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Abstract. A framework that combines feature selection with evolution-
ary artificial neural networks is presented. This paper copes with neural
networks that are applied in classification tasks. In machine learning
area, feature selection is one of the most common techniques for pre-
processing the data. A set of filters have been taken into consideration
to assess the proposal. The experimentation has been conducted on nine
data sets from the UCI repository that report test error rates about fif-
teen percent or above with reference classifiers such as C4.5 or 1-NN.
The new proposal significantly improves the baseline framework, both
approaches based on evolutionary product unit neural networks. Also
several classifiers have been tried in order to illustrate the performance
of the different methods considered.

1 Introduction

Many techniques addressing the classification problem [1] have been presented
by the machine learning community. Depending on the nature of the algorithm
we can distinguish, among others, neural networks, rule-based classifiers and
decision trees. Neural networks models play an important role in pattern recog-
nition [13]. The possible inputs to an Artificial Neural Network (ANN) could
be extremely large in the context of many practical problems. There may be
some redundancy among different inputs. A huge number of inputs to an ANN
increase its size and thus require more training data and longer training times in
order to achieve reasonable generalization ability. Pre-processing is often needed
to reduce the number of inputs to an ANN.

This paper aims at improving the accuracy and getting simpler neural mod-
els with a lower number of inputs and, if possible, containing a lower number
of hidden neurons. The kind of the neural networks that are in the scope of
the current work are feed-forward neural networks composed by product units
in the hidden layer. Basically, the training of the models is carried out by an
evolutionary programming algorithm [4]. More concretely we utilise a framework
following a master-slave approach, where the master distributes a configuration
to slave processes. A preliminary study of this base approach is described in [16].



Now, the novel ingredient is a preprocessing phase prior to the training of the
classification models.

The remainder of this paper is organised as follows: Sect.2 describes some
concepts about the training of Product Unit Neural Networks (PUNNSs), the
experimental design distribution and feature selection; Sect. 3 presents proposal;
Sect. 4 details the conducted experimentation; then Sect.5 shows and analyzes
the results obtained; finally, Sect. 6 states the concluding remarks.

2 Methodology

2.1 Product Unit Neural Networks and Training Procedure

Among the different types of neural network architectures, the most popular
are feed-forward ones. Within this kind, single hidden-layer networks are very
powerful due to their universal approximation property. Multiplicative ANNs
[17] contain nodes that multiply their inputs instead of adding them. This class
of networks comprises such types as sigma-pi networks and product unit neural
networks. The latter type was introduced by R. Durbin and D. Rumelhart [5]
and is the study object of the current paper. The training of the neural networks
is performed by means of an evolutionary programming algorithm to simultane-
ously learn the architecture and weights of the PUNN classification model. The
neural network topology is a three-layer architecture, with k (number of features
of the problem at hand) nodes in the input layer, m ones and a bias one in the
hidden layer and a number of nodes equals to the number of classes minus one
in the output layer. The m value is determined by the training algorithm. The
transfer function of each node in the hidden and output layers is the identity
function. We have considered a standard soft-max activation function, associated
with the g network model with J classes, given by:
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where f;(x) is the output of node j for pattern x and g;(x) is the probability
that this pattern belongs to class j. Given a training set D = (z;,yi) i =

1,..., N, a function of cross-entropy error is used to evaluate a network g with
the instances of a problem, which is reflected in the following expression:
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where yf is the target value for class j with pattern x; (yf = 1if x; € class j
and y/ = 0 otherwise), f;(x;) is the output value of the neural network for the
output neuron j with pattern x;. Observe that soft-max transformation produces
probabilities that sum to one and therefore the outputs can be interpreted as
the conditional probability of class membership. Thus, the number of nodes in
the output layer is equal to the number of classes minus one in the problem.
Since the EA objective is to minimize the chosen error function, a fitness function
is used in the form A(g) = (1 +1(g))~!.

The main issues about the evolutionary training algorithm are briefly
explained next. The search begins with a random initial population and, for
each iteration, the population is modified using a population-update algo-
rithm founded on parametric and structural mutations. The algorithm loops
are repeated until the maximum number of generations, in each case, is reached
or until the best individual or the population mean fitness does not improve
during gen — without — improving (20 in this paper) generations. The popu-
lation is subjected to the operations of replication and mutation. More details
and common parameter values of the algorithm are found in [16]. Crossover is
not used due to its potential disadvantages in evolving artificial networks. With
these properties the algorithm falls into the class of evolutionary programming.

2.2 Experimental Design Distribution

The starting framework of the current work is named Experimental Design Dis-
tribution (EDD) and follows a master-slave programming model. The master
process prepares a base configuration that is distributed to all the slave processes
that update the received configuration. Depending on the identity of the slave
the task to be performed is different in the sense that may act on a concrete
parameter doing a specific operation with a single value of the base configu-
ration. Next, each process of every type runs the training algorithm described
in the previous subsection using the proper (base/updated) configuration. The
advantage of this framework is that a single configuration file and the number of
slaves to be spawned is required. EDD is able to distribute two or three parame-
ters over a maximum of eight computing nodes, that is, each process is mapped
to one processor that is used in a exclusive way. We may have one master and
seven slave processes. This is the first approach published in [16]. There we came
to the empirical conclusion that is very useful to distribute three parameters.
From the eight configurations of that proposal, the configurations that do not
reduce the number of generations get better results. This fact motivates us to
only consider hereinafter the first four configurations of the approach deliver-
ing three parameters among the processing system. In other words, it is just
the same that asserting that the maximum number of neurons in the hidden
layer and the parameter value associated with the parametrical mutation are
distributed among four computation nodes.



2.3 Feature Selection

Feature selection may be defined as the problem of picking up a subset of features
that are necessary and sufficient to describe the target concept [9]. A taxonomy
of the feature selection algorithms may be based on the attribute evaluation
measure: depending on the type (filter or wrapper technique) or on the way
that features are evaluated (individual or subset evaluation). The filter model
relies on general characteristics of the data (such as consistency, correlation and
distance) to assess and select feature subsets without involving any data mining
algorithm. The wrapper model requires a predetermined mining algorithm and
uses its performance as evaluation criterion. This paper pays attention to feature
subset selection implemented as filters. In this context, it is a fact that two
kinds of features are generally perceived as being unnecessary: features that are
irrelevant to the target concept, and features that are redundant given other
features. BIRS (Best Incremental Ranked Subset [15]) method was proposed in
a previous work to obtain relevant features and to remove redundancy. These
features selected are considered as input variables to the network models that we
get in this paper via EDD framework. Since BIRS belongs to a hybrid category,
the selection process does not follow the typical paths and is divided into two
phases: in the first one, features are evaluated individually, providing a ranking
based on a criterion; in phase two, a feature subset evaluator is applied to a
certain number of features in the previous ranking according to a search strategy.
BIRS can use any evaluator in the two stages. In the current contribution, BIRS
uses as a subset evaluator CFS (Correlation-based Feature Selection [6]) and
CNS (CoNSistency based measure [10] -that are established on correlation and
consistency concepts- at the second phase, and SOAP (Selection Of Attributes
by Projection [14]) measure and the own subset evaluator at the first phase as a
ranking evaluator. Thus, in the experiments, spBI_.CNS indicates that SOAP is
utilised as an individual measure in the first part of BIRS, and CNS is employed
as a subset evaluator in the second part. In the same way, cfBI_.CFS denotes
that CFS evaluator will be used in both part of the BIRS algorithm.

3 Proposal Description

The current paper introduces Fxperimental Design Distribution with Feature
Selection (EDDFS) framework, a combination of some FS methods, one by one
independently, with EDD. First of all, some feature selectors are applied in an
independent way to the training set of all data sets in order to obtain a list of
attributes, for each of them, that it is considered for training and test phases.
In this way, two subsets (training and test subset) are generated, where only
most relevant features are included. It is important to remark that the feature
selection is performed only with training data; the test subset has exactly the
same features as the reduced training set. These subsets are taken as input
to the evolutionary algorithm. EDDFS methodology operates with four feature
selectors. As a result of the FS stage, a list of relevant features is obtained
with each of the FS methods for each data set. The EDDFS properties are the



Table 1. Configurations of the EDD (baseline) and EDDFS frameworks

Framework

EDD EDDFS
tCon figuration |1 2 3 4 1 2/ 3 4
fNeurons (neu) | neu |neu+ 1| neu | neu + 1| neu’ |neu’ + 1 |neuv’ neu +1
iGener. (gen) |gen |gen gen | gen gen’ | gen’ gen' | gen’
[e % 1 1 1.5 |15 1 1 1.5 |1.5

following: (a) PUNNSs have been utilised, with a number of neurons in the input
layer equal to the number of variables in the problem; a hidden layer with a
number of nodes that depends on the data set to be classified and the number
of selected features; and the number of nodes in the output layer equal to the
number of classes minus one because a soft-max type probabilistic approach
has been used; (b) four experiments have been performed for each problem,
where two different values have been used for -associated with the residual of
the updating expression of the output-layer weights- and the number of neurons
in the hidden layer; (c) it employs similar terminology to aforementioned EDD;
(d) four different configurations (1’, 2°, 3’ and 4’) are applied to subsets obtained
with each of the selectors, for each data set. The parameters of each configuration
are neu, gen and as. The first two ones take specific values depending on the
data set and the last one depends on the configuration number (1’, ...). Table1
shows the main aspects of both EDD and EDDFS configurations.

4 Experimentation

Table 2 summarizes the data sets employed. All of them have been downloaded
from the University of California at Irivine (UCI) repository [2]. Since we
are using neural networks, all nominal variables have been converted to binary
ones; due to this, sometimes the number of inputs is greater than the number of
features. Also, the missing values have been replaced in the case of nominal vari-
ables by the mode or, when concerning continuous variables, by the mean, taking
into account the full data set. These data sets have in common that present error
rates in test phase about 15 % or above with reference classifiers such as C4.5 or
1-NN without feature selection. The number of samples in the training and test
sets ensues from the splitting of the data sets following a experimental design via
a cross validation technique called hold — out that consists of dividing the data
into two sets: a training and a test set. In our case, the sizes of the training and
test sets are three and one quarters of the number of patterns in the problem,
respectively; these percentages are similar to those used in [11]. More exactly,
we have utilised a stratified holdout where the two sets are stratified [7] so that
the class distribution of the samples in each set is approximately the same as in
the original data set.



Table 2. Summary of the data sets and specific parameter values for EDD and EDDFS
frameworks

Data set Size | Train. | Test | Feat. | Inp. | Cl. | neu; gen | neu’; gen’
Breast 286 | 215 719 15| 2| 9;500 |7;500
Heart 270 | 202 68|13 13 | 2| 6;500 |4;25
Hepatitis 155 117 38|19 19 | 2| 3;100 |3;100
Parkinsons 195 | 146 49 |23 22 | 2| 6;500 |3;500
Pima 768 | 576 192] 8 8| 2| 3;120 |3;120
Promoter 106 80 26 | 58 114 | 2 |11;500 |5;300
Waveform 5000 | 3750 | 1250 |40 40 | 3 | 3;500 |3;500
Winequality-red | 1599 | 1196 403 1 11 11| 6 | 6;300 |4;300
Yeast 1484|1112 372| 8 8 |10 | 11;500 |11;500

Regards to EDD methodology, the concrete values of neu and gen parameters
depend on the data set and are shown in the eighth last columns of Table 2. The
decision about the number of neurons in the hidden-layer is a very difficult task
in the scope of neural networks; we have done a preliminary study splitting the
training set in two stratified sets with three and one quarters on the patterns
and exploring the range [2-12] for the number of hidden neurons. Concerning the
number of generations, we have defined three kinds of values: small (100-120),
medium (300) and large (500). In EDDFS, again there are two parameters:
neu and gen, whose values, neu’ and gen’, are defined for each data set.The
assignment of values in EDD is not trivial, but now in EDDFS this decision is
more difficult because there are four FS methods and the values are common
for all of them. Kwak and Choi [8] have also considered this idea. The problem
of finding the best architectures in neural networks that employ input feature
selection remains unsolved. In most of cases the number of neurons is defined
by us with a lower value than model EDD. There is no heuristics to guide this
process, so we have used values at a guess. Regards the number of generations,
the values are the same than in previous methodology except in the case of
Promoter and Heart data sets. In the former, the dimensionality reduction is
very important and the generation number has been change to medium value.
In the latter the algorithms converges soon and a very small value (25) is utilised.

Table 3 depicts the methods used in the experimentation regarding the data
preparation stage by means feature selection. There are four ones with and one
without feature selection that belong respectively to EDDFS (the current pro-
posal) and EDD frameworks. Last column defines an abbreviated name for each
of them that is employed in next sections.

As previously mentioned, four FS methods have been applied to each data
set. Table4 illustrates, for each data set, the number of inputs of the original
train set (see column labelled F0) and those that have been obtained with the
different feature selectors (see columns labelled F1-4) along with the reduction



Table 3. List of filters based on feature subset selection employed in the empirical
study

Feature selector name | Search method | Subset evaluator | Framework | Abbreviation
— None None EDD FO
spBI_CFS spBI CFS EDDFS | F1
cfBI_.CFS cfBI CFS EDDFS | F2
spBI_CNS spBI CNS EDDFS | F3
enBI_CNS cnBI CNS EDDFS | F4

percentage in the inputs of each selector compared to the original data set. Last
row shows the average of the number of inputs or reduction percentage of the
test bed for each experimented method on this paper. The reduction percentage
of the number of inputs is defined as:

Inputs(Fi
Reduction_of Inputs(%) = (1 - W) 100 i=1,...,4 (4)

where ¢ is the FS method index and Inputs(j) represents the number of
inputs of a given data set with method j. In all cases, FS methods success-
fully decreased the data dimensionality by selecting, in mean, much less than
the half of the original features. Precisely, the number of selected features fluctu-
ates between a quarter and a third of the original features. F2 method achieves a
reduction percentage, on average, of 63.34 % (from 27.78 to 6.56 features in aver-
age), which is the highest overall average value obtained. Individually, Promoter
data set has the highest reduction rate, above a 92 % in all cases.

Table 4. Number and reduction (%) of inputs with EDD (baseline) and EDDFS
frameworks

Data set Inputs Reduction (%)
FO |F1 (F2 |F3 (F4 |F1 F2 |F3 |F4

Breast 15 4 2 73.33 | 73.33 | 86.67 | 86.67
Heart 13 7 7 9 46.15 | 46.15 | 38.46 | 30.77
Hepatitis 19 10 |10 |11 |5 47.37|47.3742.11 | 73.68
Parkinsons 22 5 5 7 6 7727 |77.27 | 68.18 | 72.73
Pima 8 5 62.50 | 62.50 | 50.00 | 37.50
Promoter 114 |7 7 8 7 93.86 | 93.86 | 92.98 | 93.86
Waveform 40 14 |14 |15 |15 |65.00|65.00|62.5 |62.50
Winequality — red | 11 5 5 8 8 54.55 | 54.55 | 27.27 | 27.27
Yeast 8 5 4 7 7 37.50 | 50.00 | 12.50 | 12.50
Average 27.78 1 6.67 | 6.56 | 7.78 | 7.11 | 61.95 | 63.34 | 53.41 | 55.28




We follow the guidelines pointed out by J. Demsar [3] to perform nonparamet-
ric statistical tests. Iman-Davenport and Bonferroni-Dunn (Dunn, 1961) tests
have been performed. The critical difference (CD) for Bonferroni-Dunn test can
be computed from critical values, k and N. The considered significance levels
have been 0.05 for Iman-Davenport test, and 0.05 and 0.10 for the post-hoc
method.

5 Results

This section depicts the results obtained, measured in accuracy in the test set or
in the test subset depending on that feature selection has been considered or not.
First of all, we present the results obtained with EDD and EDDFS. After that,
a statistical analysis compares EDD versus EDDFS to determine whether there
are significant differences between applying or not feature selection with PUNN.
Next, a second experiment compares, for each feature selector, the best mean
values obtained with the current proposal to other classifiers using the same
reduced data sets. Hence, in regard to EDD, the results have been extracted
from next subsection for F1-4 methods.

5.1 Results Applying EDD and EDDFS

The results obtained by applying the EDD framework [16] are presented, along
with those obtained with EDDFS. In the case of EDD, there were 8 configura-
tions, denoted in the following way: 1, 2, ... 8. As already mentioned, this paper
only deals with the first four configurations. In EDDFS, the four existing con-
figurations are 17, ..., 4’. Table 5 shows the mean and standard deviation (SD) of
the test accuracies for each data set for a total of 30 runs. From the analysis of
the data, it can be concluded, from a purely descriptive point of view, that the
EDDFS framework obtains best results for all data sets. Always, the SD reduc-
tion with EDDFS is clear and it expresses more homogeneous results compared
to EDD.

Statistical Analysis. In this subsubsection we compare EDD and EDDFS
methodologies by means of nonparametric statistical tests. To determine whether
there are significant differences we apply an Iman-Davenport test. It compares
the average ranks of the algorithms, where a low rank value indicates a good
algorithm performance and a high value a bad algorithm performance. The aver-
age ranks of all methods, without (F0) and with FS (F1-4) are 4.78, 2.33, 2.56,
3.06 and 2.28, respectively. According to Iman-Davenport test results, since the
statistic Fir = 6.10 is higher than the critical value at (F'(4,32) = 2.67) the null-
hypothesis is rejected. Therefore, we apply a post-hoc Bonferroni-Dunn test that
compares a number of methods with a control method, by determining whether
the average ranks differ by at least the CD. In our case, we make a compari-
son of the methods that employ FS (F1-4) versus the control method (F0) that
does not use FS. CDs obtained by Bonferroni-Dunn test are 1.86 (at o = 0.05)



Table 5. Results obtained in the test-bed by means of EDD and EDDFS frameworks

Data set Filter | Mean + SD
Config.
1/1 2/2 3/3 4/4'
Breast FO 63.85 £ 3.81 | 63.00 4+ 3.24 | 64.27 £ 3.89 | 63.43 £ 3.80
F1 70.84 +£1.92|70.93 +1.59 | 70.18 £ 1.77 |70.00 + 1.92
F2 70.84 +1.92|70.93 4+ 1.59 | 70.18 £ 1.77 |70.00 + 1.92
F3 69.20 £ 0.48 | 69.10 + 0.35 | 69.06 £ 0.25 | 69.06 + 0.25
F4 69.20 £ 0.48 | 69.10 + 0.35| 69.06 £ 0.25 | 69.06 £ 0.25
Heart FO 75.93 +2.40 | 75.83 £ 3.27 | 76.23 + 2.48 | 76.03 + 3.50
F1 76.23 £1.86 | 76.47 £ 2.12 | 75.93 £2.33 | 77.50 £ 2.01
F2 76.23 +1.86 | 76.47 +2.12 | 75.93 £ 2.33 | 77.50 £ 2.01
F3 76.08 +2.50 | 75.98 +2.30 | 76.47 + 2.01 | 75.59 + 2.37
F4 77.40+£2.10 | 76.76 £2.09 | 77.89 +2.49 | 77.99 + 1.79
Hepatitis FO 84.47 +4.49 | 85.52 + 4.67 | 84.47 + 4.55 | 84.29 + 5.33
F1 88.77 £2.49 | 88.77 +2.93 | 88.95 £ 2.80 | 89.91 + 2.59
F2 88.77 £2.49 | 88.77 £ 2.93 | 88.95 £ 2.80 |89.91 £ 2.59
F3 89.04 +2.40 | 89.30 4+ 2.49 | 89.56 + 2.13 | 89.47 + 2.85
F4 86.67 £ 1.53 | 86.67 + 1.82|86.40 +£ 1.40 |86.32 + 1.45
Parkinsons | F0 79.66 + 5.01 | 78.16 = 4.77 | 78.98 + 4.05 |79.32 + 4.76
F1 79.66 + 2.37 | 79.32 £2.32|79.93 + 2.15 | 79.05 + 2.83
F2 79.66 +£2.37|79.32 £2.32|79.93 +£2.15 | 79.05 + 2.83
F3 80.27 £4.23 | 81.84 +4.20 | 80.61 £ 3.07 | 80.14 £ 3.90
F4 78.03 +1.16 | 80.07 +2.82 | 78.78 + 1.98 | 79.66 + 3.24
Pima FO 77.33 £2.36 | 78.61 £ 1.88|76.96 +1.67 | 77.69 = 1.79
F1 79.54 +0.90 | 79.49 +0.79 | 79.60 £+ 0.87 | 79.89 + 0.92
F2 79.54 +0.90 | 79.49 £ 0.79 | 79.60 £ 0.87 | 79.89 + 0.92
F3 7548 £1.42|75.194+£1.26 | 75.00 £ 1.17 |75.31 £ 1.51
F4 78.42+1.09 | 78.76 £1.13 | 78.73 +1.06 | 78.71 + 1.47
Promoter | FO 59.74 £9.30 | 58.21 + 9.67 | 60.51 £ 10.00 | 55.51 £ 10.03
F1 84.48 £ 3.97 | 84.62 + 3.78 | 83.20 £ 3.97 | 82.94 + 4.12
F2 84.48 +3.97 | 84.62 + 3.78 | 83.20 + 3.97 | 82.94 + 4.12
F3 67.43 £5.77|67.05 +5.11 | 66.15 £ 5.56 | 67.94 £ 5.74
F4 75.89 £4.39 | 75.51 £4.45|76.41 £ 3.74 | 76.53 £ 4.55
Waveform | FO 81.43 £2.10 | 82.78 = 0.64 | 82.05 £ 1.64 | 84.32+1.73
F1 84.97 £1.13 | 86.54 +0.48 | 84.92 £ 0.98 | 86.30 £ 0.95
F2 84.97 £ 1.13 | 86.54 +0.48 | 84.92 + 0.98 | 86.30 + 0.95
F3 85.39+1.41|85.78 +0.74|85.20 + 1.14 | 86.37 + 0.84
F4 84.87£0.93 | 86.75 + 0.57 | 85.55 £ 1.21 | 85.66 + 0.80

(Continued)



Table 5. (Continued)

Data set Filter | Mean + SD
Winequality — red | FO 61.03 +1.30 | 60.80 +1.25 | 61.16 4+ 1.20 | 60.98 £ 1.42
F1 61.67+1.1061.49+0.99 |61.21 +1.11|61.15 £+ 1.30
F2 61.67+1.1061.49+0.99 |61.21 +1.11|61.15+ 1.30
F3 61.70+1.06 | 61.54 +£1.10 | 61.75+ 1.01 | 61.66 £+ 1.05
F4 61.70 +1.06 | 61.54 £+ 1.10 | 61.75 + 1.01 | 61.66 £ 1.05
Yeast FoO 59.18 £ 1.17 | 59.62 £ 1.27 | 58.50 4+ 1.74 | 59.18 + 1.83
F1 59.82 £1.22|59.53 £ 1.36 | 58.95 £ 1.14 | 59.72 £+ 1.46
F2 54.86 +1.39 | 54.37 £ 1.16 | 54.16 4= 1.56 | 54.84 + 1.35
F3 60.10 + 1.41 | 60.36 & 1.16 | 59.93 + 1.85 | 60.20 £+ 1.46
F4 60.10+1.41 | 60.36 = 1.16 | 59.93 + 1.85 | 60.20 £+ 1.46
Average Fo 71.40 71.39 71.46 71.20
F1 76.22 76.35 75.87 76.27
F2 75.67 75.78 75.34 75.73
F3 73.85 74.02 73.75 73.97
F4 74.70 75.06 74.94 75.09

and 1.67 (at a = 0.10). The ranking difference with FO are 2.45 with F1, 2.22
with F2, 1.72 with F3 and 2.50 with F4. Thus, there are significant differences
between EDD applying each of the FS methods and without FS. The statistical
tests points out that PUNN performance improves significantly pre-processing
the data set with any of the FS methods employed in this paper. Summaris-
ing, EDDFS improves significantly EDD. However, F4 is better from the point
of view of ranking difference, sharing the statistical significance level with F1
and F2.

5.2 Results Obtained with State-of-the-art Classifiers

Now, a comparison is performed between EDDFS and other machine learning
algorithms. These methods are C4.5 [12], k-nearest neighbours (k-NN), -where k
is 1-, SVM and PART. Since, C4.5, 1-NN, SVM and PART are implemented in
Weka tool [18], we have used the same cross-validation, thus the same instances
in each of the partitions, that in the first experiment. Regarding the parameters,
the algorithms have been run with Weka default values. We have reported in
Table 6 the results without and with FS for each data set and algorithm. From
a purely descriptive analysis of the results, we can assert the following. Taking
into account the data set without any FS the SVM and EDD algorithm achieves
the best result in four out of nine data sets; C4.5 classifiers get once the high-
est accuracies. In average, SVM has the better accuracy (74.95 %), followed by
EDD (72.21 %) and the remaining algorithms range from 67.28% to 69.32 %.
Applying FS, it can be concluded that the EDD method (EDDFS, the current



Table 6. Results obtained in nine data sets for several classifiers with and without
feature subset selection

Data set Filter | C4.5 | 1-NN | SVM | PART | EDD
Breast FO 70.42 1 64.79 | 64.79 | 69.01 |64.27
F1 69.01 | 70.42 | 66.20 | 71.83 |70.93
F2 69.01 | 70.42 | 66.20 | 71.83 |70.93
F3 69.01 | 70.42 | 64.79 | 69.01 |69.20
F4 69.01 | 70.42 | 64.79 | 69.01 |69.20
Heart FO 70.59 | 73.53 | 76.47 | 73.53 | 76.23
F1 73.53 | 73.53 | 76.47 | 77.94 | 77.50
F2 73.53 | 73.53 | 76.47 | 77.94 | 77.50
F3 73.53 | 75.00 | 76.47 | 75.00 | 76.47
F4 72.06 | 75.00 | 76.47 | 75.00 | 77.99
Hepatitis FO 84.21  86.84 | 89.47 | 81.58 | 85.52
F1 84.21 | 89.47 | 86.84 | 84.21 |89.91
F2 84.21 1 89.47 | 86.84 | 84.21 |89.91
F3 89.47 1 92.11 | 89.47 | 86.84 | 89.56
F4 89.47 | 84.21 | 89.47 | 84.21 | 86.67
Parkinsons | FO 71.43 | 77.55 | 75.51 | 75.51 | 79.66
F1 75.5179.59 | 75.51 | 77.55 |79.93
F2 75.5179.59 | 75.51 | 77.55 |79.93
F3 75.51 | 81.63 | 75.51 | 75.51 |81.84
F4 79.59 | 79.59 | 75.51 | 81.63 | 80.07
Pima FO 74.48 | 73.96 | 78.13 | 74.48 | 78.61
F1 76.04 | 74.48 | 77.60 | 76.04 |79.89
F2 76.04 | 74.48 | 77.60 | 76.04 |79.89
F3 69.79 | 71.88 | 73.96 | 72.92 | 75.48
F4 74.48 | 67.19 | 78.65 | 74.48 | 78.76
Promoter FO 69.23 | 65.38 | 88.46 | 53.85 | 60.51
F1 73.08 | 57.69 | 84.62 | 80.77 | 84.62
F2 73.08 | 57.69 | 84.62 | 80.77 |84.62
F3 76.92 | 61.54 | 76.92 | 80.77 |67.94
F4 80.77 | 57.69 | 84.62 | 76.92 | 76.53
Waveform | FO 74.8 |68.96 | 86.24 | 76.88 |84.32
F1 74.40 | 75.36 | 86.88 | 77.04 | 86.54
F2 74.40 | 75.36 | 86.88 | 77.04 | 86.54
F3 74.88 | 74.88 | 87.12|79.92 |86.37
F4 74.40 | 76.64 | 87.12 | 79.68 | 86.75
(Continued)




Table 6. (Continued)

Data set Filter | C4.5 | 1-NN | SVM | PART | EDD
Winequality — red | FO 53.85149.88 | 59.55 | 51.36 |61.16
F1 50.87 | 48.88 | 59.80 | 52.11 |61.67
F2 50.87 | 48.88 | 59.80 | 52.11 |61.67
F3 50.12 149.63 | 58.81 | 52.85 |61.75
F4 50.12 | 49.63 | 58.81 | 52.85 | 61.75
Yeast Fo 54.84 | 48.39 | 55.91 | 56.72 | 59.62
F1 53.49 | 48.92 | 54.03 | 54.84 |59.82
F2 54.30 | 45.97 | 53.76 | 51.08 | 54.86
F3 54.03 | 49.46 | 54.84 | 54.30 |60.36
F4 54.03 | 49.46 | 54.84 | 54.30 |60.36
Average Fo 69.32 | 67.70 | 74.95 | 68.10 | 72.21
F1 70.02 | 68.71 | 74.22 | 72.48 | 76.76
F2 70.11 | 68.38 | 74.19 | 72.06 | 76.21
F3 70.36 | 69.62 | 73.10 | 71.90 |74.33
F4 71.55 | 67.76 | 74.48 | 72.01 |75.34

contribution) obtains the best result for five out of nine data sets; SVM yield
the highest performance for two data sets and finally 1-NN and PART report
the best accuracy once. Furthermore, the EDD reports the highest mean accu-
racy (76.76 %) followed by the SVM method (74.48 %). Both statements confirm
the best behaviour of the product units. EDDFS with F1 is competitive with
SVM. According to the results, the application of a preprocessing for SVM is
not needed because the behaviour is better than with the reduced data sets;
nevertheless, the performance of EDDFS overcomes SVM.

6 Conclusions

This paper presented a framework called EDDFS that combines FS with EDD
in the context of product unit neural networks trained with an evolutionary pro-
gramming approach. The models obtained with the proposal have the advantages
that are more accurate and more simple, bearing in mind the number of inputs
and/or the number of nodes in the hidden-layer. An empirical study on nine
UCT classification problems, that present test error rates about a 15 percent or
above with C4.5 or 1-NN classifiers, has been performed to compare EDDFS
and EDD methodologies. Nonparametric statistical tests have been applied and
the main conclusions achieved are as follows. The FS methods help to improve
significantly the accuracy of the models with product units in all cases, although
with three out of the four ones the performance is higher in terms of level sig-
nificance. In regard to the comparison with other classifiers, EDDFS is better
than SVM.
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