Without loss of generality,
the following assumptions are made:

• The coordinates on a 2D plane of every location are known to us a
priori. The road network lying in the target region is modelled as a fully
connected graph, so it is possible to go directly from every location to a
different one.

• Both the ground vehicle and the UAVs travel at constant speeds,
which are denoted as sgv (ground vehicle speed) and sav (air vehicle
speed) respectively. It is assumed that sav = 2sgv . In general, in the
literature sav > sgv, but this is not a requirement for our solution method.
We will also assume that when drones arrive earlier than the truck to a
rendezvous or meeting point, they wait for the truck hovering. Thus,
when drones arrive at a location earlier than the truck, the waiting time
also drains the battery charge.

• The time required by the UAV to serve a customer, the time needed
for replacing a UAV’s battery and other maintenance tasks are negli-
gible. It is supposed that when the last vehicle arrives to a location,
drones and truck start their next trip immediately

• We consider a homogeneous fleet of drones with the same battery
endurance. Batteries drain uniformly depending on the distance
travelled.

• The objective function consists of minimizing the total mission time
needed for visiting all the locations. The vehicles start from an initial
location and arrive at a different one. Each location must be visited at
least once by one vehicle, and drones must respect their battery
endurance.

The main difficulties derived from this problem configuration are
manifold. First, it is essential to model as in other routing problems, the
order in which locations are visited, which vehicle visits each location
and, related to the former, which of the drones is flying each arc or is
traveling on the truck. Other common constraints are battery endurance,
the avoidance of both visiting twice a location or leaving locations un-
visited. Also, cycles in drone flights or in truck travels must be avoided.

4. Agent-based approach

In this section, the agent-based proposed approach to solve the

TmDTL problem is presented. We first describe the abstraction of
mapping locations to agents, then the construction of the initial solution,
and finally the set of actions governing the behaviour of each agent.

As proposed in (Barbati et al., 2012) we have chosen a mediator
architecture, since in large problems, our approach will work with a
high number of agents. In such situations, mediator architectures show
better effectiveness than autonomous agents’ architectures in terms of
computational simplicity and overall solution quality. Since the TmDTL
is such a complex problem, we have chosen to keep the method as simple
as possible, keeping in mind the agent’s behaviour but trying to avoid an
additional complexity.

To address the difficulties found in this type of drone routing prob-
lem, we have modelled solutions as a grid where agents are placed, thus
specifying precedencies between locations’ visits. In addition to the
position on the grid, agents have an attribute to model, at locations
visited by truck, if it is accompanied there by zero, one or more drones.
The allowed positions of agents in the grid will guarantee that locations
are visited once and only once by a drone or by the truck (alone or
carrying/meeting drones). Other constraints such as battery endurance,
or cycles in routes will be considered when computing the mission time.

4.1. Locations as agents

We propose a cooperative asynchronous agent system as classified in
(Barbucha & Jedrzejovicz, 2007). We use a manager agent acting as a
mediator between all agents. The rest of the agents represent the loca-
tions that are going to be visited, including the initial and final ones. This
is a novel approach in contrast whith those that suppose vehicles or even
orders as agents. If the sequence contains n locations, n agents will be
created apart from the manager. These agents try to improve the current
solution by moving around a finite bi-dimensional grid or lattice being
similar to the classical simulations of social groups in (Schelling, 1958).
They also follow the beliefs, desires, intentions (BDI) model; first
deciding what to do in order to improve the solution quality and then
acting in consequence.

When the truck arrives at a location, it can meet drones and replace
their batteries. These meetings may include the truck and zero or more
drones. We have added an attribute to agents to model the type of
meeting. In the case that the location represented by an agent is visited
by the truck, the type of meeting indicates which drone or drones meet
the truck. If the location is visited only by a drone, the meeting attribute
is empty. The meeting attribute uses a binary coding to represent which
drone or drones meet the truck: meeting = dndr− 1dndr− 2dndr− 3⋯d0. For

Table 1
Coding of possible meeting types.

Type d2 d1 d0 Comments

0 0 0 0 Only truck visits that location
1 0 0 1 Drone number 0 meets truck
2 0 1 0 Drone number 1 meets truck
3 0 1 1 Drones 0 and 1 meet truck
4 1 0 0 Drone number 2 meets truck
5 1 0 1 Drones 0 and 2 meet truck
6 1 1 0 Drones 1 and 2 meet truck
7 1 1 1 All drones meet truck

Fig. 2. A grid representing a 10 location + 3 drones problem.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

6

instance, in the case of a three drones’ mission, possible meeting values
are shown in Table 1. As, in our model, the time needed for battery
change and other drone setup tasks is supposed neggligible, we assume
that when the last vehicle arrives at a meeting location, drones and truck
start their next trip immediately.

Agents can move in a bi-dimensional grid (see for illustration pur-
poses the Fig. 2). The horizontal grid dimension is the number of agents
and the vertical one corresponds to the number of vehicles. Each of the
columns contains one and only one agent representing one of the loca-
tions to be visited and which vehicle visits it. The bottom row represents
the sequence of locations visited by the truck. The meeting attribute of
each agent models which drones are with the truck in that location. It
also helps in modeling drones’ landing and taking off locations. The rest
of the rows represent the sequence of locations visited by each drone.
The only agents not moving around the grid are the first one and the last
one, corresponding to the initial and final locations.

For instance, in a 10 locations problem (including the initial and final
one) in which 3 drones are used with the truck to visit all locations, the
grid is represented in Fig. 2.

The rows indicate the order in which each vehicle visits the locations.
When the bottom row includes an agent, it is needed to know the
meeting attribute of the agent to see whether a drone has landed on the
truck at that location. In the first and last locations, the depots, all drones
are in the truck. To know where a drone took off, it is needed to know the
last location where it was in the truck, reading the meeting attribute.
Thus, in Fig. 2 drone 0, after starting at location 0, visits location 2, and
then location 1. Drone 2 visits location 7 before visiting location 3. This
coding scheme sometimes leads to equivalent solutions with different
grid distributions as shown in Fig. 3, for a problem with 5 locations.

Although these solutions are equivalent, they are not in the same
neighbourhood, since the possible agents’ movements avoid these so-
lutions to be directly interchangeable.

4.2. Initial solution. Examples

Initial agents’ positions are generated by the manager agent using a
constructive procedure that seeks a feasible solution in terms of drones’
battery endurance. Considering a problem with n agents and ndr drones,
the grid cells are numbered from (0, 0) to (ndr − 1, n) . Agent 0 is assigned
to the mission starting location and it is placed at cell (0, 0) whereas the
agent ndr − 1 is assigned to the ending location and placed into the cell
(ndr − 1, n) . The construction procedure assigns a maximum of ndr
nearest locations to drones, holding their endurance requirements, and
assigning the last one to the truck, where it meets all of the drones. This
procedure is repeated with the next ndr nearest locations till all locations
are covered by drones or by the truck.

To illustrate the procedure of constructing an initial solution we will
use a small problem with n = 6 locations and ndr = 2 drones. We will
suppose a battery endurance of 72.93 s, and a drone speed of 2 m/s,
double that of the truck’s speed, 1 m/s. As an intermediate step, an
infeasible solution in terms of endurance is shown in the first graph in
Fig. 4. This figure shows the vehicles traversing each arc and the times
needed. Drones are represented by dashed lines and solid lines represent
the truck’s movements. As drone 1 exceeds its endurance when travel-
ling from location 2 to location 5, in order to repair feasibility, it is
transported on the truck and the truck will also visit location 4, the
farthest from the two nearest locations (1 and 4) to location 2. Drone
0 visits location 1 and eventually meets truck and drone 1 at location 4.

Fig. 3. Equivalent solutions.

Fig. 4. Initial solution.

Fig. 5. Grid of complete initial feasible solution.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

7

The resulting initial solution is shown in the second graph in Fig. 4 and
the resulting grid for this new solution is illustrated in Fig. 5.

The mission time is calculated as the time needed in the truck’s route,
from the depot to the final location, but taking into account the syn-
chronization processes in those locations where the truck acts as a base
for the drones. In initial solutions, all locations visited by the truck are
meeting points with all the drones. In this example, from Fig. 5, the arcs
0-3 and 3-2 are traversed at truck speed. Thus, t(3) = t(0)+tgv03 =

35.31s and t(2) = t(3) + tgv32 = 83.86s Then, drone #0 takes off from
the truck at location 2, visits location 1 and then lands on the truck at
location 4. The flight time is tav(4) = tav(2,1)+ tav(1,4) = 59.93s, the
truck time is tgv(4) = tgv(2,4) = 71,59s so drone #0 must wait hovering
at location 4 till the truck arrives there and then it will meet the truck.
There is no battery endurance problems since it is 72.93 s and the total
flight time is the same as the ground vehicle time, 71.59 s. So, t(4) =
t(2) + tgv(2, 4) = 155.45s . Finally, the total mission time is t(5) =
t(4)+111.77 = 267.22s . This initial solution is always feasible due to
the construction procedure that has been followed.

4.3. Agents’ behaviour

Once the initial solution has been generated by the manager agent,
the solution is broadcasted to the rest of the agents that, to improve the
solution quality, will try to move in their neighborhood positions on the
grid. An schema of this behaviour is shown in Fig. 6.

The manager agent is the only one that maintains a pool of generated
solutions, acting as a central asynchronous memory and setting the pace
of the rest of the agents. After reading the problem data and generating a
feasible initial solution, the manager performs the following set of tasks
during a prefixed number of iterations:

1. Tells agents to run a step (best movement)
If there is no improvement in the agents’ step (grid movement),

generates a new solution
2. Stores and broadcasts the current solution
The rest of the agents evaluate the possible improvement in the so-

lution quality by moving to neighbouring positions in the grid. In each
step (grid movement), as explained before, they evaluate the improve-
ment that would take place using three possible movements, vertical,
horizontal and to the nearest arc (joining a nearby route). Next, they
share the best improvement with the manager. We call this the first
stage of the step. Then, in a second stage, agent 0 selects the agent that
will move and eventually, in a third stage, the selected agent makes the
movement, possibly involving other agents in that movement, and
shares the result with the manager. These three stages of agents’ steps
are summarized in Fig. 7:

In what follows we describe in detail the possible movement of
agents. We must highlight that, agents 0 and n − 1 do not perform any
kind of movements as they represent the initial and final locations.
Agent 0 will be used in the second stage to select which of the other
agents will move.

Fig. 6. Schema of multi-agent algorithm.

Fig. 7. Stages in agents’ steps.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

8

4.3.1. Vertical movement evaluation – yMove()
The agent evaluates the improvement of the current sequence when

moving vertically in the grid. This movement supposes a change in the
vehicle that visits a location or in the type of meeting between truck and
drones that takes place at that location. To reduce the computation time,
the agent only evaluates the change that this movement implies in the
mission time. These variations are a result of changes in some arcs of the
current solution. To take all possible modifications into account, the sub-
sequence of locations between the previous complete meeting and the
next complete meeting, both included, is calculated. For example, if
agent 1 is going to move, the sub-sequence that includes all the arcs
affected by that movement spans from meeting at location 2 to meeting
at location 4 (see Fig. 8). Only arcs 2-1, 1-4 and 2-4 are considered. This
policy saves a long computation effort in larger problem instances.

4.3.2. Horizontal movement evaluation – 2opt()
In this movement, searching for a solution improvement, the agent

changes its position with rear agents in the sequence. We have called this
procedure 2opt() due to its similarities with the algorithm by (Croes,
1958). Since it is a horizontal movement, if the agent represents a truck
visited location, it will try a change with the next truck visited location.
If it represents a drone visited location, it will change position with
agents/locations visited by the same drone in the same flight. If the
movement goes further towards the immediate position in the sequence,
intermediate agents will also change their positions (see example in
Fig. 9).

A parameter max r is used to limit this movement. To make this
parameter less sensitive to changes in problem size, the maximum
number of positions an agent can move in this horizontal movement,
which we will call radius, has been modeled as a function of the problem
size (WIDTH): radius = WIDTH//max r. This limit will reduce an excess
in computation time that, according to our pilot tests, does not provide
further improvement in the objective function quality.

In our research, this type of movement only obtains improvements
occasionally because the swap between locations visited by the truck
implies rebuilding drones’ flights, which usually worsens the solution’s
quality. Furthermore, the swap between locations visited by drones
seldom improves the solution’s quality as their routes are short (due to

endurance limitations) visiting only two or three locations.

4.3.3. Movement to the nearest arc evaluation (joining a nearby route)–
node2arc()

In this case, agents try to improve the total mission time by moving to
the intermediate position between two locations visited consecutively
by the same vehicle. To this end, the agent needs to find the nearest arc
in the nearest sequence or route. For instance, if agent g is going to move
to arc c − e (see Fig. 10):

If an agent movement changes a location from being visited by a
drone to being visited by the truck, the meeting type must be re-
calculated. A graphical example of this movement is shown in Fig. 11
(again drone movements are represented in dashed lines and truck
movements in solid line), where agent b changes from being visited by a
drone to being visited by the truck. As shown, the meeting type changes,
and the movement over the grid is represented in Fig. 12 Note the
change in the meeting code of agent b according to the contents of
Table 1.

Here we show another example of an agent movement to the nearest
arc. Agent 2 tests if there is a travel time improvement when location 2
changes to being visited by the truck in its route between locations 4 and
5. The two graphs in Fig. 13 represent vehicles, locations and distances
between locations. The drone speed is supposed to be 2 m/s, the truck
speed is 1 m/s and the battery endurance is 72.93 s (see also the cor-
responding movement in the grid in Fig. 14).

Initial situation: total mission time: 261.07 s (feasible). The nearest
arc to location 2 is 4–5.

Modified situation: total mission time 277.78 s (non-feasible, penalty
time: 57.71 s due to drone 0 flight 0–3-1–4).

Fig. 8. yMove() example.

Fig. 9. Example of agent b’s horizontal movement.

Fig. 10. Movement of agent g from its current location to a near arc in the grid.

Fig. 11. Movement of agent b from its current location to a nearby arc.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

9

4.3.4. Selection of the agent to move – select()
In the second stage of each agent’s step, the static agent 0 performs

the task of choosing between other agents which one will move. If there
is at least one agent that can improve the quality of the solution, agent
0 reads from the manager the list of agents that allow an improvement in

the objective function solution together with the values of these im-
provements. Then, it assigns to each agent a probability proportional to
the improvement that each agent allows. Eventually, it throws the dice
to choose one of the agents using these probabilities. After having
selected the index of the agent, agent 0 shares this information with the
manager; in this way, in the third stage, all the agents will know which
of them will move.

4.3.5. Making the best movement
In the third stage of each agent’s step, the selected agent will make

its best movement and will share it with the manager agent, which in
turn will let all agents know the result of that movement.

4.3.6. Sharing the resulting movement with the manager
To share the movement with the manager agent, the agent commu-

nicates the improvement to the manager as well as the final position of
the rest of the agents (since some of the movements imply not only the

Fig. 12. Grid representation of the movement represented in Fig. 11.

Fig. 13. Agent no. 2 location2arc() movement.

Fig. 14. Agent no. 2 location2arc() grid movement.

Fig. 15. rand sol() procedure.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

10

movement of the affected agent but also the movements of other ones),
and the penalty value implied by these positions.

4.4. Rules to escape from local minima

At the end of each step, if no agent has improved the quality of the
solution, the search is stuck at a local minimum. Then, the manager
agent generates a solution (see procedure rand_sol() in Fig. 15), in trying
to get out of this minimum. For this task, the manager uses two
parameters:

• nout : is the number of agents extracted from the solution and
returned to it in different positions. To facilitate its adjustment, it is
calculated as an integer fraction of the sequence length (WIDTH of
the grid, nout = WIDTH//R), where R is a parameter needed to
initiate the procedure.

• max its : Maximum allowed number of iterations in the procedure
rand sol() . This parameter allows tuning the computation time vs the
solution quality obtained in this procedure.

The manager agent uses three variables in this procedure:

• model time → Best time (mission completion time) found by agents
and stored in the manager.

• total time → Time found after applying the current procedure (in this
case, rand sol()).

• iteration → Current iteration in rand sol() procedure.

Once the agents have been extracted from the solution, the solution
must be rebuilt by reinserting these agents in the grid. The procedure is
shown in Fig. 16, being:

• extracted → Set of nout agents removed from the solution

To calculate the value of the objective function (in our problem, the
total mission time needed to complete a mission), as other authors do
(Murray & Chu, 2015), we assume the drones continue flying when
waiting for the truck or another drone, until they arrive at the meeting
point. This point is relevant due to the limited endurance of drones.

Intending to improve the search procedure in the solution space, our
algorithm allows solutions in which the maximum endurance constraint
is neglected. For these solutions, a time value penalty is added to the
flight time. Each time a drone arrives at a meeting point, its flight time is
compared with its endurance. If the time is greater than the endurance,
we suppose that the drone continues flying but at a slower speed (see

Fig. 17). At each meeting point, the maximum excess time of all drones
arriving at that point is calculated and added to an excess time variable.

The penalty time is obtained by considering that the over-endurance
distance is travelled by the aerial vehicle at the speed of the ground
vehicle (truck) sgv < sav.

The penalty time expression, tpenal, is calculated as follows (1, 2):

tpenal =
sav

sgv
× pfactor ×

∑

i
exci (1)

exci = max
j

(
tflightij − Q

)
(2)

Where:

• sgv – Represents the ground vehicle speed
• sav – Corresponds to the drone speed
• Q – Is the drone time endurance
• pfactor ≥ 1 – Is an algorithm tuning parameter
• exci – Represents the excess in flying time over endurance for all

drones landing on location i
• tflightij – Is the flying time for drone j landing on location i

Thus, the maximum excess in flying time at each location is added up
to obtain the total penalty time. We decided to use a correction pfactor
since, in some instances, the gain in the mission time allowing the excess
in the drones’ endurance was greater than the total penalty obtained
without this correction.

5. Results and discussions

We have tested the behaviour of our agent-based algorithm when
applied to a set of different size instances from the literature. The ex-
periments have been carried out on a desktop personal computer
running Windows, with an Intel Core i7 2.8 GHz processor and 16 GB of
RAM. The algorithm has been coded in Python 3 using the Mesa agent
library (Kazil et al., 2020).

First, we compared the results obtained using the agent-based
approach algorithm with the results obtained using the iterated greedy
approach from (Gonzalez-R et al., 2020) in medium-size instances (those
from 50 to 250 locations) and using only one drone. Then, we used our
agent-based algorithm for solving larger size instances using more than
one drone. For these instances we compared the results with those ob-
tained by using only one drone.

As expected, the agent-based approach helps to find solutions for
large-size instances in a short computation time, whereas it is less
competitive in small size problems. In these small instances, concerning
the computation time, there is no advantage when compared with the
iterated greedy approach for the same order in the quality of solutions.
On the contrary, we report the results also for 375 and 500 locations
problems using a fleet up to 6 drones, allowing them to visit more than
one location per flight and allowing the truck to serve locations, which
have not been reported in the literature before, as seen in the exhaustive
review in (Moshref-Javadi & Winkenbach, 2021). In medium and small
size instances (<20 locations), agent-based methods are less competitive

Fig. 16. Solutions’ rebuilding procedure.

Fig. 17. Schema of over-endurance flying time penalty.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

11

than simpler heuristics, obviously for small instances (<10 locations)
they are also less competitive than exact methods.

5.1. Global results

As in our previous work (Gonzalez-R et al., 2020), the set of instances
used in this research is based on the one available in [dataset](Bouman
et al., 2020). We have only considered the uniform set of instances;
where locations are situated in a two-dimensional plane, distances are
the Euclidean distances, and the locations are distributed uniformly over
a (1, 100) square.

Parameter tuning has been made by using the Iterated Racing (Irace)
algorithm by (López-Ibáñez et al., 2016). The considered values for
these parameters are summarized in Table 2.

The parameter pfactor is used in equation (1) to impose the penalty
time in which a non-feasible solution is augmented. max r is used to
limit horizontal movement of agents (see Fig. 9). R is used to calculate
nout , the number of agents extracted in the rand sol() procedure (see
Fig. 15) to escape from local minima. Finally, max its is the maximum
number of iterations in the rand sol() procedure, to balance computation
time and quality of solutions.

The maximum computation time was set to 600 s in the first set of
experiments. We took a sample of 100 problems between 50 and 500
locations. 14 of these problems, 2 for each problem size, are reserved for
the statistical searching of the best parameter configurations. The best-
attained configurations are shown in Table 3.

A Wilcoxon signed pair rank test between the best parameter

configurations provides significant differences between configurations 8
and 16 but not between 1 and 8, so finally we chose configuration
number 1.

We made 10 runs for each of the instances available in [dataset]
(Bouman et al., 2020) with an alpha parameter value equal to 2. Each
problem size was run changing the number of drones from 1 to 6. (Since
there are 10 instances for each problem size from 50 to 175 locations, 20
instances of size 250, 15 instances of 375 and 11 of 500 locations and
each problem size was run changing the number of drones from 1 to 6,
the total number of experiments was of 5160). Remember that our al-
gorithm admits non-feasible solutions, in terms of drones’ battery
endurance, allowing the exploration of different regions of the search
space.

The average objective function value (total mission time in seconds)
and its coefficient of variation for problem sizes, varying from 50 to 500
locations and fleet sizes from 1 to 6 drones, are shown in Table 4:

The averages in the mission time show a decrease as the number of

Table 2
Tested parameter values.

Parameter Type Values

Penalty parameter (pfactor) Categorical {1.5, 2.0,
2.5}

Parameter to build maximum swapping radius
(max r)

Integer [4, 6]

Parameter to build maximum extracted locations (R) Integer [8, 10]
Maximum iterations to escape from local minima

(max its)
Integer [1, 2]

Table 3
Best parameter configurations found by Irace package.

config pfactor max r R max its

1 2.5 4 10 1
8 2.5 5 10 1
15 2.5 4 9 2
16 2.0 6 10 2

Table 4
Mission time averages (m.t.avg.) and their coefficients of variation (c.v.) (%) for the agent-based TmDTL problem using 1 to 6 drones.

Problem sizes Number of drones

1 2 3 4 5 6

50 m.t.avg. 312.3 270.2 254.7 238.0 231.0 228.2
c.v. (7.04%) (10.86%) (10.39%) (10.76%) (12.66%) (11.29%)

75 m.t.avg. 375.7 314.8 291.6 271.4 270.7 266.7
c.v. (7.26%) (11.55%) (11.56%) (12.32%) (12.89%) (13.69%)

100 m.t.avg. 441.5 370.9 340.8 321.6 323.4 329.7
c.v. (5.99%) (9.75%) (11.53%) (13.15%) (14.20%) (13.91%)

175 m.t.avg. 606.0 525.3 488.2 491.9 481.1 484.5
c.v. (8.00%) (10.16%) (11.44%) (15.89%) (15.84%) (21.31%)

250 m.t.avg. 747.8 653.9 643.3 623.5 627.9 622.6
c.v. (6.55%) (7.81%) (7.59%) (7.91%) (10.67%) (8.90%)

375 m.t.avg. 912.3 912.8 834.1 820.9 822.3 816.5
c.v. (8.21%) (8.15%) (14.18%) (18.25%) (21.50%) (24.57%)

500 m.t.avg. 1166.1 1150.6 1140.6 1136.0 1130.3 1115.8
c.v. (17.01%) (15.83%) (15.20%) (16.45%) (17.20%) (17.04%)

Fig. 18. Mission time averages for small problems.

Fig. 19. Mission time averages for large problems.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

12

drones increases and an increase as the problem size enlarges. The
decrease in the mission time when the fleet size expands is less impor-
tant for small-size problems, indicating the limit in the optimal fleet size.
This effect is better shown in Fig. 18 and Fig. 19.

To validate these results, they are compared with those obtained in
our previous research (Gonzalez-R et al., 2020) for the TDTL problem,
where the truck only carried one drone and the problem was addressed
with an iterated greedy meta-heuristic. As shown in Table 5, for small
size problems and similar computing times, the average quality of so-
lutions, though being slightly poorer is of the same order of magnitude.
This is a good result in medium size, less complex problems (up to 250
locations and only one drone fleet) since the behavior and intelligence of

agent-based systems involve greater computational complexity. This
added complexity is balanced with the problem partitioning made by
agents.

Table 6 shows the improvement obtained in the mission time t when
the fleet size ndr increases in comparison with the time obtained when
only one drone helps the truck (3):

Δt1,ndr =
t(1) − t(ndr)

t(1)
(3)

These improvements can be better interpreted when the comparisons
are made considering the improvement obtained when using one drone
less (4), as reported in Table 7 and Fig. 20.Table 8.

Δtndr− 1,ndr =
t(ndr − 1) − t(ndr)

t(ndr − 1)
(4)

Table 7 reports the incremental improvement in the total mission
time when adding a new drone to the fleet with respect to the total
mission time using one drone less – i.e. the average improvement in the
mission time for 250 locations instances when using 4 drones with
respect to using 3 drones is of 3%.

We have carried out ANOVA tests in order to analyze the differences
between mission times averages when the variation in the number of
drones is statistically meaningful. Here, for the sake of clarity, we only
show the P-values results. A more complete set of results is included in
Appendix 1.

These results show how the improvement decreases as the number of
drones used increases. This improvement is smaller for larger size in-
stances. The P-values are smaller than 0.05 in all cases except in the last
one, corresponding to the 500 locations instances, in line with the ex-
pected behaviour of our algorithm. In our opinion, since the computa-
tion time is limited to 600 s, for these kinds of complex problems, the
agents’ ability to evolve in the search for better quality solutions is
constrained. Thus, in order to assess whether this behaviour is due to
limitations in computing time, we have re-run the experiments, this time
allowing the algorithm to run for 2400 s for the larger size instances.

5.2. Analysis of large-size instances

As previously mentioned, a set of additional experiments extending
the computation time to 2400 s have been carried out for problems with

Table 5
Objective function obtained by the iterated greedy (IG) and by the
agent-based system (ABS) both using only one drone.

n IG ABS

50 311.4 312.3
75 359.3 375.7
100 406.4 441.5
175 511.5 606.0
250 605.9 747.8

Table 6
Mission time improvement with the number of drones with respect to one drone.

Number of drones

Δt1,ndr 2 3 4 5 6

50 13.48% 18.46% 23.81% 26.04% 26.95%
75 16.22% 22.38% 27.77% 27.96% 29.01%
100 15.99% 22.81% 27.16% 26.75% 25.33%
175 13.32% 19.43% 18.83% 20.62% 20.05%
250 12.55% 13.97% 16.62% 16.03% 16.74%
375 − 0.05% 8.57% 10.02% 9.86% 10.51%
500 1.33% 2.19% 2.58% 3.07% 4.31%

Table 7
Mission time incremental improvement compared with one drone less.

Number of drones

Δtndr− 1,ndr 2 3 4 5 6

50 13.48% 5.76% 6.56% 2.92% 1.23%
75 16.22% 7.35% 6.94% 0.26% 1.46%
100 15.99% 8.12% 5.63% − 0.56% − 1.94%
175 13.32% 7.05% − 0.75% 2.20% − 0.72%
250 12.55% 1.62% 3.08% − 0.71% 0.85%
375 − 0.05% 8.62% 1.58% − 0.18% 0.71%
500 1.33% 0.87% 0.40% 0.50% 1.28%

Fig. 20. Mission time improvement when adding a drone to the fleet.

Table 8
One-way ANOVA test results for mission time grouped by
number of drones from 1 to 6, number of locations from 50 to
500 and 600 s computing time per run.

Number of locations P-value

50 6.2793*10− 101

75 1.8632*10− 104

100 3.98202*10− 95

175 8.91217*10− 40

250 1.0853*10− 108

375 5.61603*10− 22

500 0.54168935

Table 9
Experiment design for 2400 s computing time and problems containing 250, 375
& 500 locations.

Variable parameters Type Values

Penalty parameter (pfactor) Categorical {1.5, 2.0,
2.5}

Parameter to build maximum swapping radius
(max r)

Integer [4, 6]

Parameter to build maximum extracted locations (R) Integer [10, 15, 20]
Maximum iterations to escape from local minima

(max its)
Integer [1, 2]

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

13

250, 375, and 500 locations. For these new experiments, the maximum
number of drones’ steps has been removed as a stopping condition. The
parameters were adjusted again as summarized in Table 9:

The best parameter values obtained by the Irace package for the new
set of experiments are:

• pfactor : 1.5
• max r : 6
• R : 20
• max its : 1

For each one of the instances, 20 runs have been carried out by
varying the fleet size from 1 to 6 drones. This supposes a total of 920 ×

6 = 5520 experiments and approximately 3680 h of computation time.
The results show, as expected, an improvement in the solutions

quality and a reduction in their variability (Table 10.
In this case, Table 11 and Table 12 show the improvement in the

mission time when the fleet size increases. Table 11 represents these
increments when comparing with the use of only one drone whereas
Table 12 depicts the case when comparing the use of one drone less (see
also Figure 21).

To validate the differences observed in average mission times when
varying the number of drones, we carried out a new set of ANOVA tests
(see Table 13), separated by problem size.

Now, differences are meaningful for P values, corroborating that, for
our method, 600 s is a too short time.

5.3. Fleet size analysis for complex problems

To confirm the results obtained for the larger size instances, we made
a new test in which the algorithm was run for 2400 s, varying the fleet
size between 6 and 8 drones, and testing only the 11 instances with 500
locations, running again 20 times in each instance. The objective func-
tion reduced its values as expected, but the variability continues to be
relatively high (Table 14) and no improvement is observed with more
than 6 drones, which implies a limit in fleet size for this configuration
(see also Fig. 22).

Although we can now see a great improvement between 5 and 6
drones, again the increasing complexity of these large problems makes it
difficult to achieve reasonable improvements when considering a higher

Table 10
Mission time averages (m.t.avg.) and their coefficients of variation (c.v.) (%) for the agent-based TmDTL problem using 1 to 6 drones for 250 to 500 locations problems.

Problem sizes Number of drones

1 2 3 4 5 6

250 m.t.avg. 683.05 600.16 582.32 574.29 552.70 542.32
c.v. (5.63%) (7.92%) (7.74%) (8.09%) (10.37%) (9.91%)

375 m.t.avg. 862.11 865.62 852.82 756.73 746.14 730.53
c.v. (5.83%) (6.52%) (6.68%) (9.48%) (8.06%) (10.46%)

500 m.t.avg. 1005.11 998.84 1016.37 1007.85 939.87 889.74
c.v. (9.90%) (8.54%) (11.97%) (10.58%) (16.54%) (15.49%)

Table 11
Average mission time improvement when compared with the mission time using
only one drone.

Number of drones

Δt1n 2 3 4 5 6

250 12.14% 14.75% 15.92% 19.08% 20.60%
375 − 0.41% 1.08% 12.22% 13.45% 15.26%
500 0.62% − 1.12% − 0.27% 6.49% 11.48%

Table 12
Average mission time improvements when compared with the mission time
using one drone less.

Number of drones

Δt(n− 1)n 2 3 4 5 6

250 12.14% 2.97% 1.38% 3.76% 1.88%
375 − 0.41% 1.48% 11.27% 1.40% 2.09%
500 0.62% − 1.75% 0.84% 6.75% 5.33%

Fig. 21. Mission time improvement when adding one drone to the fleet in
large problems.

Table 13
ANOVA test for mission time grouped by number of
drones from 1 to 6 and 250 to 500 locations problems.

Locations P-value

250 0
375 1.7932*10− 254

500 1.62729*10− 39

Table 14
Mission time averages (s) and coefficient of variation (%) for 500 locations
problems, 5 to 8 drones and 2400 s comp. time.

Number of drones

5 6 7 8

939.87 889.74 905.28 912.18
(16.54%) (15.49%) (19.53%) (22.86%)

Fig. 22. Total mission time averages in 500 locations and 5–8 drones problems.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

14

number of drones, between 6 and 8. The ANOVA tests corroborate the
differences obtained between 5 and 6 drones and the similarities be-
tween mission times when using 6 to 8 drones (Table 15).

One more time, we have tested these results to assess the progress in
the mission time when adding drones to the fleet:

And again, notwithstanding the misssion times are statistically
different for each number of drones, the P-values confirm that, the
variation is less marked than the ones in less complex problems so, we
can think again in a shortage in testing time.

This variability in the quality of solutions can be better seen in the
following boxplot graphics (Figs. 23 and 24). They represent the total
mission time for each run of each instance and highlight that instances 6,
12 and 21, showing an important dispersion in their results no matter
the size of the fleet.

6. Conclusions

We have designed a novel agent-based system capable of addressing
complex routing problems, such as the Truck multi-Drone Team Logistic
problem, in which a set of locations or nodes must be visited by a team
composed of a truck and several UAVs for ISR (Intelligence, Surveil-
lance, and Reconnaissance) or logistics missions. The locations must be

visited once, either by truck or by one of the drones. The drones have a
limited endurance due to their limited battery capacity, whereas the
truck is supposed to have unlimited endurance. Unlike other works, each
drone may visit an a priori unknown number of locations during each
flight. Moreover, no a priori route is defined for the truck.

We have followed an approach in which locations are modelled as
software agents seeking to find good quality solutions by moving
themselves in an abstract grid to represent the problem’ solutions. They
follow a communication scheme managed by one agent and choose their
allowed movements with certain probabilities, avoiding early conver-
gence to local minima. In the case that an agent does not find im-
provements in the objective function value, the manager agent corrects
other agents positions, shaking them and allowing them to move to a
different region of the search space. This process is repeated a pre-
determined number of steps or during a pre-determined amount of time.

The algorithm has been tested by using a well-known benchmark set
by varying the number of drones and the problem sizes. To validate the
proposed approach, the results obtained with only one drone have been
compared to those obtained with our previous metaheuristic. The results
are promising since our agent-based algorithm has found solutions of a
similar quality to the ones found in our former study for 50 locations
problems, and in similar computation times. Moreover, for larger-size
problems, the algorithm has found solutions in reasonable computa-
tion times.

We have also detected an increase on the variability of results, as the
complexity of the problem increases, both with the number of locations
and the size of the fleet. In our opinion, this variability could be reduced
by simply enlarging the computation time.

As a future research line, we consider a direct enhancement of our
agent-based system by deeping into development of a parallel version. If
the communication between agents is fluent, the advantage of this

Table 15
ANOVA test for mission time grouped by number of
drones from 5 to 6 and from 6 to 8, 500 locations
problems.

P-value

5 to 6 drones 0.00062667
6 to 8 drones 0.45150698

Fig. 23. Boxplot graphic for 500 locations problems experiments, 1 truck, 5 and 6 drones.

Fig. 24. Boxplot graphic for 500 locations problems experiments, 1 truck and 7 drones.

J.M. Leon-Blanco et al.

Expert Systems With Applications 195 (2022) 116604

15

inherently parallel architecture would benefit the speedup in compu-
tation time, which could be superlinear with the number of agents.
These improvements of the algorithm will allow it to address not only
the studied problem, finding the optimum fleet size in the largest
problem instances but also the inclusion of more than one ground
vehicle. The parallel programming of the algorithm will further allow to
consider constraints that would approximate the problem to other real-
life situations such as differences between vehicles, payload or battery
depletion laws, as they have been considered in the literature.

CRediT authorship contribution statement

Jose Miguel Leon-Blanco: Methodology, Software, Writing – orig-
inal draft. P.L. Gonzalez-R: Conceptualization, Supervision. Jose L.
Andrade-Pineda: Investigation, Resources. D. Canca: Data curation,
Writing – review & editing. M. Calle: Formal analysis, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was supported by Universidad de Sevilla and Junta de
Andalucia [grant number US-1381656]. Thanks are done to the re-
viewers for their helpful comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eswa.2022.116604.

References

Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling
salesman problem with drone. Transportation Science, 52(4), 965–981. https://doi.
org/10.2139/ssrn.2639672

Alipour, M. M., Razavi, S. N., Feizi Derakhshi, M. R., & Balafar, M. A. (2018). A hybrid
algorithm using a genetic algorithm and multiagent reinforcement learning heuristic
to solve the traveling salesman problem. Neural Computing and Applications, 30(9),
2935–2951. https://doi.org/10.1007/s00521-017-2880-4

Allan, R. J. (2009). Survey of agent based modelling and simulation tools. Engineering,
501(October), 57–72.

Barbati, M., Bruno, G., & Genovese, A. (2012). Applications of agent-based models for
optimization problems: A literature review. Expert Systems with Applications, 39(5),
6020–6028. https://doi.org/10.1016/j.eswa.2011.12.015

Barbucha, D. (2012). Search modes for the cooperative multi-agent system solving the
vehicle routing problem. Neurocomputing, 88, 13–23. https://doi.org/10.1016/j.
neucom.2011.07.032

Barbucha, D., & Jedrzejovicz, P. (2007). An agent-based approach to vehicle routing
problem. International Journal of Computer and Information Engineering, 1(2), 36–41.

Baxter, J. W., Horn, G. S., & Leivers, D. P. (2008). Fly-by-agent: Controlling a pool of
UAVs via a multi-agent system. Knowledge-Based Systems, 21(3), 232–237. https://
doi.org/10.1016/j.knosys.2007.11.005

Bellifemine, F. L., Poggi, A., & Rimassa, G. (2001). Developing multi-agent systems with
JADE. In C. Castelfranchi, & Y. Lespérance (Eds.), Intelligent Agents VII, LNAI 1986
(pp. 89–103). Berlin Heidelberg: Springer-Verlag.

Bouman, P., Agatz, N., & Schmidt, M. (2017). Dynamic programming approaches for the
traveling salesman problem with drone. SSRN Electronic Journal. https://doi.org/
10.2139/ssrn.3035323

Bouman, P., Agatz, N., & Schmidt, M. (2020). TSP-D Dataset (Instances and some solutions)
(1.3). 4 Mar 2020. https://github.com/pcbouman-eur/TSP-D-Instances/releases.

Boysen, N., Briskorn, D., Fedtke, S., & Schwerdfeger, S. (2018). Drone delivery from
trucks: Drone scheduling for given truck routes. Networks, 72(4), 506–527. https://
doi.org/10.1002/net.v72.410.1002/net.21847

Caggiani, L., Marinelli, M., Orco, M. D., & Ottomanelli, M. (2017). En-route truck-drone
parcel delivery for optimal vehicle routing strategies. XXII SIDT National Scientific
Seminar.

Campbell, J. F., Sweeney, D., Zhang, J., & Pan, D. (2017). Strategic Design of Drone
Delivery Systems VIII International Workshop on Locational Analysis and Related
Problems UMSL and St . Louis. VIII International Workshop on Locational Analysis and
Related Problems, September, 1–66. http://redloca.ulpgc.es/images/doc-ws/Talk_
Campbell_Workshop2017.pdf.

Carlsson, J. G., & Song, S. (2018). Coordinated logistics with a truck and a drone.
Management Science, 64(9), 4052–4069. https://doi.org/10.1287/mnsc.2017.2824

Chang, Y. S., & Lee, H. J. (2018). Optimal delivery routing with wider drone-delivery
areas along a shorter truck-route. Expert Systems with Applications, 104, 307–317.
https://doi.org/10.1016/j.eswa.2018.03.032

Cheng, C., Adulyasak, Y., & Rousseau, L. (2018). Formulations and Exact Algorithms for
Drone Routing Problem (Issue July). https://www.cirrelt.ca/DocumentsTravail/
CIRRELT-2018-31.pdf.

Chung, S. H., Sah, B., & Lee, J. (2020). Optimization for drone and drone-truck combined
operations: A review of the state of the art and future directions. Computers &
Operations Research, 123, 105004. https://doi.org/10.1016/j.cor.2020.105004

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791

Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., & Wernstedt, F. (2005). An
analysis of agent-based approaches to transport logistics. Transportation Research
Part C: Emerging Technologies, 13(4), 255–271. https://doi.org/10.1016/j.
trc.2005.07.002

Dazhi, W., & Shixin, L. (2010). An Agent-based Evolutionary Search for Dynamic
Travelling Salesman Problem. 2010 WASE International Conference on Information
Engineering, 1, 111–114. 10.1109/ICIE.2010.34.

Dickinson, I. J. (1997). Agent standards. http://shiftleft.com/mirrors/www.hpl.hp.com/
techreports/97/HPL-97-156.pdf.

Faber, Ł., Piketak, K., Byrski, A., & Kisiel-Dorohinicki, M. (2012). Agent-based simulation
in AgE framework. In A. Byrski, Z. Oplatková, M. Carvalho, & M. Kisiel-Dorohinicki
(Eds.), Advances in intelligent modelling and simulation: simulation tools and applications
(pp. 55–83). Berlin Heidelberg: Springer, 10.1007/978-3-642-28888-3_3.

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., & Rich, R. (2016). Optimization of
a truck-drone in tandem delivery network using k-means and genetic algorithm.
Journal of Industrial Engineering and Management, 9(2), 374–388. https://doi.org/
10.3926/jiem.1929

FIPA – The Foundation of Intelligent Physical Agents. (n.d.). Retrieved May 19, 2020, from
http://www.fipa.org/.

Galland, S., Gaud, N., Demange, J., & Koukam, A. (2009). Environment Model for
Multiagent-Based Simulation of 3D Urban Systems. 7th European Workshop on
Multiagent Systems (EUMAS09).

Gath, M., Herzog, O., & Vaske, M. (2015). Concurrent and distributed shortest-path
searches in multiagent-based transport systems. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9420, 140–157. https://doi.org/10.1007/978-3-319-27543-7_7

Gonzalez-R, P. L., Canca, D., Andrade-Pineda, J. L., Calle, M., & Leon-Blanco, J. M.
(2020). Truck-drone team logistics: A heuristic approach to multi-drop route
planning. Transportation Research Part C: Emerging Technologies, 114, 657–680.
https://doi.org/10.1016/j.trc.2020.02.030

Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost traveling
salesman problem with drone. Transportation Research Part C: Emerging Technologies,
86(December 2017), 597–621. https://doi.org/10.1016/j.trc.2017.11.015.

Ham, A. M. (2018). Integrated scheduling of m-truck, m-drone, and m-depot constrained
by time-window, drop-pickup, and m-visit using constraint programming.
Transportation Research Part C: Emerging Technologies, 91(March), 1–14. https://doi.
org/10.1016/j.trc.2018.03.025

Hasan, M., & Niyogi, R. (2020). A meta-heuristic based multi-agent approach for last
mile delivery problem. ICEIS 2020 - Proceedings of the 22nd International Conference
on Enterprise Information Systems, 1(Iceis), 498–505. 10.5220/0009349004980505.

Houseknecht, J. (2019). An ACO-inspired, probabilistic, greedy approach to the Drone
Traveling Salesman Problem [Liberty]. https://digitalcommons.liberty.edu/honors/
849.

Hu, M., Liu, W., Lu, J., Fu, R., Peng, K., Ma, X., & Liu, J. (2019). On the joint design of
routing and scheduling for Vehicle-Assisted Multi-UAV inspection. Future Generation
Computer Systems, 94, 214–223. https://doi.org/10.1016/j.future.2018.11.024

Janssen, M. A., Alessa, L. N., Barton, M., Bergin, S., & Lee, A. (2008). Towards a
community framework for agent-based modelling. Journal of Artificial Societies and
Social Simulation, 11(2), 6. http://jasss.soc.surrey.ac.uk/11/2/6.html.

Jeong, H. Y., Song, B. D., & Lee, S. (2019). Truck-drone hybrid delivery routing: Payload-
energy dependency and No-Fly zones. International Journal of Production Economics,
214, 220–233. https://doi.org/10.1016/j.ijpe.2019.01.010

Kalina, P., Vokřínek, J., & Mařík, V. (2015). Agents toward vehicle routing problem with
time windows. Journal of Intelligent Transportation Systems, 19(1), 3–17. https://doi.
org/10.1080/15472450.2014.889953

Karak, A., & Abdelghany, K. (2019). The hybrid vehicle-drone routing problem for pick-
up and delivery services. Transportation Research Part C: Emerging Technologies, 102
(September 2018), 427–449. 10.1016/j.trc.2019.03.021.

Kaul, C. (2018). An agent based and ant colony metaheuristic approach to the last mile
logistics problem [The Pennsylvania State University]. https://etda.libraries.psu.edu/
catalog/15135csk19.

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for Agent-Based Modeling: The
Mesa Framework. In R. Thomson, H. Bisgin, C. Dancy, A. Hyder, & M. Hussain (Eds.),
Social, Cultural, and Behavioral Modeling (Issue April) (pp. 308–317). Springer
International Publishing. https://doi.org/10.1007/978-3-030-61255-9_30.

Kazirod, M., & Knapik, M. (2016). Pyage. https://github.com/maciek123/pyage.
Khalid, R., & Chankov, S. M. (2020). Drone delivery using public transport: An agent-

based modelling and simulation approach. In M. Freitag, H.-.-D. Haasis, H. Kotzab, &
J. Pannek (Eds.), Dynamics in logistics (pp. 374–383). Springer International
Publishing.

Kim, M., & Matson, E. T. (2017). Highlights of Practical Applications of Cyber-Physical
Multi-Agent Systems. In J. Bajo, Z. Vale, P. Pawlewski, E. Del Val, P. Novais,
F. Lopes, N. D. Duque Méndez, V. Julián, & J. Holmgren (Eds.), Highlights of Practical

J.M. Leon-Blanco et al.

https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.2139/ssrn.2639672
https://doi.org/10.2139/ssrn.2639672
https://doi.org/10.1007/s00521-017-2880-4
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0015
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0015
https://doi.org/10.1016/j.eswa.2011.12.015
https://doi.org/10.1016/j.neucom.2011.07.032
https://doi.org/10.1016/j.neucom.2011.07.032
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0030
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0030
https://doi.org/10.1016/j.knosys.2007.11.005
https://doi.org/10.1016/j.knosys.2007.11.005
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0040
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0040
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0040
https://doi.org/10.2139/ssrn.3035323
https://doi.org/10.2139/ssrn.3035323
https://doi.org/10.1002/net.v72.410.1002/net.21847
https://doi.org/10.1002/net.v72.410.1002/net.21847
https://doi.org/10.1287/mnsc.2017.2824
https://doi.org/10.1016/j.eswa.2018.03.032
https://doi.org/10.1016/j.cor.2020.105004
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/j.trc.2005.07.002
https://doi.org/10.1016/j.trc.2005.07.002
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0110
https://doi.org/10.3926/jiem.1929
https://doi.org/10.3926/jiem.1929
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0125
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0125
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0125
https://doi.org/10.1007/978-3-319-27543-7_7
https://doi.org/10.1016/j.trc.2020.02.030
https://doi.org/10.1016/j.trc.2018.03.025
https://doi.org/10.1016/j.trc.2018.03.025
https://doi.org/10.1016/j.future.2018.11.024
http://jasss.soc.surrey.ac.uk/11/2/6.html
https://doi.org/10.1016/j.ijpe.2019.01.010
https://doi.org/10.1080/15472450.2014.889953
https://doi.org/10.1080/15472450.2014.889953
https://doi.org/10.1007/978-3-030-61255-9_30
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0205

Expert Systems With Applications 195 (2022) 116604

16

Applications of Cyber-Physical Multi-Agent Systems (Vol. 722). Springer International
Publishing, 10.1007/978-3-319-60285-1.

Kiran, M., Richmond, P., Holcombe, M., Chin, L. S., Worth, D., & Greenough, C. (2010).
FLAME: Simulating large populations of agents on parallel hardware architectures.
In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (pp. 1633–1636).

KQML. (1993). https://www.csee.umbc.edu/csee/research/kqml/.
Kulkarni, A. J., & Tai, K. (2010). Probability Collectives: A multi-agent approach for

solving combinatorial optimization problems. Applied Soft Computing Journal, 10(3),
759–771. https://doi.org/10.1016/j.asoc.2009.09.006

Leitão, P., Mařík, V., & Vrba, P. (2013). Past, present, and future of industrial agent
applications. IEEE Transactions on Industrial Informatics, 9(4), 2360–2372. https://
doi.org/10.1109/TII.2012.2222034

Lopes Silva, M. A., de Souza, S. R., Freitas Souza, M. J., & Bazzan, A. L. C. (2019).
A reinforcement learning-based multi-agent framework applied for solving routing
and scheduling problems. Expert Systems with Applications, 131, 148–171. https://
doi.org/10.1016/j.eswa.2019.04.056

Lopes Silva, M. A., de Souza, S. R., Freitas Souza, M. J., & de França Filho, M. F. (2018).
Hybrid metaheuristics and multi-agent systems for solving optimization problems: A
review of frameworks and a comparative analysis. Applied Soft Computing Journal,
71, 433–459. https://doi.org/10.1016/j.asoc.2018.06.050

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3, 43–58. https://doi.org/10.1016/j.orp.2016.09.002

Luo, Z., Liu, Z., & Shi, J. (2017). A two-echelon cooperated routing problem for a ground
vehicle and its carried unmanned aerial vehicle. Sensors, 17(5), 1144. https://doi.
org/10.3390/s17051144

Luo, Z., Poon, M., Zhang, Z., Liu, Z., & Lim, A. (2021). The multi-visit traveling salesman
problem with multi-drones. Transportation Research Part C: Emerging Technologies,
128(April), Article 103172. https://doi.org/10.1016/j.trc.2021.103172

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation.
Journal of Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laporte, G. (2020). Drone-aided
routing: A literature review. Transportation Research Part C: Emerging Technologies,
120(August), Article 102762. https://doi.org/10.1016/j.trc.2020.102762

Mathew, N., Smith, S. L., & Waslander, S. L. (2015). Planning paths for package delivery
in heterogeneous multirobot teams. IEEE Transactions on Automation Science and
Engineering, 12(4), 1298–1308. https://doi.org/10.1109/TASE.2015.2461213

Moshref-Javadi, M., Hemmati, A., & Winkenbach, M. (2020). A truck and drones model
for last-mile delivery: A mathematical model and heuristic approach. Applied
Mathematical Modelling, 80, 290–318. https://doi.org/10.1016/j.apm.2019.11.020

Moshref-Javadi, M., & Lee, S. (2017). Using drones to minimize latency in distribution
systems. 67th Annual Conference and Expo of the Institute of Industrial Engineers 2017,
235–241.

Moshref-Javadi, M., Lee, S., & Winkenbach, M. (2020). Design and evaluation of a multi-
trip delivery model with truck and drones. Transportation Research Part E: Logistics
and Transportation Review, 136(December 2019), 101887. 10.1016/j.
tre.2020.101887.

Moshref-Javadi, M., & Winkenbach, M. (2021). Applications and Research avenues for
drone-based models in logistics: A classification and review. Expert Systems with
Applications, 177(February), Article 114854. https://doi.org/10.1016/j.
eswa.2021.114854

Mualla, Y., Bai, W., Galland, S., & Nicolle, C. (2018). Comparison of agent-based
simulation frameworks for unmanned aerial transportation applications. Procedia
Computer Science, 130, 791–796. https://doi.org/10.1016/j.procs.2018.04.137

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Research Part C:
Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005

Murray, C. C., & Raj, R. (2020). The multiple flying sidekicks traveling salesman
problem: Parcel delivery with multiple drones. Transportation Research Part C:
Emerging Technologies, 110, 368–398. https://doi.org/10.1016/j.trc.2019.11.003

Nathan Koenig, A. H. (2004). Design and Use Paradigms for Gazebo, An Open-Source
Multi-Robot Simulator. Proceedings of 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 4, 2149–2154.

North, M. J., Howe, T. R., Collier, N. T., & Vos, J. R. (2005). The repast simphony
runtime system. Proceedings of the Agent 2005 Conference on Generative Social
Processes, Models, and Mechanisms, 10, 13–15.

Othman, M. S. B., Shurbevski, A., Karuno, Y., & Nagamochi, H. (2017). Routing of
carrier-vehicle systems with dedicated last-stretch delivery vehicle and fixed carrier
route. Journal of Information Processing, 25(0), 655–666. https://doi.org/10.2197/
ipsjjip.25.655

Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization
approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial
drones: A survey. Networks, 72(4), 411–458. https://doi.org/10.1002/net.
v72.410.1002/net.21818

Palanca, J., & Alemany, S. (2017). SPADE. https://spade-mas.readthedocs.io/.
Pěchouček, M., & Mařík, V. (2008). Industrial deployment of multi-agent technologies:

Review and selected case studies. Autonomous Agents and Multi-Agent Systems, 17(3),
397–431. https://doi.org/10.1007/s10458-008-9050-0

Phan, A. T., Nguyen, T. D., & Pham, Q. D. (2018). Traveling salesman problem with
multiple drones. ACM International Conference Proceeding Series, 46–53. https://doi.
org/10.1145/3287921.3287932

Poikonen, S., & Golden, B. (2020a). Multi-visit drone routing problem. Computers and
Operations Research, 113, 104802. https://doi.org/10.1016/j.cor.2019.104802

Poikonen, S., & Golden, B. (2020b). The mothership and drone routing problem.
INFORMS Journal on Computing, 32(2), 249–262. https://doi.org/10.1287/
ijoc.2018.0879

Poikonen, S., Wang, X., & Golden, B. (2017). The vehicle routing problem with drones:
Extended models and connections. Networks, 70(1), 34–43. https://doi.org/
10.1002/net.v70.110.1002/net.21746

Roberti, R., & Ruthmair, M. (2021). Exact methods for the traveling salesman problem
with drone. Transportation Science, 55(2), 315–335. https://doi.org/10.1287/
TRSC.2020.1017

Rojas Viloria, D., Solano-Charris, E. L., Muñoz-Villamizar, A., & Montoya-Torres, J. R.
(2020). Unmanned aerial vehicles/drones in vehicle routing problems: A literature
review. International Transactions in Operational Research, 1–32. https://doi.org/
10.1111/itor.12783

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search
metaheuristic for the vehicle routing problem with drones. Transportation Research
Part C: Emerging Technologies, 102, 289–315. https://doi.org/10.1016/j.
trc.2019.02.018

Salama, M., & Srinivas, S. (2020). Joint optimization of customer location clustering and
drone-based routing for last-mile deliveries. Transportation Research Part C: Emerging
Technologies, 114(March), 620–642. https://doi.org/10.1016/j.trc.2020.01.019

Schelling, T. C. (1958). The strategy of conflict: Prospectus for a reorientation of game
theory. Journal of Conflict Resolution, 2(3), 203–264. https://doi.org/10.1177/
002200275800200301

Schermer, D., Moeini, M., & Wendt, O. (2019). A hybrid VNS/Tabu search algorithm for
solving the vehicle routing problem with drones and en route operations. Computers
and Operations Research, 109, 134–158. https://doi.org/10.1016/j.cor.2019.04.021

Schermer, D., Moeini, M., Wendt, O., B, M. M., & Wendt, O. (2018). Algorithms for
Solving the Vehicle Routing Problem with Drones. In N. T. Nguyen, D. H. Hoang, T.-
P. Hong, H. Pham, & B. Trawiński (Eds.), Intelligent Information and Database Systems,
10th Asian Conference (ACIIDS 2018) (pp. 352–361). Springer International
Publishing AG. 10.1007/978-3-319-75417-8_33.

Semsch, E., Jakob, M., Pavlicek, D., & Pechoucek, M. (2009). Autonomous UAV
Surveillance in Complex Urban Environments. 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology, 2, 82–85.
10.1109/WI-IAT.2009.132.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles. In M. Hutter, & R. Siegwart (Eds.),
Field and service robotics (Springer P (pp. 621–635). Cham: Springer, 10.1007/978-3-
319-67361-5_40.

Talukdar, S., Pyo, S., & Giras, T. (1983). Asynchronous procedures for parallel
processing. IEEE Transactions on Power Apparatus and Systems, PAS-102(11),
3652–3659.

Talukdar, S. N., & Ramesh, V. C. (1992). A-teams for real-time operations. International
Journal of Electrical Power and Energy Systems, 14(2–3), 138–143. http://www.
scopus.com/scopus/inward/record.url?eid=2-s2.0-
0042265325&partnerID=40&rel=R8.2.0.

Thangiah, S. R., Shmygelska, O., & Mennell, W. (2001). An agent architecture for vehicle
routing problems. In Proceedings of the ACM Symposium on Applied Computing (pp.
517–521), 10.1145/372202.372445.

Vásquez, S. A., Angulo, G., & Klapp, M. A. (2021). An exact solution method for the TSP
with Drone based on decomposition. Computers and Operations Research, 127,
105127. https://doi.org/10.1016/j.cor.2020.105127

Wang, D., Hu, P., Du, J., Zhou, P., Deng, T., & Hu, M. (2019). Routing and scheduling for
hybrid truck-drone collaborative parcel delivery with independent and truck-carried
drones. IEEE Internet of Things Journal, 6(6), 10483–10495. https://doi.org/10.1109/
JIOT.2019.2939397

Wang, X., Poikonen, S., & Golden, B. (2017). The vehicle routing problem with drones:
Several worst-case results. Optimization Letters, 11(4), 679–697. https://doi.org/
10.1007/s11590-016-1035-3

Wang, Z., & Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation
Research Part B: Methodological, 122, 350–364. https://doi.org/10.1016/j.
trb.2019.03.005

Wilensky, U. (1999). Center for connected learning and computer-based modeling. NetLogo:
Northwestern University. http://ccl.northwestern.edu/netlogo/.

Yoon, J. J. (2018). The Traveling Salesman Problem with Multiple Drones: An
Optimization Model for Last-Mile Delivery [Massachusetts Institute of Technology].
In Massachusetts Institute of Technology. Supply Chain Management Program. https://
dspace.mit.edu/handle/1721.1/117930#files-area.

Zeddini, B., Temani, M., Yassine, A., & Ghedira, K. (2008). An agent-oriented approach
for the dynamic vehicle routing problem. International Workshop on Advanced
Information Systems for Enterprises, 2008, 70–76. https://doi.org/10.1109/
IWAISE.2008.16

J.M. Leon-Blanco et al.

http://refhub.elsevier.com/S0957-4174(22)00097-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0210
https://doi.org/10.1016/j.asoc.2009.09.006
https://doi.org/10.1109/TII.2012.2222034
https://doi.org/10.1109/TII.2012.2222034
https://doi.org/10.1016/j.eswa.2019.04.056
https://doi.org/10.1016/j.eswa.2019.04.056
https://doi.org/10.1016/j.asoc.2018.06.050
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.3390/s17051144
https://doi.org/10.3390/s17051144
https://doi.org/10.1016/j.trc.2021.103172
https://doi.org/10.1057/jos.2010.3
https://doi.org/10.1016/j.trc.2020.102762
https://doi.org/10.1109/TASE.2015.2461213
https://doi.org/10.1016/j.apm.2019.11.020
https://doi.org/10.1016/j.eswa.2021.114854
https://doi.org/10.1016/j.eswa.2021.114854
https://doi.org/10.1016/j.procs.2018.04.137
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1016/j.trc.2019.11.003
https://doi.org/10.2197/ipsjjip.25.655
https://doi.org/10.2197/ipsjjip.25.655
https://doi.org/10.1002/net.v72.410.1002/net.21818
https://doi.org/10.1002/net.v72.410.1002/net.21818
https://doi.org/10.1007/s10458-008-9050-0
https://doi.org/10.1145/3287921.3287932
https://doi.org/10.1145/3287921.3287932
https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/10.1287/ijoc.2018.0879
https://doi.org/10.1287/ijoc.2018.0879
https://doi.org/10.1002/net.v70.110.1002/net.21746
https://doi.org/10.1002/net.v70.110.1002/net.21746
https://doi.org/10.1287/TRSC.2020.1017
https://doi.org/10.1287/TRSC.2020.1017
https://doi.org/10.1111/itor.12783
https://doi.org/10.1111/itor.12783
https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/10.1016/j.trc.2020.01.019
https://doi.org/10.1177/002200275800200301
https://doi.org/10.1177/002200275800200301
https://doi.org/10.1016/j.cor.2019.04.021
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0395
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0395
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0395
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0395
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0400
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0400
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0400
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0410
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0410
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0410
https://doi.org/10.1016/j.cor.2020.105127
https://doi.org/10.1109/JIOT.2019.2939397
https://doi.org/10.1109/JIOT.2019.2939397
https://doi.org/10.1007/s11590-016-1035-3
https://doi.org/10.1007/s11590-016-1035-3
https://doi.org/10.1016/j.trb.2019.03.005
https://doi.org/10.1016/j.trb.2019.03.005
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0435
http://refhub.elsevier.com/S0957-4174(22)00097-5/h0435
https://doi.org/10.1109/IWAISE.2008.16
https://doi.org/10.1109/IWAISE.2008.16

	A multi-agent approach to the truck multi-drone routing problem
	1 Introduction
	2 Related work
	3 Problem description
	4 Agent-based approach
	4.1 Locations as agents
	4.2 Initial solution. Examples
	4.3 Agents’ behaviour
	4.3.1 Vertical movement evaluation – yMove()
	4.3.2 Horizontal movement evaluation – 2opt()
	4.3.3 Movement to the nearest arc evaluation (joining a nearby route)– node2arc()
	4.3.4 Selection of the agent to move – select()
	4.3.5 Making the best movement
	4.3.6 Sharing the resulting movement with the manager

	4.4 Rules to escape from local minima

	5 Results and discussions
	5.1 Global results
	5.2 Analysis of large-size instances
	5.3 Fleet size analysis for complex problems

	6 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References

