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Abstract

Achieving controlled nuclear fusion on Earth could be a decisive step on the quest towards

green energy production since it would bring a virtually renewable energy source without CO2

emissions. The Plasma Science and Fusion Technology group of the University of Seville is

currently designing a magnetic fusion device, a spherical tokamak for controlled nuclear fusion

research, called SMall Aspect Ratio Tokamak (SMART).

This thesis will model the first phase of the initiation of a tokamak (tokamak start-up),

the break-down phase, in which the fuel will transition from the gas state to the plasma state,

making use of the Fiesta toolbox. The fundamental of tokamak physics and tokamak start-

up will also be reviewed. The current waveforms of the SMART coilset have been optimized

to achieve the desired plasma equilibrium and allow the break-down of the pre-fill gas by

reducing the stray poloidal magnetic field and maximizing the loop voltage induced by the

inductor solenoid. Several criteria have also been applied to test the feasibility of the break-

down phase, such as the Paschen’s break-down curve, the estimation of the avalanche time, and

the calculation of the connection length. The electric potential gained by the electrons as they

follow the magnetic field lines has been computed to estimate where the gas will break-down.

Break-down of the gas without the use of any auxiliary heating method has been achieved,

lasting few milliseconds for gas pressures about 10−4Torr.
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Chapter 1

Introduction

1.1 Nuclear fusion as an energy source

Nowadays, the human kind is beginning to understand the damage its activity is causing on

Earth, that could lead to the destruction of the planet we live in and, as a consequence, of

ourselves. A radical change is needed in human’s life before it is too late. One fundamental

step is to stop using fossil fuels as an energy source, and use renewable sources instead, like wind

energy, solar energy, or geothermal energy. However, there is another energy source, virtually

unlimited that could provide a huge step forward this transition, nuclear fusion.

Nuclear fusion is a type of nuclear reaction in which two or more atomic nuclei (reactants)

X and Y interact and produce a heavier nuclei, generally in an excited state (X + Y )∗. This

compound nuclei could de-excitate by emiting electromagnetic radiation and, if the excitation

energy is sufficiently high, by releasing neutrons (evaporation).

X + Y → (X + Y )∗ (1.1)

Applying the conservation of energy to the reaction, using the laboratory reference frame

EX + EY = E(X+Y )∗ = E(X+Y ) + Eexc ⇒ Ti + (mX +mY )c2 = Tf + (mX +mY )c2 + Eexc

⇒ Tf − Ti ≡ Q = −Eexc,

(1.2)

Since the excitation energy Eexc is always positive, the Q factor of the reaction is negative,

meaning that there is a reference frame in which Tf = 0, but Ti can never be zero. This means

that this reaction is an endothermic reaction, it needs energy to take place.

1



1.1. NUCLEAR FUSION CHAPTER 1. INTRODUCTION

Figure 1.1. Coulomb barrier between two nu-

clei of mass number A and a. e = e/(4πε0).

Source: [1].

The need of energy to produce a nuclear fusion

reaction can be easily understood. Due to the posi-

tive charges of the nuclei, their Coulomb interaction

is repulsive. However, not always the interaction is

repulsive, if the nuclei are close enough, the nuclear

interaction appears, and since its much more intense

than the electromagnetic interaction, the dominant in-

teraction is nuclear, which will attracts the nuclei, en-

abling them to approach enough so they can fuse into

a new nuclei. If we plotted the potential between two

nuclei, it would look similar to the one on figure 1.1.

There are two regions, the region for r >>, in which the nuclei are far away from each other so

there is no nuclear interaction between them and the potential is the Coulomb potential, and

the r << region, in which the nuclear interaction appears, so the potential is the nuclear po-

tential and the nuclei attract each other. The point where Coulomb interaction is compensated

by the nuclear interaction is usually estimated as RN ' 1.45(A
1/3
1 + A

1/3
2 )fm, where A1,A2 are

the mass number of the nuclei (A and a in figure 1.1).

The main challenge of nuclear fusion reactions is that the Coulomb barrier have to be

overcomed, allowing the nuclei to approach enough so they can fuse into a new nuclei.

Although nuclear fusion reactions need energy to take place, the reactions could release

more energy than the needed to stimulate it. This can be understood taking into account

the concept of binding energy B(N,Z), which is the energy needed to split a nuclei into its

components,

B(A,Z) ≡ Zmp + (A− Z)mn − [M(A,Z)− Zme])c
2, (1.3)

where M(A,Z) is the mass of an atom of atomic number Z and mass number A, and mp, mn

and me are the proton, neutron and electron masses respectively.

If B/A is plotted, figure 1.2 is obtained. B/A increases with A up to 56Fe, and then it

starts decreasing. This means that if combining elements to the left of 56Fe, the compound

nuclei is more stable than the initial nuclei, and the difference of binding energy from the stable

compound nuclei and the less stable separate nuclei is released in the form of kinetic energy.

Equivalently, if a nuclei heavier than 56Fe splits into lighter nuclei, since the final nuclei will

have higher binding energy than the original nuclei, the difference of binding energy will be

released.
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1.1. NUCLEAR FUSION CHAPTER 1. INTRODUCTION

Figure 1.2. Binding energy per nucleon. The maximum

B/A correspond to 56Fe, the most stable element. Source:

[2].

Figure 1.2 essentially explains why en-

ergy can be obtained from fission reactions,

which have lead to the creation of nuclear

power plants to obtain energy by fission

reactions. But, in the same way it sug-

gest that we could obtain energy as well by

pursuing nuclear fusion reaction. In both

cases, the fundamental condition to obtain

energy is that the energy released is greater

than the energy applied. In energy con-

text, it is defined a variable called Q fac-

tor which is the ratio between the power

obtained and the power applied to the sys-

tem,

Q =
Pobt

Papp

. (1.4)

How can we achieve nuclear fusion reactions on Earth so it can be used as an energy

source (controlled nuclear fusion)? The first challenge is that for nuclear fusion to happen, the

Coulomb barrier needs to be overcomed (actually, considering quantum tunneling, energy lower

than the needed to surpass the Coulomb barrier would be needed to allow fusion reactions).

Nuclear fusion reactions considered to be pursued on Earth involve Deuterium, 2
1H because it is

an abundant element, it exist on Earth’s oceans comprising 0.015 atom percent of the hydrogen

in sea water with the volume of about 1.35 · 109 km3 [3] (section 1.3). The possible reactions

are:

1. 2
1H + 2

1H→ 3
1H(1.01MeV) + p(3.03MeV),

2. 2
1H + 2

1H→ 3
2He(0.82MeV) + n(2.45MeV),

3. 2
1H + 3

1H→ 4
2He(3.52MeV) + n(14.06MeV),

4. 2
1H + 3

2He→ 4
2He(3.67MeV) + p(14.67MeV),

where the kinetic energy each product carries is also indicated. Their cross-sections are plotted

in figure 1.3, where the cross-section of the two 2
1H-2

1H reactions have been added, and the

X-axis is the projectile energy, 2
1H, assuming the target nuclei at rest. 2

1H + 3
1H reaction is the

best option since its cross-section is the highest, and it peaks at the lowest energy1.

1Tritium, 3
1H, do not exist naturally on Earth’s, but it could be produced by certain nuclear reactions with
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1.1. NUCLEAR FUSION CHAPTER 1. INTRODUCTION

Figure 1.3. Cross-section of the fusion reaction in-

volving Deuterium (D). The X-axis is the projectile

energy, 2
1H, assuming the target nuclei at rest. The

D-D cross-section is the sum of the cross-section of

the two D-D fusion reactions. Source: [4]

For the most favourable reaction, a relative

energy between the projectile and the target

nuclei of about 100keV is needed. This en-

ergy would mean a temperature of about 108K

(E = KBT ), hotter than the Sun’s core temper-

ature, which is estimated as 107K 2. The Sun and

all the stars emit energy due to nuclear fusion,

although different nuclear reactions take place in

the stars. In the case of the Sun, the reactions

that take place are the p-p chain3.

At this extremely high temperatures, the fuel

is in the plasma state. A plasma is a quasineu-

tral gas of charged and neutral particles which

exhibits collective behavior [5]. Stars confine the fuel via gravitational forces. How could the

nuclear fuel be confined on Earth’s at such temperatures? Since an object as massive as an

star can not be made, and taken into account that there is no material that can withstand such

high temperatures, other approaches are needed. Nowadays, there are mainly two methods:

� Inertial confinement. With the use of lasers a small region could be extremely heated and

compressed so that a plasma can be formed. The National Ignition Facility (NIF)4 is a

USA’s facility researching this way to obtain controlled nuclear fusion.

� Magnetic confinement. This the most advanced method to pursue nuclear fusion on Earth.

It relies on the fact that nuclei are charged, so they could be confined in a closed space

with the use of electromagnetic fields.

This thesis will be focused on magnetic confinement, in particular in a certain type of magnetic

confinement devices, tokamaks.

The 2
1H− 3

1H reaction produced an α particle (4
2He nuclei) carrying 3.52MeV and a neutron

carrying 14.06MeV. The neutron, since it is neutral, leave the plasma without interaction but

Lithium, which is naturally abundant on Earth. Because both 2
1H and Lithium exist in abundance on Earth,

usually nuclear fusion as an energy source is referred as a virtually renewable energy source, there would be

enough fuel for thousands of years and without creating long-lived radioactive waste [4] (section 1.2).
2https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html.
3A good review can be found in Wikipedia, https://en.wikipedia.org/wiki/Proton%E2%80%93proton_

chain_reaction.
4https://wci.llnl.gov/facilities/nif.

4

https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
https://en.wikipedia.org/wiki/Proton%E2%80%93proton_chain_reaction
https://en.wikipedia.org/wiki/Proton%E2%80%93proton_chain_reaction
https://wci.llnl.gov/facilities/nif


1.1. NUCLEAR FUSION CHAPTER 1. INTRODUCTION

the α particles are confined by the magnetic fields, and it can transfer its energy to the plasma

by collision with the plasma particles. This is called α-heating. The power balance requires that

the power applied to the plasma to heat it Papp plus the α-heating power Pα have to balance

the loss power Pl, Papp + Pα = Pl. The α-particles heating suggest a scenario in which there

would not be neccesary to apply external heating could be achieved. This would mean Q→∞.

This is called ignition, and it would be crutial for commercial nuclear fusion power plants. Up

to date, this is a long term goal, but nowadays the JET tokamak have achieved Q > 0, i.e., has

produced energy by nuclear fusion reactions, although the energy received was lower than the

applied, and the under-construction ITER reactor5 seeks to prove that Q > 10 is achievable,

that is, that the enery produced can surpass the applied energy by a factor of 10 at least.

1.1.1 Definition of a plasma

The definition of a plasma of [5] has been previously said, a plasma is a quasineutral gas of

charged and neutral particles which exhibits collective behavior. The definitions of collective

behaviour and quasineutrality are as follow:

� Quasineutrality. A plasma is composed of neutral and charged particles, ions and elec-

trons, such that the net charge is zero. A neutral plasma (in equilibrium) will have

the same charged particle density, n0. Assuming for both ions and electrons the same

charge, e, if a point charge q is inserted in the plasma, the electrostatic potential is, if the

coordinate system is centered at the test charge

φ(r) =
1

4πε0

q

r
exp

[ −r
λDebye

]
≡ φ0(r) exp

[ −r
λDebye

]
, (1.5)

where φ0(r) is the vacuum potential of the point charge, and λDebye =
√

ε0kBTe
e2n0

is the

Debye length, with Te the plasma temperature. This means that the potential is shielded

if r > λDebye. Therefore, if the size of the plasma L is much greater than λDebye, any

charge accumulation will be shielded, so that the plasma remains neutral. L >> λDebye

is the quasineutrality condition.

However, the shielding of local charge accumulations could only be done if the plasma

has enough particles surrounding the charge accumulation to shield it, and this leads

to another condition, ND >> 1, where ND = n0
4
3
πλ3

Debye is the number of particles in

a sphere of radius λDebye surrounding the charge, called the ”Debye sphere”. This two

conditions have to be satisfied to achieve quasineutrality.

5https://www.iter.org/.

5
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1.2. CONFINEMENT OF CHARGED PARTICLES CHAPTER 1. INTRODUCTION

� Collective behaviour. This means that the motion of the gas has to be governed mainly

by electromagnetic forces rather than hydrodynamic forces, i.e., collisions between the

particles. If ω is the frequency of typical plasma oscillations and τ is the mean time

between collisions with neutral atoms, the condition for an ionized gas to behave like a

plasma is ωτ > 1.

An ionized gas is considered a plasma if the three previous condition are satisfied (the two

conditions of quasineutrality and the condition of collective behaviour).

1.2 Confinement of charged particles in electromagnetic

fields

If a particle of charge q is set in a magnetic field ~B, the field exerts a force upon the charged

particle given by Lorentz’s law:

~Fmag = q~v ∧ ~B, (1.6)

where ~v it the velocity of the particle. Note that the force is perpendicular to the velocity;

if q moves an amount d~l = ~vdt, the work done by the magnetic force is dW = ~Fmag · d~l =

q~v ∧ ~B · ~vdt = 0. The Lorentz force, hence, can not speed up the particle, but it can modify

the trajectory of the particle.

To explore the motion of the particle, the simpler case is the case of a constant magnetic

field ~B0. The equation of motion in an inertial frame is, by Newton’s second law

m
d~v

dt
= ~Fmag = q~v ∧ ~B0, (1.7)

where m is the mass of the particle. If we assume ~B0 = B0
∧
z, (1.7) leads to

m
dvx
dt

= qB0vy,

m
dvy
dt

= −qB0vx,

m
dvz
dt

= 0,

⇒
d2vx
dt2

= −ω2
cvx,

d2vy
dt2

= −ω2
cvy,

m
dvz
dt

= 0,

 (1.8)

where ωc ≡ qB0/m is the Larmor frequency. The solution of (1.8) can be written as

vx(t) = v⊥ cos(ωct),

vy(t) = v⊥ sin(ωct),

vz(t) = v‖,

⇒
x(t) = x(0) +RL sin(ωct),

y(t) = y(0)−RL cos(ωct),

z(t) = z(0) + v‖t,

 (1.9)

where v⊥ and v‖ are the modules of the component of the velocity perpendicular and parallel

to the magnetic field respectively, (x(0), y(0), z(0)) is the initial position of the particle and

RL ≡ v⊥/ωc is the Larmor radius.

6



1.2. CONFINEMENT OF CHARGED PARTICLES CHAPTER 1. INTRODUCTION

Figure 1.4. Motion of a charged particle in an uniform magnetic

field. The particle follows an helical trajectory. Source: google

images, 2019.

The particle describes a circular

motion of radius RL in the plane per-

pendicular to the field, centered on

(x(0), y(0)), and an uniform motion

parallel to the field, due to its veloc-

ity along the magnetic field, that is,

it follows an helical motion. The axis

of this helix is called guiding centre.

Figure 1.4 shows this motion.

For more complex situations, like

the presence of an electric field or

non-uniform electromagnetic fields,

one approach to understand the total motion of the particle is to treat separately the ad-

ditional force that acts upon the particle, which results either on an acceleration parallel to

the magnetic field or a drift of the guiding centre. The most common are going to be briefly

mentioned:

� Acceleration due to E‖

A parallel (to the magnetic field) electric field E‖ provides an acceleration given by

m
dv‖
dt

= qE‖ (1.10)

� Acceleration due to (∇B)‖, magnetic mirror effect

If the magnetic field has a gradient parallel to ~B (B is the magnitude of the magnetic

field, so ∇B is a vector), and the particle has a velocity perpendicular to ~B, there is a

force parallel to the magnetic field, which can be used to confine the particle. It is easier

to understand by considering energy conservation, and treating the charged particle as a

magnetic dipole of magnetic moment µ = mv2
⊥/2B. The force upon the particles is then

~F = −µ(∇B)‖
~B

B
(1.11)

where (∇B)‖ is the parallel component of (∇B).

It can be shown [4] (section 2.7) that µ is an adiabatic invariant, which means it remains

almost constant during the motion of the particle. Consider a non-uniform magnetic field

displaying regions of low and high magnetic field intensity, like the one on figure 1.5,

7



1.2. CONFINEMENT OF CHARGED PARTICLES CHAPTER 1. INTRODUCTION

called magnetic bottle. The conservation of the energy and the magnetic moment in two

points i and f leads to

Ei = Ef ⇒
1

2
m(v2

i⊥ + v2
i‖) =

1

2
m(v2

f⊥ + v2
f‖),

µi = µf ⇒
mvi⊥

2Bi

=
mvf⊥

2Bf

.

(1.12)

If the field B increases from point i to f, v⊥ has to increase too, which means that v‖ has

to decrease. This suggests that if the field is large enough, a point f with vf‖ = 0 can

exist, and in this point the particle bounces (by the action of the force) and moves in the

opposite direction.

Figure 1.5. Magnetic bottle. The conservation of the energy and the magnetic moments enables the confinement

of particles with this set up. Source: [6].

� ~E ∧ ~B drift

The drift velocity of the guiding centre ~vd due to a force ~F is

~vd =
1

q

~F ∧ ~B

B2
. (1.13)

With an electric field perpendicular to the magnetic field, the particle undergoes the so-

called ~E ∧ ~B drift, which can be easily computed by using (1.13) with ~F = q ~E, resulting

in a motion independent on the charge. This motion is shown in figure 1.6 (a).

� ∇B drift

If we have a ∇B perpendicular to ~B, the Larmor radius will vary and as a result, the

total motion of the particle will be an egg-shaped motion (see figure 1.6 (b)). The drift

velocity is given by

~v∇B =
mv2
⊥

2q

~B ∧∇B
B3

. (1.14)

� Curvature drift

8



1.3. TOKAMAKS CHAPTER 1. INTRODUCTION

If the guiding centre of a charged particle is following a curved field line, it undergoes a

drift due to the centrifugal force. If the field lines have a constant radius of curvature Rc,

the drift velocity is

~vc =
mv2
‖

qB2

~Rc ∧ ~B

B2
, (1.15)

where ~Rc points from the center of the radius of curvature towards the outside (See figure

1.6 (c)).

(a) ~E ∧ ~B drift on an ion and an

electron. The drift velocity points

to the right, so both ions and elec-

trons move to the right, since this

drift do not depend on the charge,

modifying the circular motion into

an egg-shaped motion.

(b) ∇B drift on ion

and electron. The drift

velocity points upward

or downward, depending

on the charge.

(c) Curvature drift of an ion due to a

curved magnetic field. It is shown the

direction of the drift velocity.

Figure 1.6. ~E ∧ ~B, ∇B and curvature drifts. Source: [4].

1.3 Tokamaks

Many devices have been created to achieve nuclear fusion by magnetic confinement. The basis

of one of the first devices, magnetic mirrors, have already been described. Here we are going to

focus on toroidal devices, in particular in a certain type of devices called tokamaks [4, 3] (for a

more divulgative yet formal and descriptive point of view, it is highly recommended to see the

series of articles [7, 8, 9, 10]). Its name is a Russian acronym for toroidal chamber with an axial

magnetic field. If a toroidal solenoid is considered, it is a closed geometry with a magnetic field

that is null at its outside and it goes as 1/R at its inside, where R is the radial coordinate (see

figure 2.1 (a)). However, this is not enough to confine particles inside the solenoid because of

the drifts described previously. The non-uniformity of the magnetic field at its inside leads to

9



1.3. TOKAMAKS CHAPTER 1. INTRODUCTION

a ∇B drift, that drift the ions downward and the electrons upward, since (1.14) depends on

the charge q. This charge separation will create an electric field perpendicular to the magnetic

field, so the particles will experience a ~E ∧ ~B drift, that would drift outward both ions and

electrons, provided that this drift does not depend on the charge. These drifts are shown in

figure 1.7 (a).

(a) Drifts in a torus. Source: [5]. (b) Toroidal (blue) and poloidal (red) directions

of a torus. Source: google images, 2019.

Figure 1.7. Drifts in a torus and definition of the poloidal and toroidal directions on a torus.

To overcome the drifts discussed above, Tokamaks confine the particles by twisting the

magnetic field lines. For doing that, in addition to the toroidal field of the torus, a poloidal

field is added (field in the poloidal direction, see figure 1.7 (b)). This poloidal magnetic field is

created by the plasma itself.

Tokamaks need additional coils for controlling the plasma. The plasma itself tend to move

radially outward due to poloidal field created by the plasma, which is greater in the inboard

region than in the outward, and due to the toroidal shape of the plasma, the plasma pressure

also creates an outward force. This outward force is called hoop force (see [11] for an illustrative

explanation, and [3] for a rigurous treatment). This coils are called poloidal magnetic field coils

(PF coils) since its role is to create poloidal field whose ~J ∧ ~B force balance the hoop force. For

doing that, the current flowing in this PF coils need to flow in the opposite direction to the

plasma current. In addition, this coils also help create the elongated shape of tokamak plasmas.

An additional set of coils called divertor coils are often used to created a diverted shape in the

plasma, which will be explained later.

Figure 1.8 shows a sketch of a tokamak with its basics elements. The plasma is contained in

the vacuum vessel (VV) (grey coloured in the figure). The toroidal field (green arrows) is created

by the toroidal magnetic field coils, and the poloidal field is created mainly by the plasma itself,

10
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and by the PF coils (plasma shaping). In the center of the device there is a transformer coil that

induces a toroidal current in the plasma (red arrows) that creates the poloidal magnetic field.

Figure 1.8. Sketch of a tokamak, showing its basic elements, the field

lines and the plasma current. Source: google images, 2019.

The resulting field lines are heli-

cal lines (yellow arrows), which

confine most of the plasma par-

ticles. Since the plasma cur-

rent is inductive, tokamaks op-

erate in a pulsed regime. One

the challenges of this device is

the control of the plasma, and

the electromagnetic instabilities

that could arise in the plasma,

which could lead to the loss of

the plasma energy. This events

are called Disruptions.

For the initialization of a

tokamak discharge, called tokamak start-up, the toroidal magnetic field must be previously

stablished and the VV is filled with a gas. After the inductor coil induced the electric field by

changing its current, the gas will be ionized creating a plasma (this is called break-down). This

plasma will start to create the poloidal field that confines the particles. In the meantime, the

plasma needs to be heated and the PF coils will be controlling its shape. There are several

methods of heating the plasma; to begin with, the plasma current will heat the plasma due to

Joule’s effect, which is called ohmic heating. External methods of heating could be the use of

electromagnetic waves (the electromagnetic waves will create oscillations of the plasma parti-

cles, increasing their energy), injection of neutral particles (the injected particles will accelerate

the plasma particles by collisions with them, increasing their temperature), and many more

(see chapter 5 of [4] for a description of heating methods6). Finally, the plasma will arrive at

the desired configuration with the desired plasma current and shape, ending the start-up phase.

6The websites of currently operating tokamaks also provide information about the way they heat their

plasmas.

11
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1.4 Motivation: SMART, a SMall Aspect Ratio Toka-

mak for the University of Seville

The Plasma Physics and Fusion Technology Group of the University of Seville is designing a

tokamak that will be operating the next year7. Its name will be SMall Aspect Ratio Tokamak

(SMART), which reveal the main characteristic of the device, it will be a spherical tokamak

rather than a standard tokamak. This reactor will not make fusion reactions; instead, as well as

all the existing small and medium size reactors, it will focus on doing tokamak physics research

such as plasma confinement, shape, instabilities, etc. This information will be used by large

international facilities such as JET or ITER, which will make fusion reactions. The SMART

missions are

� Study plasma transport and confinement in positive and negative triangularities.

� Develop novel diagnostic and control schemes.

� Examine electromagnetic stability and control of energetic particles.

� Train next generation of fusion physicists and engineers.

The main difference between a spherical tokamak and a tokamak is the aspect ratio of the

device, which is the ratio of the major radius and the minor radius of the device. If the aspect

ratio of the tokamak is < 2, the device is called spherical tokamak. Figure 1.9 shows a standard

tokamak and a spherical tokamak.

Figure 1.9. Tokamaks and spherical tokamaks.

Source: [12].

Spherical tokamaks are a desirable approach

to controlled nuclear fusion because they are

more compact than regular tokamaks, which

means lower costs, and spherical tokamak’s plas-

mas displays better plasma properties such as

the so called safety factor q and the β, which

will be explained later (reviews of spherical toka-

maks features vs regular tokamaks features can

be found on [12, 13]).

Three operational phases have been designed

for the SMART tokamak:

7http://www.psft.eu/.
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� Phase 1. First plasma and proof-of-concept.

� Phase 2. Inclusion of Neutral Beam Injection (NBI) heating system. The goal of this

phase is the demonstration of plasma shaping.

� Phase 3. This phase will explore fusion-relevant operations.

The main parameters of this three phases are shown in table 1.1. This parameters will be

explained in the following sections. A 3D model of the SMART tokamak is shown on figure

1.10. The coilset configuration will be the same for the three phases.

(a) Reactor. (b) Coilset.

Figure 1.10. 3D plots of the SMART reactor. The coilset is symmetric with respect to the Z = 0 plane, and

several coils are inside the vacuum vessel (VV). The ports in the VV are for plasma diagnosis and for plasma

heating methods such as NBI and ECRH, which will be explained later. Source: [14].

1.5 Objectives and outline of the thesis

The goal of this work is to model the initial phase of the tokamak start-up, the break-down of

the gas, of SMART, optimizing the device so that the gas breaks-down and turns into a plasma

for the first operational phase and the first upgrade, phase two, without any additional heating

method.

This thesis is organized as follows: chapter 2 presents the basics of tokamak physics, the

simplest model of the plasma, and the fundamental equation to describe the tokamak equi-

librium, the Grad-Shafranov equation, as well as the characterization of a tokamak plasma.

Chapter 3 reviews the tokamak start-up, focusing on the break-down phase, introducing the

13
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SMART

Phase 1 Phase 2 Phase 3

VV radius(m) 0.8

VV height(m) 1.6

Major plasma radius(m) 0.42

Minor plasma radius(m) 0.24

Plasma elongation κ κ < 2.1

Plasma triangularity δ −0.51 < δ < 0.44

Plasma current(kA) 35 100 500

Toroidal field(T) 0.1 0.3 1.0

Flat-top time(ms) 20 100 500

External heating (KW)
ECRH 6 [2.4GHz] 6 [7.5GHz] 200 [- GHz]

NBI - 600 600

Table 1.1. Parameters of the phases of the SMART tokamak. Toroidal field is the toroidal field value at the

plasma magnetic axis.

basic physics of this phase, as well as several criteria to ensure a proper break-down of the

gas. Chapter 4 reviews the Fiesta toolbox used for computing the plasma equilibrium and the

dynamic behaviour of the plasma using the RZIp model. Chapter 5 summarizes the simulation

procedure followed in this work. Chapter 6 contains the simulation results, as well as the dis-

cussion of the results with other operating tokamaks. Finally, chapter 7 summarized the work

carried out in this thesis, and discuss future work.
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Chapter 2

Fundamentals of tokamak physics

In this chapter the fundamentals of tokamak physics will be reviewed. The first section includes

the plasma model used in tokamak physics, the second section includes the derivation of the

equation of the tokamak equilibrium configuration, and the third section reviews some basic

tokamak parameters.

2.1 Magnetohydrodynamic model of a plasma

The Magnetohydrodynamic (MHD) model is a single fluid description of a plasma, i.e., it is a

model that treats a plasma like a continuum matter, rather than as a set of particles. This is one

of the simplest models to study a plasma, and it assumes several hypothesis, like quasineutrality

or negligible electron inertia (see any book about plasma physics for further details, like [5]).

The set of equations are

∂ρ

∂t
+∇ · (ρ~v) = 0, [Mass conservation] (2.1)

ρ
[∂~v
∂t

+ (~v · ∇)~v
]

= ~j ∧ ~B −∇p, [Momentum conservation] (2.2)

~E + ~v ∧ ~B = η~j, [Ohm’s law] (2.3)

∂

∂t
(pρ−γ) + (~v · ∇)(pρ−γ) = 0, [Adiabatic behaviour] (2.4)

∇∧ ~E = −∂
~B

∂t
, (2.5)

∇∧ ~B = µ0
~j, (2.6)

∇ · ~B = 0, (2.7)

where ρ is the plasma density, ~v its velocity, η its resistivity, p its pressure (in general the

pressure is a tensor, but for this simplified model, it is considered an scalar magnitude), ~j
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its current density, γ is the adiabatic index, and ~E and ~B the electric and magnetic field the

generated by the plasma. Note that the last three equations are a quasi-static limit of Maxwell’s

equations.

2.2 Grad-Shafranov equation

Figure 2.1(a) displays the coordinate system of toroidal devices. In an equilibrium situation, the

magnetic field of a Tokamak produces an infinite set of nested toroidal magnetic flux surfaces1

as shown in figure 2.2, and the magnetic field lines follow an helical path on them as they wind

round the torus. The poloidal flux Ψ and the toroidal flux Φ between two magnetic surfaces

are defined by

dΨ ≡ ~B · ~dSθ, dΦ ≡ ~B · ~dSφ, (2.8)

where dSθ, dSφ are the poloidal and toroidal surface elements, whose magnitude are defined

in figure 2.1(b) (its unitary vector is perpendicular to the surface, and the sign is arbitrary,

as usually in the magnetic fluxes), and ~B is the magnetic field. The basic condition for the

(a) Cylindrical coordinate system used in devices with

torodial symmetry, (R,φ, Z). R0 is called the major

radius of the torus, r is called the minor radius. The

circumference R = R0 defines the toroidal or magnetic

axis. Source: http://fusionwiki.ciemat.es/wiki/

Toroidal_coordinates.

(b) Toroidal (T) and

poloidal (P) surface

elements between two

magnetic flux surfaces.

Source: [15].

Figure 2.1. Cylindrical coordinate system for toroidal devices, and definition of the poloidal flux in a torus.

equilibrium is that the force on the plasma be zero at all points, so the momentum conservation

1A given surface is a magnetic flux surface if it satisfies ~B ·~n = 0, where ~n is the normal vector of the surface.

That is, the magnetic field do not cross the surface. This is only a visual way to understand the magnetic field,

since there would be an infinite number of magnetic flux surfaces inside a tokamak.
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equation (2.2) leads to

~j ∧ ~B = ∇p. (2.9)

This implies ~B · ∇p = 0, so there is no presure gradient along the magnetic field lines, which

means the magnetic surfaces are also pressure surfaces. (2.9) also implies ~j · ∇p = 0, and as a

consequence the current lie in the magnetic surfaces.

In what follows the Grad-Shafranov equation, one of the most fundamental equations of

MHD equilibrium, will be derived. The idea for this equations is to rewrite (2.9) to have a

scalar equation instead of a vector equation. From (2.7), taking into account the axysymmetry,

and using the coordinate system of figure 2.1(a), setting R0 ≡ 0,

1

R

∂(RBR)

∂R
+
∂BZ

∂Z
= 0. (2.10)

The function of that scalar equation will be the function ψ, called the stream function,

which is defined as ψ ≡ RAφ, where Aφ is the toroidal component of the vector potential ~A.

With this function, the poloidal magnetic field can be written as

BR =
−1

R

∂ψ

∂Z
,

BZ =
1

R

∂ψ

∂R
,

⇔
~Bθ =

1

R
∇ψ∧

∧
φ, (2.11)

where
∧
φ is the toroidal unit vector (the magnetic field can be expressed as ~B = ~Bθ + ~Bφ). It

can be shown that Ψ = 2πψ [15] (section 6.2). It is usual to label the magnetic surfaces with

ψ, also called the magnetic flux. This means that p = p(ψ), since magnetic surfaces are also

pressure surfaces. From the symmetry of ~j, it can be introduced a function f that verifies

jR = − 1

R

∂f

∂Z
,

jZ =
1

R

∂f

∂R
,

⇔
~jθ =

1

R
∇f∧

∧
φ . (2.12)

Comparing (2.12) with (2.6) leads to

f =
RBφ

µ0

, (2.13)

where µ0 is the vacuum magnetic permeability and the subscript φ indicates the toroidal com-

ponent. It can be shown that f is a function of ψ [4] (section 2.3). Equation (2.9) can be

expanded as

~jθ∧
∧
φ Bφ + jφ

∧
φ ∧ ~Bθ = ∇p, (2.14)
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where jφ, ~jθ are the magnitude of the toroidal current, and the poloidal current density vector

respectively. Substituting (2.12) and (2.11) into (2.14), we get, using that
∧
φ ·∇ψ =

∧
φ ·∇p = 0

(consequence of the toroidal symmetry)

Bφ

R
∇f +

jφ
R
∇ψ = ∇p. (2.15)

Now, applying the chain rule on ∇f and ∇p,

∇f =
df

dψ
∇ψ,

∇p =
dp

dψ
∇ψ,

 (2.16)

Introducing (2.13) and (2.16) into (2.15) lead to:

− µ0f

R2

df

dψ
∇ψ +

jφ
R
∇ψ =

dp

dψ
∇ψ ⇒ jφ =

µ0f

R

df

dψ
+R

dp

dψ
. (2.17)

∇ψ can be removed from (2.17) since ∇ψ = 0 correspond to the trivial solution. To get jφ as

a function of ψ, we substitute (2.11) on (2.6), obtaining

µ0
~j = µ0jφ

∧
φ +

1

R
∇(RBφ)∧

∧
φ⇒ −µ0Rjφ = R

∂

∂R

( 1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
, (2.18)

Finally, if we substitute (2.18) on (2.17), we get the Grad-Shafranov equation,

R
∂

∂R

( 1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −µ0R

2dp(ψ)

dψ
− µ2

0f(ψ)
df(ψ)

dψ
. (2.19)

(2.19) is one of the fundamental equations of MHD equilibrium. It is a second order partial

differential equation that calculates the equilibrium in toroidal devices, given the functions

p(ψ) and f(ψ). In figure 2.2 (b), we can see a typical solution of this equation, showing that

the surfaces are shifted with respect to the magnetic axis, which is the major radius of the

innermost surface.

2.3 Tokamaks parameters

The most important parameters of a tokamak equilibrium, as well as about plasma shape and

control will be introduced in this section.

2.3.1 Plasma shape and control in tokamaks

The first concept that must be introduced is the plasma boundary. The boundary of the plasma

is the outermost closed magnetic surface contained in the VV, called Last Closed magnetic Flux
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(a) Magnetic flux

surfaces of a toka-

mak equilibrium,

forming a set of

nested cylindrical

surfaces. Source:

[4].

(b) Typical solution

of the Grad-

Shafranov equation.

Source: [4].

Figure 2.2. Magnetic flux surfaces of a tokamak equilibrium, and typical solution of the Grad-Shafranov

equation.

Surface, LCFS. The particles inside this outermost surface follow the field lines that remain

in the plasma, but particles that follow the external field lines will end up escaping from the

plasma and colliding with the VV (the particles follow the magnetic field lines, but if the

magnetic field lines are not closed inside the VV, particles will collide with the VV as they

follow them). The boundary can be created by a set of coils or by a limiting material that will

touch the plasma (either the vacuum vessel or another element). The first method is to create

the LCFS displaying one or more X-points by using a set of coils. X-points are saddle points

where ∂ψ
∂Z

= ∂ψ
∂R

= 0, so the poloidal magnetic field is zero (see (2.11)). The outermost closed

surface is called separatrix, and a plasma confined this way is called a diverted plasma, and the

coils used to create it are called divertor coils. The second method is to limit the plasma by

the VV or an specific material, so that the plasma is touching that material. The plasma is

then called a limited plasma. In figure 2.3 (a) a limited plasma and a diverted plasma with one

X-point is showed.

For shape control of the plasma, the following parameters are introduced to describe the
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(a) Cross-section of a tokamak, show-

ing its coils, and the boundaries (in

dark blue) of a diverted plasma with

one X-point and a limited plasma.

Source: [8].

(b) Contour of the last close surface of a limited plasma (left) and

a diverted plasma (right), showing the points used to describe

the plasma shape. Source: [16].

Figure 2.3. Plasma geometry and plasma boundaries in tokamaks.

shape of the separatrix, with the points defined in figure 2.3 (b) [16]:

Major radius Rgeo ≡ (Rmax +Rmin)/2,

Minor radius a ≡ (Rmax −Rmin)/2,

Aspect ratio A ≡ Rgeo/a,

Elongation κ ≡ (Zmax − Zmin)/(2a),

Upper triangularity δu ≡ (Rgeo −Rzmax)/a,

Lower triangularity δl ≡ (Rgeo −Rzmin
)/a.

(2.20)

2.3.2 Safety factor and normalized pressure

The confinement efficiency of the plasma in a tokamak is represented by β, which is the ratio

between the volume averaged plasma pressure p and the energy density stored in the magnetic

field or magnetic pressure, also called normalized pressure,

β ≡ p

B2

2µ0

. (2.21)

Note it is a dimension-less magnitude. β defines the confinement efficiency because given a

plasma with a certain average pressure, it determines the magnetic field necessary to confine it.
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As a consequence, a high value of β is attempted. This also leads to the definition of poloidal

β, βθ,

βθ ≡
∫
Sθ
pdSθ/

∫
Sθ
dSθ

B2
a/2µ0

, (2.22)

where Ba ≡ µ0I/l, I is the plasma current, Sθ is the poloidal cross-section of the plasma, and

l its perimeter. The toroidal beta βϕ is defined in a similar way. It is also define the so-called

normalized beta βN, which is also a dimension-less magnitude, as

βN ≡
βϕBTa

Ipµ0

, (2.23)

where BT is the toroidal field at the plasma magnetic axis and Ip the plasma current. One of

the advantages of spherical tokamaks relative to standard tokamaks is that spherical tokamaks

achieve higher β, which mean higher confinement efficiency [12].

Another relevant parameter is the safety factor q, which determines the stability of the

plasma, higher values of q leads to greater stability. Each magnetic flux surface has its value,

and its value is related to the helical paths of the field lines. If at a certain toroidal angle φ the

field line has a certain position in the poloidal plane, and it returns to the same position in the

poloidal plane after a change of the toroidal angle ∆φ, the q factor is

q ≡ ∆φ

2π
. (2.24)

As a consequence of this definition, higher values of q leads to more twisted helical magnetic

field lines, which result in better confinement. q = 1 means that the magnetic field line returns

to its initial position after one rotation around the torus. If q = m
n

, where m and n are integers,

it means that the field line returns to its initial position after m toroidal rotations and n poloidal

rotations round the torus. The differential expression of the safety factor is

q ≡ dΦ

dΨ
. (2.25)

Making use of the parameters defined above, the fusion or thermonuclear power can be

written as [17]

Pfus ∝ β2
Nκ(1 + κ)2

R3
geoB

4
ϕmax

q(a)2

f(A)2

(A+ 1)4A2
, (2.26)

where Bϕmax is the maximum toroidal magnetic field, f(A) ≡ 1.22A − 0.68, and q(a) is the

safety factor at the plasma boundary. From this formula, increasing κ leads to greater fusion

powers, which is another advantage of spherical tokamaks, their plasmas are more elongated

than standard tokamaks plasmas.
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Chapter 3

Tokamak start-up

The words Tokamak start-up refer to the processes that take place from the induction of the

toroidal electric field by the inductor coil to the achievement of the target equilibrium configu-

ration of the plasma, with the desired current and shape1. This processes can be divided into

three phases:

1. Plasma break-down

2. Plasma burn-through

3. Plasma current ramp-up

This thesis is focused on the first phase, the break-down of the gas that is pre-filled into

the vacuum vessel (VV). A review of all the phases will be given here. A plot displaying the

variation of several variables during the start-up is showed on figure 3.1, which will be explained

as the phases of the start-up are reviewed.

As previous conditions, the VV is pre-filled with a gas, and the toroidal field coils are

turned on creating the toroidal magnetic field. In the first phase (blue coloured on figure

3.1), the toroidal electric field induced by the inductor coil accelerates the free electrons in the

VV, and if they acquire enough energy, they could ionize the neutral atoms in the gas when

colliding with them. The extracted electrons will also be accelerated, creating an avalanche of

free electrons, called Townsend avalanche. As a result of this avalanche, the ionized gas start to

develop a current, as can be seen on figure 3.1. The electron temperature Te starts to increase

1A general review of the tokamak start-up can be found on [18]. As stated in the cited document, tokamak

start-up receives attention only when there is a failure on it, so there is no extensive theory about it. However,

to have commercial nuclear fusion power plants based on tokamaks this needs to change. A theoretical approach

to the tokamak start-up problem can be found on the recent paper [19].
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as well. When Coulomb collisions (collisions between charged particles) dominate along neutral

atom-electron collisions, the break-down phase ends ant the burn-through phase begins.

Figure 3.1. Time evolution of the plasma current (a), the line

radiation of Deuterium (b), line-radiation losses (α line of Deu-

terium) (c) and electron temperature (d) during a tokamak start-

up. Source: [20]. Deuterium is used as a prefilled gas here, since

its line-radiation is showed. This plot assumes the beginning of

the burn-through phase to be when the maximum of line radiation

occurs.

In the burn-through phase, the

plasma will ionize itself completely.

In this phase, radiation losses starts

to be relevant. This losses are

caused by several factors such as

Breemstrahlung radiation due to the

deceleration of the electron in the

collision with another atom, line-

radiation of neutral atoms (neutrals)

due to the excitation of the electronic

shell of the neutrals followed by a

de-excitation by emitting electromag-

netic radiation, recombination of ions

and electrons, and radiation from im-

purities from the non-perfect vacuum

of the VV or impurities sputtered

from the wall by the collisions of elec-

trons with the VV (An extensive re-

view of the power losses mechanisms

and the burn-through phase can be

found on [21], and a simpler approach

can be found on [22]). Power losses starts to increase rapidly until a maximum is reached in

the line radiation, as can be seen on fig 3.12.

This maximum can be easily understood. The line-radiation emissions should be propor-

tional to the neutral atoms, since they are the ones whose electrons can be excited in collisions,

decaying emitting electromagnetic radiation. Furthermore, it should be proportional to the

electron density, since increasing the electron density means that more electrons could collide

with neutral atoms, ionizing them. Provided that as the ionization proceed the electron density

2Note that the end of the avalanche phase and the beginning of the burn-through phase differs along the

bibliography. For example, the source of fig 3.1, [20] defines the beginning of burn-through phase when the

maximum in the line radiation is reached, while other articles suggest the beginning on the burn-through at an

earlier stage, such as [19]. The approach of [19] will be followed in this thesis.
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increases while the neutral density decreases, there must be a maximum point of line-radiation

emissions.

In the meantime, at some point over this two phases, the poloidal field created by the plasma

will start to be relevant, confining most of the particles. Once the plasma is completely ionized,

the final phase, the ramp-up phase begins. In this phase the plasma current is increased by

plasma heating, increasing the electron temperature (previously the increase in plasma current

was mainly due to the increase of the electron density). Electromagnetic instabilities have to

be avoided, since they could lead to an abrupt decrease of the plasma current.

3.1 Plasma break-down

The plasma break-down phase [23, 24, 25, 19] is the first phase on the tokamak start-up, and

in this phase the pre-fill gas is ionized or broken-down into a plasma.

Plasma break-down is modelled using a Townsend model. In this model, the ions are con-

sidered at rest due to its enormous mass relative to the electron mass. When you apply an

electric field in the toroidal direction Eϕ to the gas in the VV, the electrons that are free in

the tokamaks (there are always some) will be accelerated by the electric field, so if they acquire

a determine amount of energy before a collision with a neutral atom, the neutral atom can

be ionized. In the case of H2, the energy to ionize it is about 15eV [19], leaving 2 electrons,

which will be accelerated, and could produce more electrons, creating an electron avalanche

called Townsend avalanche. However, not all the electrons are ionizing constantly, they end

up colliding with the wall of the tokamak due to looses. The ionization and looses rate will be

explored.

� Ionization rate νion. If an electron produces α electrons per meter in the direction of

the electric field, and there are N electrons, when traveling an infinitesimal distance

dx, those N elecrons will produce an infinitesimal increase in the number of electrons

dN = αNdx. Dividing by the volume of the tokamak, we get the increase in the electron

density, dne = αnedx.

The electrons are accelerated by the electric field, but due to of the collision with the

neutral atoms that slow them down, they end up achieving a constant speed along the

electric field direction v‖. In that case, the differential distance traveled in a differential

time dt is dx = v‖dt, so the rate of creation of electrons or ionization rate νion is

dne = αnev‖dt⇒
dne
dt

= αnev‖ ≡ neνion, (3.1)
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where νion ≡ αv‖. α is called the first Townsend coefficient, which can be expressed as

[21] (section 2)

α = C1p exp
(
− C2p

Eϕ

)
, (3.2)

where p is the pre-fill gas pressure, Eϕ is the toroidal electric field induced, and C1, C2 are

experimentally determined constants (they are not absolute constants, they are constant

for a certain range of Eϕ/p, but for our case, they have a single value).

The constant parallel speed is proportional to E and p:

v‖ ∝
Eϕ
p
⇒ v‖ = C3

Eϕ
p
. (3.3)

C3 is taken as 43 in [23]. However, for large
Eϕ
p

values, the previous formula is not

valid, the electrons do not achieve a terminal velocity, which also means they do not

create new electrons since they do not collide enough with the neutral atoms. This

electrons are called runaway electrons [23, 19]. [23] proposed that they appear when
Eϕ
p

> 2 · 104V m−1Torr−1. Torr is a pressure unit widely used in this context; 1Torr

≡ 1/760atm = 101325/760Pa ' 133.32Pa. As a consequence, the production of runaway

electrons have to be avoided.

� Loss rate νloss. There are several sources of electron looses. The first source is due to

the magnetic drifts discusses on section 1.3. Another source is the stray poloidal field Bθ

present in the VV due to several factors, such as eddy currents in the VV, the inductor coil

itself, which created poloidal field (border effects) or any magnetic material surrounding

the VV. Due to this stray field, most of the magnetic field lines end up colliding with

the VV, so electrons following them will eventually collide with the vessel. The dominant

source is the stray field. If the length of the line parallel to the electric field is L, called

the connection length, the loss rate due to the stray field can be expressed as

νloss =
v‖
L
. (3.4)

Since the length of the magnetic field lines in a tokamak is mostly in the parallel direction

(the toroidal direction) usually the total connection length (considering both poloidal and

toroidal lengths) is taken as the parallel connection length. To decrease the effect of the

stray field, it is common in tokamaks to create with the PF coils a region where the

poloidal field is as low as possible, called poloidal field null region, so that there the

field lines goes in the toroidal direction mostly, and electrons following them will collide
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with each other. The connection length can be calculated numerically by integrating the

magnetic field lines equation, but also an empirical formula is used to estimate it in the

poloidal field null region [25]:

L ' 0.25aeff
Bϕ(Rnull)

< Bθ >
, (3.5)

where Bϕ(Rnull) is the toroidal magnetic field at the center of this region Rnull and < Bθ >

is the average poloidal field in the surface of this region. Regarding aeff, there are two

visions in the bibliography:

i) aeff is the linear distance to the closest wall. Sometimes this is estimated as the

minor radius of the plasma target equilibrium configuration [21, 23].

ii) aeff is the minor radius of the field null region [20, 25, 19].

The variation in the electron density considering both ionization and losses is

dne
dt

= ne(νion − νloss). (3.6)

The ionization rate can be assumed constant since electrons will acquire a constant speed

quickly after the start of the ionization process. About the loss rate, the connection length may

vary since as the toroidal electric field is induced inside the VV, eddy currents are also induced

in the VV, which will affect the field, and hence alter the connection length L. However, as a

first approximation, we could assume L to be constant. In that case the electron density as a

function of time will be

ne(t) = ne(0) exp [(νion − νloss)t], (3.7)

where ne(0) is the electron density at t = 0, the time at which the toroidal electric field is

induced. For a proper ionization of the gas, the ionization rate must be greater than the loss

rate, so that the electron density increases. Imposing this, and introducing (3.1) and (3.4) in

(3.6) gives
dne
dt

= nev‖(α− 1/L) > 0⇒ (α− 1/L) > 0⇒ αL > 1, (3.8)

taking into account v‖ is the module of the speed, ergo, positive. For Townsend avalanche to

proceed, αL > 1 is needed. Setting αL = 1 will give the limit condition so that the avalanche

nor increase nor decrease. Introducing this condition on (3.2) gives

Eϕmin =
C2p

ln(C1pL)
, (3.9)

where Eϕmin is the electric field needed for this condition. Since this condition do not ensures

avalanche, [25] states that Eϕ > 2Eϕmin for a reliable start-up, so that the avalanche increases.
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Figure 3.2. Paschen’s curve for for H2 as pre-fill gas, showing

different connection lengths.

The plot of Eϕmin as a function of

p for a given L is called the Paschen’s

curve. An example is shown on fig-

ure 3.2, for H2 as pre-fill gas. The

constant are C1 = 510m−1Torr−1

and C2 = 1.25 · 104Vm−1Torr−1. It

can be seen from the figure that all

the lines displays a minimum elec-

tric field needed for a certain pres-

sure. This can be easily understood:

for high pressures, the mean free-path

will be too short (the mean free path

λ is given by λ = 1/(C1p) [21]), so for the electrons to gain enough energy to ionize, the electric

field needs to be high. For low pressures, the mean free-path will be too long meaning that

there would be too little collisions before the electrons are lost, although all the collisions will

be ionizing collisions because the electron will have gained enough energy. This results in a ver-

tical asymptote, so that to the left of that asymptote the loss rate is greater than the ionization

rate, regardless of the field, because there is not enough molecules to create avalanches.

A widely used empirical criteria for a reliable startup is the so-called Lloyd’s criteria [24]

Eϕ
Bϕ

Bθ

> 1000Vm−1. (3.10)

In the case of plasma break-down assisted by Electron Ciclotron Resonance Heating (ECRH),

which is a heating method based on the irradiation of electromagnetic waves of certain frequen-

cies to the ionized gas so that it absorbs them helping ionize the gas [19], the minimum value

is 100Vm−1 instead of 1000Vm−1 [26].

In the DIII-D tokamak3 it has been shown [27] that the break-down of the pre-fill gas did

not occur where the stray poloidal field was minimum; instead, it took place where the potential

gained by the electrons along their path
∫

field line
~E · ~dl was greatest. This potential is not the

electrostatic potential because the electric field has been created by a changing magnetic field.

An electrostatic field ~E can be written as ~E = −∇V , where V is the electrostatic potential.

The line integral between two points A and B is
∫ B
A
~E · ~dl = −V (B) + V (A), so it does

not depend on the path followed, only on the starting and ending points. In the presence of

transient magnetic fields, the electric field is given by ~E = −∇V −∂ ~A/∂t, where ~A is the vector

3https://www.ga.com/magnetic-fusion/diii-d.
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potential. The line integral in this case would be
∫ B
A
~E · ~dl =

∫ B
A
−∇V · ~dl −

∫ B
A
∂ ~A/∂t · ~dl=

−V (B) + V (A)−
∫ B
A
∂ ~A/∂t · ~dl. To compute the last integral, the path followed from A to B

needs to be known, and hence, the final result will depend on the path followed. This means

that an electron gains energy after doing a revolution inside the tokamak returning to the

starting point.

The NSTX tokamak4 also confirms this empirical results [28]. This seems understandable

since to create avalanches, the electrons have to gained enough energy to ionize, so it is not only

relevant that they follow a path with the minimum deviation to collide as much as possible, but

that they gain as much energy as possible in its path so that most of the collisions are ionizing

collisions.

3.1.1 Avalanche or break-down time

When Coulomb collisions dominate over neutral-electron collisions, the fuel starts to behave like

a plasma, entering the burn-through phase. This phase is reached usually when the ionization

fraction of the gas is about 5% [19]. At this stage, the avalanche as described above, with a gas

being ionized by a toroidal electric field stops being valid, and the further ionization is made

by the plasma itself, if the power losses are counterbalanced.

The time when the this phase starts (or when the break-down phase ends) can be estimated

using eq (3.7). Introducing the concept of ionization fraction fi, which is the ratio between the

electron density created by ionization and the neutral pre-fill gas density npre, which is

fi ≡
ne/2

npre

, (3.11)

where the 2 accounts for the 2 electrons that H2 (and also He) gives. The pre-fill gas density

is related to the gas pressure by the ideal gas law, p = npreKBTpre. Substituting this into (3.7)

yields, assuming ne(0)=1 which is an standard assumption [19, 23],

fi(t) =
1

2npre

exp [(νion − νloss)t] =
1

2

KBTpre

p
exp

[
v‖(α−

1

L
)t
]
. (3.12)

Setting fi = 5% on (3.12) will give an estimation for the time needed for the avalanche or

break-down phase to end, the avalanche time tava:

tava =

ln
(

2 · 0.05 · p

KBTpre

)
v‖(α−

1

L
)

=

ln
(

2 · 0.05 · p

KBTpre

)
43
Eϕ
p

[
C1p exp

(
− C2p

Eϕ

)
− 1

L

] . (3.13)

Note that it is positive since α− 1/L > 0 which is the condition for the avalanche to occur.

4https://www.pppl.gov/nstx.
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3.1.2 Voltage and electric field induced by the inductor solenoid

To start the break-down phase, the inductor solenoid (Sol) is pre-charged with a certain current,

and then its current its ramped down rapidly to induce the electric field. In this subsection the

electric field and the voltage induced will be derived.

The voltage induced by the ramp down of the Sol, called loop voltage, can be easily computed

using Faraday’s law in its integral form:

ε ≡ Vloop = − d

dt

∫
S

~B · ~ndS, (3.14)

where S is the surface enclosed by the loop, which is a circle of an arbitrary radius, and ~n its

unit vector, which will go in the Z direction. The magnetic field ~B of a solenoid also goes in

the Z direction, so the loop voltage is, choosing ~n =
∧
Z:

Vloop = − d

dt

∫
S

BSoldS = −
∫
S

dBSol

dt
dS. (3.15)

The derivative can be introduced into the integral since the integration variables do not vary

over time. The only thing that vary with time is the Sol current. Its derivative can be computed

easily since the Sol current is decreased linearly, so it satisfies

ISol(t) = mt+ n. (3.16)

At t = 0, ISol ≡ I0, and the ramp goes down until ISol(t1) ≡ I1 (I0 > I1), so the Sol current is

ISol(t) =
I1 − I0

t1
t+ I0. (3.17)

Solving (3.15) for the magnetic field of a solenoid of inner radius Rin and outer radius Rout > Rin

with N/l turns per unit length, ignoring border effects (i.e., considering infinite length), gives

(see appendix A)

Vloop = −µ0
N

l

I1 − I0

t

[
πR2

in + π(R2
out −R2

in)− 2π

Rout −Rin

(1

3
(R3

out −R3
in)− Rin

2
(R2

out −R2
in)
)]
.

(3.18)

Since the slope of the Sol current is negative, the loop voltage induced is positive.

Once the loop voltage has been computed, the electric field can also be computed. For

computing it, the integral form of Faraday’s law will be used:

Vloop = ε ≡
∮

Γ

~E · ~dl = − d

dt

∫
S

~B · ~ndS, (3.19)

where Γ is the loop’s perimeter. To compute the electric field ~E from this equation we must

know its symmetry. To do so, let’s take into account that (3.19) is very similar to Ampère’s

law ∮
Γ

~B · ~dl = µ0

∫
S

~J · ~ndS = µ0Ienclosed. (3.20)
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It is widely known that the magnetic field of a infinite cilindral conductor carrying a current

density ~J = J
∧
Z is ~B = B

∧
ϕ (see any book of classic electromagnetism, like [29]). And, since

the roles of ~B and ~J in Ampère’s law are the same as the roles of ~E and ~B respectively in

Faraday’s law, provided that ~B = B
∧
Z in Faraday’s law, the electric field must be ~E = E

∧
ϕ.

Furthermore, taking into account the axysymmetry and the assumption of no border effects

(infinite length), the electric field can only depend on the radial coordinate R, so ~E = E(R)
∧
ϕ.

Considering this, the field can be computed, since ~dl = Rdϕ
∧
ϕ:

Vloop =

∮
Γ

~E · ~dl = 2πRE(R)⇒ E(R) =
Vloop

2πR
. (3.21)

The electric field will be more intense near the inner wall of the VV. The same applies to the

toroidal magnetic field, which also goes as 1/R. The potential gained in that region will be

the greatest, enhancing the ionization processes, and the magnetic field lines will be mostly

toroidal lines in that region (since the toroidal field will be greater in that region, the effect

of the poloidal field will be reduced as a consequence), reducing the electron losses. This two

factors explain why the pre-fill gas breaks-down near the inner side of the VV in general.
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Chapter 4

Fiesta toolbox

The Fiesta toolbox is an object-oriented toolbox programmed in MATLAB by G. Cunningham

at the Culham Centre for Fusion Energy [30, 31]. It was created for equilibrium calculations such

as solving Grad-Shafranov equation and plasma shape control. However, dynamic calculations

are also included, using the RZIp model. The reactor geometry is introduced using its object

architecture.

4.1 Grad-Shafranov solver, EFIT

Fiesta contains what is called free boundary equilibrium solvers. The main characteristic of this

type of solvers is that the plasma boundary is not known (on the contrary of fixed boundary

problems) and hence will also be part of the solution. The poloidal magnetic flux ψ is divided

into two components, the created by the plasma and the created by the external current carrying

elements, i.e., the coils and the VV, which will carry eddy currents. This external elements will

be called structrure.

The Grad-Shafranov equation is solved by an iterative method, according to a given toler-

ance. In particular, we have used the EFIT solver [32], which is a free-boundary equilibrium

solver that can obtain the external currents needed to achieve a plasma equilibrium with plasma

parameters closer to the desired plasma parameters. The plasma current profile used is defined

by the so-called Topeol2 model,
dp

dψ
=
j0

r0

βθ(1− ψN),

f
df

dψ
= µ0r0j0(1− βθ)(1− ψN),

(4.1)

where r0 is the X-point radial coordinate, j0 the plasma current and ψN the normalized flux,
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defined as

ψN ≡
ψ − ψaxis

ψboundary − ψaxis

, (4.2)

where ψaxis and ψboundary are the values of the poloidal flux at the center of the magnetic flux

surface and at its boundary respectively. The constants r0 and j0 are adjusted at each step

of the iterative process. The field and the flux at the computational grid are calculated using

Green’s functions (see [33] for a review of the Green’s function formalism applied to tokamaks).

4.2 RZIp model

The rigid current displacement model or RZIp (R, Z and Ip) [34, 35] is a model used to

describe the dynamic behaviour of a tokamak equilibrium. The plasma is modelled as a rigid

conductor so that the plasma can move radially and vertically, but the plasma shape and current

distribution remain constant. Hence, the plasma can be identified by its radial and vertical

position, Rgeo and Zgeo, and its current, Ip. The RZIp model is a linearised model based on

the assumption that small perturbations leads to small changes of the target equilibrium. Its

equations are the circuit equation and the radial and vertical force balance equations.

This model considers that a tokamak is made of active and passive elements. An element is

considered an active element if is subjected to a external excitation such as current or voltage

supplies and passive in any other case. The active structure will then be the coilset, and the

passive structure the vacuum vessel.

There are several ways of calculate the plasma self-inductance. Fiesta’s RZIp uses this

approximate formula [35]

Lp = µ0Rgeo

(
4πRgeo

| < BZp > |
µ0Ip − βθ

− βθ −
1

2

)
, (4.3)

where BZp is the BZ created by the plasma (in our case, the plasma current flows in the positive

toroidal direction, resulting in a negative < BZp >).

The four equations of the RZIp model are, indicating matrices with bold letters [34]

d(LpIp + MpsIs +RGeoEIp)

dt
+ Ipρp = Vp [Ip equation], (4.4)

d(LsIs + MspIp)

dt
+ ΩsIs = Vs [Is equation], (4.5)

d(mpṘgeo)

dt
=

1

2
I2

p

∂Lp

∂Rgeo

+ Is
∂Msp

∂Rgeo

Ip +
EI2

p

2
[Rgeo equation], (4.6)

d(mpŻgeo)

dt
= Is

∂Msp

∂Zgeo

Ip [Zgeo equation], (4.7)
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where E is a constant matrix, Mps is the inductance between the plasma and the structure

(both active and passive), Is the current of the structure, Vs and Vp the voltage of the structure

and the plasma respectively and Ωs the resistance matrix of the structure. Is is common to

neglect the plasma mass mp, which is also what Fiesta’s RZIp does. This set of equations are

linearized and cast in the state space form to solve it, whose general structure is (see appendix

B) 
dx

dt
= Ax + Bu,

y = Cx + Du.
(4.8)

The linearizations of eq (4.4), (4.5), (4.6) and (4.7) setting mp = 0 result in:

Ls
∂Mps

∂Zgeo

∣∣∣
0

∂Mps

∂Zgeo

∣∣∣
0

∂2Mps

∂Z2
geo

∣∣∣
0

Is
0

I0
p

∂Mps

∂Rgeo

∣∣∣
0

∂2Mps

∂Zgeo∂Rgeo

∣∣∣
0

Is
0

I0
p

Mps 0

∂Msp

∂Rgeo

∣∣∣
0

Mps
0

∂2Mps

∂Rgeo∂Zgeo

∣∣∣
0

Is
0

I0
p

0

1

2

∂2Lp

∂R2
geo

∣∣∣
0

+
∂2Mps

∂R2
geo

∣∣∣
0

Is
0

I0
p

∂Lp

∂Rgeo

∣∣∣
0

+
∂Mps

∂Rgeo

∣∣∣
0

Is
0

I0
p

+ µ0
2πS

l2
βpR

0
geo

∂Lp

∂Rgeo

∣∣∣
0

+
∂Mps

∂Rgeo

∣∣∣
0

Is
0

I0
p

+ µ0
2πS

l2
βpR

0
geo L0

p + µ0
2πS

l2
βpR

0
geo



∗ dx
dt

+

+



Ω0
s 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ω0
p


x =


I 0

0 0

0 0

0 1



δVs

δVp

 ,

(4.9)

where 0 indicates equilibrium value, so R0
geo indicates the value at the target equilibrium, S is
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the plasma cross-section of the equilibrium configuration, and l its perimeter. The state vector

x is

x =


Is − Is

0

(Zgeo − Z0
geo)I0

p

(Rgeo −R0
geo)I0

p

Ip − I0
p

 =


δ(Is)

δ(Zgeo)I0
p

δ(Rgeo)I0
p

δ(Ip)

 . (4.10)

and the input vector u is

u =

 δVs

δVp

 . (4.11)

However, Fiesta’s RZIp do not uses the voltages as inputs, it uses the coilset currents

as inputs, so (4.9) is inverted to have currents as inputs. The system (4.9) has the form

M dx
dt

+ Px = Qu, and comparing it with the state space system (4.8), we conclude

A = −M−1P ,

B = M−1Q.
(4.12)

The self and mutual inductances on (4.9) are computed with the Green’s functions of the

magnetic field by relating them to the field created by the structure and by the plasma. Using

(2.11) and the division of the flux into the created by the plasma and the created by the

structure:

ψ = ψp + ψs ,

BR = BRp +BRs , BZ = BZp +BZs ,

BRp =
−1

R

∂ψp

∂Z
, BRs =

−1

R

∂ψs

∂Z
,

BZp =
1

R

∂ψp

∂R
, BZs =

1

R

∂ψs

∂R
.

(4.13)

The output vector y contains the state vector variables and diagnostic measurements such

as the poloidal field or flux measurements. In our case, we only use poloidal field measures so
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the output vector is

y = Cx⇒



δ(Is)

δ(Zgeo)I0
p

δ(Rgeo)I0
p

δ(Ip)

Bθn


=

=



I 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∂( ~B · ~n)n
∂Is

∂( ~B · ~n)n
∂(δ(ZGeo)I0

p)

∂( ~B · ~n)n
∂(δ(RGeo)I0

p)

∂( ~B · ~n)n
∂Ip




δ(Is)

δ(Zgeo)I
0
p

δ(Rgeo)I
0
p

δ(Ip)

 ,
(4.14)

where the subscript n in the poloidal field Bθ indicates the measure n, and ~n is the normal

vector of the loop that measures the poloidal field [34] (section 3.3). The feed-forward matrix

D is zero provided that there is no direct relation between the inputs and the outputs.

Using (4.14), the coil currents needed to obtain poloidal field null in the region where the

sensors are placed (null currents) can be computed by simply setting to zero the elements of

y related to the field, and computing the coil currents needed, using only the coil currents in

x, and the corresponding elements of the C matrix. This is crucial for the break-down phase,

since the poloidal field has to be null out as much as possible to ensure the Townsend avalanche.

The system (4.9) is solved by a Runge-Kutta adaptive method (function ode45 from MAT-

LAB), obtaining the time evolution of the plasma current, the eddy currents in the vacuum

vessel and the coilset and plasma voltages, given the current profile of the coilset. As stated

previously, RZIp is a perturbative model on an equilibrium state. This equilibrium configura-

tion have been obtained with the Grad-Shafranov solver of Fiesta, so RZIp is applied after the

equilibrium configuration is obtained.

Fiesta is a complex toolbox, of thousands of code lines, and it is scarcely documented, so

direct code reading is imperative. However, for this thesis is sufficient to understand the basis

of the Fiesta toolbox as described above. Figure 4.1 shows a flow diagram of the Fiesta toolbox

as it has been used.

35



4.2. RZIP MODEL CHAPTER 4. FIESTA TOOLBOX

Figure 4.1. Flow diagram of the Fiesta toolbox. Source: [36].
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Chapter 5

Simulation procedure

To study the break-down conditions for the SMART reactor, the Paschen’s curve and the

estimation avalanche time have been calculated, as well as an study of the electromagnetic

fields and derived variables such as the connection length, the potential gained by the electrons

and the empirical Lloyd’s criteria. The Fiesta toolbox have been used to compute the magnetic

fields.

This thesis have been developed during the design phase of the SMART tokamak, maturing

through discussions within the team and within other teams such as the korean VEST team

and the company Tokamak Energy (Culham, UK). The changes in the coilset were specially

delicate since the same plasma equilibrium configuration had to be achieved. Part of the work

carried out also contributed to this changes, but the main focus was the study of the break-down

conditions for each configuration. The work included here are the most updated configurations

for both the first operational phase, phase 1, and a future update, phase 21. A plot of the

cross-section and the 3D plot of the SMART reactor done with Fiesta is included on figure 5.1.

Note the VV implemented is simpler than the more realistic VV showed on figure 1.10. There

is no toroidal field coils because Fiesta assumes axisymmetry so the toroidal magnetic field is

given as an input to Fiesta.

The final configuration of the coilset have been chosen so that it allows highly shaped

plasmas, such has having plasmas with negative triangularities. The coils are also named on

figure 5.1, from the inductor Solenoid, Sol, to the poloidal field coils PF1 and PF2 and the

divertor coils Div1 and Div2.

A crucial criteria for setting the coilset currents has been the achievement of the break-

down of the pre-fill gas, without any assistance method (heating methods), only by using the

1Note for the SMART team: this are S1-19 and S2-16 baseline cases.

37



CHAPTER 5. SIMULATION PROCEDURE

(a) 3D plot of SMART. (b) Cross-section of SMART.

Figure 5.1. Plot of the SMART reactor implemented on Fiesta. There is symmetry with respect to the Z = 0

plane. There is no toroidal field coils because Fiesta assumes axysymmetry. The toroidal field is given as an

input.

Sol coil (ohmic break-down). To confirm this, the criteria explained on section 3.1, such as the

Paschen’s curve, the empirical LLoyd’s criteria and the estimation of the avalanche time have

been applied. The avalanche time should be as short as possible, so that the avalanche phase

ends rapidly. Other tokamaks show break-down times between 1 and 4ms [37, 28]. Similar

values have been attempted. H2 have been used as a pre-fill gas. The electric field and loop

voltage induced by the solenoid have been calculated analytically using the equations showed

on section 3.1.2.

The currents during the break-down phase, from the ramping up of the Sol to the end

of this phase have been calculated from RZIp (currents needed to null out the poloidal field

or null currents), while the currents during the target equilibrium and the sustaining of this

equilibrium were given as an input (the coil current waveforms will be explained in chapter 6).

With the full current waveforms, the fields at the break-down phase, Lloyd’s criteria and the

connection length have been studied. With the connection length, the Paschen’s curve and the

avalanche time was checked to test whether ohmic break-down was possible or not.

The break-down conditions have been studied at t=0ms, just when the Sol induced the

electric field that will ionize the gas, so there is no plasma’s magnetic field, only the structure’s

magnetic fields (eddy currents in the VV+coilset currents). For additional safety, I also added

the Earth’s field2; the field added is

2The Earth’s field have been computed from https://www.ngdc.noaa.gov/geomag/calculators/magcalc.

shtml, using IGRF model, and averaging the R and φ component to have an axysymmetric value, so it can be
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BR = 2.7 · 10−7T,

BZ = −3.38 · 10−5T,

⇔ Bθ = 3.38 · 10−5T. (5.1)

This addition ensures the poloidal field obtained inside the VV is never lower than the Earth’s

field, since in reality, the field will be larger than Earth’s field, and also there will be other

issues increasing the field such as errors on the coils winding or magnetic materials surrounding

the reactor.

5.1 Field line tracer

To compute the connection length by field line tracing, a field line tracer function was made.

The field lines of a vector field are always tangent to the vector field. If the diferential vector

~dr lies in the field lines of a vector field ~B = ~B(R,Z) (independent on the ϕ angle due to the

axisymmetry), ~dr will always be paralell to ~B(R,Z), so

~B ‖ ~dr ⇒ ~B ∧ ~dr = 0⇒ Bϕ(R,Z)

Rdϕ
=
BZ(R,Z)

dZ
=
BR(R,Z)

dR
≡ constant, (5.2)

To integrate (5.2), the toroidal angle ϕ has been chosen as independent variable since it is always

positive and monotically increasing, leaving R, Z as the dependent variables. The equations

to solve are
dR

dϕ
= R(ϕ)

BR(R(ϕ), Z(ϕ))

Bϕ(R(ϕ), Z(ϕ))

dZ

dϕ
= R(ϕ)

BZ(R(ϕ), Z(ϕ))

Bϕ(R(ϕ), Z(ϕ))


(5.3)

The total (poloidal and toroidal) length of the magnetic field line is

ds2 = dR2 + (Rdϕ)2 + dZ2 ⇒
ds

dϕ
= R(ϕ)

√
1 +

(BR(R(ϕ), Z(ϕ))

Bϕ(R(ϕ), Z(ϕ))

)2

+
(BZ(R(ϕ), Z(ϕ))

Bϕ(R(ϕ), Z(ϕ))

)2

=

= R(ϕ)

√
1 +

Bθ(R(ϕ), Z(ϕ))2

Bϕ(R(ϕ), Z(ϕ))2

(5.4)

Equations (5.3) and (5.4) can be easily integrated with MATLAB using the ODE function.

The initial value of ϕ has been set as ϕ0 = 0. The initial R and Z values have been varied so

that lines starting through all of the VV are followed. The range of ϕ has been chosen so that

all the lines end up colliding with the inner walls of the VV or with the coils inside the VV.

The final value of the magnetic field length will be the connection length L

introduced on Fiesta. The values correspond to the values of 3/4/2020.
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Nevertheless, due to computer demands, (5.3) and (5.4) have been integrating using the

poloidal length lθ:

~B ‖ ~dr ⇒ ~B ∧ ~dr = 0⇒ Bϕ(R,Z)

Rdϕ
=
Bθ(R,Z)

dlθ
≡ constant⇒ dϕ

dlθ
=

1

R

Bϕ(R,Z)

Bθ(R,Z)
(5.5)

Introducing that change of variable on (5.3) and (5.4), now R,Z = R(lθ), Z(lθ) and ϕ = ϕ(lθ)

is also a dependent variable, and the equations to solve are

dϕ

dlθ
= R(lθ)

Bϕ(R(lθ), Z(lθ))

Bθ(R(lθ), Z(lθ))

dR

dlθ
=
BR(R(lθ), Z(lθ))

Bθ(R(lθ), Z(lθ))

dZ

dlθ
=
BZ(R(lθ), Z(lθ))

Bθ(R(lθ), Z(lθ))

ds

dlθ
=

√
1 +

Bϕ(R(lθ), Z(lθ))
2

Bθ(R(lθ), Z(lθ))2



(5.6)

5.1.1 Potential

As commented on section 3.1, one effective criteria to estimate where do break-down takes place

is to compute the potential function (which is not the electrostatic potential, as commented on

the cited section) gained by the electron as it travels along a magnetic field line:

U =

∫
field line

~E · ~dl =

∫
field line

EϕRdϕ '
∫

field line

Eϕds =

∫
field line

Vloop

2πR
ds, (5.7)

where ds is the total (poloidal and toroidal) differential length of the field line, which has been

approximated, as usual, as the toroidal length of the line.

The non-dimensional magnitude U/Vloop has been computed [27]. To calculate it, (5.7) have

been re-written as an ODE, so it can also be integrated with MATLAB:

d(U/Vloop)

ds
=

1

2πR
⇒ d(U/Vloop)

dlθ
=
d(U/Vloop)

ds

ds

dlθ
=

1

2πR(lθ)

ds

dlθ
. (5.8)

Zero has been set as initial value of U/Vloop.
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Chapter 6

Results

In this chapter the main physics results of this thesis are described and discussed. The first

section included the coilset currents, the target equilibrium and the time evolution of the plasma

current and the eddy currents in the vacuum vessel. The second section includes the study of

the break-down scenario, including the magnetic fields at the beginning of the break-down

phase, the connection length and the electric potential gained by an electron following the field

lines, and finally the Paschen’s curve and the calculation of the avalanche time. The third

section includes a discussion of the results with other tokamaks.

6.1 Static and dynamic behaviour of SMART

In this first section, the target equilibrium, the current waveforms and the time evolution of

the plasma current and the eddy currents in the vacuum vessel are shown for phase 1 and 2,

obtained with the Fiesta toolbox. This results will later be used for the break-down study.

6.1.1 Target equilibrium

Figure 6.1 includes the target equilibrium of both phases, indicating the poloidal flux with a

colorbar, being the flux maximum at the magnetic axis. Both plots displays 3 bulk regions

(upper, central and lower). The central bulk region correspond to the plasma, while the others

are created by the divertor coils and have no plasma since they collide with the wall. The

plasma is a diverted plasma with two X-points, due to the symmetry with respect to the Z = 0

plane. VV’s eddy currents are not included here because RZIp do not allow that the equilibrium

configuration have eddy currents.

Tables 6.1 and 6.2 includes the coil currents and the main plasma parameters. Both plasmas
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displays positive triangularities, about 0.2, although plasmas with negative triangularities can

also be obtained with the same coilset configuration if the PF2 coils act as divertor coils, so

that they take the role of the Div1 coils, and upper and lower bulks will be placed on the PF2

coils instead of on Div1. The parameters q0 and q95 are the safety factor at a surface with

ΨN =0 and 0.95 respectively (ΨN is zero for the magnetic axis, and 1 for the plasma boundary

or separatrix). Div2 current is zero in the target equilibrium because Div2 is only used in the

break-down phase.

(a) Phase 1. (b) Phase 2.

Figure 6.1. Target equilibrium for both phases, showing the coil currents for the equilibrium configuration and

several plasma parameters at the right. 3 bulk region are showed on both plots (upper, lower and central),

being the plasma in the central bulk. The colorbar indicates the poloidal flux Ψ. Eddy currents in the VV are

not included here.

6.1.2 Current waveforms

As stated on chapter 5, the current waveforms were given as an input lacking on the currents

during the break-down, which were calculated using RZIp.

Previous to the RZIp simulation, the region where the poloidal field will be nulled out

(poloidal null region) had to be chosen. The size and location was optimized manually to

maximize the empirical connection length (3.5) and reducing the current needed to create the

null region. The best shape and size are the one showed on figure 6.2, an square of 0.30x0.30m2

centered at Rnull = 0.31m. The sensors, or magnetic field probes are shown. The region is placed

close to the inner wall since its near the inner wall where the gas breaks-down, as explained on
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Coil
I(kA)

Phase 1 Phase 2

Sol -0.15 -0.30

PF1 -0.47 -1.49

PF2 -0.07 -0.14

Div1 0.30 1.00

Div2 0.00 0.00

Table 6.1. Coilset currents for the target equilib-

rium configuration for both phases. Div2 current

is zero because it is used only for the break-down

phase.

Parameter Phase 1 Phase 2

Rgeo(m) 0.42 0.42

A 1.82 1.84

κ 1.95 2.01

δ 0.20 0.24

q0 1.14 1.03

q95 7.23 7.02

βϕ(%) 2.92 3.71

βθ 0.73 0.91

βN(%) 1.98 2.56

Table 6.2. Plasma parameters on the target equi-

librium for both phases. Zgeo=0 due to the sym-

metry with respect t the Z = 0 plane.

section 3.1.

The full current waveforms, after computing the current needed to null out as much as

possible the poloidal field in the sensor region with RZIp, is showed on figure 6.3. This figure

also includes the current gradient at each time, which will be denoted with ∆. Each current

waveform have 7 dots indicating the phases of the plasma discharge, as indicated in figure 6.3

(b):

� Point 1, the starting point: all the currents are zero.

� Point 2, pre-pulse: the Sol coil is charged, and the PF and Div coils are ramped on to

the currents needed to null out the poloidal field created by the Sol (null currents).

� Point 3, 1º ramp-down: at this point, t=0ms, the Sol current is ramped down, inducing

the loop voltage that will ionize the pre-fill gas. The PF and Div coils are the null currents

to null out the poloidal field so the avalanche can succeed.

� Point 4, 2º ramp-down: at this point, the Sol coil change its decreasing slope to make it

less abrupt. The PF and Div coil currents are still the null currents. The break-down of

the pre-fill gas will happen between point 3 and 4. The time interval between them was

fixed to match the avalanche time.

� Point 5, target equilibrium: at this point the target equilibrium is reached. The PF and

Div coil currents are the values at the target equilibrium.
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Figure 6.2. Sensors for the poloidal null region. In that region the poloidal magnetic field will be nulled out (as

much as possible) by the PF and Div coils.

� Point 6, end target equilibrium: the target equilibrium is sustained from point 5 to point

6, being the time interval between them the flat-top time, which is 20ms on phase 1

and 100ms on phase 2. The Sol coil current vary so that the desired plasma current is

maintained, while the PF and Div currents are kept constant

� Point 7, termination of the plasma discharge: all the coil currents are turned off, ending

the plasma discharge.

To model the plasma current, Spitzer’s resistivity have been used, using Zeff = 2 as effective

atomic number to account for Carbon impurities because the plasma-facing material in SMART

will be Carbon. Due to the low resistivity on phase 1, the Sol current has to increase from

point 5 to 6 to prevent further increase of the plasma current.

The Sol waveform have 2 decreasing slopes, the first one with a higher slope to induce the

electric field and the following with a lower slope to continue increasing the plasma current but

at a lower rate. The reason for this two slopes is because of engineering requirements. With

the design of the power supplies for phase 1, the first operational phase, the coilset current

gradients could not surpass 50A/ms. But this slope was not enough to allow the break-down of

the pre-fill gas (the electric field induced was below the paschen’s curve, so break-down was not

possible, the loss rate were greater than the ionization rate), so finally it was decided that there

would be a first slope to induce the loop voltage that would surpass the operational limits and

would be sustained until the break-down phase ends, and another slope within the operational

limits once the break-down phase was finished. Note that the rest of the ramp currents for
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phase 1 are below 50A/ms. The time interval between point 1 and 2 was chosen so that the

current ramp is lower than 50A/ms. The second slope was designed so that the plasma current

rises up at rate from 1 to 10MA/s, as was found in spherical tokamaks with ohmic startup

[27, 38, 39, 40]. The above discussion applies to phase 1 only, but phase 2 was also built with

two slopes since this two slopes Sol waveform is less demanding for the power supplies.
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Figure 6.3. Coilset currents given as inputs and current gradients for both phases. The desired plasma current

is sustained for 20ms in phase 1 and for 100ms in phase 2 (flat-top time).

6.1.3 Dynamic simulations

The RZIp outputs, the plasma current and the net eddy current induced in the VV as a

function of time are shown on figure 6.4. The coil waveforms have also been included for a

better understanding of the outputs. Regarding the plasma current, it can be seen the different

growth rate of it due to the 2 slopes of the Sol current, being the first one more abrupt. The

plasma is sustained for the desired time, 20ms and 100ms for phase 1 and 2 respectively. At
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the end of the discharge the plasma current is not zero. To null it, cooling down the plasma by

allowing air to enter the VV breaking the vacuum would be a method to null out the plasma

current. Regarding the eddy currents, they follow the expected behaviour according to the

input currents. The highest values are about 30kA, which is about the plasma current in phase

1. The eddy currents at t=0ms are 1.6kA for phase 1 and 2.5kA for phase 2. Figure 6.5 includes

the plasma current and its gradient, showing that the growth rates are kept within the desired

range, from 1 to 10MA/s (1kA/ms=1MA/s).

6.2 Break-down results

6.2.1 Magnetic fields

The magnetic field at the start of the Sol ramp down (dot 3 in figure 6.3 (b) corresponding

to t=0ms) have been calculated using the Grad-Shafranov solver. This calculation includes

the eddy currents but not the plasma current, not started yet a this time. The Earth’s field

was also added to avoid extremely low values of the poloidal magnetic field, as commented on

chapter 5.

Figure 6.6 includes plots of the toroidal field Bϕ, the poloidal field Bθ and the LLoyd’s

critera, EϕBϕ/Bθ. Due to the symmetry of the field with respect to the Z=0 plane, only the

upper portion of the VV is showed1. Small gaps are appreciable in the VV corners due to

rounding issues, without further influence in the simulations. Bϕ is the field created by the

toroidal field coils, which decays with the radial position as 1/R. The Bθ plots displays a more

complicated pattern due to the addition of the eddy currents. Without the eddy currents, the

lowest Bθ is contained within the polidal field null region (dashed in green), but the addition

of the eddys create a more complicated pattern. This is a result of the fact that RZIp can not

run using a target equilibrium which contains eddy currents, resulting in that the currents for

the poloidal field null configuration (null currents) do not take into account the effect of the

eddy currents. Hence, the eddy currents have to be added manually, worsening the field to the

point that the lowest poloidal field is not in the poloidal field null region. In the central region

of the VV, Bθ is about 1.1 · 10−4T in phase 1 and 2.1 · 10−4T in phase 2.

Regarding Lloyd’s empirical criteria, it can be seen that the criteria for ohmic break-down

is satisfied (EϕBϕ/Bθ > 1000V/m) near the inner wall in both phases, with a larger region in

1Actually, due to the addition of the Earth’s field, the field is not completely symmetric with respect to the

Z=0 plane, but the differences are negligible, about 10−7T.
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Figure 6.4. Coiset currents given as inputs and RZIp outputs for both phases, plasma current and the net eddy

current induced in the vacuum vessel. The desired plasma current is sustained for 20ms in phase 1 and for

100ms in phase 2 (flat-top time).
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Figure 6.5. Plasma current and plasma current gradient for both phases.

phase 2 since this phase has larger Bϕ.

6.2.2 Connection length

In this section, the connection length computed using both field line tracing and the empirical

formula will be showed, as well as the potential gained by the electrons along their path.

Figure 6.7 shows the connection length obtained by field line tracing, the electric potential

gained by the electrons and the grid used for the integration. The grid contains a meshgrid of

20x20 points, and the points located where the coils are have been removed. The resolution of

the grid is 0.034m in the R axis and 0.0842 in the Z axis, giving a resolution relative to the VV

size of 5.26% in both axis.

The first thing to note considering the connection length L plot is that it is not symmetric

with respect to the Z = 0 plane . This is a consequence of the poloidal field, its components,

BR and BZ . Figure 6.8 shows the vertical and radial field a t=0ms for phase 1 (it displays the
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(a) Toroidal field of phase 1. BT (RGeo) = 0.1T. (b) Toroidal field of phase 2. BT (RGeo) = 0.3T.

(c) Poloidal field of phase 1. IVV(t = 0) = 1.6kA. (d) Poloidal field of phase 2. IVV(t = 0) =

2.5kA.

(e) Lloyd’s criteria of phase 1. (f) Lloyd’s criteria of phase 2.

Figure 6.6. Magnetic fields and Lloyd’s criteria at t=0ms. Due to the symmetry with respect to Z=0, only the

upper portion is shown. The poloidal field null region is dashed in green. Note in this plot the small gaps on

the VV due to rounding issues can be seen.
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(a) Connection length of phase 1. (b) Connection length of phase 2.

(c) U/Vloop of phase 1. (d) U/Vloop of phase 2.
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Figure 6.7. Connection length by line tracing and electric potential for SMART at t=0ms. The computational

grid is also shown. The poloidal field null region is dashed in green. Note the connection length plot displays a

region near the lower PF2 coil with high values, the lines wind up around the PF2 coil without colliding with

it. This region do not appears in the electric potential plot confirming it is not relevant for the break-down.
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same behaviour for phase 2). The Sol coil produces negative vertical field in the VV, and the

PF and Div coils try to compensate it by creating positive vertical field. The resultant vertical

field is mostly negative in the whole VV, but its magnitude has reduced. This explain the fact

that the L plot is not symmetric, because the lines starting in the upper portion of the VV have

on average higher connection length. Hence, the highest values of L are located at the upper

portion of the VV. Higher values are obtained near the inner wall since there the toroidal field

has its greatest values (Bϕ ∝ 1/R), making Bθ less relevant, resulting in lines that mostly goes

in the toroidal direction, with little deviation.

(a) Radial field. (b) Vertical field.

Figure 6.8. Radial and vertical magnetic fields at t=0ms. The vertical component of the Sol field is negative,

and the PF and Div coils try to null it by creating positive vertical field. The resultant vertical is mostly

negative in the whole VV, but its magnitude has been reduced. The radial field is anti-symmetric and the

vertical field symmetric with respect to the Z = 0 plane.

Nevertheless, the highest values appear in the surroundings of the lower PF2 coil (Z =

−0.6m), because of the inhomogeneity of the field at the surroundings of a coil. Further from

the coils, the field is more homogeneous, but at the surroundings on a coil, the field is mostly

the field of the coil. Plots of several field lines are shown on figure 6.9, showing that some lines

in the surroundings of the lower PF2 coil wind around them without colliding with them (the

magnetic lines are twisted around the lower PF2 coil in a similar way the magnetic lines are

twisted in a tokamak plasma). This figure also shows that, although the upper portion of the

VV in general have higher connection lengths due to the fact that the vertical field is negative,

if the lines start too high, they end up colliding rapidly with the upper coils or the upper VV

wall.

Considering the U/Vloop plot, we see that the weird region surrounding the lower PF2 coil

has low value of U/Vloop in comparison to the value of the upper portion of the VV near the
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(a) Line starting in the upper portion of the

VV with high L.

(b) Line starting on the surroundings of the

lower PF2 coil.

(c) Line starting on the upper portion of the

VV with low L.

Figure 6.9. Magnetic field lines starting in the upper portion of the VV with high L (a), on the surroundings

of the lower PF2 coil (b), and in the upper portion with low L (c). The starting point is denoted with a black

dot, and the ending point with a green dot.

inner side, confirming this region is not important regarding break-down. As explained on

section 3.1, this plot is more valuable than the Bθ or L plot since it also takes into account

the energy gained by the electrons along their path. It can be seen that it displays roughly the

same patter of the L plot, but removing this region around the lower PF2 and some regions

with high L which are further from the inner VV wall.

Finally, the connection length in the poloidal field null region using the empirical formula

will also be obtained, since it usually gives lower values than the connection length by field

line tracing, which gives very high results. In spherical tokamaks (ST), L goes from 10 to 50m

[26, 41]. The results obtained are cast in table 6.3. The value for the line tracing has been

computed averaging the connection length values in the whole poloidal field null region. For

the empirical formula, the two visions of aeff have been used, being 0.15m for the ii) and 0.31m

for the i), so the i) value will double the ii) value. The line tracing method gives about an order
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of magnitude greater values than the ii) method. Phase 2 displays greater values than phase 1

because of the higher Bϕ, that makes Bθ less relevant.

Phase L(m)

Line tracing Empirical ii) Empirical i)

1 657.7 42.4 87.56

2 987.8 68.3 141.2

Table 6.3. Connection length at the poloidal field null region, computed via the empirical formula (3.5) and

averaging the field line tracing method over the field null region surface. For the empirical formula, aeff is 0.15m

for the ii) version and 0.31m for the i) version.

6.2.3 Paschen curve and avalanche time

This section will review the Paschen curve’s criteria and the estimation of the avalanche time.

The Paschen equation is (see 3.1)

Eϕmin =
C2p

ln(C1pL)
, (6.1)

and, given the connection length L and the pre-fill pressure p, it gives the minimum electric field

needed to sustain the electron density. Since the connection length depends on both R and Z,

the minimum electric field required will also depend on both R and Z. However, Eϕmin(R,Z)

as a function of p would need a 4D plot, so, instead, to create the Paschen’s curve, an average

value of L is chosen. This value is usually the value obtained by using the empirical formula,

which is L at the poloidal field null region. Since this formula gives lower values than the values

obtained by line tracing, this formula will be used here too. Regarding the electric field, it is

given by E = Vloop/2πR (see (3.21)), so the R coordinate needs to be chosen to do the Paschen’s

curve. It is often used RGeo, which also serves as a guideline to compare with other reactors.

However, due to the fact that the gas will break-down near the inner side, the coordinate

RGeo − a ≡ Rin, which is the inner R coordinate of the Last Closed Flux Surface (LCFS) for

Z = 0 has also been used. For both phases, RGeo = 0.42m and RGeo − a ≡ Rin = 0.19m.

Figure 6.10 shows the Paschen’s curve for SMART using both RGeo and Rin for several L

values between the range of the values obtained. The values of similar size tokamaks VEST

and GlobusM are also dashed in the figure, whose values are also included in table 6.4. SMART

values are included in table 6.5. For both phases, using E(Rin) break-down could be possible

for L ≥ 30m, while using E(RGeo) L ≥ 70m would be needed. SMART E(RGeo) value is similar
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VEST GlobusM

p(10−5Torr) 2− 3 3− 6

Vloop(V) 3 4.5-8

E(V/m) 1.2 1.8-3.1

Table 6.4. GlobusM [41] and VEST [26] break-down data. Both use H2 as pre-fill gas. E ≡ E(RGeo), where

RGeo=0.36m for GlobusM and 0.4m for VEST. VEST data correspond to break-down assisted with ECRH.

GlobusM data is for ohmic solenoid. With ECRH, GlobusM needs 1-2V of Vloop.

to VEST value, but VEST uses ECRH assistance to get break-down. Ohmic break-down in

GlobusM needs between 4.5 and 8V of Vloop, which is 1.5 and 2.7 times higher than SMART

Vloop. However, it can be seen that E(Rin) is between GlobusM E(RGeo) values. Using E(RGeo)

instead of E(Rin) gives additional safety, since if break-down is achieved at RGeo, it will also

be achieved on Rin (Bϕ ∝ 1/R).

Phase Vloop(V) E(Rin)(V/m) E(Rgeo)(V/m)

1 2.98 2.49 1.06

2 2.90 2.39 1.03

Table 6.5. SMART loop voltage and electric field created by the Sol for both phases, using H2 as pre-fill gas.

Nevertheless, as explained on section 3.1, Paschen’s curve gives the electric field needed

to sustain the electron density, so further information about whether break-down could be

achieved or not is the calculation of the avalanche time, since the existence of the avalanche

time implies the avalanche succeed.

Using (3.13) the avalanche time has been calculated as a function of p and Eϕ for given L

values, creating a plot similar to the Paschen’s curve. For the pre-fill temperature, it has been

used Tpre = 20ºC. For the L values, multiples of the empirical values obtained have been used

(see table 6.3).

Figure 6.11 and 6.12 shows the avalanche time for several L for phase 1 and 2 respectively.

Due to the lower connection length of phase 1, this phase will also need more time to end the

break-down phase. The loop voltage of the Sol is induced for 4ms in phase 1 and 12ms in

phase 2 (from do 3 to 4 in figure 6.4 (a) and (b), there are 4ms in phase 1, and 12ms in phase

2). Regarding the more conservatives value, the ii) method, Lemp|ii), about 4ms will be the

minimum time for p = 1.3 · 10−4Torr, which is just the time the loop voltage is sustained in the

Sol waveform on phase 1. Phase 2 would need 2.2ms with p = 9.3 · 10−5Torr, which a sixth of
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Figure 6.10. Paschen curves for SMART, showing VEST and GlobusM data. Hydrogen is used as the pre-fill

gas in the three reactors.
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(a) L = Lemp|ii)/2. No ohmic avalanche possi-

ble.

(b) L = Lemp|ii). Ohmic break-down possible

using Rin. The minimum time is 3.9ms, for

p = 1.3 · 10−4Torr.

(c) L = 2Lemp|ii) ' Lemp|i). Ohmic break-down

possible using Rin. The minimum time is 1.7ms,

for p = 8.1 · 10−5Torr.

(d) L = 4Lemp|ii) ' 2Lemp|i). Ohmic break-

down possible using Rin. The minimum time is

1.2ms, for p = 5.3 · 10−4Torr.

Figure 6.11. Avalanche time for SMART phase 1, for multiples of the empirical connection length.

the time the loop voltage is sustained, 12ms. With the i) method, phase 1 would need 1.7ms,

which is roughly half the time the loop voltage is sustained, and phase 2 would need 1.4ms, a

similar time to what Tokamak Energy needs.

Figure 6.11 and 6.12 also contains the plots for half Lemp|ii), the worst scenario, and 4Lemp|ii),

the ideal scenario. In the worst scenario, no break-down would be possible in phase 1, although

on figure 6.10, SMART E(Rin) tightly surpass the L = 30m. This remind us Paschen’s curve

not ensure avalanche, and that is why [25] recommends to double the minimum electric field to

ensure break-down. For phase 2 it could be possible, but spending about 9.3ms in the optimal

case. On the contrary, in the ideal case, 4Lemp|i), both phases would need about 1ms in the

optimal case, but the connection length may be too high.

56



6.3. DISCUSSION CHAPTER 6. RESULTS

(a) L = Lemp|ii)/2. Ohmic break-down possible

using Rin. The minimum time is 9.3ms, for p =

1.6 · 10−4Torr

(b) L = Lemp|ii). Ohmic break-down possible

using Rin. The minimum time is 2.2ms, for

p = 9.3 · 10−5Torr.

(c) L = 2Lemp|ii) ' Lemp|i). Ohmic break-down

possible using Rin. The minimum time is 1.4ms,

for p = 6.0 · 10−5Torr.

(d) L = 4Lemp|ii) ' 2Lemp|i). Ohmic break-down

possible using Rin. The minimum time is 1.0ms,

for p = 3.9 · 10−5Torr.

Figure 6.12. Avalanche time for SMART phase 2, for multiples of the empirical connection length.

6.3 Discussion

In this section, the results obtained will be compared to other tokamaks of similar characteris-

tics.

The first thing to compare is the poloidal field Bθ and Lloyd’s criteria. Figure 6.13 shows

a comparison between VEST Bθ and Lloyd’s criteria with SMART phase 1, since for phase 1

the toroidal field Bϕ is the same in both, 0.1T. The electric field is also very similar, 1.12 vs

1.06V/m. VEST achieves about 10−3T in its central region, while we achieved 10−4T. Roughly

the same difference in values are found in VEST Lloyd’s criteria plot. The figure also included

a comparison with GlobusM poloidal field, comparing it with phase 2 because GlobusM has

BT < 0.62T. The minimum Bθ of GlobusM is 3.78G in the null region, while we achieve 2.13G
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(10−3.6713T) in the null region, which is very similar to GlobusM value. However, although

the agreement between our values and VEST and GlobuM values seems good enough, there

is a source of imprecision in our simulations, and is the fact that RZIp do not run in a self-

consistent manner with the eddy currents, as commented on section 6.2.1, so the null currents

do not take into account the eddy currents, and the addition of the eddy currents worsen the

field, so that the lowest poloidal field is not in the field null region. Another source of error

is that our simulations use the ideal current waveforms, while more realistic simulations, such

as VEST simulations, also simulate the power supplys of the coils. As a conclusion for this

magnetic field comparison, other effects such as errors in the coil windings or magnetic material

materials surrounding the VV could also alter the magnetic field.

Considering now the connection length L by line tracing, figure 6.14 include a comparison

with NSTX and phase 2, because NSTX has Bϕ = 0.3T [42]. The values of both phase 2

and NSTX are about km long, but the appearance of both plots are not very similar. This

difference is caused by the fact that SMART has most of its coils inside the VV, while NSTX

has its coils outside, as can be seen on (d). To prove this point, a L plot of an older SMART

configuration with all the coils outside (phase 1) is included (c), showing similarities with the

NSTX plot; both plots displays high L arm-like regions, pointing upward and outward (to the

outer wall). However, SMART do not have an arm pointing downward while NSTX do, and

this arm seems to be caused by a lower PF coil of NSTX, PF1B, which do not appears in the

upper portion of the NSTX cross-section (i.e., NSTX cross-section do not displays symmetry

with respect to the Z = 0 plane). The connection length computed by the empirical formula is

roughly an order of magnitude lower than the connection length obtained by field line tracing.

Differences larger than a factor of two were predicted in [23] and differences about an order of

magnitude, as obtained in this work, were obtained in ITER simulations [25].

Regarding Paschen’s curve and avalanche time, SMART loop voltage seem a bit low in

comparison to GlobusM, but since the loop voltage is strongly dependent on the configuration

of the machine, which is different for each machine, is not such a determinant factor. Instead,

studying other variables such as the avalanche time would give more information, and in our

case the avalanche time confirm that the break-down phase could be finished in a short enough

time interval, going from 1 to 4ms for pre-fill pressures about 10−4Torr. Data reconstruction

in a VEST discharge using ECRH assistance shows that the plasma has already formed and

moved to the outer wall 2ms after the ramp-down of the Sol, so the avalanche time must be

≤ 2ms [26]. This time interval lies between the range of values obtained for SMART, with the

difference that the SMART results have been obtained with an ohmic startup, without any
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(a) Poloidal field of SMART phase 1. (b) Poloidal field of VEST. 1G =

10−4T.

(c) Poloidal field of SMART phase 2. (d) Poloidal field of

GlobusM.

(e) Lloyd’s criteria of SMART phase 1. (f) Lloyd’s criteria of VEST.

Figure 6.13. Comparison of the poloidal field and Lloyd’s criteria with VEST [26] and GlobusM [41] (both

simulated data) at the exact time when the loop voltage is induced. Phase 1 is used to compare with VEST

because it the same Bϕ = 0.1T. Eϕ = 1.12V/m for VEST and 1.06V/m for phase 1. Bϕ < 0.62T for GlobusM,

so it is compared with phase 2, which has 0.3T.
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assistance. However, SMART will also have ECRH assistance for the break-down just in case

it is needed to ionize the pre-fill gas.

Nevertheless, the loop voltage calculated here is the loop voltage induced by only the Sol,

excluding the effect of the eddy currents, which will decrease the loop voltage according to

Lenz’s law. A more precise simulation should compute the loop voltage in a self-consistent

manner with the eddy currents.

Finally, the simulations carried out here, and in most of the bibliography regarding break-

down studies, are done ignoring the time dependence of all the variables such as the connection

length or the poloidal field, so they have to be treated as a first approximation to the problem

of the tokamak start-up (to deduce (3.7), the time dependence of the loss rate was neglected).

Also, the plasma current needs to be considered since shortly after the loop voltage is induced,

the plasma current will be high enough to create non-negligible field as compared to the struc-

ture’s field. For deeper studies of the start-up phase, specific codes have been developed to

simulate all the stages of the start-up phase such as DYON [21] or DINA, which consider the

time dependence of the loss rate and the role of the plasma current in the magnetic fields.
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(a) Connection length of SMART phase 2. (b) Connection length of

NSTX.

(c) Connection length of an older SMART phase 1 with

the coils outside (S1-014).

(d) Cross-section of

NSTX.

Figure 6.14. Comparison of the connection length plot with NSTX [28, 43] (simulated data). Bϕ = 0.3T for

NSTX and for phase 2.
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Summary and conclusions

The break-down phase of the future SMART reactor of the University of Seville has been

modelled numerically using the Fiesta toolbox. The fundamentals of tokamak physics and

tokamak start-up have been reviewed to understand the foundation of this work.

The work of this thesis summarizes months of working in the design of the SMART reactor

along with the SMART team of the PSFT group, composed of physicists and engineers students

and researchers, showing the most updated scenarios for the initial operational phase of SMART

and a future upgrade.

The coil currents have been optimized to achieve the same target equilibrium on both phases

and to ensure the break-down of the pre-fill gas, hydrogen, without any assistance method. For

pre-fill pressures about 10−4Torr, the gas will last between 2 and 4 ms to break-down. The

eddy currents have been included in the calculations, since they play an important role in the

break-down phase altering the poloidal magnetic field inside the vacuum vessel (VV). Poloidal

field values around 1.1 and 2.1 · 10−4T are obtained in the poloidal field null region.

The connection length has been computed by field line tracing and by using an empirical

formula, giving the first method about an order of magnitude greater values than the second

one. The electric potential gained by an electron following the field lines has also been calculated

to estimate where the gas will break-down and turns into a plasma. The gas will break-down

in the upper portion of the VV, near the inner VV wall.

This work presents the first approach to study the break-down phase of the tokamak start-

up. Further studies such as the use of specific codes to model the entire tokamak start-up

phase are required to ensure proper plasma initiation. Also, a deeper understanding of the

Fiesta toolbox is needed for self-consistent simulations. For more realistic simulations, the

power supply’s behaviour should be included in the simulations, as well as a more realistic VV.
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Appendix A

Calculation of the voltage induced by a

solenoid of finite width

The magnetic field ~B of a solenoid of inner radius Rin and outer radius Rout(< Rin), ignoring

border effects (i.e., assuming infinite length), ca be easily calculated using Ampère’s law, giving:

~BSol =
∧
Z



µ0I
N

l
R < Rin

µ0I
N

l

(
1− R−Rin

Rout −Rin

)
Rin < R < Rout

0 R > Rout

(A.1)

where N is its number of turns and l the length of the Sol, and I the intensity of each turn,

ISol
1.

The normal vector ~n on (3.14) is chosen to be
∧
Z, so the loop voltage is

Vloop = − d

dt

∫
S

BSoldS = −
∫
S

dBSol

dt
dS, (A.2)

introducing the derivative into the integral since the integration variables do not vary, the only

thing that vary is the Sol current. The derivate of the Sol current can be computed since the

Sol current is decreased linearly, so it satisfies

ISol(t) = mt+ n. (A.3)

At t = 0, ISol ≡ I0, and the ramp goes down until ISol(t1) ≡ I1 (I0 > I1), so the Sol current is

ISol(t) =
I1 − I0

t1
t+ I0. (A.4)

1Note the boundary conditions of the magnetic field are satisfied, the field is continuous since there is no

surface charge density at Rin or at Rout.
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APPENDIX A. CALCULATION OF THE VOLTAGE INDUCED BY A SOLENOID OF
FINITE WIDTH

To solve (3.15), the integral has to be divided into the three intervals that ~BSol has:∫
S

dBSol

dt
dS =

∫
0<R<Rin

dBSol

dt
dS +

∫
Rin<R<Rout

dBSol

dt
dS +

��
���

���
�:0∫

Rout<R

dBSol

dt
dS; (A.5)

Let’solve each term separately:

�

∫
0<R<Rin

dBSol

dt
dS =

∫
0<R<Rin

µ0
dI

dt

N

l
dS = µ0

dI

dt

N

l
πR2

in,

�

∫
Rin<R<Rout

dBSol

dt
dS =

∫
0<R<Rin

µ0
dI

dt

N

l

(
1− R−Rin

Rout −Rin

)
dS = µ0

dI

dt

N

l

[
∫ Rout

Rin

∫ 2π

0

RdRdϕ− 1

Rout −Rin

∫ Rout

Rin

∫ 2π

0

(R−Rin)RdRdϕ
]

= µ0
dI

dt

N

l

[

π(R2
out −R2

in)− 2π

Rout −Rin

(1

3
(R3

out −R3
in)− Rin

2
(R2

out −R2
in)
)]

.

The loop voltage induced is, taking into account (A.3),

Vloop = −µ0
N

l

I1 − I0

t

[
πR2

in + π(R2
out −R2

in)− 2π

Rout −Rin

(1

3
(R3

out −R3
in)− Rin

2
(R2

out −R2
in)
)]
.

(A.6)

With the normal vector choice, the loop voltage is positive.
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Appendix B

State space representation

The state space representation is a mathematical model of a physical system, whose scheme is

shown in figure B.1. The system can be represented by the following system of equations [44]

(section 3.3) 
dx

dt
= Ax + Bu,

y = Cx + Du,
(B.1)

The column vector x contains the state space variables (the minimun set of variables needed

to determine the system), and it is called the state vector. u is the input or control vector, which

contains the input variables, and y is the output vector, and contains the output variables. A

is the system matrix, and defines the first-order differential equations that determines the state

variables, B is the input matrix, which relates the input variables with the time derivatives of

the state variables. C is the output matrix, which defines the set of equations that determines

the output variables as a combination of the state space variables and the inputs, and D is the

feedforward matrix, which relates the input and output variables.

Figure B.1. Block diagram representation of the linear state-space equations.

70


	Contents
	Introduction
	Nuclear fusion
	Definition of a plasma

	Confinement of charged particles
	Tokamaks
	Motivation: SMART
	Objectives and outline of the thesis

	Fundamentals of tokamak physics
	Magnetohydrodynamic model of a plasma
	G-S equation
	Parameters
	Plasma shape and control in tokamaks
	Safety factor and normalized pressure


	Tokamak start-up
	Plasma break-down
	Avalanche or break-down time
	Voltage and electric field induced by the inductor solenoid


	Fiesta toolbox
	Grad-Shafranov solver, EFIT
	RZIp model

	Simulation procedure
	Field line tracer
	Potential


	Results
	Static and dynamic behaviour of SMART
	Target equilibrium
	Current waveforms
	Dynamic simulations

	Break-down results
	Magnetic fields
	Connection length
	Paschen curve and avalanche time

	Discussion

	Summary and conclusions
	Bibliography
	Calculation of the voltage induced by a solenoid of finite width
	State space representation

