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A B S T R A C T

Many people who have to make informed decisions in today’s always-on culture use information extractors
to feed their systems with information that comes from human-friendly documents. Unfortunately, many
proposals that validate information extractors have deficiencies that make it difficult to perform homogeneous
comparisons, confirm or refute performance hypotheses, or draw unbiased conclusions. Consequently, it is
very difficult to select the best-performing proposal on a sound basis. The state-of-the-art validation method
overcomes many deficiencies in the previous proposals, but still overlooks the following issues: completeness
of the validation datasets, that is, whether they provide a complete set of annotations or not; structure
of the information, that is, whether they check the structure of the record instances extracted or just the
attribute instances; and, finally, how extractions and annotations are matched. The decisions made regarding
the previous issues have an impact on the effectiveness results. In this article, we have exhaustively analysed
the literature and we have also highlighted the main weaknesses to tackle. We present a guideline and a method
to compute the effectiveness, which complements and enhances the state-of-the-art validation method.
1. Introduction

Today’s always-on culture is pushing forward a new generation
of systems that help people make informed decisions building on
the information that they extract from human-friendly documents on
the Web. In the literature, there are many proposals to implement
information extractors (Baumgartner et al., 2018; Chang et al., 2006;
Ferrara et al., 2014; Sleiman & Corchuelo, 2013; Turmo et al., 2006).
Many of them require the user to provide a learning dataset with some
sample documents from which extraction rules are learnt; depending on
whether the learning dataset is required to provide annotations or not,
the learning method is said to be supervised or unsupervised, respec-
tively. There are also heuristic-based proposals that use built-in rules
that have proven to work well with many different documents. The
information extracted by a supervised proposal has user-defined labels
with a meaning; contrarily, the information extracted by unsupervised
or heuristic-based proposals have computer-generated labels that must
be mapped onto user-defined labels later.

Jiménez et al. (2016) found that the methods used to validate infor-
mation extractors are often poorly documented and have some common
deficiencies that may have a significant impact on the experimental
results. This is particularly important insofar it hampers confirming
or refuting the results, makes the comparisons with other proposals
heterogeneous, and may easily bias the conclusions. They devised
ARIEX, which is the state-of-the-art method to validate information
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extraction proposals. Unfortunately, we have found out that there are
three important issues that it does not take into account, namely: (a)
Completeness of the validation datasets, that is, to what extent the
validation dataset has been annotated. They are commonly fully an-
notated in the context of supervised proposals, but partially annotated
in the context of unsupervised and heuristic-based proposals. (b) The
structure of the information and how the validation process took it
into account. The information is commonly structured as collections of
(possibly nested) attributes or record instances. And (c) how extractions
and annotations are matched. The matching strategies are commonly
classified as exact, contains, or overlapping matchings. The decisions
made regarding the previous issues have an impact on the way that
confusion matrices are computed, which, in turn, has an impact on the
effectiveness measures used to make comparisons and rankings.

In this article, we advocate that researchers who use ARIEX to
validate their proposals must also report on the completeness of their
validation datasets, on how they take the structure of the information
into account, and how they compute matches amongst the annotations
and the extractions; we also describe a method to compute confusion
matrices that takes the previous decisions into account. This consti-
tutes a novel contribution since it complements the state-of-the-art
validation method with additional guidelines regarding issues that were
overlooked previously.

The rest of the article is organised as follows: in Section 2, we report
on the most closely-related proposals and the extent to which they have
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overlooked the three issues that were mentioned previously; in Sec-
tion 3, we present some preliminary concepts that are used throughout
the article; in Section 4, we describe the issues and propose a guideline
to extend ARIEX; in Section 5, we present our method to compute
the confusion matrix and the effectiveness measures according to the
guideline; in Section 6, we report on the results of our experimentation;
finally, we present our conclusions in Section 7.

2. Related work

Validating an information extractor amounts to confronting it with
a series of documents and checking the extent to which it can extract
information from them. The results allow to compare an extractor to
its competitors and to rank them according to different effectiveness
measures.

The first records of formal methods to validate information extrac-
tors date back to the end of the last century (Chinchor et al., 1993;
Hirschman, 1998; Lehnert & Sundheim, 1991). They were intended to
semi-automatically compare proposals to extract information from free-
text documents in the context of the well-known MUC conferences.
Later, Lavelli et al. (2004), Ireson et al. (2005), and Lavelli et al.
(2008) pointed out a few common mistakes in the previous methods
and improved on them. Since then, there has been an increasing inter-
est in extracting data from semi-structured documents (Baumgartner
et al., 2018; Chang et al., 2006; Ferrara et al., 2014; Roldán et al.,
2020; Sleiman & Corchuelo, 2013; Turmo et al., 2006) in which the
information is written in forms, listings, or tables. We have reviewed
most of the proposals and our conclusion is that they do not typically
unveil some key details regarding the validation process. Most of the
articles simply present the results of a new approach and there is
rarely a detailed analysis to ensure that the same methodology is used
across different experiments. Furthermore, the validation process is
typically poorly documented and there exists much heterogeneity in
the experimental settings; in a few cases, no experimental results are
reported at all (Baumgartner et al., 2007; Raposo et al., 2002; Sahuguet
& Azavant, 2001).

Jiménez et al. (2016) devised ARIEX, which is the state-of-the-art
method to validate information extractors. It allows to check them
on a collection of well-known datasets and allows to compare the
effectiveness results as homogeneously as possible and to rank them as
automatically as possible. However, our recent experience with devis-
ing new information extractors (Jiménez & Corchuelo, 2016a, 2016b;
Jiménez et al., 2021, 2020; Roldán et al., 2017, 2020, 2021) reveals
that it can be further improved to take some additional issues into
account, namely: (a) whether the validation datasets are completely or
partially annotated; (b) whether they contain record values or not and
how their structure is taken into account to compute the effectiveness
measures; and (c) how the matchings amongst the annotations and the
extractions are computed.

Regarding the completeness of the validation datasets, we can make
a distinction between proposals that seem to have been validated
manually (Park & Barbosa, 2007) or automatically (Crescenzi et al.,
2001; Freitag, 2000; Hsu & Dung, 1998; Jiménez & Corchuelo, 2016a;
Kayed & Chang, 2010; Kushmerick et al., 1997; Shen & Karger, 2007;
de Sitter & Daelemans, 2003; Sleiman & Corchuelo, 2014; Zhang et al.,
2015). In the first case, a user analyses the extractions made by the
technique, decides on whether they are correct or not, and then com-
putes some effectiveness measures; clearly this method is subjective
and may introduce biases very easily. In the second case, a validation
dataset is provided and the extractions are somehow matched with the
annotations automatically so that the effectiveness measures can also
be computed automatically; clearly an automatic method is preferable
and less biased. Unfortunately, some authors did not provide any clues
on how they created their validation datasets (Álvarez et al., 2010;
Hogue & Karger, 2005; Irmak & Suel, 2006; Zhai & Liu, 2005). One
2

might assume that they were annotated completely to compute the
effectiveness measures, but the authors emphasised that they spent very
little time on annotating and supervising their proposals; thus, it is not
clear how the annotations were made and whether they were partial or
complete. Irmak and Suel (2006) just mentioned that their technique
worked well with a single randomly chosen document for training and
ten documents for validation. Hogue and Karger (2005) did not provide
any effectiveness measures; they only evaluated if their proposal was
able to learn a good information extractor for one site. Although the
datasets were annotated, how they performed the validation was not
documented. It is unclear if the evaluation by Álvarez et al. (2010)
was manual or not since their technique is unsupervised and they
reported on precision and recall on a set of 200 sites that were not doc-
mented; neither was it documented how the effectiveness measures
ere computed automatically. Zhai and Liu (2005) used 49 sites from

which 72 documents were collected. No clue was provided regarding
whether they learnt and validated their information extractors with
different documents from the same site or how the validation dataset
was created. The authors reported on correctness, which was surely
computed automatically, but it is not clear if the validation dataset was
complete or not since they emphasised that their goal was to reduce the
annotation effort. Unfortunately, none of the proposals surveyed docu-
mented whether spurious information was extracted or not. That is, it
is likely that the extractions did not match some annotations perfectly.
In such a case, the information that does not match the annotations
may be spurious or count as false positives. If the validation dataset
was partially annotated, we cannot make sure if that information is
actually a false positive or a missed true positive, so that counting it as
spurious information seems to make sense.

Regarding the structure of the information, none of the proposals
provide any details regarding how they validated the structure of the
records. Some proposals are supposed to learn a template for the
documents in a site (Crescenzi et al., 2001; Kayed & Chang, 2010),
others learn a template for records and attributes (Sleiman & Corchuelo,
2014), other can identify data regions only (Sleiman & Corchuelo,
2013), others can extract records only (Park & Barbosa, 2007; Shen &
Karger, 2007), others extract relations between attributes only (Zhang
et al., 2015), others can extract only attributes (Freitag, 2000; de Sit-
ter & Daelemans, 2003), and many of them can extract records and
attributes without an explicit schema (Álvarez et al., 2010; Hogue
& Karger, 2005; Hsu & Dung, 1998; Irmak & Suel, 2006; Jiménez
& Corchuelo, 2016a; Kushmerick et al., 1997; Zhai & Liu, 2005).
Unfortunately, it is difficult to guess how the effectiveness measures
were computed according to the type of information extracted, which is
especially tricky when a proposal first extracts records and then extracts
the attributes within them, but also when the proposal is able to deal
with nested records and attributes. For instance, Trinity (Sleiman &
Corchuelo, 2014) is supposed to extract records and attributes, both
within other records or in isolation. However, the authors did not
mention how they computed the effectiveness measures regarding the
records. They just explained how to compute them at the attribute level.
Summing up, declaring how the effectiveness measures are computed
regarding the structure of the validation datasets should be a must.

Regarding the matching amongst annotations and extractions, Fre-
itag (2000) stated that it is commonly assumed that the matchings
must be exact. However, Lavelli et al. (2008) recommended that this
should be made explicit because it is not always crystal clear. We
agree with them since making assumptions might lead to biased and
misleading conclusions. Only two of the proposals surveyed (Freitag,
2000; de Sitter & Daelemans, 2003) made it explicit the kind of
matching performed; they both identified the problem and proved
that the way the matching is interpreted has a significant impact on
precision and recall. Intuitively, correct matchings should be exact, but
this interpretation might be very stringent, so the criterion to be used
should be established according to the goal of the system. If precision
is very important, then exact matching should be used; if having high

recall is more important, chiefly if some post-processing can be applied
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to the extracted information, then contains matching should be used.
Unfortunately, it is not clear to us when overlapping matching may be
a sensible choice.

Summing up, the validations performed in the literature are very
diverse and many details have commonly not been unveiled, which
makes it difficult to determine which proposal actually performs better
than the others. ARIEX was developed on the hope to help researchers
validate their proposals (Jiménez et al., 2016), but an in-depth analysis
of the literature has revealed three deficiencies that motivated us to
work on this article, namely: how complete the annotations in the
validation datasets are, how the structure of the extracted information
is taken into account, and how the matchings amongst the annotations
and the extractions are computed.

3. Preliminaries

In this section, we present some preliminaries that basically intro-
duce the vocabulary used throughout the article.

Definition 1 (Notation). A mapping from set 𝑋 onto set 𝑌 is a function
that establishes correspondences between the elements of both sets. 𝑋
is referred to as the domain of the mapping and 𝑌 as its range. We
denote the set of mappings from 𝑋 onto 𝑌 as 𝑋 ↦ 𝑌 ; given a mapping

∈ 𝑋 ↦ 𝑌 we denote its domain as dom𝑚 and its range as ran𝑚;
e denote the extension of mapping 𝑚 as {𝑥1 ↦ 𝑦1, 𝑥2 ↦ 𝑦2,… , 𝑥𝑛 ↦

𝑛}; the components of a mapping are referred to as correspondences.
ithout any loss of generality, we assume that mappings are implicitly

orted according to an arbitrary total pre-order on their domains,
.g., the standard lexicographic total pre-order.

efinition 2 (Values). A value is a string of tokens. We denote the
et of all values as 𝑉 ; given a value 𝑣 ∈ 𝑉 , we denote its length in

tokens as |𝑣|. In our proposal, we use the following kinds of tokens:
words (sequences of letters, digits, and dashes), blanks (sequences of
spaces, tabulators, line feeds, carriage returns, and form feeds), and
other symbols (punctuation symbols, currency symbols, math symbols,
and the like). Given a mapping 𝑚 ∈ 𝑋 ↦ 𝑌 , we denote its value as
�̃� and define it as its textual serialisation; given a correspondence 𝑐 in

apping 𝑚, we also denote its value as 𝑐.

efinition 3 (Datasets). An attribute is a label that we use to group
alues that have the same semantics. We denote the set of all attributes
s 𝐴. An instance of a record is a mapping from 𝐴 ↦ 𝑉 , where each

correspondence is an instance of an attribute. A dataset is a collection
of record instances that must be extracted from a collection of docu-
ments (positive dataset) or must not be extracted from them (negative
dataset). A validation dataset is a tuple of the form (𝑃 ,𝑁), where 𝑃
denotes a positive dataset and 𝑁 a negative dataset. A dataset that
provides the record instances that have been actually extracted from a
document using an information extractor is referred to as an extracted
dataset. The record instances in a validation dataset are referred to as
annotations; the record instances in an extracted dataset are referred
to as extractions. For the sake of readability, we assume that 𝐴 can
be decomposed into subsets 𝐴𝑉 , which provides the attributes used
in validation datasets, and 𝐴𝐸 , which provides the attributes used in
extracted datasets. Given an attribute 𝑎 ∈ 𝐴 and a dataset 𝐷, we denote
the set of instances of 𝑎 in 𝐷 as instances(𝑎,𝐷).

Note 1. Our definition requires datasets to be composed of flat
record instances, which does not imply any loss of generality. Given
an arbitrary real-world dataset with attribute instances and possibly
nested record instances, one can transform it into our model as follows:
every record-based dataset can be represented as a tree in which the
nodes are the attribute or the record instances and the edges represent
the containment relationships amongst them; to transform it into our
model, it suffices to represent that tree as a flat collection of paths
3

from the top level records to their attributes; top-level attributes can
be transformed into records by grouping them into a fictitious global
record.

Definition 4 (Similarity). We have devised the following similarity
measure: sim(𝑣,𝑤) = 1 − (𝑖 + 𝑑)∕(𝑖 + 𝑑 + 𝑝), where 𝑣 and 𝑤 denote
two values, (𝑖, 𝑑, 𝑝) = dif f(𝑣,𝑤), and dif f denotes the classical diff
algorithm (Hunt & McIlroy, 1976). When the diff algorithm is applied to
values 𝑣 and 𝑤, it finds the tokens that must be, respectively, inserted,
deleted, or preserved in value 𝑣 to transform it into value 𝑤; we do not
actually require to know the exact tokens to be inserted, deleted, or
preserved, but the number of such tokens, which we denote as (𝑖, 𝑑, 𝑝).

Note 2. The literature provides a variety of similarity measures (Yu
et al., 2016), each of which was devised to address particular problems.
We resorted to the previous definition of similarity because it interprets
the concept as the percentage of changes that must be applied to a
value in order to transform it into another value. This is a problem-
agnostic formulation that proved to work very well to determine the
mappings amongst the annotations and the extractions (which are
generally similar, but not identical). Exploring other similarity mea-
sures and determining which one maximises the difference between
the effectiveness measures attained with previous validations and our
proposal would have biased it.

4. Guideline

In this section, we present a guideline that complements the ARIEX
method (Jiménez et al., 2016). It describes our three new recommen-
dations, which are aligned with the three issues that we have identified
regarding validating information extractors.

4.1. Completeness of validation datasets

We recommend that researchers must report on the degree of com-
pleteness of their validation datasets.

A validation dataset is complete if it provides an annotation for
every piece of information to be extracted. In the context of web-
scale, unsupervised, or heuristic-based information extractors, produc-
ing complete validation datasets is a very difficult and error-prone
task, mainly due to the human effort required to manually annotate
web documents and to polish the annotations. As a conclusion, we
think that typical web-scale validation datasets are partially annotated,
which implies that confusion matrices can only be computed partially;
this, in turn, has an impact on the resulting effectiveness measures.
For instance, a piece of information that is extracted but does not
correspond to any annotations in the validation dataset cannot be
computed as a false positive because it is not possible to discern if it
must not have been extracted or if it was simply not annotated.

4.2. Structure of information

We recommend that researchers must make it explicit how they
validated the structure of the information extracted.

We have found that researchers focus on computing effectiveness
measures on a per-attribute basis and then average the results to com-
pute per-record measures, if any. Simply put, complex record structures
are neglected since the information is basically dealt with as if it was
organised into tuples with simple attributes. As a conclusion, the ability
of an information extractor to extract information that is properly
structured is not taken into account when computing the effectiveness

measures.
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4.3. Matching extractions and annotations

We recommend that researchers must make it explicit how they
computed the matches amongst annotations and extractions.

The standard in the literature is that matches are computed as
true positives, unmatched extractions are computed as false positives,
unmatched annotations are computed as false negatives, and true neg-
atives are computed from the annotations that explicitly refer to pieces
of information not to be extracted. The problem is regarding the def-
inition of matching (Lavelli et al., 2008), namely: (a) exact matching,
which requires the annotated and the extracted values to be exactly
the same to be considered a matching; (b) contains matching, which
requires the annotated value to contain the extracted value; and (c)
overlapping, which requires the annotated and the extracted values
to have some tokens in common. We recommend that partial matches
must contribute to the counter of true positives (the part of an extrac-
tion that coincides with its corresponding annotation), the counter of
false positives (the part of the extraction that is not in the annotation),
and the counter of false negatives (the part of the annotation that is not
in the extraction).

5. Computing effectiveness

In this section, we present our method to compute a confusion
matrix, which is the basis to compute a variety of standard effectiveness
measures (Ferri et al., 2009; Sokolova & Lapalme, 2009), and the
degree of spuriousness, which helps understand them better.

It works on a tuple of the form (𝑃 ,𝑁,𝐸, 𝑝), where (𝑃 ,𝑁) is a
validation dataset, 𝐸 is an extracted dataset, and 𝑝 indicates whether
the validation dataset is complete or not. It performs the following
steps: it first finds a mapping from the attributes in the validation
dataset onto the attributes in the extracted dataset; it then re-normalises
the record instances in the extracted dataset according to the previous
mapping; next, it finds a mapping amongst the record instances in
the validation dataset and the extracted dataset; finally, it computes
a confusion matrix and a spuriousness degree.

The following subsections describe the details behind each step.
Two of them rely on a general algorithm to compute mappings from
a similarity matrix, which is presented at the end of the section.

5.1. Find an attribute mapping

The goal is to find a mapping that makes it explicit the correspon-
dences between the attributes used in the validation dataset and the
attributes used in an extracted dataset. This is trivial in cases in which
the information extractor was learnt so that it labels the values that it
extracts with the labels in the validation dataset, which is typically the
case of information extractors that are learnt supervisedly. It is more
involved in cases in which the information extractor uses computer-
generated labels that have nothing to do with the labels used in the
validation dataset, which is typically the case of information extractors
that are learnt unsupervisedly or are based on heuristics.

Basically, we need to compute a mapping that assigns a similarity
score in interval [0.00, 1.00] to every pair of attributes (𝑎, 𝑒), where 𝑎 is
an attribute in the validation dataset (𝑃 ,𝑁), i.e., 𝑎 ∈ 𝐴𝑉 , and 𝑒 is an
attribute in the extracted dataset, i.e., 𝑒 ∈ 𝐴𝐸 ; generally speaking, the
higher the score, the more similar two attributes are and vice versa.
To compute this attribute mapping, we first need to find the maximum
similarity between a value 𝑖 of an attribute 𝑎 from the validation dataset
and any of the values of attribute 𝑒 from the extraction dataset as
follows:

𝑑(𝑖, 𝑒) = max
𝑗∈instances(𝑒,𝐸)

sim(ı̃, ȷ̃).

We then compute the similarity between attributes 𝑎 and 𝑒 as
follows:
4

n

𝑚(𝑎, 𝑒) = avg
𝑖∈instances(𝑎,𝑃∪𝑁)

𝑑(𝑖, 𝑒).

Note that mapping 𝑚 can be interpreted as a similarity matrix
because it provides a similarity score for every pair of attributes in the
Cartesian product of 𝐴𝑉 and 𝐴𝐸 . The cells of this matrix represent the
average maximum similarity between the values of 𝑎 and the values of
𝑒. Computing an attribute mapping from 𝑚 is relatively straightforward,
ince we only need to select the pairs in 𝐴𝑉 × 𝐴𝐸 that maximise 𝑚.
o prevent producing a mapping for each attribute in cases in which
he maximum similarity is very small, we introduce a user-defined
hreshold 𝜃 below which no attribute mappings are accepted. The
etails of the ancillary procedure to compute the mapping are provided
t the end of the section.

.2. Re-normalise the extracted records

This step consists in changing the names of the attributes in 𝐸
according to the mapping that we have computed in the previous
step. This also requires to re-sort the attribute instances in the records
according to the total pre-order used (by default, the lexicographic
one). This helps align the annotated records and the extracted records,
which facilitates mapping them in the next step. Furthermore, if the
validation dataset is not complete, then we must remove every attribute
in 𝐸 for which a mapping has not been found in the previous step.
The values of the unmapped attributes from 𝐸 contribute to increasing
the spuriousness of the results if the validation dataset is partially
annotated; otherwise, they are counted as false positives. A similar
argument follows for the unmapped attributes in 𝑃 ∪𝑁 : the unmapped
attributes from 𝑃 contribute to the count of false negatives and the
unmapped attributes from 𝑁 contribute to the count of true negatives.

5.3. Find a record mapping

We rely on the same generic mapping algorithm as before to com-
pute the correspondences between the records in a validation dataset
and an extracted dataset. In this case, we compute a similarity matrix
𝑚 as follows:

𝑚(𝑠, 𝑡) = sim(�̃�, 𝑡),

or any �̃� ∈ (𝑃 ∪ 𝑁) and 𝑡 ∈ 𝐸. For this definition to work well, it is
necessary that the record instances in 𝑃 ∪ 𝑁 and 𝐸 be processed by

eans of the previous steps so that the records are well aligned before
heir similarity is computed.

Once the similarity matrix 𝑚 is computed, we can use the same
eneric method as before to compute the record mapping. The details
re provided at the end of the section.

.4. Compute the confusion matrix

Given a validation dataset (𝑃 ,𝑁), an extracted dataset 𝐸, and a
apping 𝑟 amongst their records, we first set every component of the

onfusion matrix to zero and then iterate as follows: (a) for every record
alue 𝑠 in the positive dataset that has been mapped onto a record
n the extracted dataset, we compute 𝑡 = 𝑟(𝑠), 𝑘 = 𝑖 + 𝑑 + 𝑝, and
𝑖, 𝑑, 𝑝) = dif f(�̃�, 𝑡); we then increase the count of true positives by 𝑝∕𝑘,
.e., the percentage of tokens that have been correctly extracted, the
ount of false negatives by 𝑑∕𝑘, i.e., the percentage of tokens that are
n the annotation but have not been extracted, and the count of false
ositives by 𝑖∕𝑘, i.e., the percentage of tokens that have been extracted
ut do not correspond to any tokens in the annotation. (b) For every
ecord value 𝑠 in the positive dataset that has not been mapped onto a
ecord in the extracted dataset, we increase the count of false negatives
y one. (c) For every record value in the negative dataset that has
een mapped onto a record value in the extracted dataset, we increase
he count of false positives by one. (d) For every record value in the

egative dataset that has not been mapped onto any record values in
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Table 1
Description of the datasets.

Category Dataset Schema Docs Size (KiB) Positives

Jobs

Insight into Diversity Job{company, location, category} 30 80 30.00
4 Jobs Job{company, location, category} 30 80 30.00
6 Figure Jobs Job{company, location, category} 30 73 30.00
Career Builder Job{company, location, category} 30 54 30.00
Job of Mine Job{company, location, category} 30 24 30.00

Cars

Auto Trader Car{color, doors, engine, mileage, model, price, transmission, type} 30 184 30.00
Car Max Car{color, mileage, model, price, transmission, year, type} 30 67 30.00
Car Zone Car{color, doors, engine, location, make, model, price, transmission, year, type} 30 71 30.00
Classic Cars for Sale Car{color, location, make, model, price, transmission, year, type} 30 76 28.90
Internet Autoguide Car{color, doors, engine, location, mileage, price, transmission, type} 30 154 30.00

Books

Abe Books Book{title, author, price, isbn} 30 38 35.60
Awesome Books Book{title, author, price, isbn, year} 30 20 37.17
Better World Books Book{title, author, price} 30 125 34.50
Many Books Book{title, author, year} 30 27 30.50
Waterstones Book{title, author, price} 30 80 31.50
w

the extracted dataset, we increase the count of true negatives by one.
(e) If the validation dataset is complete, we also increase the number
of false positives by the count of record values in the extracted dataset
that do not correspond to any record values in the positive dataset.
From this confusion matrix, one can compute a variety of effectiveness
measures (Yu et al., 2016).

5.5. Compute the spuriousness degree

If the annotation of the validation dataset is not complete, we then
compute the spuriousness degree as the percentage of record values in
the extracted dataset for which there is not a correspondence in the
positive dataset.

5.6. Generic method to compute mappings

Given a matrix 𝑚 that provides the similarity between any two
bjects in the Cartesian product of two arbitrary sets, the method works
s follows: it first finds the pair of objects (𝑝, 𝑞) whose similarity is

maximum; then, as long as the matrix is not empty and the maximum
similarity is not smaller than a user-defined threshold 𝜃, the algorithm
maps 𝑝 onto 𝑞, removes that pair from matrix 𝑚, and continues iterat-
ing. Threshold 𝜃 must be set by the user prior to executing our method.
It allows to fine-tune how demanding the mapping is: the greater this
threshold, the less mappings are computed and vice versa.

Note that our similarity measure returns values in range [0.00, 1.00],
which facilitates interpreting 𝜃. Simply put, 𝜃 is the one-complement
of the percentage of changes that must be carried out in a value to
transform it into another value. For instance, setting 𝜃 = 0.80 means
that the maximum allowable percentage of change to assume that an
object can be mapped onto another object is 20%.

6. Experimentation

In this section, we report on the results of our experimental analysis.
First, we present the details of our experimental setting and then
present and analyse two experiments that help us prove that our guide-
line to complement ARIEX may lead to results that are significantly
different, which proves that the three issues that we have identified
are really important.

6.1. Experimental setting

We used a collection of 15 datasets on jobs, cars, and books that
were randomly selected from the ARIEX repository (Jiménez et al.,
2016). Table 1 shows a description, namely: the columns represent
the domains, the sites, the schema of the records and attributes that
were annotated, the number of documents collected, their size in KiB,
5
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and the average number of positive values annotated. Note that each
document provides a form with information about one item, that is,
one record must be extracted from each of them. When the average
number of positive examples is greater than the number of documents,
it means that there are several values for a given attribute. Contrarily,
if this number is smaller, it means that there are some missing values
for some of the attributes. These datasets were enough to prove that
the decisions made regarding the three issues that we have identified
have a significant impact on the effectiveness results.

We experimented with four web information extractors, namely: (a)
Wien (Kushmerick et al., 1997), which is a classical supervised proposal
that learns the delimiters around the information to be extracted; (b)
Tango (Jiménez & Corchuelo, 2016a), which is a recent supervised
proposal that learns first-order rules whose predicates are based on vi-
sual, structural, user-defined, and content-based features; (c) RoadRun-
ner (Crescenzi et al., 2001), which is a classical unsupervised proposal
that attempts to infer the template of several documents by comparing
their shared and non-shared tokens; and (d) HotWeb (Roldán et al.,
2017),1 which is a heuristic-based proposal that attempts to identify
common visual patterns to present information.

We carried out two experiments. The first one confronted Wien
and Tango; the goal was to confirm that the way the matchings are
computed may have a significant impact on the results. The second one
confronted RoadRunner and HotWeb; in this case, the emphasis was on
confirming that the degree of spuriousness matters significantly when
comparing unsupervised or heuristic-based information extractors. In
both cases, we computed the standard effectiveness measures, namely:
precision (ratio of true positives to true positives plus false positives),
recall (ratio of true positives to true positives plus false negatives), and
the 𝐹1 score (the two-harmonic average of precision and recall).

We performed the statistical analyses using the Wilcoxon signed-
rank test, which is a non-parametric test to compare two populations.
In our case the populations correspond to the results when applying the
original validation procedure and the results attained when applying
the new validation procedure, regarding each of the effectiveness mea-
sures. If the resulting 𝑝-value is smaller than the standard significance
level (𝛼 = 0.05), the differences are significant, which demonstrates
that the impact of the three issues under study may actually bias the
conclusions.

6.2. Experiment #1

First, we experimented with Wien and Tango, which are supervised.
The results of this experiment are shown in Table 2. The first two

1 Roldán et al. (2017) did not use a specific name to refer to their proposal;
e have dubbed it HotWeb after the name of the conference where it was
resented to facilitate referencing it.
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Table 2
Results of Experiment #1.

Category/Dataset Wien Original validation Wien New validation Tango Original validation Tango New validation

P R 𝐹1 P R 𝐹1 P R 𝐹1 P R 𝐹1

Jobs
Insight into Diversity 1.00 0.33 0.50 1.00 0.39 0.56 0.97 0.92 0.94 0.77 0.92 0.84
4 Jobs 1.00 1.00 1.00 0.95 0.99 0.97 0.97 0.78 0.87 0.93 0.78 0.85
6 Figure Jobs 1.00 1.00 1.00 0.97 0.99 0.98 0.82 0.93 0.87 0.82 0.93 0.87
Career Builder 1.00 0.33 0.50 0.02 0.05 0.08 0.93 0.89 0.91 0.79 0.84 0.81
Job of Mine 1.00 0.67 0.80 1.00 0.63 0.77 0.99 0.96 0.97 0.96 1.00 0.98

Cars

Auto Trader 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.92 0.96 0.94
Car Max 1.00 0.86 0.92 0.94 0.94 0.94 1.00 1.00 1.00 0.99 0.99 0.99
Car Zone 1.00 0.87 0.93 0.82 0.69 0.75 0.95 0.97 0.96 0.94 0.97 0.95
Classic Cars for Sale - - - - - - 0.91 0.97 0.94 0.91 0.97 0.94
Internet Autoguide - - - - - - 0.92 0.95 0.94 0.89 0.95 0.92

Books

Abe Books 1.00 1.00 1.00 0.99 0.92 0.95 1.00 0.94 0.97 0.78 0.94 0.85
Awesome Books 1.00 0.67 0.80 1.00 0.67 0.80 0.99 1.00 0.99 0.83 0.99 0.90
Better World Books 1.00 0.01 0.17 0.01 0.00 0.00 1.00 1.00 1.00 0.66 0.95 0.78
Many Books 1.00 0.96 0.98 0.99 0.96 0.98 0.97 0.98 0.97 1.00 0.99 0.99
Waterstones 1.00 0.92 0.96 1.00 0.91 0.96 1.00 1.00 1.00 0.95 1.00 0.97

Average 1.00 0.74 0.81 0.82 0.70 0.75 0.96 0.95 0.95 0.88 0.95 0.91
Standard deviation 0.00 0.32 0.26 0.36 0.35 0.34 0.05 0.06 0.04 0.10 0.06 0.07
columns report on the category and the datasets, and the remaining
ones report on the effectiveness measures computed for each proposal
on those datasets in the context of the original validation and the new
validation performed in this experiment. The cells with a dash indicate
that the proposal in the corresponding column was unable to extract
information from the dataset in the corresponding row. The last two
rows report on the average and the standard deviation of the measures.

Regarding the completeness of the validation datasets, it was 100%
in this case because the datasets were completely annotated with the
exact information to be extracted. That means that every piece of
information extracted that was not mapped was counted as a false
positive in the confusion matrix. Regarding how the information is
structured, the annotated datasets have one level of nesting: first the
record values were annotated and then the attribute values were anno-
tated within them. Thus, we computed the results as an average of their
attribute and records values. If a record was not extracted or incorrectly
extracted, their corresponding attribute values were assumed not to be
extracted and their annotations were therefore counted as false nega-
tives. Regarding how matches were computed, the original validations
used contains matchings; the new validation used exact matchings,
which are more stringent and appropriate for supervised proposals
since they are intended to learn the exact pieces of information to
extract from the annotations. The user-defined threshold 𝜃 to find the
attribute or record mappings was set to 80% in both cases.

The results in Table 2 make it clear that there are differences in
the effectiveness between the original and the new evaluation. The
results are worse in the new validation, which makes it clear that using
exact matchings is more stringent. It has a clear negative impact on the
precision and the 𝐹1 score, even though the recall is similar. In both
proposals, there are three frequent situations, namely: the precision
gets worse, which occurs when there are more extracted tokens than
annotated ones because they count as false positives; the recall gets
better, which happens when the number of tokens that have not been
extracted is a small fraction of the total number of tokens in the record
so that they count as fractional numbers instead of whole numbers; the
recall gets worse, which is the opposite case.

Now, we need to prove that the differences are actually significant
at the standard significance level. The results of the statistical analysis
are shown in Table 3. The first two columns refer to the effectiveness
measures and whether they correspond to the original or the new
validation; the following columns report on their empirical ranks,
minimum and maximum values, average value and standard deviation,
and the 𝑝-value computed by the Wilcoxon signed-rank test. Note that
all of the p-values are clearly smaller than the standard significance
level, which is a strong indication that the differences between the
results in the original validation and the new validation are significant.
6

6.3. Experiment #2

Second, we experimented with RoadRunner, which is unsupervised,
and HotWeb, which is heuristic-based. Regarding RoadRunner, we
learnt a template from two random documents and then applied it
to the remaining ones. We repeated the process with random pairs of
learning documents and we selected the best performing one. We did
not use more learning documents because their variability makes it very
difficult to find a common template as the number of learning docu-
ments increases and the proposal either found meaningless templates
or did not stop in a sensible time. Regarding HotWeb, it does not learn
any rules, but has built-in heuristics that are directly applied to the
input documents. Thus, all of the documents in the datasets were used
for validation. Although the datasets are the same as in the previous
experiment, they were partially annotated in this context because the
proposals do not learn to extract the annotations, but extract as much
information as possible building on the variability that they discover in
the input documents. Consequently, they typically extract much more
information than expected. The user-defined threshold 𝜃 to find the
attribute mappings was set to 80% in the case of the HotWeb proposal
and 20% in the case of RoadRunner. The reason is that RoadRunner
extracted values that were typically much larger than the annotated
values; thus, their similarity dropped significantly.

The results of this experiment are shown in Table 4, which has an
additional column called 𝑆𝐷 that reports on the degree of spuriousness.
(The figures were rounded up to two decimals, which means that the
cells with a 1.00 actually represent a figure in between 0.995 and
1.000.) The conclusion is that either the datasets are not sufficiently
annotated, which is something common in the context of unsupervised
or heuristic-based proposals, or that the proposals extract much irrel-
evant information in which we are not interested. Ours is the former
case: only a few attributes per document were annotated, but all of
their values were annotated. Note that the interpretation of the results
might be misleading when the datasets are partially annotated since
a proposal that reaches a precision and a recall close to 1.00 with a
spuriousness degree close to 1.00 might be worse than another proposal
that reaches a precision and a recall between 0.80 and 0.90 with a
spuriousness degree close to 0.30. The spuriousness degree is computed
as the average of spurious information in every record within the
validation datasets.

According to the results, RoadRunner performs very poorly in our
validation datasets because it frequently extracted very long excerpts
that contain the attribute values and much irrelevant information; in
the new validation, this contributed to worsening the effectiveness
measures, which makes the problem more evident. It also tends to
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Table 3
Statistical analysis of Experiment #1.

Measure Validation Rank Min Max Mean Stdev P-value

Original 1.19 1.00 1.00 1.00 0.00P New 1.81 0.01 1.00 0.82 0.36 3.96E-03

Original 1.27 0.01 1.00 0.74 0.32R New 1.73 0.00 1.00 0.70 0.35 5.40E-02

Original 1.31 0.17 1.00 0.81 0.26F1 New 1.69 0.00 1.00 0.75 0.34 3.74E-02

(a) Results regarding Wien.

Measure Validation Rank Min Max Mean Stdev P-value

Original 1.07 0.82 1.00 0.96 0.05P New 1.93 0.66 1.00 0.88 0.10 9.83E-04

Original 1.57 0.78 1.00 0.95 0.06R New 1.43 0.78 1.00 0.95 0.06 4.44E-01

Original 1.20 0.87 1.00 0.95 0.04P New 1.80 0.78 0.99 0.91 0.07 5.30E-03

(b) Results regarding Tango.
Table 4
Results of Experiment #2.

Dataset RoadRunner Original validation RoadRunner New validation HotWeb Original validation HotWeb New validation

P R 𝐹1 P R 𝐹1 S SD P R 𝐹1 P R 𝐹1 S SD

Jobs

Insight into Diversity 1.00 0.08 0.15 0.19 0.02 0.04 0.14 0.38 0.93 0.50 0.65 0.93 0.50 0.65 0.97 0.03
4 Jobs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.82 0.90 0.98 0.82 0.90 1.00 0.00
6 Figure Jobs 1.00 0.29 0.44 0.43 0.17 0.24 0.46 0.50 0.82 0.96 0.88 0.82 0.96 0.88 0.99 0.00
Career Builder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.16 0.27 0.99 0.16 0.27 1.00 0.00
Job of Mine 1.00 0.46 0.63 0.88 0.47 0.61 0.70 0.46 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.00

Cars

Auto Trader - - - - - - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.00
Car Max 0.82 0.47 0.60 0.82 0.40 0.54 0.77 0.42 0.96 0.63 0.76 0.96 0.63 0.76 0.99 0.00
Car Zone 1.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.88 0.92 0.90 0.88 0.92 0.90 0.99 0.00
Classic Cars for Sale 0.84 0.11 0.20 0.87 0.14 0.25 0.82 0.39 0.90 0.86 0.88 0.90 0.86 0.88 0.99 0.00
Internet Autoguide 1.00 0.43 0.60 0.10 0.02 0.03 0.38 0.49 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.00

Books

Abe Books 1.00 0.41 0.58 0.94 0.47 0.63 0.81 0.39 0.98 0.92 0.95 0.98 0.92 0.95 0.97 0.01
Awesome Books 1.00 0.80 0.89 0.97 0.70 0.81 0.68 0.47 1.00 0.65 0.79 1.00 0.65 0.79 0.95 0.03
Better World Books - - - - - - - - 1.00 0.91 0.95 1.00 0.91 0.95 0.99 0.00
Many Books 0.58 0.37 0.45 0.73 0.22 0.34 0.86 0.35 1.00 0.38 0.56 1.00 0.38 0.56 1.00 0.00
Waterstones 1.00 0.33 0.50 0.30 0.13 0.18 0.83 0.37 1.00 0.89 0.94 1.00 0.89 0.94 0.99 0.00

Average 0.79 0.29 0.39 0.48 0.21 0.28 0.50 0.32 0.96 0.77 0.83 0.96 0.77 0.83 0.92 0.00
Standard deviation 0.37 0.24 0.29 0.40 0.23 0.28 0.35 0.19 0.06 0.26 0.20 0.06 0.26 0.20 0.25 0.01
Table 5
Statistical analysis of Experiment #2.

Measure Validation Rank Min Max Mean Stdev P-value

Original 1.27 0.00 1.00 0.79 0.37P New 1.73 0.00 0.97 0.48 0.40 1.80E-02

Original 1.31 0.00 0.80 0.29 0.24R New 1.69 0.00 0.70 0.21 0.23 1.96E-02

Original 1.23 0.00 0.89 0.39 0.29F1 New 1.77 0.00 0.81 0.28 0.28 1.05E-02

(a) Results regarding RoadRunner.

Measure Validation Rank Min Max Mean Stdev P-value

Original 1.50 0.82 1.00 0.96 0.06P New 1.50 0.82 1.00 0.96 0.06 5.800E-01

Original 1.50 0.16 1.00 0.77 0.26R New 1.50 0.16 1.00 0.77 0.26 5.00E-01

Original 1.50 0.27 1.00 0.83 0.20F1 New 1.50 0.27 1.00 0.83 0.20 5.00E-01

(b) Results regarding HotWeb.
xtract several attributes as one single attribute that is not easy to
plit using post-processing. Very often, too, this proposal extracts all
f the attributes in a few documents, but fails with the others because
t cannot infer a good common template, which is the reason why its
ecall seldom exceeds 0.40–0.50. It seems that HotWeb provides very
eliable results because its effectiveness measures keep almost the same
n the original validation and the new validation. The authors originally
omputed the effectiveness measures at the attribute level using exact
7

matchings, but they did not analyse the amount of extractions that
cannot be mapped onto annotations.

We have also conducted a statistical analysis. The results are shown
in Table 5. Note that the 𝑝-value returned by the Wilcoxon signed-rank
test is below the standard significance level in the case of RoadRunner,
which clearly supports the idea that the differences in rank between
the original and the new validation are statistically significant. Note,
too, that the p-values coincide with the standard significance level in
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the case of HotWeb, which means that the experiment does not support
the hypothesis that the differences in rank are significant regarding this
proposal. The reason is, basically, that the original validation was as
stringent as the new one.

7. Conclusions

In this article, we have identified three key issues regarding the
validation of information extractors, namely: (a) completeness of the
validation datasets, which is of uttermost importance to put the effec-
tiveness measures in a proper context regarding the degree of spuri-
ousness; (b) the structure of the information to be validated, so that
one can know if the proposal is able to extract flat structures or nested
structures, and how good it is in the latter case; (c) the kind of matching
selected, which makes the conclusions more or less stringent.

The previous issues have a significant impact on the effectiveness
measures, which means that the comparisons might be heterogeneous
and unfair if we do not report on the previous issues. We have per-
formed two experiments regarding the previous ideas. In the first
experiment, we worked with two supervised proposals; the results
proved that precision decreased when our proposal was used, which
had a negative impact on the 𝐹1 score. In the second experiment, we

orked with an unsupervised and a heuristic-based proposal; our em-
irical results proved that the degree of spuriousness can be significant
nd must be reported. Our statistical analyses confirmed our ideas.

Summing up, we strongly recommend that researchers should con-
uct the evaluation of their proposal following the guideline provided
o that the results they publish are easier to compare fairly. They also
ave to carefully compare their proposals to their competitors, as long
s the competitors have also provided the results following the same
uideline.

RediT authorship contribution statement

Patricia Jiménez: Conceptualisation, Methodology, Software, Val-
dation, Resources, Data curation, Writing – original draft, Writing

review & editing. Rafael Corchuelo: Conceptualisation, Methodol-
ogy, Writing – original draft, Writing – review & editing, Supervision,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors were partially supported by the Spanish R&D pro-
gramme through grants TIN2016-75394-R and PID2020-112540RB-
C44 (MCIN/AEI/ 10.13039/501100011033), as well as the Andalusian
R&D programme through grants P18-RT-1060 and US-1381375.

References

Álvarez, M., Pan, A., Raposo, J., Bellas, F., & Cacheda, F. (2010). Finding and
extracting data records from web pages. Signal Processing Systems, 59(1), 123–137.
http://dx.doi.org/10.1007/s11265-008-0270-y.

aumgartner, R., Frölich, O., & Gottlob, G. (2007). The Lixto systems applications in
business intelligence and the Semantic Web. In ESWC (pp. 16–26). http://dx.doi.
org/10.1007/978-3-540-72667-8_3.

aumgartner, R., Gatterbauer, W., & Gottlob, G. (2018). Web data extraction system.
In Encyclopedia of database systems (2nd ed.). Springer, http://dx.doi.org/10.1007/
978-1-4614-8265-9_1154.

hang, C.-H., Kayed, M., Girgis, M. R., & Shaalan, K. F. (2006). A survey of
web information extraction systems. IEEE Transactions on Knowledge and Data
Engineering, 18(10), 1411–1428. http://dx.doi.org/10.1109/TKDE.2006.152.
8

Chinchor, N., Hirschman, L., & Lewis, D. D. (1993). Evaluating message understanding
systems: an analysis of the third Message Understanding Conference (MUC-3).
Computational Linguistics, 19(3), 409–449.

Crescenzi, V., Mecca, G., & Merialdo, P. (2001). RoadRunner: towards automatic data
extraction from large web sites. In VLDB (pp. 109–118). URL http://www.vldb.
org/conf/2001/P109.pdf.

Ferrara, E., Meo, P. D., Fiumara, G., & Baumgartner, R. (2014). Web data extraction,
applications and techniques: a survey. Knowledge Based System, 70, 301–323. http:
//dx.doi.org/10.1016/j.knosys.2014.07.007.

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of
performance measures for classification. Pattern Recognition Letters, 30(1), 27–38.
http://dx.doi.org/10.1016/j.patrec.2008.08.010.

Freitag, D. (2000). Machine learning for information extraction in informal domains.
Machine Learning, 39(2/3), 169–202. http://dx.doi.org/10.1023/A:1007601113994.

Hirschman, L. (1998). The evolution of evaluation: lessons from the Message Un-
derstanding Conferences. Computer Speech and Language, 12(4), 281–305. http:
//dx.doi.org/10.1006/csla.1998.0102.

Hogue, A. W., & Karger, D. R. (2005). Thresher: automating the unwrapping of semantic
content from the World Wide Web. In WWW (pp. 86–95). http://dx.doi.org/10.
1145/1060745.1060762.

Hsu, C.-N., & Dung, M.-T. (1998). Generating finite-state transducers for semi-structured
data extraction from the Web. Information Systems, 23(8), 521–538. http://dx.doi.
org/10.1016/S0306-4379(98)00027-1.

Hunt, J. W., & McIlroy, M. D. (1976). Computing Science Technical Report, An algorithm
for differential file comparison: Technical report, Bell Laboratories, URL http://www.
cs.dartmouth.edu/~doug/diff.pdf.

Ireson, N., Ciravegna, F., Califf, M. E., Freitag, D., Kushmerick, N., & Lavelli, A. (2005).
Evaluating machine learning for information extraction. In ICML, vol. 119 (pp.
345–352). http://dx.doi.org/10.1145/1102351.1102395.

Irmak, U., & Suel, T. (2006). Interactive wrapper generation with minimal user effort.
In WWW (pp. 553–563). http://dx.doi.org/10.1145/1135777.1135859.

Jiménez, P., & Corchuelo, R. (2016a). On learning web information extraction rules
with Tango. Information Systems, 62, 74–103. http://dx.doi.org/10.1016/j.is.2016.
05.003.

Jiménez, P., & Corchuelo, R. (2016b). Roller: a novel approach to web information
extraction. Knowledge and Information Systems, 49(1), 197–241. http://dx.doi.org/
10.1007/s10115-016-0921-4.

Jiménez, P., Corchuelo, R., & Sleiman, H. A. (2016). ARIEX: automated ranking of
information extractors. Knowledge Based System, 93, 84–108. http://dx.doi.org/10.
1016/j.knosys.2015.11.004.

Jiménez, P., Roldán, J. C., & Corchuelo, R. (2021). A clustering approach to extract
data from HTML tables. Information Processing & Management, 58(6), Article 102683.
http://dx.doi.org/10.1016/j.ipm.2021.102683.

Jiménez, P., Roldán, J. C., Gallego, F. O., & Corchuelo, R. (2020). On the synthesis of
metadata tags for HTML files. Software - Practice and Experience, 50(12), 2169–2192.
http://dx.doi.org/10.1002/spe.2886.

Kayed, M., & Chang, C.-H. (2010). FiVaTech: page-level web data extraction from
template pages. IEEE Transactions on Knowledge and Data Engineering, 22(2),
249–263. http://dx.doi.org/10.1109/TKDE.2009.82.

Kushmerick, N., Weld, D. S., & Doorenbos, R. B. (1997). Wrapper induction for
information extraction. In IJCAI (1) (pp. 729–737).

Lavelli, A., Califf, M. E., Ciravegna, F., Freitag, D., Giuliano, C., Kushmerick, N., &
Romano, L. (2004). A critical survey of the methodology for IE evaluation. In
LREC. URL http://www.lrec-conf.org/proceedings/lrec2004/summaries/416.htm.

Lavelli, A., Califf, M. E., Ciravegna, F., Freitag, D., Giuliano, C., Kushmerick, N.,
Romano, L., & Ireson, N. (2008). Evaluation of machine learning-based informa-
tion extraction algorithms: criticisms and recommendations. Langage Resource and
Evaluation, 42(4), 361–393. http://dx.doi.org/10.1007/s10579-008-9079-3.

Lehnert, W. G., & Sundheim, B. (1991). A performance evaluation of text-analysis
technologies. AI Magazine, 12(3), 81–94. http://dx.doi.org/10.1609/aimag.v12i3.
905.

Park, J., & Barbosa, D. (2007). Adaptive record extraction from web pages. In WWW
(pp. 1335–1336). http://dx.doi.org/10.1145/1242572.1242838.

Raposo, J., Pan, A., Álvarez, M., Hidalgo, J., & na, A. V. (2002). The Wargo system:
semi-automatic wrapper generation in presence of complex data access modes. In
DEXA Workshops (pp. 313–320). http://dx.doi.org/10.1109/DEXA.2002.1045916.

Roldán, J. C., Jiménez, P., & Corchuelo, R. (2017). Extracting web information
using representation patterns. In HotWeb (pp. 4:1–4:5). http://dx.doi.org/10.1145/
3132465.3133840.

Roldán, J. C., Jiménez, P., & Corchuelo, R. (2020). On extracting data from tables
that are encoded using HTML. Knowledge Based System, 190, Article 105157.
http://dx.doi.org/10.1016/j.knosys.2019.105157.

Roldán, J. C., Jiménez, P., Szekely, P., & Corchuelo, R. (2021). TOMATE: a heuristic-
based approach to extract data from HTML tables. Information Sciences, 577, 49–68.
http://dx.doi.org/10.1016/j.ins.2021.04.087.

Sahuguet, A., & Azavant, F. (2001). Building intelligent web applications using
lightweight wrappers. Data & Knowledge Engineering, 36(3), 283–316. http://dx.
doi.org/10.1016/S0169-023X(00)00051-3.

Shen, Y. K., & Karger, D. R. (2007). U-REST: an unsupervised record extraction system.
In WWW (pp. 1347–1348). http://dx.doi.org/10.1145/1242572.1242844.

http://dx.doi.org/10.1007/s11265-008-0270-y
http://dx.doi.org/10.1007/978-3-540-72667-8_3
http://dx.doi.org/10.1007/978-3-540-72667-8_3
http://dx.doi.org/10.1007/978-3-540-72667-8_3
http://dx.doi.org/10.1007/978-1-4614-8265-9_1154
http://dx.doi.org/10.1007/978-1-4614-8265-9_1154
http://dx.doi.org/10.1007/978-1-4614-8265-9_1154
http://dx.doi.org/10.1109/TKDE.2006.152
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb5
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb5
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb5
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb5
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb5
http://www.vldb.org/conf/2001/P109.pdf
http://www.vldb.org/conf/2001/P109.pdf
http://www.vldb.org/conf/2001/P109.pdf
http://dx.doi.org/10.1016/j.knosys.2014.07.007
http://dx.doi.org/10.1016/j.knosys.2014.07.007
http://dx.doi.org/10.1016/j.knosys.2014.07.007
http://dx.doi.org/10.1016/j.patrec.2008.08.010
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.1006/csla.1998.0102
http://dx.doi.org/10.1006/csla.1998.0102
http://dx.doi.org/10.1006/csla.1998.0102
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://dx.doi.org/10.1145/1102351.1102395
http://dx.doi.org/10.1145/1135777.1135859
http://dx.doi.org/10.1016/j.is.2016.05.003
http://dx.doi.org/10.1016/j.is.2016.05.003
http://dx.doi.org/10.1016/j.is.2016.05.003
http://dx.doi.org/10.1007/s10115-016-0921-4
http://dx.doi.org/10.1007/s10115-016-0921-4
http://dx.doi.org/10.1007/s10115-016-0921-4
http://dx.doi.org/10.1016/j.knosys.2015.11.004
http://dx.doi.org/10.1016/j.knosys.2015.11.004
http://dx.doi.org/10.1016/j.knosys.2015.11.004
http://dx.doi.org/10.1016/j.ipm.2021.102683
http://dx.doi.org/10.1002/spe.2886
http://dx.doi.org/10.1109/TKDE.2009.82
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb22
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb22
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb22
http://www.lrec-conf.org/proceedings/lrec2004/summaries/416.htm
http://dx.doi.org/10.1007/s10579-008-9079-3
http://dx.doi.org/10.1609/aimag.v12i3.905
http://dx.doi.org/10.1609/aimag.v12i3.905
http://dx.doi.org/10.1609/aimag.v12i3.905
http://dx.doi.org/10.1145/1242572.1242838
http://dx.doi.org/10.1109/DEXA.2002.1045916
http://dx.doi.org/10.1145/3132465.3133840
http://dx.doi.org/10.1145/3132465.3133840
http://dx.doi.org/10.1145/3132465.3133840
http://dx.doi.org/10.1016/j.knosys.2019.105157
http://dx.doi.org/10.1016/j.ins.2021.04.087
http://dx.doi.org/10.1016/S0169-023X(00)00051-3
http://dx.doi.org/10.1016/S0169-023X(00)00051-3
http://dx.doi.org/10.1016/S0169-023X(00)00051-3
http://dx.doi.org/10.1145/1242572.1242844


Expert Systems With Applications 199 (2022) 116700P. Jiménez and R. Corchuelo

S

de Sitter, A., & Daelemans, W. (2003). Information extraction via double classification.
In ATEM Workshop (ECML/PKDD) (pp. 1–8).

Sleiman, H. A., & Corchuelo, R. (2013). A survey on region extractors from web
documents. IEEE Transactions on Knowledge and Data Engineering, 25(9), 1960–1981.
http://dx.doi.org/10.1109/TKDE.2012.135.

leiman, H. A., & Corchuelo, R. (2014). Trinity: on using trinary trees for unsupervised
web data extraction. IEEE Transactions on Knowledge and Data Engineering, 26(6),
1544–1556. http://dx.doi.org/10.1109/TKDE.2013.161.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4), 427–437. http:
//dx.doi.org/10.1016/j.ipm.2009.03.002.
9

Turmo, J., Ageno, A., & Català, N. (2006). Adaptive information extraction. ACM
Computing Surveys, 38(2), http://dx.doi.org/10.1145/1132956.1132957.

Yu, M., Li, G., Deng, D., & Feng, J. (2016). String similarity search and join: a survey.
Frontiers of Computer Science, 10(3), 399–417. http://dx.doi.org/10.1007/s11704-
015-5900-5.

Zhai, Y., & Liu, B. (2005). Web data extraction based on partial tree alignment. In
WWW (pp. 76–85). http://dx.doi.org/10.1145/1060745.1060761.

Zhang, C., Xu, W., Ma, Z., Gao, S., Li, Q., & Guo, J. (2015). Construction of semantic
bootstrapping models for relation extraction. Knowledge Based System, 83, 128–137.
http://dx.doi.org/10.1016/j.knosys.2015.03.017.

http://refhub.elsevier.com/S0957-4174(22)00179-8/sb33
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb33
http://refhub.elsevier.com/S0957-4174(22)00179-8/sb33
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1109/TKDE.2013.161
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1145/1132956.1132957
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1145/1060745.1060761
http://dx.doi.org/10.1016/j.knosys.2015.03.017

	On validating web information extraction proposals
	Introduction
	Related work
	Preliminaries
	Guideline
	Completeness of validation datasets
	Structure of information
	Matching extractions and annotations

	Computing effectiveness
	Find an attribute mapping
	Re-normalise the extracted records
	Find a record mapping
	Compute the confusion matrix
	Compute the spuriousness degree
	Generic method to compute mappings

	Experimentation
	Experimental setting
	Experiment 1
	Experiment 2

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


