
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 DETECTION OF MICROCALCIFICATIONS IN MAMMOGRAMS USING 
2D PREDICTION FILTERING AND A NEW STATISTICAL MEASURE OF 

THE RIGHT TAIL WEIGHT 
 

B. Acha*, C. Serrano* and R.M. Rangayyan** 
 

* Dep. de Teoría de la Señal y Comunicaciones, University of Seville, Seville, Spain 
 

** Dept. of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada 
 

bacha@us.es, cserrano@us.es  
 
 
Abstract: In this paper, a new method to detect 
microcalcifications in mammograms is presented. 
The method is based on a candidate selection 
procedure which consists of a two-dimensional linear 
prediction adaptive filtering followed by a statistical 
parameter calculation developed by the authors and 
called tail ratio (TR). The parameter TR 
characterizes the presence of microcalcifications in a 
ROI, and is extracted from the local probability 
distribution within a small region surrounding each 
candidate. Afterward a group of new and previously 
published features are used to feed a neural network 
that classifies the candidates into microcalcification 
or non-microcalcification. The algorithm has been 
tested with 38 digitized mammograms obtaining a 
sensitivity of 0.93 for a positive predictive value of 
0.88. 
 
Introduction 

 
The availability and proliferation of digital 

radiographic images have encouraged research in 
Computer-aided Diagnosis (CAD). A significant part of 
such research has concentrated on the detection of 
breast cancer, in view of the fact that women in Western 
countries have a higher than 1 in 10 chance of 
developing breast cancer during their life. In particular, 
many researchers have focused on the detection of 
microcalcifications [1,2], which are early signs of breast 
cancer. 

Computer-aided mammography has been studied for 
more than two decades. During this period the 
sensitivity of detection has improved, with some recent 
papers reporting more than 90% sensitivity. 
Nevertheless, the false-positive rate remains high, 
especially when detecting individual microcalcifications 
[3]. Therefore, automated interpretation of 
microcalcifications remains a challenge due to their 
small size and variable appearance. Furthermore, when 
located within or superimposed by dense tissues, 
especially in young women, microcalcifications have 
almost the same brightness level as the background 
tissue, which makes them difficult to detect. In view of 
the above, it is evident that methods for automatic 
detection of microcalcifications in mammograms are 

desirable in order to assist radiologists in the 
interpretation of mammograms and the diagnosis of 
breast cancer. 

In this paper a new method to detect 
microcalcifications in mammograms is proposed. The 
method is based on a candidate selection procedure 
followed by a Support Vector Machine (SVM) 
classifier. During the candidate selection a 2-D linear 
prediction filtering is employed and a new measure 
based on the statistical distribution in a neighborhood is 
defined.  
 
Method 

 
In order to detect the microcalcifications we apply 

the following steps: 
 
Candidate selection: We propose a method to select 

potential microcalcification points or candidate pixels 
for subsequent analysis and detection of 
microcalcifications. The method consists of two main 
steps: 
1) 2D linear prediction error filtering [4,5], followed by 
thresholding. A pixel is selected as a pre-candidate for 
microcalcification if its prediction error is greater than 
an adaptively determined threshold. We use the 
multichannel version of the Burg algorithm to calculate 
this error. The multichannel version of the Burg 
algorithm calculates the optimal prediction coefficients, 
for a 21 pp ×  2D predictor, by computing the prediction 
errors of order p1. The prediction errors are represented 
as vectors of size 12 ×p  and are computed recursively, 
beginning with the 0-order prediction errors. The error 
values are initialized to the original image. The 
prediction errors of higher orders are calculated by 
repeating recursively the following three steps, with 

2,,1,0 1 −= pi L : 
1. Compute the covariance matrices for the forward 
and backward prediction errors as: 
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where )(me f
i  and )(meb

i  are, respectively, the 
forward and backward prediction errors of order i. As 

both of the error vectors are of size p2×1, f
iE , b

iE and 
bf
iE will be 22 pp ×  matrices. The summation, 

depending on m, is performed for all the prediction error 
vectors of size p2×1 that the subimage can be partitioned 
into. 

2. Calculate the prediction coefficient matrix 
[ ]11 ++ iAi  by solving the following equation: 
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3. Compute the backward and forward prediction 
error vectors of the higher prediction order as: 
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(3)

Once prediction errors are calculated for all the 
pixels in the image, they are thresholded to select pre-
candidates pixels. The threshold is adaptively 
determined based upon the local average intensity of the 
subimage, local average value of the prediction error, 
and the global intensity (grey level) of the whole image. 

This is based upon the observation that a 
microcalcification can be seen as a point of 
nonstationarity in an approximately homogeneous 
region or neighborhood in a mammogram. Such a pixel 
cannot be predicted well by the linear predictor, and 
hence leads to a high prediction error [6].  
2) Calculation of a statistical parameter called tail ratio 
(TR), for the pre-candidates, followed by thresholding. 
Microcalcifications represent small points of high 
intensity. Therefore, if we analyze the probability 
density function (pdf) of the pixels belonging to a 
neighborhood surrounding a microcalcification, it will 
have the right tail longer than the left one. Based on this 
observation, we have developed a parameter, TR, that is 
a relative measure of the tail length of a pdf. There are 
some descriptors in the literature that measure the 
heaviness of the tail of a pdf. The kurtosis coefficient is 
often regarded as a measure of the heaviness of a 
distribution relative to the normal distribution. Its 
interpretation and use have been restricted to symmetric 
distributions, because of its intrinsic comparison with 
the symmetric normal distribution. Another 
disadvantage with kurtosis is that it is sensitive to 

outliers in the data, because it is based on moments of 
the data. For any distribution function F with finite 
moments, kurtosis is defined as: 
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where the numerator and denominator represent the 
second and fourth central moments of F, respectively 
and X are the data values. Some authors have presented 
other robust measures of kurtosis, but defined only for 
symmetric distributions, or merely measuring the 
peakedness instead of the tail weight [7,8]. 

Other works overcome the problems mentioned 
above by introducing several measures of tail weight for 
univariate continuous distributions that can be applied 
to symmetric as well as asymmetric distributions [9]. 
They define left and right tail measures as measures of 
skewness that are applied to the half-portion of the 
probability mass lying to the left or the right, 
respectively, of the median of F, denoted as 

)5.0(1−= FmF . Nevertheless, we have not found 
these measures capable of solving the problem of 
detecting microcalcifications, because they are an 
estimation of the heaviness of the tail but not of its 
length. Microcalcifications, as described above, are 
characterized by a long right tail in the local histogram. 
Therefore, in order to characterize the right tail, we have 
developed the tail ratio (TR), defined as: 
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where xmax and xmin represent the maximum and 
minimum intensity values of the pdf and F-1 is the 
inverse function of the probability distribution function. 
Because the size of a microcalcification is variable, the 
neighborhood around the pre-candidates used to 
calculate the local histogram must be adaptive. 
According to the size of a microcalcification, with the 
diameter varying from 0.1 to 1 mm, and according to 
the resolution of the database of images to be used, 
microcalcifications can occupy from 4 to 400 pixels 
each. Therefore, we initially calculate the histogram and 
the parameter TR for a 3×3 pixel square around each 
pre-candidate. If TR is over the applicable threshold, the 
pre-candidate is considered to be a candidate for the 
subsequent steps for the detection of 
microcalcifications. Otherwise, the square box is 
increased in size, and TR is recalculated. This procedure 
is repeated until one of the following two possible 
conditions is fulfilled: 1) the selection box reaches its 
maximal area (specified as 20×20 pixels in the present 
work), or 2) TR is higher than the applicable threshold. 
This procedure is summarized in Figure 1 After this 
step, the candidates are prepared for subsequent 
classification as a microcalcification or not. 
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Figure 1: Scheme to select the candidates for 
microcalcifications. 

 
Feature extraction: For each candidate for 

microcalcification, statistical texture features are 
extracted that, after a selection procedure, will be the 
inputs to a classifier. More specifically, the descriptors 
chosen for each candidate are: 
1) Size of the square neighborhood (k) where TR 

exceeded the threshold. 
2) TR value. 
3) Inter-distance (ID): The parameter ID is based on the 

fact that pixels that have high intensity values (above 
the 98th percentile) will belong to a microcalcification, 
if present in the selected square neighborhood. In 
such a case, the pixels must be close to one another. 
Therefore, we define a new parameter, ID, calculated 
as: 

∑
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where N is the number of pixels above the 98th 
percentile, (xi, yi) are the coordinates of the pixels 
selected, and (xc, yc) are the coordinates of the 
centroid of the selected pixels. 

4) Average of the mean slopes (MS). In the four possible 
directions (North, South, East, and West), the mean 
descending slope from the pixel of maximum value in 
the neighborhood k×k is calculated, and MS is 
obtained as its average according to the equation 
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where nmax and mmax are the coordinates of the 
pixel with the maximum value inside the 
neighborhood. The interval we have chosen to 
average the slope is k/6 because the estimated 
diameter of the microcalcification is k/3 in the k×k 
square. 

5) Average of maximum slopes (MaxS). This feature 
represents the average of the maximum slopes in the 
North, South, East, and West directions of a candidate 
according to 
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6) Entropy (Ent) is defined as 
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where N represents the number of grey values in the 
image and P(j) is the probability of occurrence of grey 
value j.  

7) Average height (AH) of the histogram inside the k×k 
neighborhood. This parameter is defined as 
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histogram of the data distribution X inside the k×k 
area. 

8) Correlation with a Gaussian distribution (CG) with 
standard deviation equal to k/6. Although 
microcalcifications vary in form, it is considered a 
plausible assumption that they have a circularly 
symmetric Gaussian distribution [2, 10]. Therefore, if 
a microcalcification is present in the square region 
being analyzed, the correlation evaluated between the 
Gaussian and the image centered at the maximum 
within the square will be close to 1, if both signals 
have their energy normalized to 1. 

9) Contrast parameter (C), calculated as 
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k

k
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−= , where meank is the average value 

of the pixels inside the k×k square and m represents 
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 the mean value of the pixels belonging to the 2-pixel 
wide border of the square. 

10)  Dynamic range (DR), obtained as 
)min()max( XXDR −= , where X represents the 

image values in the k×k square. 
 

 Feature selection 
After analysis of the features described above, we 

found that it was necessary to apply a feature selection 
method to obtain the optimal set of features for the 
subsequent step of classification. The discriminant 
power of the 10 features was analyzed using the SFS 
method and the Sequential Backward Selection (SBS) 
method [11] via an SVM, which is described below. 

SFS is a bottom-up search procedure where one 
feature at a time is added to the current feature set. At 
each stage, the feature to be included in the feature set is 
selected from the remaining available features that have 
not been added to the feature set yet, such that the new 
enlarged feature set yields a lower classification error as 
compared to adding any other single feature. The 
algorithm stops when adding a new feature leads to an 
increase in the classification error. 

The SBS is the top-down counterpart of the SFS 
method. It starts from the complete set of features and, 
at each stage, the feature that shows the least 
discriminant power is discarded. The algorithm stops 
when removing another feature implies an increase in 
the classification error. 

To analyze the two feature selection methods, we 
used five mammograms and selected 230 
microcalcifications and 400 points that were not 
microcalcifications. Of the selected points, 184 
microcalcifications and 320 non-microcalcifications 
were used as the training set for the classifier, and the 
remaining 46 microcalcifications and 80 non-
microcalcifications as the test set. The selection 
performance was evaluated by five-fold cross validation 
(XVAL) [11], where the procedure is repeated five 
times, changing each time the training and the test sets 
and the average results are computed. In this manner, 
the disadvantage of the sensitivity of the SBS and SFS 
methods to the order of presentation of the training set is 
diminished [11].  

In order to perform the SBS and SFS methods, a 
classifier is required. For this purpose, an SVM was 
used, as explained below. 

The results of applying the SFS and SBS methods 
are summarized in Table 1. The average error was 
calculated by counting the misclassifications and 
dividing by the total number of microcalcifications. 
From Table 1, we see that the SFS method gives the 
best feature set [mean slope (MS), correlation with a 
Gaussian distribution (CG), contrast (C), dynamic range 
(DR), average height (AH), inter-distance (ID)], with an 
average error of 4.13%. 

 
 
 

Table 1: Results of the SFS and SBS methods for 
feature selection. 
 

Method Feature set Average 
error 

SFS MS, CG, C, DR, AH, ID 4.13% 
SBS TR, AH, CG, C, DR 4.92% 

 
Detection of microcalcifications 
After the features were selected, they were used to 

classify the candidates as microcalcifications or not. As 
mentioned before, the classifier chosen is an SVM. 
Support vector algorithms [12] constitute one of the 
important advances in computational learning in the 
1990s. An SVM is the final step in a long research study 
known as statistical learning, carried out mainly by 
Vapnik [13]. Vector machine formulation is based on 
the principle of structural risk minimization (SRM), 
which has been shown to be better than the principle of 
empirical risk minimization; the latter method is used by 
many conventional neural networks. The principle of 
SRM consists of finding the subset of functions that 
minimizes the bound on the actual risk. 
The advantages of SVM can be summarized as follows: 
1) The training is a problem of convex quadratic 

programming. Computationally efficient algorithms 
are available for this purpose, and the finding of the 
global extremum is guaranteed. 

2) The method does not face the problem of overfitting, 
as in the case of neural networks. 

3) It allows to work with nonlinear relationships 
between the data (it generates nonlinear functions by 
means of kernels). 

4) It generalizes well with a small number of training 
samples. 

The kernel used is a Gaussian function with variance 
equal to 2.0. 

 
Results 

 
The detection algorithm was tested with 38 

mammograms containing a total of 3,791 
microcalcifications of different nature and diagnosis. 
The mammograms were obtained from Screen Test: The 
Alberta Program for the Early Detection of Breast 
Cancer [14]. The films were digitized with a Lumiscan 
85 laser scanner (Lumisys, Sunnyvale, CA) with a 
spatial resolution of 50µm and 12 bits per pixel. Figure 
2 shows a 258×422 pixel portion of a mammogram with 
microcalcifications. The backward and forward 
prediction error filtering was performed, obtaining the 
pre-candidates for microcalcifications. These points are 
centered at the maximal values in the surrounding area, 
so that they will be at the centers of the possible 
microcalcifications. In Figure 3 the pre-candidate points 
are shown as small black points. 

The second part of the detection algorithm consists 
of calculating the TR parameter in order to select the 
final candidates for microcalcification from the set of 
pre-candidates. In Figure 3 we can see the result of this 
step of the algorithm, showing the candidates 
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 surrounded by a black square. In Figure 4, the final 
result with the complete detection of the 
microcalcifications is shown. 

The results obtained with the algorithms described 
were examined by an expert radiologist specialized in 
mammography (JELD), who determined the accuracy of 
the detection. The results are summarized in Table 2 and 
Table 3. It has to be noted that the numbers of true 
positives (TP) and false positives (FP) are calculated 
counting each individual microcalcification and not 
clusters. This fact should be considered when 
comparing the algorithm with other existing methods. 
From Table 3, we can observe that the method attains a 
sensitivity value of 0.93, a specificity value of 0.99 and 
a Positive-Predictive Value (PPV) of 0.89. The 
computational cost of the algorithm, when run on a 
Pentium 4 at 3.06 GHz and with 1GB DDR, was a 
processing time of 25s per mammogram, on the 
average. 
 

Table 2: Performance analysis of the algorithm for 
detection of microcalcifications with 38 mammograms 
containing a total of 3,791 microcalcifications. 
 

Total no. of 
pre-candidates

Total no. of 
candidates 

 TP  TN  FP  FN 

189,251 43,753 3,536 39,468 494 255 

 
Table 3: Parameters for the evaluation of the algorithm 
for detection of microcalcifications with 38 
mammograms containing a total of 3,791 
microcalcifications. 

 
Sensitivity PPV Specificity 

0.93 0.89 0.99 

 

 
 
Figure 2: A 258×422 pixel portion of a mammogram with microcalcifications. 
 

 
Figure 3: Pre-candidates for the detection of microcalcifications shown as small black points and candidates for 
microcalcifications shown surrounded by a black square. 
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Figure 4: Final results of detected microcalcifications. 
 
 
Conclusions 
 
In this paper a CAD tool to help the radiologist to 
diagnose microcalcifications has been presented. It 
automatically detects microcalcifications in 
mammograms. The method has been tested with 38 
mammograms from the Calgary database. The results 
obtained with the method are very promising for the 
sensitivity is 0.93 for a PPV of 0.89. 
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