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We live in a world where the number of devices that are constantly communicating
with each other are growing exponentially, and to keep up with that trend, new
communication technologies are being developed at a higher rate than in previous
decades. The consequence of all these is the increase in the shared usage of the
same electromagnetic spectrum by all these devices. Cognitive Radios (CR) [1] are
being proposed as a solution that allows communication systems to efficiently use
the frequency spectrum, by dynamically modifying their transceiver specifications
according to the information sensed from the electromagnetic environment, where
they should be able to develop sensing, decision, sharing and allocation functions.
A Software-defined Radio (SDR) acts as the base upon which CR technology can be
implemented. Artificial Intelligence (AI) layers, embedded in CR systems can be
used to optimize the management of the electromagnetic spectrum and assist the
signal processing and performance of IoT nodes equipped with CR technology [2].
In the past few years, improvements on Artificial Neural Networks (ANNs) have
led to their usage in trying to solve the spectrum management problem, where, for
example, Long Short-term Memory networks (LSTMs), a type of Recurrent Neural
Networks (RNNs) have been used in the past to predict temporal evolution of data
[3] [4].

This project contributes to this topic by examining the use of several ANNs to
predict spectrum occupancy in CR systems. Their performance is compared in terms
of system complexity, execution time and accuracy. Five NN architectures are stud-
ied and implemented to predict channel occupancy which was envisioned as a time
series forecasting/prediction problem and will be used to predict the future evolu-
tion of the radioelectric spectrum for Cognitive-Radio applications.
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Chapter 1

Introduction

1.1 Background and motivation

The rate at which wirelessly connected devices grow is consistently increasing and
an indicator is in the number of mostly wireless devices connected to Internet Pro-
tocol (IP) networks. Figure 1.1 shows that by 2023, this number is expected to reach
29.3 billion units, up from 18.4 billion in 2018. The functionality of these devices,
going from devices that were only capable of voice-only communications, as in the
case of mobile phone devices, to devices that require higher data rates as a result of
multimedia type applications currently required of them [5].

FIGURE 1.1: Global device and connection growth. (Source: Cisco
Annual Internet Report, 2018–2023)

Also influential is the exponential growth of information traffic as a result of
Internet of Things (IoT). IoT describes physical objects (or groups of such objects)
that are embedded with sensors, processing ability, software, and other technologies
that connect and exchange data with other devices and systems over the Internet
or other communications networks [6]. As such, efficient IoT nodes will require
hybrid software/hardware platforms, new computation paradigms, communication
protocols, as well as highly adaptive and programmable circuitry, very specially at
the analog/digital interface of the system [7], [8].

The most pressing issue in all of these is that, for all the exponential growth, both
in the number of devices and in the technological innovations in communication sys-
tems, there is an excessive demand and shared use of the electromagnetic spectrum.
This spectrum, shared by these devices, is both limited and controlled by regulations
and recognized authorities, such as the International Telecommunications Union
(ITU) for international regulations, the Federal Communications Commission (FCC)
in the United States or the Ministerio de Industria, Turismo y Comercio through the
Secretaría de Estado de Telecomunicaciones y para la Sociedad de la Información
(SETSI) for Spain, which mostly use a Fixed Spectrum Allocation (FSA) policy. The
current static allocation schemes by these regulators consist of assigning channels
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to specific users with licenses for specific wireless technologies and services, where
these licensed users, also called Primary Users (PUs), have access to their assigned
spectrum portions to transmit/receive their data, while others, unlicensed users, are
forbidden even when those spectrum portions are unoccupied [9].

When these assigned portions are vacant, frequency or spectrum holes are created.
A spectrum hole, also called white space, is a frequency band assigned to a PU,
but it is not being used at a particular time and at a particular location [10]. This
highlights an inefficient use of the spectrum that leads to spectrum scarcity for un-
licensed users, also called Secondary Users (SUs). These allocation schemes cannot
accommodate the requirements of an increasing number of higher data rate devices,
resulting in the need for innovative techniques that can offer new ways of exploiting
the available spectrum [5], and also help provide spectrum spaces for future tech-
nologies [11].

A solution to the spectrum scarcity and allocation issue would be to dynamically
manage the spectrum by making available the unoccupied (vacant) channels/por-
tions to SUs, without interfering the PUs signals and to achieve this, the Opportunistic
Spectrum Access (OSA), also known as the Dynamic Spectrum Access (DSA), has
been proposed. Unlike the FSA, DSA allows the sharing of the spectrum between
SUs and PUs, whereby the spectrum is divided into numerous bandwidths assigned
to one or more dedicated users [12] [13].

CR [14] was proposed as a solution that allows communication systems to make
a more efficient use of the electromagnetic spectrum, by dynamically modifying the
transceiver specifications according to the information sensed from their electromag-
netic environment. CR-based technologies are opportunistic in nature as they provide
a way for their users, SUs, to make an opportunistic use of licensed frequency bands
when they are not occupied by their owners, i.e. PUs.

1.2 Current project objective

The aim of the final project is to explore different architectures of NNs which can be
applied for time series forecasting problems and subsequently be used to predict the
future evolution of the radioelectric spectrum for Cognitive-Radio applications.

1.3 Current project tasks

Given the broad aspect of the main project (i.e, NEURO-RADIO project), it is impor-
tant to list the specific tasks that were carried out in this Final Masters Project (FMP).

1. Generate dataset that represents the temporal evolution of the occupancy level
of a communications channel.

2. Implement five different ANNs models.

3. Fit/train the ANNs models.

4. Use the fitted network models to obtain predictions.

5. Compare the results gotten from the time it takes to build, compile and fit the
network models and the accuracy of each model.
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1.4 Report structure

The present report is divided into 4 chapters:

• Introduction

Brief introduction that explains the motivation behind the project, and the
long-term and short-term objectives that are expected to be met.

• Theoretical concepts

Basic theoretical concepts that are the foundation of the project.

• Methodology and implementation

Includes the design details and implementation of the project, from dataset
obtention to network predictions.

• Results and conclusions

Results of the network predictions are provided and conclusions are drawn
from them.

1.5 Structure of current project folder

The scripts for this project are included in the compressed zip file called tfm_Promise.
The contents of this file are:

• MemoriaTFM: A memory of the masters project in pdf format.

• scripts: A folder that contains the scripts used in the project.

– main: Main script from where the other scripts are called and all nec-
essary methods are instantiated. This script is run to train the network
models and make predictions. The main variables that can be modified
to the users discretion are:

* cpu_gpu_select: variable to select either the CPU (0) or the GPU (1).

* folder_path: folder path where to save generated data.

* train_percentage: defines the percentage of the dataset that will be
used for training (remaining will be used for prediction/test)

* n_input: defines the total samples to used as input.

* n_output: defines the number of output samples to be predicted.

* num_runs: defines the total number of executions/runs.

* net_type: selects the network type, where 1 = CNN, 2 = LSTM.

* lstm_model: selects the LSTM model type, where 1 = Vanilla, 2 =
Encoder-Decoder, 3 = CNN-LSTM, 4 = Conv-LSTM.

– generate_data_input: Script to generate dataset.

– cnn_model: Script where functions for the 1D CNN model are imple-
mented.

– lstm_model: Script where functions for the vanilla LSTM, encoder-decoder,
CNN-LSTM, and ConvLSTM models are implemented.
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Chapter 2

Concepts and previous works

In this chapter, we explain the general concepts that make up the foundation of the
project. We look at concepts like cognitive radio, spectrum sensing, neural networks
etc

2.1 Software defined radio

The radio communication in traditional hardware radios is all carried out by hard-
ware components that include amplifiers, capacitors, inductors, filters, modulators/de-
modulators etc. SDR) replaces some or all these physical components with soft-
ware layers that implement the operating functions of the radio. SDRs include pro-
grammable analog-to-digital converters, and a microprocessor, FPGA, or general-
purpose computer that acts as the digital processing hardware. An image compar-
ison of the hardware of a traditional radio and an SDR is shown in Figure 2.1a and
Figure 2.1b. Earlier mentions of SDRs are attributed to articles by J. Mitola [1][14]

(A) JVC Nivico TH-2770Z Transistor Radio.1

(B) (Ettus Research N210 software defined radio.

FIGURE 2.1: Visual comparison between a traditional hardware radio
and a SDR.

1image retrieved from http://antiqueradio.org/
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A block diagram of an ideal SDR transceiver [15], as it was originally conceived
by Mitola [1] is shown in Figure 2.2, where the RF signal coming in from the an-
tenna is directly digitized by an Analog-to-digital converter (ADC). The digitization
is close to the antenna and most of the processing is performed by a high-speed
general-purpose digital signal processor (DSP) [15]. Software run on the DSP can be
used to implement functions like frequency tuning and translation, filtering, chan-
nel selection, demodulation, etc. On the transmitter side, a power amplifier (PA) is
combined with a Digital-to-analog converter (DAC). This ideal SDR transceiver is
unrealizable because the required specifications for both the ADC and the DAC are
prohibitively rigorous and as such the realistic radio transceiver would contain an
analog-signal-processing (ASP) section that includes signal conditioning (frequency
translation, amplification, and filtering) [15]. This realistic implementation of the
transceiver is shown in Figure 2.3.

FIGURE 2.2: Ideal SDR transceiver as conceived by Mitola.

FIGURE 2.3: Realistic SDR transceiver.

2.2 Cognitive radio

First proposed by Mitola [14], it defines a radio that has the ability to sense their
environment and make decisions based on the gotten information. The communi-
cation system of the radio is defined such that it can adjust its behaviour and adapt
to meet its objectives, depending on the information gotten from the environment
and its internal state. This ability to sense and make decisions is enabled by the
software-defined layers of the radio. A cognitive radio must be self-aware, where
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it’s knowledge of a minimum set of basic facts about radio is used to communicate
with other entities. An ideal CR, as conceived by Mitola, should be able to perform
the following tasks: spectrum sensing, spectrum sharing, spectrum decision, and
spectrum mobility [11]. A CR framework model is shown in Figure 2.4 [16].

FIGURE 2.4: Cognitive Radio Framework.

The radio hardware (an SDR or Programmable Digital Radio (PDR)) consists of a
set of modules: antenna, RF section, modem, information security (INFOSEC) mod-
ule, baseband/ protocol processor, and user interface. The baseband processor hosts
both the protocol and control software. The modem software includes the modem
with equalizer, among other things. The framework also showcases how the cogni-
tive radio has an internal model of its own hardware and software structure. The
equalizer model would contain the codified knowledge about equalizers, including
how the taps represent the channel impulse response and the variable bindings be-
tween it and the software equalizer establish the interface between the reasoning
capability and the operational software. The model-based reasoning capability that
applies these Radio Knowledge Representation Language (RKRL) frames to solve
radio control problems gives the radio its "cognitive" ability.

Benefits of CR include usage optimization of assigned and unassigned spectrum,
interoperability organization between users, network reconfiguration to meet cur-
rent needs, etc.

2.3 Spectrum sensing

Spectrum Sensing (SS) is the task of obtaining awareness about the spectrum usage
and existence of PUs in a geographical area. This awareness can be obtained by
using geolocation and database, by using beacons, or by local spectrum sensing at
CRs [5]. The SS model can be formulated as [10]:

y(n) =

{
w(n) H0: PU absent
h ∗ s(n) + w(n), H1: PU present

(2.1)

where:

• n = 1 . . . N.

• N is the number of samples.
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• y(n) is the signal received by the SU.

• s(n) is the PU signal.

• w(n) is the additive white Gaussian noise (AWGN) with zero mean and vari-
ance, δ2

w.

• h is the complex channel gain of the sensing channel.

• H0 denotes the absence of the PU signal.

• H1 denotes the presence of the PU signal.

A SS technique is used to detect PU signals and the detector output (test statistic)
is then compared to a threshold in order to make the sensing decision about the PU
signal presence. The sensing decision is performed as [10]:{

if T ≥ γ, H1

if T < γ, H0
(2.2)

where T denotes the test statistic of the detector and γ denotes the sensing thresh-
old. If the PU signal is absent, SUs can access the PU channel, and on the contrary,
access is denied.

2.3.1 Spectrum sensing techniques

Many diverse SS techniques have been reported so far and they can be classified
into two main categories: cooperative sensing and non-cooperative sensing [10][17] [18].
In cooperative sensing, SUs collaborate and coordinate with each other taking into
account the objectives of each SU to make the final common decision. This coop-
eration between the different SUs can be divided into two schemes: centralized and
distributed schemes.

In distributed scheme, for a given frequency band, the sensing result of each SU
is exchanged with other SUs, where each SU makes its own final decision, basing
on the received results of others. For the centralized scheme, all the SUs send their
sensing results to a central unit, called fusion centre, that makes the final decision on
which SU accesses the spectrum, using the sensing results.

Many proposed SS techniques include those based on matched filter based sens-
ing [19], energy detection [20], cyclostationary detection [21] [22], wavelet detection
[5], covariance detection [23], among others.

Energy detection

The received signal energy is compared with a threshold, that depends only on the
noise power. The test statistic of the detector is computed from the squared mag-
nitude of the Fast Fourier Transform (FFT) averaged over N samples of the signal
the SU received. Different energy detection methods have been proposed, of which
includes a method based on adaptive threshold in unknown white Gaussian noise
with noise power estimation [24], a double-threshold technique in [25] with the in-
tention of finding and localizing narrowband signals, and a technique in [26] based
on wideband spectrum sensing, where the signal strength levels are sensed within
several frequency ranges to improve the opportunistic throughput of the SU and de-
crease the interference to the PU [10]. Some of the challenges with energy detector
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based sensing include selection of the threshold for detecting primary users, inabil-
ity to differentiate interference from primary users and noise, and poor performance
under low signal-to-noise ratio (SNR) values [27].

Wavelet detection

Also known as edge detection, it is based on the continuous wavelet transform, which
allows finding the signal decomposed coefficients with the help of a basis [28] [29].
The continuous wavelet transform of the received signal is computed to perform
the power spectral density, where the local maximum of the power spectral density
corresponds to the edge, which is then compared to a threshold to decide about the
spectrum occupancy.

Matched filter detection

It is based on a coherent pilot sensor that maximizes the Signal-to-Noise Ratio (SNR)
at the output of the detector. It is an optimal filter that requires the prior knowledge
of the PU signals and it is the best choice when some information about the PU signal
are available at the SU receiver [10] [19] [30].

2.3.2 Machine learning applied to spectrum sensing

A CR system must be able to perceive (perception), learn (learning), and reason (rea-
soning), where perception can be achieved through the sensing measurements of the
spectrum that allows the cognitive radio to identify ongoing RF activities in its sur-
rounding environment. The sensing observations/results acquired is used by the CR
system to learn, where it tries to classify and organize the observations into suitable
categories using learning algorithms. The knowledge acquired through learning is
applied by the reasoning ability of the CR system to achieve its objectives. This pro-
cess describes the so-called cognition cycle [14]. An illustration of the cycle is shown
in Figure 2.5 [31].

FIGURE 2.5: Illustration of a cognition cycle of a CR.
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Learning algorithms for CRs are classified under two main categories: Super-
vised and unsupervised learning. This classification is depicted in Figure 2.6 [31].
In supervised learning, a supervisor determines if an action carried out by an agent
is correct or wrong, whereas in unsupervised learning, there is no presence of such
supervisors.

FIGURE 2.6: Classification of learning approaches for CRs.

Unsupervised learning

Reinforcement learning (RL) With Reinforcement learning (RL), an agent can mod-
ify its behaviour by interacting with its environment [31]. Agents can learn au-
tonomously without supervision, where they learn from the feedback the receive
from their environment after executing an action. Reinforcement learning is charac-
terized by two main features: trial-and-error and delayed reward. By trial-and-error,
it is assumed that an agent does not have any prior knowledge about the environ-
ment, and it executes some actions blindly in order to explore the environment. The
delayed reward is the feedback signal that an agent receives from the environment
after executing each action [31]. These rewards are observed constantly by the agents
for each action.

Non-parametric Learning: The Dirichlet Process Mixture Model (DPMM) The
Dirichlet process has been used as a framework for non-parametric Bayesian learn-
ing in cognitive radios in [32], and in [33], where it was used for identifying and
classifying wireless systems.

Game theory-based Learning Game theory [34] is a mathematical tool that imple-
ments the behaviour of rational entities in an environment of conflict. In CR applica-
tions, it is applied to CR protocols to reduce the complexity of adaptation algorithms
in large cognitive networks [31].

Supervised learning

Supervised learning techniques are generally used in known environments, where
there is prior information about the characteristics of the environments.



2.4. Deep learning for time series forecasting 11

Artificial Neural Network Previous ANN techniques applied to CR include the
use of Multi-layered Feedforward Neural Networks (MFNN) as a technique to syn-
thesize performance evaluation functions in cognitive radios [35], the use of an
ANN-based cognitive engine that learns how environmental measurements and the
status of the network affect its performance on different channels [36], or the use of a
Feed-backward ANN in conjunction with cyclostationarity based spectrum sensing
[37].

Support Vector Machine The Support Vector Machine (SVM), first proposed by
Vapnik [38], is used for many machine learning tasks such as pattern recognition
and object classifications. In CR applications, it has mostly been used in performing
signal classifications [39].

2.4 Deep learning for time series forecasting

A time series data is a sequence of observations taken sequentially in time [40]. Fore-
casting, on the other hand, involves taking models fit on historical data and using
them to predict future observations using ANNs.

An approach to solving the spectrum sensing problem of CR is based on translat-
ing the identification problem of frequency holes to a time-series prediction problem,
and where in the past, RNNs, and more recently, a specific type of RNN called Long
Short-Term Memory (LSTM) network has been proposed and found to be suitable
in predicting temporal evolution of data [3], [4].

2.4.1 Artificial neural networks for time series forecasting

ANNs, sometimes also referred simply as NNs, are computer systems/models made
up of algorithms that carry out tasks like data processing, classification, predictions,
function approximations etc., by learning, and which are modelled after the neu-
rons found in the human brain. The neurons in the human brain, working in par-
allel with one another, receive inputs and their outputs, result of some computa-
tional operations on the inputs are passed between one another. ANNs emulate this
behaviour of neurons with the so-called units. A unit receives inputs from other
units through connections to other units or input values. The connections, analog
to synapses in the human brain, act in one way or the other on the units and with
varying strengths. The strength of each connection is referred to as its weight. An
ANN learns by analysing training examples (labelled or unlabelled data) without
being programmed directly with rules to perform a concrete task and the different
ways in which it learns include:

• Supervised learning: Involves making use of labelled datasets as the training
input data. The algorithm analyses the labelled dataset, and its predictions are
checked against the true answer and depending on whether the predictions are
true or false, the network weights are modified accordingly until the desired
result is achieved.

• Unsupervised learning: The given dataset is not labelled in this method of
learning. The algorithm analyses the unlabelled input data and "guesses" the
pattern. With a cost function, the prediction is measured to give its accuracy
and adjustments are made depending on the results. Some common unsu-
pervised learning algorithms and subsequent applications include clustering,
anomaly detection, neural networks for auto-encoders, Deep Belief Nets etc.
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• Reinforced(-ment) learning: The network is not told which actions to take but
learns by discovering which actions provoke the best results. As it learns what
to do, it rewards itself positively or negatively, depending on the result, and
maximizes a numerical value that represents a long-term objective.

There are different classes of ANNs in terms of their connective structure of
which includes CNNs, RNNs, Feedforward Neural Networks (FNNs), Modular Neu-
ral Networks, etc., each covering a wide range of applications. There are other clas-
sifications based on different aspects like the number of layers present in the net-
work or the presence of a feedback but given the scope and objectives of the current
project, we take a look at only the classification based on their connective structure
and, in concrete, first two aforementioned classes, CNNs and RNNs.

Convolutional neural networks (CNNs)

One of the different classes of ANNs, CNNs are feedforward ANNs with alternat-
ing convolutional and subsampling layers, where they are based on a reduced set
of connections between layers (projective field or convolutional kernel) which re-
duces the amount of connections and number of different weights, simplifying the
computational cost. The work by Fukushima and Miyake in 1982 [41], considered
to be the predecessor of CNNs, describes a self-organized, hierarchical network that
has the capability to recognize stimulus patterns based on the differences in their
appearances (e.g., shapes). With this network, called "Neocognitron", it was evident
the need to develop a supervised method to train (or adapt) it for the learning task
in hand [42].

The solution would arrive with the so-called "LeNet" by Yann LeCun in 1990,
considered to be the first CNN [43]. Earlier models of CNNs were only limited
to low-resolution and gray-scale images in small-size datasets. In 2012 came the
first deep CNN, called "AlexNet" [44]. A deep network is a feed-forward network
with more than one hidden layer (where hidden layers are those different from the
input and output layers). In subsequent years, following the success of AlexNet,
various deep 2D CNNs were proposed, which includes "ZFnet" (2013) [45], and
"GoogLeNet" (2014) [46].

The architecture of LeNet consisted of two interleaved convolutional and pool-
ing layers, followed by three (two hidden and one output) fully-connected layers.
The output layer is made up of 10 Radial Basis Function (RBF) neurons, each of
which computes the Euclidean distance between the network output and ground
truth label for 10 classes. This configuration is shown in Figure 2.7 [47].

FIGURE 2.7: Architecture configuration of LeNet

In the case of AlexNet, the first deep CNN, 5 convolutional layers and 3 max-
pooling layers are followed by three (two hidden and one output) fully-connected
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(dense) layers. The output layer neurons implement a softmax loss of the network
predictions for 1000 classes. This configuration is shown in Figure 2.8 [44].

FIGURE 2.8: Architecture configuration of the first deep CNN,
AlexNet

To explain how a CNNs works, let us consider the following sample model [42]
that classifies a 24× 24-pixel grayscale image into two categories. The configuration
of this sample model is shown in Figure 2.9.

FIGURE 2.9: Configuration of sample CNN with 2 convolution and
one fully-connected layers.

This sample network consists of two convolution and two pooling layers with 4
and 6 neurons, respectively. The output of the last pooling layer is processed by a
single fully-connected layer and followed by the output layer that produces the clas-
sification output. The interconnections feeding the convolutional layers are assigned
by weighting filters (w) having a kernel size of (Kx, Ky). The convolution takes place
within the image boundaries; therefore, the feature map dimension is reduced by
the (Kx − 1, Ky − 1) pixels from the width and height, respectively. The subsampling
factors (Sx, Sy) are set in advance in the pooling layers. In the sample illustration in
the figure, the kernel sizes corresponding to the two convolution layers were set to
Kx = Ky = 4 , while the subsampling factors are set as Sx = Sy = 3 for the first
pooling layer and Sx = Sy = 4 for the second one. Note that these values were
deliberately selected so that the outputs of the last pooling layer (i.e. the input to
the fully-connected layer) are scalars (1x1). The output layer consists of two fully-
connected neurons corresponding to the number of classes to which the image is
categorized.

Advantages of CNNs include, as mentioned in [42], the fusion of the feature ex-
traction and feature classification processes into a single learning body, where the
models learn to optimize the features during the training phase directly from the
raw input. Also, they have the ability to process large inputs with greater computa-
tional efficiency compared to the conventional fully-connected Multi-Layer Percep-
trons (MLP) networks, due to them being sparsely-connected with tied weights, and
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they are unaffected by small transformations, like translation, scaling, skewing and
distortion, in the input data.

1D CNNs

Although CNNs were originally designed to efficiently handle and operate on 2D
image data by directly extracting features from the raw data, modifications on them
has led to the creation of alternatives such as 1D CNNs, that receives and operates
on 1D data. Some advantages that they present over conventional 2D CNNs include
less computational requirements and complexities, compact architectures with few
hidden layers over deep architectures, and being suitable for real-time and low-cost
applications [42].

A simple 1D CNNs configuration is formed by the following hyperparameters:

• Number of hidden CNN and MLP layers/neurons.

• Filter (kernel) size in each CNN layer.

• Subsampling factor in each CNN layer.

• Selected pooling and activation functions.

Figure 2.10 shows a sample configuration of a 1D CNN that has three consecutive
hidden CNN layers and 2 hidden Multi-Layer Perceptrons (MLPs) [42]. The filter
(kernel) size for all the hidden CNN layers is 41, and with a subsampling factor of 4.
The raw 1D data is processed by the CNN layers and the features present are learnt
and extracted.

FIGURE 2.10: Configuration of sample 1D CNN with 3 consecutive
CNN layers.

Recurrent neural networks (RNNs)

RNNs are a type of artificial neural networks that uses sequential data or time series
data, and in such cases, the connections between nodes form a directed or undi-
rected graph along a temporal sequence. The fundamental feature of a RNN is the
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presence of at least one feed-back connection, that allows activations to flow round
in a loop. This feature differentiates RNNs from feed-forward networks that only
include connections from layer i to i+1, since RNNs include connections to previous
layers (for example, connection from layer i to i-1).

Their "memory" also differentiates RNNs from their traditional counterparts, as
they are capable of extracting information/features from prior inputs to influence
the current input and output. They are networks with loops in them, allowing in-
formation to persist. Its applications include language translation, natural language
processing (nlp), speech recognition, and image captioning.

Figure 2.11 shows an illustration of a rolled RNN [48], where a group of neural
network, A, looks at some input xt and outputs a value ht and a loop allows infor-
mation to be passed from one step of the network to the next. In reality, a RNN has
a chain-like nature, where it can be thought of as multiple copies of the same net-
work, each passing information to the next in line. This behaviour is represented in
Figure 2.12.

FIGURE 2.11: Rolled RNN.

FIGURE 2.12: Unrolled RNN.

Long-term dependencies As earlier mentioned, a characteristic of RNNs is their
ability to use information from prior inputs to connect to the present input, but there
comes a time when the distance between the information needed from a prior input
and the present input is large and the network cannot make the connection. This
describes a "Long-term dependency" problem that RNNs face. Although, theoretically,
they can handle long-term dependencies, they are unable to learn them in practice.
This problem is also known as the "Exploding and vanishing gradient problem".
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Long short-term memory networks (LSTMs)

LSTMs are a type of RNNs that was introduced by Hochreiter and Schmidhuber [49],
to solve the long-term dependency problem, where they remember information for
long periods of time. LSTMs are capable of modelling longer term dependencies
by having memory cells and gates that controls the information flow along with the
memory cell.

All recurrent neural networks have the form of a chain of repeating modules
of neural network, and in standard RNNs, this repeating module will have a very
simple structure, such as a single tanh layer, represented in Figure 2.13.

FIGURE 2.13: Repeating module with a single layer in a standard
RNN.

In the case of the LSTM, the repeating module is made up of four neural network
layers, as shown in Figure 2.14.

FIGURE 2.14: Repeating module in an LSTM with four interacting
layers.

To better understand the figures, Figure 2.15 shows the meaning of the notations
used on the figures, where each line carries an entire vector, from the output of one
node to the inputs of others. The pink circles represent pointwise operations, like
vector addition, while the yellow boxes are learned neural network layers. Lines
merging denote concatenation, while a line forking denote its content being copied
and the copies going to different locations.

The horizontal line that runs through the top of the diagram is known as the cell
state. This is shown in Figure 2.16.

Gates, shown in Figure 2.17, are used to regulate the information that is added
or removed from the cell gate. They are composed of a sigmoid neural net layer
and a pointwise multiplication operation, where the sigmoid layer outputs numbers
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FIGURE 2.15: Notation meanings.

FIGURE 2.16: Cell state.

between zero and one, that describes how much of each component should be let
through. A value of zero means nothing is let through while a value of one is the
exact opposite. An LSTM has three of these gates that protect and control the cell
state.

FIGURE 2.17: Cell gate.

Step-by-Step LSTM Walk Through

• A decision is made by the a sigmoid layer called the "forget gate layer" on which
information is kept or rejected, i.e, it determines how much contents from pre-
vious cell Ct−1 will be erased. It looks at ht−1 and xt, and outputs a number
between 0 (completely eliminate) and 1 (completely keep) for each number in
the cell state Ct−1. This is represented in Figure 2.18.

• In the next step, represented in Figure 2.19, a decision is made on what infor-
mation is to be stored in the cell state. In the first part of this process, a sigmoid
layer called the "input gate layer", it, decides which values are to be updated.
Next, a tanh layer creates a vector of new candidate values, C̃t, as a function of
ht−1 and xt, that could be added to the state.

• The old cell state Ct−1 is updated, into the new cell state Ct by using the input
and forget gates with new candidate cell states. The old state is multiplied
by ft, to make it to forget information already chosen to be forgotten. The
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FIGURE 2.18: Forget gate.

FIGURE 2.19: New candidate cell and input gate.

new candidate values, it ∗ C̃t are added and scaled by how much is decided
to update each state value. Figure 2.20 shows a representation of the update
process.

FIGURE 2.20: Update cell states.

• Finally, a decision is made on the output, which will be based on the cell state,
but will be a filtered version. The output gate ot (sigmoid layer)decides which
part of cell state Ct will be in the output. Then, we put the cell state through
tanh (to push the values to be between−1 and 1) and multiply it by the output
of the sigmoid gate, so as to filter the parts that were decided. This process is
represented in Figure 2.21.

Various variants of LSTMs have been developed, such as the peephole connections
variant of Figure 2.22 that allows the gate layers to look at the cell state, another vari-
ation that uses coupled forget and input gates (as seen in Figure 2.23), or the Gated
Recurrent Unit, or GRU (shown in Figure 2.24), introduced by [50], that combines
the forget and input gates into a single "update gate" and also merges the cell state
and hidden state.
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FIGURE 2.21: Output generation.

FIGURE 2.22: Peephole connections LSTM variant.

FIGURE 2.23: Tied forget and input gate LSTM variant.

FIGURE 2.24: GRU LSTM variant.
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Chapter 3

Methodology and Content
Development

This chapter deals with the obtention of training data for the different network mod-
els we will be evaluating, detailed explanation of the architecture/structure of the
networks, and the scripts used in their implementation.

The methodology implemented in this project is based on the described method-
ology for time series forecasting by J. Brownlee [51]. The design methodology is
summarised as follows:

1. Split the dataset into a training and test subsets.

2. Build a network model.

3. Fit the network model on the training dataset.

4. Make predictions on the test set using walk-forward validation method.

5. Calculate and use the Root Mean-Square Error (RMSE) metric to compare the
predictions to the expected values.

3.1 Software requirements

The scripts used in this project are all written in Python and the simulations are run
with the PyCharm Integrated Development Environment (IDE) (more information
can be found in Appendix B). To be able to run the scripts some dependencies or
libraries (packages) are required. The list of libraries that are needed for a correct
execution of each script are listed at the start of each corresponding script.

PyCharm provides a convenient and easy way to install/download each library/-
package, and instructions on how to do so can be found at: https://www.jetbrain
s.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html

#interpreter-settings.

3.2 Dataset

The dataset used for both training and evaluation of the network models is a uni-
variate time series data that models the temporal evolution of the occupancy level of
a communications channel. We implement a function, called generate_data_input(...)
and provided in a script of the same name, that generates a sequence that represents
this evolution. This script accepts four parameters that modifies the behaviour of the
channel, and they are:

https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html#interpreter-settings
https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html#interpreter-settings
https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html#interpreter-settings
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• multilevel_sequence = array with time slots that represents the temporal evo-
lution of the occupancy level of a communications channel. The signal value
in each of these time slots can be assigned intermediate occupation values us-
ing integers of any value and range to represent the multilevel nature of the
sequence.

• length_symbol = number of samples in each time slot.

• length_transition = samples that correspond to the transition between adjacent
slots.

• noise_prop = noise level added to the sequence.

For the present project, the values selected for these parameters are:

• multilevel_sequence

[2, 4, 4, 4, 0, 4, 1, 2, 0, 2, 4, 0, 4, 3, 0, 4, 4, 2, 0, 2, 2, 0, 0, 0, 4, 0, 4, 0, 4, 4, 0, 0, 4, 0,
0, 0, 4, 4, 0, 1, 3, 0, 4, 1, 2, 4, 4, 0, 0, 1, 0, 4, 4, 4, 4, 4, 0, 0, 2, 1, 1, 4, 0, 0, 4, 0, 0, 1,
1, 4, 0, 2, 3, 4, 4, 0, 0, 4, 1, 4, 4, 4, 4, 4, 1, 0, 4, 0, 3, 1, 1, 4, 0, 0, 3, 0, 1, 4, 2, 0, 0, 4,
2, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 2, 4, 2, 0, 4, 0, 1, 2, 1, 1, 0, 0, 0, 0, 4, 4, 1, 4, 4, 4, 4, 4, 0,
4, 0, 1, 0, 4, 0, 0, 0, 4, 1, 1, 0, 2, 4, 0, 0, 4, 1, 0, 4, 0, 0, 0, 4, 0, 0, 3, 4, 3, 3, 0, 0, 0, 4,
4, 3, 0, 0, 1, 1, 3, 3, 4, 0, 3, 3, 4, 2, 1, 0, 2, 4, 2, 0, 4, 3, 3, 2, 0, 4, 3, 4, 4, 3]

As seen above, the values that define the time slot go from the range of zero to
four (both inclusive), representing a 5-level multilevel sequence. It should be
noted that these values are later normalized within the range of 0 to 1, where
0 means that the communications channel is completely free during the corre-
sponding time slot, and 1 means that it is saturated.

• length_symbol = 100

• length_transition = 70

• noise_prop = 0.15

The plotted data is shown in Figure 3.1.

3.2.1 Dataset preparation for network models: Train and test data

With the aim of forecasting multiple timesteps, the dataset is configured to meet such
aim. Before that is done, we first split the dataset in two: training set, that will be
used for training predictive network models, and test set, for evaluating the models.
The value given to a modifiable parameter named train_percentage represents the
percentage of the total dataset that is selected for training.

With the two parameters n_input and n_output, we select the number of timesteps
that are used as input data for the model and the number of timesteps that are to be
predicted by the model, respectively. The n_output parameter is also used to divide
the dataset into multiple samples of n_output-sized subsets.

In this present project, train_percentage is set to 75, i.e, 75% of the total dataset is
used to train the network models, and the rest, 25%, is used to evaluate the models.
n_input and n_output are either set to 5, 6 or 10. This means that the data passed
as input to the models and the forecasting/predictions will be done in multi-steps
of size 5, 6 or 10. The split_dataset(..) method that implements the division of the
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FIGURE 3.1: Plotted data.

dataset into training and test sets, and also configures and organizes the dataset into
subsets of size n_output is given below in Listing 1.

# split a univariate dataset into train / test sets

def split_dataset(data, train_percentage, n_output):

# split data according to train and test percentages

limit_train = int((train_percentage/100)*len(data))

train, test = data[0:limit_train], data[limit_train:len(data) + 1]

# reshape data

train = train.reshape(len(train), 1)

test = test.reshape(len(test), 1)

# restructure into windows of sequence data

train = array(split(train, int(len(train)/n_output)))

test = array(split(test, int(len(test)/n_output)))

return train, test

LISTING 1: Splitting dataset into training and test subsets.

3.2.2 Training data preparation

We prepare the dataset obtained from the split of the previous section for a super-
vised learning model. This means that the training data needs to be divided into
multiple samples that the network models learn from and generalize across. To
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achieve this, the sliding window method is used to prepare the dataset for a super-
vised learning model, where the training data is divided into two components: input
(X) and output component (Y).

The input component denotes the number of prior observations, for example,
the first 10 timesteps, while the output component represents the observations at
the current timestep. For example, if the number of timesteps selected is 10, there
would be 10 current observations. To understand the sliding window concept better,
let us imagine we have a dataset as shown below in Table 3.1.

TABLE 3.1: Time series dataset to explain sliding window concept.

Time Measure

1 0.2
2 0.25
3 0.30
4 0.35

As we can see from the dataset, it is a time series dataset and when it is re-
structured as a supervised learning model by applying the sliding window concept,
where the previous timestep observation is used to predict the next timestep obser-
vation, we have the following result seen in Table 3.2:

TABLE 3.2: Sliding window concept implementation.

X Y

? 0.2
0.2 0.25
0.25 0.30
0.30 0.35
0.35 ?

In the present project, this is implemented with the to_supervised() method, which
is shown below in Listing 2.
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# convert history into inputs and outputs

def to_supervised(train, n_input, n_output):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1],

train.shape[2]))↪→

x, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_output

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

x.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(x), array(y)

LISTING 2: Restructure training dataset into a supervised learning
model using the sliding window concept.

Train is the training dataset, and n_input and n_output both represent the number
of inputs (current observations) and number of outputs (predicted observations),
respectively.

3.3 Neural networks implementation with Keras

As earlier mentioned, the main aim of this final project is to explore different ar-
chitectures of ANNs which can be applied for time series forecasting problems and
subsequently be used to predict the future evolution of the radioelectric spectrum
for Cognitive-Radio applications. These ANN models include CNNs, LSTMs, or
hybrid combinations of both CNNs and LSTMs. To achieve this aim of solving the
problem of time-series prediction, five NN models are chosen to be studied, and
whose performance will be compared, and they are:

• 1D CNN model

• Vanilla LSTM model

• Encoder-decoder LSTM model

• CNN-LSTM model

• ConvLSTM model

The neural networks under study and implemented in the project are all done
in Keras. Keras is a deep learning (DL) Application Programming Interface (API)
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written in Python [6]. It runs on top of an ML platform named TensorFlow. The core
data structures of Keras are layers and models. A layer consists of a tensor-in tensor-
out computation function, which is the layer’s call method, and some states (the
layer’s weights), held in TensorFlow variables. For the different layers that make
up each ANN model, the two main setting parameters which are tuned, and which
determine the performance of the ANNs are: filters, also called units, and activation
functions.

A filter (unit in the case of LSTMs) is an integer that specifies the dimensionality
of the output space. In the case of convolution layers, it represents the number of
output filters in the convolution. For LSTM models, a unit is also used to refer to the
dimensionality of the hidden state.

Also known as a transfer function, an activation function defines how the weight
-ed sum of the input is transformed into an output from a node or nodes in a layer
of the NN. It introduces non-linearity into the output of a neuron. The influence of
activation functions is also noted in the convergence ability and speed of the neural
network or in blocking the convergence.

The layers which are used in the project are [52]:

• Conv1D: is a 1D convolution layer that creates a convolution kernel that is
convolved with the layer input over a single spatial (or temporal) dimension
to produce a tensor of outputs.

• MaxPooling1D: is a layer that implements a max pooling operation for 1D tem-
poral data, where it downsamples the input representation by taking the max-
imum value over a spatial window of variable size. A pool_size argument is
provided that represents the size of the max pooling window.

• LSTM: a Long Short-Term Memory layer.

• Dense: is a densely-connected NN layer that implements the operation:

output = activation(dot(input, kernel) + bias) (3.1)

where activation is the element-wise activation function passed as the activa-
tion argument, kernel is a weights matrix created by the layer, and bias is a bias
vector created by the layer (only applicable if use_bias flag is set as True).

• TimeDistributed: is a wrapper which allows the application of a layer to every
temporal slice of an input, i.e, the layer provided to the wrapper will be applied
to each of the input timesteps, independently.

• Flatten: is a layer that flattens the input, and which does not affect the batch
size.

• RepeatVector: is a layer that repeats the input n-given times.

There are 3 ways to develop NN models in Keras: The sequential model, functional
model, and model subclassing. The Sequential model involves creating a plain stack
of layers where each layer has exactly one input tensor and one output tensor, thus,
making it prohibitive for multiple input and output models. Functional model facil-
itates the creation of flexible NN models that are capable of multiple inputs and/or
outputs, non-linear topology, and shared layers. Model subclassing is used for cre-
ating complex models from scratch. In this current project, we do not implement the
model subclassing method of creating NN models.
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3.3.1 Input layer configuration

Before going into the rest of the architectures of each of the NN models, we look at
how their input layers are configured. The configuration for 1D CNN, vanilla LSTM,
encoder-decoder LSTM, and CNN-LSTM are the same. The shape of the input layer
for these four models is given by the number of timesteps that is defined for the
model and the number of features present in each sample. As mentioned earlier in
subsection 3.2.1, the number of timesteps is defined by the n_output parameter. The
input layer is called together with the first hidden layer of the model. For example,
in the case of 1D CNN, the implementation is as seen in Listing 3.

# adding the input layer and the first hidden layer

model.add(Conv1D(filters=24, kernel_size=3, activation='relu',

input_shape=(n_timesteps, n_features)))↪→

LISTING 3: Input layer instantiation in hidden layer.

From the above example, the input layer is declared with input_shape=(n_timesteps,
n_features) in the hidden layer that is Conv1D.

In the case of ConvLSTM, the ConvLSTM2D class which is used to implement
the network model, by default, expects input data to have the shape: [samples,
timesteps, rows, cols, channels]. As such, the input layer is configured to
input_shape=(n_steps, 1, n_length, n_features), where n_steps is the numer of timesteps,

As the dataset is a univariate time series, the number of features present in all
five models is one.
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3.3.2 Sequential model

1D CNN

The 1D CNN model has a convolutional hidden layer, with a kernel size of 3, that op-
erates over a 1D sequence, followed by a pooling layer, that downscales the output
of the convolutional layer, highlighting only the most significant features. A flatten
layer is then used to reduce the feature maps to a single one-dimensional vector, fol-
lowed by a fully connected dense layer that interprets the features extracted by the
convolutional part of the model. The definition of this model in Keras is shown in
the following line of code of Listing 4.

# define model

model = Sequential()

# adding the input layer and the first hidden layer

model.add(Conv1D(filters=24, kernel_size=3, activation='relu',

input_shape=(n_timesteps, n_features)))↪→

# adding a second hidden layer

model.add(MaxPooling1D(pool_size=2))

# adding a third hidden layer

model.add(Flatten())

# adding a fourth hidden layer

model.add(Dense(10, activation='relu'))

# adding the output layer

model.add(Dense(n_outputs))

LISTING 4: 1D CNN model definition.

A plot of the network model where the number of inputs and outputs is selected
to be 10 and the number of filters for the convolution layer is 8, is shown in Figure 3.2.
This plot is generated with the following code shown in Listing 5.

# Plot and save network model

plot_model(model, show_shapes=True, to_file=folder_path + name_model +

'_network_model.png', dpi=300)↪→

LISTING 5: Generate model plot.

model is the complete built layers, name_model denotes the network model name
and folder_path is where the plotted image is stored. The same code snippet is the
same for getting the plots of all network models in the project.

The plot in Figure 3.2 provides a schematic view of the built model, where it
includes the shape of the inputs and outputs of each layer. An explanation of the
model for this present example is as follows:

• The left-hand side of each box represents the layers.

• The right-hand side lists the shape of the input and output of the selected layer.

– input: The input shape varies depending on the network model and the
type of layer. In the example of Figure 3.2, the InputLayer has an input
shape of [None, 10, 1], where:
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FIGURE 3.2: Model plot of 1D CNN network.

* None: Means that this dimension is variable or dynamic.

* 10: Number of timesteps.

* 1: Number of features, and which for a univariate series data, is one,
for one variable.

Vanilla LSTM

The vanilla LSTM is implemented only with a single hidden layer of LSTM units,
and a densely connected output layer for the predictions. The implementation is
shown in the next code snippet of Listing 6:
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# define model

model = Sequential()

# adding the input layer and the first hidden layer

model.add(LSTM(224, activation='tanh', input_shape=(n_timesteps,

n_features)))↪→

# adding a second hidden layer

model.add(Dense(10, activation='tanh'))

# adding the output layer

model.add(Dense(n_outputs))

LISTING 6: Vanilla LSTM model definition.

For an example with I/O of 10 timesteps and the number of units for the LSTM
layer is 32, the built model plot is shown in Figure 3.3.

FIGURE 3.3: Model plot of Vanilla LSTM network.

Encoder-decoder LSTM

The encoder layer, made up of the first LSTM layer, reads the input sequence and
produces a vector, the size of n-specified units, as an output (one output per unit),
that captures features from the input sequence. A RepeatVector layer repeats the
internal representation of the input sequence multiple times, once for each timestep
in the output sequence. Then the decoder, the second hidden LSTM layer, is defined
with the same number of units as the encoder, and it outputs the entire sequence,
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not just the output at the end of the sequence as was in the case of the encoder. A
fully connected layer is then used to interpret each timestep in the output sequence
before the final output layer.

It should be noted that the output layer predicts a single step in the output se-
quence, which means that the same layers are applied to each step in the output
sequence, resulting in the same fully connected layer and output layer being used to
process each time step provided by the decoder. This is achieved by wrapping the
fully connected interpretation layer and the output layer in a TimeDistributed wrap-
per, that allows the wrapped layers to be used for each time step from the decoder.
This allows the LSTM decoder to figure out the context required for each step in the
output sequence and the wrapped dense layers to interpret each timestep separately,
yet reusing the same weights to perform the interpretation. The implementation of
the network with Keras is shown in the next lines of code of Listing 7:

# define model

model = Sequential()

# define encoder

model.add(LSTM(224, activation='tanh', input_shape=(n_timesteps,

n_features)))↪→

# repeat encodering

model.add(RepeatVector(n_outputs))

# define decoder model

model.add(LSTM(160, activation='tanh', return_sequences=True))

# define output model

model.add(TimeDistributed(Dense(10, activation='tanh')))

model.add(TimeDistributed(Dense(1)))

LISTING 7: Encoder-decoder LSTM model definition.

An example of the plotted model with number of I/O equal to 10, and the num-
ber of units for the two LSTM layers is 32, is shown in Figure 3.4.

CNN-LSTM

The encoder is made up of a first convolutional layer that reads across the input
sequence and projects the results onto feature maps. The second convolutional layer
reads the input sequences with a kernel size of three timesteps and performs the
same operation on the feature maps (of size 64) previously created, attempting to
amplify any salient features. The max pooling layer simplifies the feature maps
by keeping 1/4 of the values with the largest (max) signal. The distilled feature
maps after the pooling layer are then flattened into one long vector that can then
be used as input for the decoder. The decoder is the same as was described for the
encoder-decoder model, where a TimeDistributed wrapper is also used. The Keras
implementation of the model is shown in Listing 8:
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FIGURE 3.4: Model plot of Encoder-decoder LSTM network.

# define model

model = Sequential()

# define cnn input model

model.add(Conv1D(filters=8, kernel_size=3, activation='relu',

input_shape=(n_timesteps, n_features)))↪→

model.add(Conv1D(filters=8, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

# define decoder model

model.add(RepeatVector(n_outputs))

model.add(LSTM(224, activation='tanh', return_sequences=True))

model.add(TimeDistributed(Dense(10, activation='tanh')))

model.add(TimeDistributed(Dense(1)))

LISTING 8: CNN-LSTM model definition.

An example of the plotted model with number of I/O equal to 10, number of
filters for the convolution layers equal to 8, and the number of units for the LSTM
layer is 32, is shown in Figure 3.5.
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FIGURE 3.5: Model plot of CNN-LSTM network.

ConvLSTM

The ConvLSTM2D class of the Keras library that supports the ConvLSTM model for
2D data is reconfigured and adapted to receive univariate 1D input data. The gener-
ated feature maps are flattened before they are repeated and decoded with a LSTM
layer. A TimeDistributed wrapper is then used for both the dense interpretation
layer and output layer. This is implemented in Listing 9:
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# define model

model = Sequential()

# define convlstm encoder input model

model.add(ConvLSTM2D(filters=8, kernel_size=(1, 3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))↪→

model.add(Flatten())

model.add(RepeatVector(n_outputs))

model.add(LSTM(224, activation='tanh', return_sequences=True))

model.add(TimeDistributed(Dense(10, activation='tanh')))

model.add(TimeDistributed(Dense(1)))

LISTING 9: ConvLSTM model definition.

An example of the plotted model, with number of I/O equal to 10, is shown in
Figure 3.6. In this example, the number of filters for the ConvLSTM2D layer is 8,
and the number of units for the LSTM layer is 32.

FIGURE 3.6: Model plot of ConvLSTM network.
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3.3.3 Network compilation

Each network model is required to be compiled, i.e., configured, after being mod-
elled, and this is done using the efficient Adam version of stochastic gradient descent
and optimized using the mean squared error mse loss function.

Adam optimization is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order moments. Advantages of this
method include being computationally efficient and requiring little memory, invari-
ant to diagonal rescaling of gradients, and being well suited for large data/parame-
ter problems [53].

The mse loss function is a regression loss function that computes the mean of
squares of errors between target variables/labels and predictions. In Keras, this is
defined as:

loss = square(ytrue − ypred) (3.2)

where ytrue is the true target value and ypred, the predicted value. Given that the
result of the differences is squared, mse result is always positive regardless of the
sign of the true and predicted values, but it also means that larger mistakes increase
by a higher margin the error present than smaller mistakes. This ultimately results
in network models being punished for making larger mistakes than smaller ones. A
perfect prediction would give a result of 0.

With Keras, the compilation is run with the following code line shown in List-
ing 10:

model.compile(loss='mse', optimizer='adam')

LISTING 10: Compiling built network model.

3.3.4 Network training

We will train the different networks for different number of filters and units, using
the CPU first, and later, using the GPU.

The specifications for the CPU are:

• Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz

• RAM: 32 GB

• Windows 10 Pro, 64-bits

The specifications for the GPU are:

• NVIDIA GeForce GTX 1650 SUPER

• CUDA nucleus: 1280

• Available graphic memory: 20438 MB

• Dedicated video memory: 4096 MB GDDR6

The code below, shown in Listing 11, implements the selection of either the CPU
or the GPU, determined by the value the variable cpu_gpu_select is set to: 0 for the
CPU and 1 for the GPU.
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# select CPU (0) or GPU (1)

cpu_gpu_select = 1

if cpu_gpu_select == 0:

# Hide GPU from visible devices. That means only the CPU is

available.↪→

tf.config.set_visible_devices([], 'GPU')

else:

# select GPU

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

LISTING 11: Selection of the CPU or GPU for network training and
prediction.

75% of the input data is used for training the network and the remaining 25% is
used for prediction. The modelled NNs are trained by running the following line of
code shown in Listing 12.

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size,

verbose=0)↪→

LISTING 12: Model fitting/training.

The fit() method trains the model by slicing the data into "batches" of size batch_size
and repeatedly iterating over the entire dataset for a fixed number of epochs, given
by epochs. An epoch is given as one full training cycle or iterations on the entire
training dataset. The network weights are updated after every time a slice of the
data, of size batch_size, is used to train the model.

For 1D CNN network, epochs and batch_size are set to 20, and 16, respectively.
For the rest of the LSTM network models, their values are set to 50 (epoch) and 16
(batch_size).

3.4 Network model evaluation

After the networks are fitted/trained, we can now use it to make predictions and
the validation method used to evaluate the network models is the walk-forward
validation.

3.4.1 Walk-forward validation

With the walk-forward validation method of evaluating network models that re-
spects the temporal ordering of observations [51], a given network model is pro-
vided the actual data (current timesteps) as the basis for making a prediction on fu-
ture timesteps. For example, if a model is required to make a prediction of 10 future
timesteps, then 10 timesteps data, representing the present time, are provided. For
the next 10 future timesteps, the previous 10 current timesteps, in addition with the
predicted 10 timesteps, are used to make the prediction. This example is represented
in Table 3.3.
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TABLE 3.3: Example of walk-forward validation concept.

Input Predict

[1-10] [11-20]
[1-10] + [11-20] [21-30]
[1-10] + [11-20] + [21-30] [31-40]
... ...

1D CNN

This approach is implemented for a 1D CNN model, in Python, with the evalu-
ate_model_cnn method described in the following code of Listing 13:

def evaluate_model_cnn(train, test, n_input, n_output, folder_path,

name_model):↪→

# fit model

model = build_model(train, n_input, n_output, folder_path,

name_model)↪→

# history is a list of "n_input-sized" samples

history = [x for x in train]

# walk - forward validation over each "n_input-sized" samples

predictions = list()

for i in range(len(test)):

# predict the samples of size n_output

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the

next samples↪→

history.append(test[i, :])

# evaluate predictions of each sample

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

# reshape the arrays into an easily readable format

predictions = predictions.reshape((predictions.shape[0] *

predictions.shape[1], test.shape[2]))↪→

original = test[:, :, 0]

original = original.reshape((original.shape[0] * original.shape[1],

test.shape[2]))↪→

return score, scores, original, predictions

LISTING 13: Walk-forward validation for 1D CNN network model.

The train and test datasets, shaped in samples of sizes n_output, are provided
to the functions as arguments. An additional argument, n_input, is provided that
is used to define the number of prior observations that the model will use as in-
put in order to make a prediction. Within the method, two functions are called:
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build_model(), that builds, compiles and trains the network model, and forecast(),
that uses the model to make forecasts for each new timestep of size n_output.

Previous timestep observations are stored in a list called history.

LSTM models: Vanilla, Encoder-decoder, CNN-LSTM

In the case of the LSTM models, the method used for the evaluation is described
depending on the LSTM network model being evaluated. Vanilla LSTM, Encoder-
decoder LSTM, and CNN-LSTM make use of the same method, evaluate_model_lstm,
described below in Listing 14.
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def evaluate_model_lstm(train, test, n_input, n_output, lstm_model,

folder_path, name_model):↪→

if lstm_model == 1:

# fit model

model = build_model_vanilla(train, n_input, n_output,

folder_path, name_model)↪→

elif lstm_model == 2:

# fit model

model = build_model_encoder_decoder(train, n_input, n_output,

folder_path, name_model)↪→

elif lstm_model == 3:

# fit model

model = build_model_cnn_lstm(train, n_input, n_output,

folder_path, name_model)↪→

# history is a list of "n_input-sized" samples

history = [x for x in train]

# walk - forward validation over each "n_input-sized" samples

predictions = list()

for i in range(len(test)):

# predict the samples of size n_output

yhat_sequence = forecast_lstm(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the

next samples↪→

history.append(test[i, :])

# evaluate predictions of each sample

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

# plot the original signal versus the predicted signal

predictions = predictions.reshape((predictions.shape[0] *

predictions.shape[1], test.shape[2]))↪→

original = test[:, :, 0]

original = original.reshape((original.shape[0] * original.shape[1],

test.shape[2]))↪→

return score, scores, original, predictions

LISTING 14: Walk-forward validation for vanilla LSTM, encoder-
decoder LSTM, and CNN-LSTM network models.

ConvLSTM

For ConvLSTM model, the method is described below in Listing 15.
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def evaluate_model_conv_lstm(train, test, n_input, n_output, n_steps,

n_length, folder_path, name_model):↪→

model = build_model_conv_lstm(train, n_input, n_output, n_steps,

n_length, folder_path, name_model)↪→

# history is a list of "n_input-sized" samples

history = [x for x in train]

# walk - forward validation over each "n_input-sized" samples

predictions = list()

for i in range(len(test)):

# predict the samples of size n_output

yhat_sequence = forecast_conv_lstm(model, history, n_steps,

n_length, n_input)↪→

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the

next samples↪→

history.append(test[i, :])

# evaluate predictions of each sample

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

# plot the original signal versus the predicted signal

predictions = predictions.reshape((predictions.shape[0] *

predictions.shape[1], test.shape[2]))↪→

original = test[:, :, 0]

original = original.reshape((original.shape[0] * original.shape[1],

test.shape[2]))↪→

return score, scores, original, predictions

LISTING 15: Walk-forward validation for ConvLSTM network model.

3.4.2 Network forecasting

Due to the slow nature of NNs when it comes to training, the preferred usage of the
models is to build them once on historical data and to use them to forecast each step
of the walk-forward validation. Though the training is generally slow, it should be
noted that they are fast to evaluate. The network models are static (i.e. not updated)
during their evaluation.

The forecast() method for 1D CNN, Vanilla, Encoder-decoder, and CNN-LSTM
takes as arguments the model fit on the training dataset (model), the history of data
observed so far (history), and the number of inputs timesteps expected by the model
(n_inputs).

To be able to make predictions on the test data, the input data is organized into
a 3D shape described as: [number of sample, n_output, number of features]. In
our case, both the number of samples at a given time, and the number of features
in our dataset is 1. So we will always have: [1, n_output, 1]. A prediction of the
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future timesteps is made by using the fit model and the input data to call the predict()
method.

The implemented forecast() method for 1D CNN, Vanilla, Encoder-decoder, and
CNN-LSTM models is shown below in Listing 16.

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape(data.shape[0]*data.shape[1], 1)

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next sample

yhat = model.predict(input_x, verbose=0)

# only the forecast vector is needed

yhat = yhat[0]

return yhat

LISTING 16: Function for making a multi-step forecast with 1D CNN,
Vanilla, Encoder-decoder, and CNN-LSTM network models.

In the case of ConvLSTM, this method, in addition to the three previous argu-
ments, receives two more arguments: n_steps, that describes the number of subse-
quences, and n_length, that describes the length of each subsequence. This imple-
mentation is shown below in Listing 17.

def forecast_conv_lstm(model, history, n_steps, n_length, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [samples, timesteps, rows, cols, channels]

input_x = input_x.reshape((1, n_steps, 1, n_length, 1))

# forecast the next sample

yhat = model.predict(input_x, verbose=0)

# only the forecast vector is needed

yhat = yhat[0]

return yhat

LISTING 17: Function for making a multi-step forecast with a ConvL-
STM network model.

3.4.3 Forecast evaluation

The n_output-sized timesteps sample of the forecast are evaluated individually. This
evaluation comprises of comparing the real timesteps with the predicted timesteps
and getting the error between the two. Different methods exist to achieve this, with
the two most common being Mean Absolute Error (MAE) and RMSE. We make use
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of RMSE, which, apart from being more punishing of forecast errors, is good match
for the mean square error loss function previously chosen in the network models, to
calculate a score that represents the RMSE across all forecast timesteps. The evalu-
ate_forecasts function implements this forecast evaluation and it is described below
in Listing 18.

# evaluate one or more forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each sample

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col]) ** 2

score = sqrt(s/(actual.shape[0] * actual.shape[1]))

return score, scores

LISTING 18: Function for evaluating forecasts/predictions by net-
work models.

To summarize/list the scores, we call the function summarize_scores(), described
below in Listing 19.

# summarize scores

def summarize_scores(name, score, scores):

# s_scores = ', '.join(['%.1f' % s for s in scores])

# print(scores)

# print('%s: [%.3f] %s' % (name, score, s_scores))

print('%s: [%.3f]' % (name, score))

LISTING 19: Function to summarize network model performance.

Note: Due to the large size of timesteps in the dataset, only the overall score
across all forecast timesteps are printed. The scores of each individual timestep is
not printed and it is commented out.
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Chapter 4

Results and conclusions

4.1 Results of network fitting and predictions with network
models

Given the stochastic nature of the algorithm, where two simultaneous executions
are highly likely to produce two different results, i.e., the RMSE values and network
execution time are slightly different, the network is run 3 times and the run with the
minimum RMSE value is chosen. Another possible solution to this would have been
to compute the average of the results of various runs for a single network model.
The five models are trained on the CPU and GPU and the simulation time is gotten
after the training and prediction are done.

4.1.1 Training on CPU for I/O = 10

In the first case, 10 timesteps were selected as input and it was also specified that the
network predict 10 future timesteps at each instant of time.

The obtained results are shown in Table 4.1, where the ANNs under study are
compared in terms accuracy of the prediction – characterized by the Root Mean-
Square Error (RMSE), CPU/GPU time required to train/fit each NN model and the
subsequent predictions and the number of filters and units. The numbers of filters
and units indicated in the table were chose empirically to obtain similar behaviour
for all networks. A look at the table shows that, in terms of the accuracy of the
network models, they are all similar, with minimal differences in some cases that are
considered to be not that influential when comparing one model’s accuracy with the
other. On the other hand, in terms of CPU time and system complexity, the 1D CNN
model presents a better efficiency than the rest. Of the recurrent LSTMs models, the
Vanilla model is more efficient than the other three models. The plotted predictions
by the different network models can be seen in Appendix A.

4.1.2 Training on GPU for I/O = 10

In the second case where the same number of timesteps as in the first case are se-
lected as input and also predicted, but with the difference that the training is done
on the GPU, Table 4.2 compares the result of each of the models.

A look at Table 4.2 shows that when the training/fitting and predictions is done
on the GPU, their is an increase in the overall computational time on the 1D CNN,
CNN-LSTM, and ConvLSTM model. These three models make use of convolutional
layers and as such, it may seem that the increase is due to them. The accuracy of all
five models are similar, though it should be noted that the ConvLSTM model has the
more accurate than the rest. The plotted predictions by the different network models
can be seen in Appendix A.
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TABLE 4.1: Comparison of NNs under study for 10 I/O datasets with
training done on CPU.

Network models Filters 8 16 24

1D CNN CPU Time (s) 19.01 19.31 18.96

RMSE (%) 1.3 1.4 1.5

Units 32 160 224

Vanilla LSTM CPU Time (s) 98.48 147.71 166.99

RMSE (%) 1.3 1.3 1.3

Encoder-decoder LSTM CPU Time (s) 179.14 302.26 404.89

RMSE (%) 1.2 1.3 1.3

CNN-LSTM CPU Time (s) 112.17 158.76 190.94

RMSE (%) 1.3 1.4 1.6

ConvLSTM CPU Time (s) 134.71 182.91 225.88

RMSE (%) 1.3 1.2 1.2

TABLE 4.2: Comparison of NNs under study for 10 I/O datasets with
training done on GPU.

Network models Filters 8 16 24

1D CNN CPU Time (s) 50.58 47.77 49.54

RMSE (%) 1.3 1.3 1.3

Units 32 160 224

Vanilla LSTM CPU Time (s) 147.71 128.03 130.11

RMSE (%) 1.3 1.4 1.3

Encoder-decoder LSTM CPU Time (s) 176.10 193.17 210.00

RMSE (%) 1.3 1.3 1.3

CNN-LSTM CPU Time (s) 187.80 185.20 195.64

RMSE (%) 1.4 1.4 1.4

ConvLSTM CPU Time (s) 576.82 592.42 596.66

RMSE (%) 1.2 1.2 1.2
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4.2 Conclusions

We recapitulate everything we have done and suggest future implementations that
can be carried out by improving the project or using part of it.

4.2.1 Results conclusions

Drawing conclusions from the results presented in both Table 4.1 and Table 4.2, dif-
ferent solutions can be implemented to solve the time-series forecasting problem.
The five evaluated models offer similar accuracies, characterized by their RMSE val-
ues, in their predictions and as such, for any proposed solution, involving any of the
models, its accuracy would slightly be different from other possible solutions based
on other models. In this case, a preferred solution would be to choose the ConvL-
STM network model as it, slightly, has the best accuracy, both for when the training
and fitting are carried out with CPU or the GPU.

Comparing the computational time (combined training and fitting time) of each
network model shows much bigger differences than in the case of comparing their
accuracies. Generally, the computational time, when carried out with the CPU than
the GPU, is smaller for models that include convolutional layers (1D CNN, CNN-
LSTM, and ConvLSTM), and as such, the preferred solution would be to choose the
1D CNN that has the less computational time of the five models. The less computa-
tional time the model has, the less resources are consumed.

4.2.2 Compendium

Our aim was to explore different architectures of NNs which can be applied for time
series forecasting problems and subsequently be used to predict the future evolution
of the radioelectric spectrum for Cognitive-Radio applications. First, in chapter 1,
we gave an introduction to what the project entails, the motivation and background
behind it and the objectives, short-term and long-term, that we hoped to achieve
by completing it. In chapter 2, a brief explanation of the basic concepts that helped
to fully understand what we were doing and the theories behind them was given.
Extensive research carried out online or with books by different authors was done to
be able to explain the concepts and summarize each concept in a concise manner. For
every author or idea, we cited, a bibliography reference was provided for a complete
reading and to give credit where due.

The implementation part of the project starts with chapter 3, where we explained,
in much detail, every step of the project that resulted in completing our aim. this in-
cluded explaining how the dataset we were using was obtained, the modelling of
the different NNs with Keras, their fitting and their evaluation based on the pre-
dictions they made. The codes scripts for each part were provided where needed.
In chapter 4, the five ANNs under study are compared in terms of their prediction
accuracy, characterized by the Root Mean-Square Error (RMSE), CPU/GPU time re-
quired to train and fitting/predicting the ANN and the number of filters and units.
Also, figures of the model predictions are provided. With our aim of comparing the
network models achieved, we proceeded to conclude the project.

4.2.3 Personal learning process

The entire project, from the start to the end, have been a wonderful learning journey,
from learning to build neural networks and delving into the world of SDR. These
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were things I had no knowledge of or only an idea of their most basic concepts.
Also, improving Python skills. Modifying and debugging written codes and seeing
that they complied without errors was quite satisfying. At the earlier stages of the
project, the challenge was to adapt and restructure our signals to the shape accepted
by neural networks. Next came the challenge of finding the right parameter values
with which to test the different models. Several research were conducted to help
understand the influence these parameters have on the different models and, help
my decision making. Credit where due was given to the different authors of the
original work that helped in my research. In the training part of the project, patience
and focus were needed for both the time it took to train the different iterations of
the models and writing down the results. Concerning the organization of the project
and writing the report, I learnt how to improve the time I dedicate to the project and
keeping my concentration while writing the codes or the report. It is to be noted
that the timeline mapped out for the completion of this project was exceeded due to
circumstances both in and beyond my control.

4.2.4 Future works and applications

While the project was been carried out, we came upon ideas to improve the network
models architecture that we couldn’t implement due to the system we had, and the
short time frame to complete the project. So, we will list some of these improve-
ments/ideas and future applications for the project.

Network model to predict multilevel signals of multiple channels

A 1D CNN model, that accepts multiple channels as input, was implemented. This
network model predicts the channel occupancy of the different channels. An imple-
mentation where 4 channels are modelled and predicted is shown in Figure 4.1. A
correspoding example of predictions made by the model for each of the channels is
shown in Figure 4.2, Figure 4.2, Figure 4.4, and Figure 4.5.

FIGURE 4.1: Multiple channel 1D CNN architecture

The same implementation is being carried out on the other network models seen
in the project.

Multilevel signals decision block with multiple thresholds

A decision block that selects the band to be occupied based on multiple thresholds. It
receives as input the occupancy signals of several channels which are multilevelled
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FIGURE 4.2: Prediction for channel 1.
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FIGURE 4.3: Prediction for channel 2.

and as such, may require multiple thresholds to be able to make precise decisions.
An example of this implementation is shown in Figure 4.6.
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FIGURE 4.4: Prediction for channel 3.
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FIGURE 4.5: Prediction for channel 4.

Other applications

• Build the AI module to control the operation of a RF digitizer based on a BP-
Σ∆M.
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Appendix A

Prediction results of the different
network models

A.1 Training on CPU for I/O = 10

A.1.1 1D CNN

The plotted prediction results of the 1D CNN model trained on the CPU in compar-
ison with the original dataset, are shown in Figure A.1, Figure A.2, and Figure A.3.
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FIGURE A.1: Model of the channel occupancy and prediction of 1D
CNN model for filter size of 8.

A.1.2 Vanilla LSTM

The plotted prediction results of the vanilla LSTM model trained on the CPU in
comparison with the original dataset, are shown in Figure A.4, Figure A.5, and Fig-
ure A.6.
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FIGURE A.2: Model of the channel occupancy and prediction of 1D
CNN model for filter size of 16.

A.1.3 Encoder-decoder LSTM

The plotted prediction results of the encoder-decoder LSTM model trained on the
CPU in comparison with the original dataset, are shown in Figure A.7, Figure A.8,
and Figure A.9.

A.1.4 CNN-LSTM

The plotted prediction results of the CNN-LSTM model trained on the CPU in com-
parison with the original dataset, are shown in Figure A.10, Figure A.11, and Fig-
ure A.12.

A.1.5 ConvLSTM

The plotted prediction results of the ConvLSTM model trained on the CPU in com-
parison with the original dataset, are shown in Figure A.13, Figure A.14, and Fig-
ure A.15.
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FIGURE A.3: Model of the channel occupancy and prediction of 1D
CNN model for filter size of 24.
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FIGURE A.4: Model of the channel occupancy and prediction of
vanilla LSTM model for filter size of 32.
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FIGURE A.5: Model of the channel occupancy and prediction of
vanilla LSTM model for filter size of 160.
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FIGURE A.6: Model of the channel occupancy and prediction of
vanilla LSTM model for filter size of 224.
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FIGURE A.7: Model of the channel occupancy and prediction of
encoder-decoder LSTM model for filter size of 32.
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FIGURE A.8: Model of the channel occupancy and prediction of
encoder-decoder LSTM model for filter size of 160.
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FIGURE A.9: Model of the channel occupancy and prediction of
encoder-decoder LSTM model for filter size of 224.
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FIGURE A.10: Model of the channel occupancy and prediction of
CNN-LSTM model for filter size of 32.
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FIGURE A.11: Model of the channel occupancy and prediction of
CNN-LSTM model for filter size of 160.
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FIGURE A.12: Model of the channel occupancy and prediction of
CNN-LSTM model for filter size of 224.
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FIGURE A.13: Model of the channel occupancy and prediction of
ConvLSTM model for filter size of 32.
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FIGURE A.14: Model of the channel occupancy and prediction of
ConvLSTM model for filter size of 160.
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FIGURE A.15: Model of the channel occupancy and prediction of
ConvLSTM model for filter size of 224.
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Appendix B

Software

B.1 Python - PyCharm IDE

Amongst the most popular computer programming languages, Python is a high-
level, general-purpose programming language created by Guido van Rossum and
first released in 1991.

Python was conceived in the late 1980s as a successor to the ABC language and
since then, 3 major iterations/versions have been released with Python 3 been the
latest. More information can be found at: https://www.python.org/

PyCharm is an integrated development environment (IDE) that uses the Python
language. With features like code analysis, debugging, testing, built-in console and
easier installation of modules/packages makes it a go-to IDE for programmers. More
information at: https://www.jetbrains.com/pycharm/

https://www.python.org/
https://www.jetbrains.com/pycharm/




63

Bibliography

[1] J. Mitola, “The software radio architecture,” IEEE Communications Magazine,
vol. 33, no. 5, pp. 26–38, 1995. DOI: 10.1109/35.393001.

[2] F. Restuccia and T. Melodia, “Deep learning at the physical layer: System chal-
lenges and applications to 5g and beyond,” IEEE Communications Magazine,
vol. 58, pp. 58–64, 2020.

[3] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning with long
short-term memory for time series prediction,” IEEE Communications Maga-
zine, vol. 57, no. 6, pp. 114–119, 2019. DOI: 10.1109/MCOM.2019.1800155.

[4] V. Zuniga, L. Camuñas-Mesa, B. Linares-Barranco, T. Serrano-Gotarredona,
and J. Rosa, “Using neural networks for optimum band selection in cognitive-
radio systems,” Nov. 2020, pp. 1–4. DOI: 10.1109/ICECS49266.2020.9294894.

[5] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cogni-
tive radio applications,” IEEE Communications Surveys Tutorials, vol. 11, no. 1,
pp. 116–130, 2009. DOI: 10.1109/SURV.2009.090109.

[6] Wikipedia, the free encyclopedia. “Internet of things.” (2021), [Online]. Avail-
able: https://en.wikipedia.org/wiki/Internet_of_things.

[7] K.-H. L. Loh, “1.2 fertilizing aiot from roots to leaves,” in 2020 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC), 2020, pp. 15–21. DOI: 10.1109
/ISSCC19947.2020.9062950.

[8] M. Liu, “1.1 unleashing the future of innovation,” in 2021 IEEE International
Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 9–16. DOI: 10.1109
/ISSCC42613.2021.9366060.

[9] F. Salahdine and H. E. Ghazi, “A real time spectrum scanning technique based
on compressive sensing for cognitive radio networks,” 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication Conference (UEM-
CON), pp. 506–511, 2017.

[10] F. Salahdine, “Spectrum sensing techniques for cognitive radio networks,” in
Oct. 2017.

[11] Y. Molina-Tenorio, A. Prieto-Guerrero, R. Aguilar-Gonzalez, and S. Ruiz-Boqué,
“Machine learning techniques applied to multiband spectrum sensing in cog-
nitive radios,” Sensors, vol. 19, no. 21, 2019, ISSN: 1424-8220. DOI: 10.3390/s19
214715. [Online]. Available: https://www.mdpi.com/1424-8220/19/21/4715.

[12] N. Armi, M. Z. Yusoff, and N. M. Saad, Decentralized cooperative user in oppor-
tunistic spectrum access system, Undetermined. DOI: 10.1109/ICIAS.2012.630
6183.

[13] N. Armi, M. Z. Yusoff, and N. M. Saad, “Cooperative spectrum sensing in
decentralized cognitive radio system,” Eurocon 2013, pp. 113–118, 2013.

[14] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more
personal,” IEEE Wirel. Commun., vol. 6, pp. 13–18, 1999.

https://doi.org/10.1109/35.393001
https://doi.org/10.1109/MCOM.2019.1800155
https://doi.org/10.1109/ICECS49266.2020.9294894
https://doi.org/10.1109/SURV.2009.090109
https://en.wikipedia.org/wiki/Internet_of_things
https://doi.org/10.1109/ISSCC19947.2020.9062950
https://doi.org/10.1109/ISSCC19947.2020.9062950
https://doi.org/10.1109/ISSCC42613.2021.9366060
https://doi.org/10.1109/ISSCC42613.2021.9366060
https://doi.org/10.3390/s19214715
https://doi.org/10.3390/s19214715
https://www.mdpi.com/1424-8220/19/21/4715
https://doi.org/10.1109/ICIAS.2012.6306183
https://doi.org/10.1109/ICIAS.2012.6306183


64 Bibliography

[15] A. Morgado, R. Del Río, and J. De la Rosa, Nanometer CMOS Sigma-Delta Mod-
ulators for Software Defined Radio. Jan. 2012, pp. 1–288, ISBN: 978-1-4614-0036-3.
DOI: 10.1007/978-1-4614-0037-0.

[16] J. Mitola, “Cognitive radio an integrated agent architecture for software de-
fined radio,” 2000.

[17] X. Zhang, X. Liu, H. Samani, and B. Jalaian, “Cooperative spectrum sensing in
cognitive wireless sensor networks,” International Journal of Distributed Sensor
Networks, vol. 11, no. 8, p. 170 695, 2015. DOI: 10.1155/2015/170695. eprint:
https://doi.org/10.1155/2015/170695. [Online]. Available: https://doi.o
rg/10.1155/2015/170695.

[18] G. Ganesan and G. Y. Li, “Cooperative spectrum sensing in cognitive radio,
part i: Two user networks,” IEEE Transactions on Wireless Communications, vol. 6,
pp. 2204–2213, 2007.

[19] M. Riahi Manesh, S. Subramaniam, H. Reyes, and N. Kaabouch, “Real-time
spectrum occupancy monitoring using a probabilistic model,” Computer Net-
works, vol. 124, pp. 87–96, 2017, ISSN: 1389-1286. DOI: https://doi.org/10.10
16/j.comnet.2017.06.003. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S1389128617302463.

[20] M. R. Manesh, M. Apu, N. Kaabouch, and W.-C. Hu, “Performance evaluation
of spectrum sensing techniques for cognitive radio systems,” Oct. 2016, pp. 1–
7. DOI: 10.1109/UEMCON.2016.7777829.

[21] B. deepa, A. Iyer, and C. Murthy, “Cyclostationary-based architectures for
spectrum sensing in ieee 802.22 wran,” Jan. 2011, pp. 1 –5. DOI: 10.1109/G
LOCOM.2010.5683492.

[22] A. Dandawate and G. Giannakis, “Statistical tests for presence of cyclostation-
arity,” IEEE Transactions on Signal Processing, vol. 42, no. 9, pp. 2355–2369, 1994.
DOI: 10.1109/78.317857.

[23] M. Jin, Y. Li, and H.-G. Ryu, “On the performance of covariance based spec-
trum sensing for cognitive radio,” IEEE Transactions on Signal Processing - TSP,
vol. 60, pp. 3670–3682, Jul. 2012. DOI: 10.1109/TSP.2012.2194708.

[24] S. Gong, P. Wang, and W. Liu, Spectrum sensing under distribution uncertainty in
cognitive radio networks, Undetermined. DOI: 10.1109/ICC.2012.6363671.

[25] Z. Bao, B. Wu, P.-H. Ho, and X. Ling, “Adaptive threshold control for energy
detection based spectrum sensing in cognitive radio networks,” in 2011 IEEE
Global Telecommunications Conference - GLOBECOM 2011, 2011, pp. 1–5. DOI:
10.1109/GLOCOM.2011.6133659.

[26] C. H. Lim, “Adaptive energy detection for spectrum sensing in unknown white
gaussian noise,” IET Commun., vol. 6, pp. 1884–1889, 2012.

[27] H. Tang, “Some physical layer issues of wide-band cognitive radio,” Dec. 2005,
pp. 151 –159, ISBN: 1-4244-0013-9. DOI: 10.1109/DYSPAN.2005.1542630.

[28] Z. Quan, S. Cui, A. Sayed, and H. V. Poor, “Wideband spectrum sensing in
cognitive radio networks,” May 2008, pp. 901–906. DOI: 10.1109/ICC.2008.1
77.

[29] E. Abdessamad, R. Saadane, M. El Aroussi, M. Wahbi, and A. Hamdoun, “Spec-
trum sensing with an improved energy detection,” in 2014 International Con-
ference on Multimedia Computing and Systems (ICMCS), 2014, pp. 895–900. DOI:
10.1109/ICMCS.2014.6911386.

https://doi.org/10.1007/978-1-4614-0037-0
https://doi.org/10.1155/2015/170695
https://doi.org/10.1155/2015/170695
https://doi.org/10.1155/2015/170695
https://doi.org/10.1155/2015/170695
https://doi.org/https://doi.org/10.1016/j.comnet.2017.06.003
https://doi.org/https://doi.org/10.1016/j.comnet.2017.06.003
https://www.sciencedirect.com/science/article/pii/S1389128617302463
https://www.sciencedirect.com/science/article/pii/S1389128617302463
https://doi.org/10.1109/UEMCON.2016.7777829
https://doi.org/10.1109/GLOCOM.2010.5683492
https://doi.org/10.1109/GLOCOM.2010.5683492
https://doi.org/10.1109/78.317857
https://doi.org/10.1109/TSP.2012.2194708
https://doi.org/10.1109/ICC.2012.6363671
https://doi.org/10.1109/GLOCOM.2011.6133659
https://doi.org/10.1109/DYSPAN.2005.1542630
https://doi.org/10.1109/ICC.2008.177
https://doi.org/10.1109/ICC.2008.177
https://doi.org/10.1109/ICMCS.2014.6911386


Bibliography 65

[30] P. Avinash, R. Gandhiraj, and K. P. Soman, “Spectrum sensing using com-
pressed sensing techniques for sparse multiband signals,” International journal
of scientific and engineering research, vol. 3, 2012.

[31] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning tech-
niques in cognitive radios,” IEEE Communications Surveys & Tutorials, vol. 15,
pp. 1136–1159, 2013.

[32] Z. Han, R. Zheng, and H. Poor, “Repeated auctions with bayesian nonpara-
metric learning for spectrum access in cognitive radio networks,” English,
IEEE Transactions on Wireless Communications, vol. 10, no. 3, pp. 890–900, Mar.
2011, Funding Information: The authors would like to thank Mr. Quanyan Zhu
of the Department of Electrical and Computer Engineering and the Coordi-
nated Science Laboratory at the University of Illinois at Urbana-Champaign,
and Mr. Amir Danak of the Department of Electrical and Computer Engi-
neering, McGill University, Canada, for their constructive comments. This re-
search was supported in part by the Air Force Office of Scientific Research
under Grant FA 9550-08-1-0480, by the the National Science Foundation under
Grants CNS-0832084, CNS-0953377, CNS-0905556, CNS-0910461, CNS-0546391,
CNS-0832089, CNS-0832084, CNS-0905398, and ECCS-1028782, and by the Qatar
National Research Fund under Grant NPRP 08-522-2-211., ISSN: 1536-1276.
DOI: 10.1109/TWC.2011.010411.100838.

[33] N. Shetty, S. Pollin, and P. Pawelczak, “Identifying spectrum usage by un-
known systems using experiments in machine learning,” May 2009, pp. 1 –6.
DOI: 10.1109/WCNC.2009.4917741.

[34] D. Fudenberg and J. Tirole, Game Theory, ser. Mit Press. MIT Press, 1991, ISBN:
9780262061414. [Online]. Available: https://books.google.es/books?id=p
FPHKwXro3QC.

[35] N. Baldo and M. Zorzi, “Learning and adaptation in cognitive radios using
neural networks,” 2008 5th IEEE Consumer Communications and Networking Con-
ference, pp. 998–1003, 2008.

[36] N. Baldo, T. B. Reddy, B. S. Manoj, R. R. Rao, and M. Zorzi, “A neural network
based cognitive controller for dynamic channel selection,” 2009 IEEE Interna-
tional Conference on Communications, pp. 1–5, 2009.

[37] Y. Tang, Q. Zhang, and W. Lin, “Artificial neural network based spectrum sens-
ing method for cognitive radio,” 2010 6th International Conference on Wireless
Communications Networking and Mobile Computing (WiCOM), pp. 1–4, 2010.

[38] V. Vapnik, The Nature of Statistical Learning Theory, ser. Information Science and
Statistics. Springer New York, 1999, ISBN: 9780387987804. [Online]. Available:
https://books.google.es/books?id=sna9BaxVbj8C.

[39] Z. Yang, Y. dong Yao, S. Chen, H. He, and D. Zheng, “Mac protocol classi-
fication in a cognitive radio network,” The 19th Annual Wireless and Optical
Communications Conference (WOCC 2010), pp. 1–5, 2010.

[40] G. Tunnicliffe Wilson, “Time series analysis: Forecasting and control,5th edi-
tion, by george e. p. box, gwilym m. jenkins, gregory c. reinsel and greta m.
ljung, 2015. published by john wiley and sons inc., hoboken, new jersey, pp.
712. isbn: 978-1-118-67502-1,” Journal of Time Series Analysis, vol. 37, n/a–n/a,
Mar. 2016. DOI: 10.1111/jtsa.12194.

https://doi.org/10.1109/TWC.2011.010411.100838
https://doi.org/10.1109/WCNC.2009.4917741
https://books.google.es/books?id=pFPHKwXro3QC
https://books.google.es/books?id=pFPHKwXro3QC
https://books.google.es/books?id=sna9BaxVbj8C
https://doi.org/10.1111/jtsa.12194


66 Bibliography

[41] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position,” Pattern Recogni-
tion, vol. 15, no. 6, pp. 455–469, 1982, ISSN: 0031-3203. DOI: https://doi.org
/10.1016/0031-3203(82)90024-3. [Online]. Available: https://www.science
direct.com/science/article/pii/0031320382900243.

[42] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1d
convolutional neural networks and applications: A survey,” Mechanical Sys-
tems and Signal Processing, vol. 151, p. 107 398, 2021, ISSN: 0888-3270. DOI: http
s://doi.org/10.1016/j.ymssp.2020.107398. [Online]. Available: https://w
ww.sciencedirect.com/science/article/pii/S0888327020307846.

[43] Y. Lecun, B. Boser, J. Denker, et al., “Handwritten digit recognition with a
back-propagation network,” English (US), in Advances in Neural Information
Processing Systems (NIPS 1989), Denver, CO, D. Touretzky, Ed., vol. 2, Morgan
Kaufmann, 1990.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
pp. 84 –90, 2012.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.
Learn. Res., vol. 15, no. 1, 1929–1958, Jan. 2014, ISSN: 1532-4435.

[46] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–
9. DOI: 10.1109/CVPR.2015.7298594.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998. DOI: 10.1109/5.726791.

[48] C. Olah. “Understanding lstm networks.” (Aug. 2015), [Online]. Available: ht
tps://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, pp. 1735–80, Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.

[50] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation,” CoRR, vol. abs/1406.1078, 2014. arXiv: 1406.1078.
[Online]. Available: http://arxiv.org/abs/1406.1078.

[51] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018. [Online].
Available: https://books.google.es/books?id=o5qnDwAAQBAJ.

[52] Keras, Keras API Reference. (2021), [Online]. Available: https://keras.io/api
/.

[53] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

https://doi.org/https://doi.org/10.1016/0031-3203(82)90024-3
https://doi.org/https://doi.org/10.1016/0031-3203(82)90024-3
https://www.sciencedirect.com/science/article/pii/0031320382900243
https://www.sciencedirect.com/science/article/pii/0031320382900243
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/5.726791
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://books.google.es/books?id=o5qnDwAAQBAJ
https://keras.io/api/
https://keras.io/api/
https://arxiv.org/abs/1412.6980

	Abstract
	Acknowledgements
	Contents
	Acronyms
	Introduction 
	Background and motivation
	Current project objective
	Current project tasks
	Report structure
	Structure of current project folder

	Concepts and previous works 
	Software defined radio
	Cognitive radio
	Spectrum sensing
	Spectrum sensing techniques
	Energy detection
	Wavelet detection
	Matched filter detection

	Machine learning applied to spectrum sensing
	Unsupervised learning
	Supervised learning


	Deep learning for time series forecasting
	Artificial neural networks for time series forecasting
	Convolutional neural networks (CNNs)
	1D CNN
	Recurrent neural networks (RNNs)
	Long short-term memory networks (LSTMs)



	Methodology and Content Development 
	Software requirements
	Dataset
	Dataset preparation for network models: Train and test data 
	Training data preparation

	Neural networks implementation with Keras
	Input layer configuration
	Sequential model
	1D CNN
	Vanilla LSTM
	Encoder-decoder LSTM
	CNN-LSTM
	ConvLSTM

	Network compilation
	Network training

	Network model evaluation
	Walk-forward validation
	1D CNN
	LSTM models: Vanilla, Encoder-decoder, CNN-LSTM
	ConvLSTM

	Network forecasting
	Forecast evaluation


	Results and conclusions 
	Results of network fitting and predictions with network models
	Training on CPU for I/O = 10
	Training on GPU for I/O = 10

	Conclusions
	Results conclusions
	Compendium
	Personal learning process
	Future works and applications
	Network model to predict multilevel signals of multiple channels
	Multilevel signals decision block with multiple thresholds
	Other applications



	Prediction results of the different network models
	Training on CPU for I/O = 10
	1D CNN
	Vanilla LSTM
	Encoder-decoder LSTM
	CNN-LSTM
	ConvLSTM


	Software
	Python - PyCharm IDE

	Bibliography

