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A B S T R A C T

Physical fatigue is not only an indication of the user’s physical condition and/or need for sleep or rest, but
can also be a significant symptom of various diseases. This fatigue affects the performance of workers in jobs
that involve some continuous physical activity, and is the cause of a large proportion of accidents at work.
The physical fatigue is commonly measured by the perceived exertion (RPE). Many previous studies have
attempted to continuously monitor workers in order to detect the level of fatigue and prevent these accidents,
but most have used invasive sensors that are difficult to place and prevent the worker from performing their
tasks correctly. Other works use activity measurement sensors such as accelerometers, but the large amount of
information obtained is difficult to analyse in order to extract the characteristics of each fatigue state. In this
work, we use a dataset that contains data from inertial sensors of several workers performing various activities
during their working day, labelled every 10 min based on their level of fatigue using questionnaires and the
Borg fatigue scale. Applying Machine Learning techniques, we design, develop and test a system based on a
neural network capable of classifying the variation of fatigue caused by the physical activity collected every
10 min; for this purpose, a feature extraction is performed after the time decomposition done with the Discrete
Wavelet Transform (DWT). The results show that the proposed system has an accuracy higher than 92% for
all the cases, being viable for its application in the proposed scenario.
1. Introduction

Fatigue is a complex, multidimensional term, without a standard
and universal definition, since it can be attributed to many factors (Agh-
dam et al., 2019). According to Health Safety Executive, fatigue can be
defined as ‘‘the result of prolonged mental or physic exertion, which can
affect people’s performance and impair their mental alertness’’ (Health
and Safety Executive, 2006). Another definition of fatigue is ‘‘a state
of feeling tired, weary, or sleepy that results from prolonged mental
and physical work, extended periods of anxiety, exposure to harsh
environment, or loss of sleep’’ (Sadeghniiat & Yazdi, 2015) or ‘‘any
exercise-induced reduction in the maximal capacity to generate force
or power output’’ (Vøllestad, 1997). As noted, fatigue results from
two main types: physical and mental fatigue. Physical fatigue consists
of a reduction in capacity to perform physical work as a function of
preceding physical exertion, which influences performance (Gawron,
French, & Funke, 2001).
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Fatigue is also related to a number of diseases such as multiple scle-
rosis (MS) (Goldenberg, 2012), chronic fatigue syndrome (CFS) (Green-
berg & Frid, 2006), fibromyalgia (Busch et al., 2011), myasthenia
gravis (O’Connor et al., 2020), chronic obstructive pulmonary disease
(COPD) (Al-shair et al., 2016) and Eaton–Lambert syndrome (Lang
et al., 1981). The pathology, causes or consequences of these diseases-
related fatigue vary depending on multiple factors. However, in this
paper we will focus on work-related fatigue, that is, fatigue suffered in a
work context. Reduction of work-related fatigue is an important issue as
it can lead to a reduction of injuries or accidents in the workplace, less
work absenteeism and an improvement of work performance (Masala
et al., 2017).

In manufacturing industry, physical fatigue is a common issue,
mostly because of high demand tasks, long duty periods and accumula-
tive sleep (Sadeghniiat & Yazdi, 2015). Principal causes that influence
the onset of fatigue in the workplace are individual factors, such as
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socioeconomic, psychological and work load. The latter can be assessed
in three categories, including physical load, mental load and environ-
mental load (Lambay et al., 2021; Yung et al., 2014). Work-related
physical fatigue can lead to short-term problems, such as discomfort,
decreasing level of performance, strength, productivity and quality of
work, as well as increasing errors and work accidents, and it can also
lead to long-term issues, like cardiovascular diseases or CFS (Aghdam
et al., 2019; Lambay et al., 2021).

Despite technological and industry improvements, work-related fa-
tigue still prevails. On the report of National Safety Council (NSC), in
2018 two-third parts of United States labor force suffered from work-
related fatigue, i.e., approximately 107 million out of the 160 million
workers were affected. A research in 2007 stipulated that workers with
fatigue, associated with lost of productivity and other issues, cost to
the U.S. 101 billion dollars annually (Ricci et al., 2007). Moreover, it
is demonstrated that 13% of workplace injuries can be attributed to
fatigue (National Safety Council, 2020). In Spain, 30.8% of workers
suffer from fatigue, and in Europe, 3.2% of people of 15–64 years that
worked during the past year had one or more accidents at work in the
past 12 months, where approximately 70% of the non-mortal accidents
resulted from loss of control or a fall due to stress or work-related
fatigue (European Commission, 2010).

Therefore, for all the previous reasons and in order to avoid them,
it is important to detect and measure work-related fatigue, so that
injuries, accidents or diseases can be prevented and recommendations
to reduce or avoid exertion can be done.

In order to detect and measure fatigue, there are objective methods,
based on the analysis of body parts that exert the force required during
the task, and subjective methods, based on analysis of fatigue through
rating scales and questionnaires made to individuals for assessing per-
ceived exertion (Sedighi Maman et al., 2017). Perceived exertion or
perceived effort is the most common measure to quantify fatigue, and
it is defined by Borg as ‘‘the perception of how the body is working
during an exercise, a ‘Gestalt’ based on many sensory cues and per-
ceptions’’ (Borg, 2007). In work-related fatigue studies, the assessment
of symptoms and discomforts should be done subjectively and, for
this reason, three different techniques of psychophysical measurement
of perceived exertion have been developed in the last decades: ratio
scaling, category scaling and acceptability scaling (Borg, 1990). Ratio
scaling have been developed to obtain methods with same metric
qualities as those used in physics and physiology, i.e., methods with
an absolute zero and same distance between scale values (Gamberale,
1985). Magnitude Estimation is one of the most famous scales, created
by Stevens in 1975, which is a perceptual scaling technique where
participants are instructed to assign numbers in relation to perceptual
intensities (Borg, 2007). Years later, Borg developed the Rating of
Perceived Exertion scale (RPE), which measures subject’s effort and
exertion while performing a physical task, through a ranked score
from 6 (no exertion at all) to 20 (maximal exertion) (Borg, 1982).
The same author, years afterwards, developed a scale of categories to
assess perceived exertion, CR10 scale, ranked from 0 to 10 with verbal
anchors, where 10 indicates a extremely strong perceived exertion and
categorizes as ‘maximal’ (Watt & Grove, 1993). RPE scale is considered
best for simple applied studies of perceived exertion and for physical
intensities prediction, while CR10 scale is more suitable to assess
subjective symptoms (Borg, 1982). Other category scales are CR100
(centiMax), ranked from 0 to 100, or OMNI-RPE scale, with a ranked
score 0–10 adding mode-specific pictures (Ritchie, 2012).

As mentioned before, another tool to assess perceived exertion is
through questionnaires. Some examples of them are Fatigue Severity
Scale (FSS), which is a 9-item self-report questionnaire developed for
diseases-related fatigue control (Krupp et al., 1989), Multidimensional
Fatigue Inventory (MFI-20), a 20-item questionnaire with 5 sub-scales:
general fatigue, physical fatigue, reduced activity, reduced motivation
and mental fatigue (Bunevicius et al., 2011), and Chadler Fatigue Scale
2

(CFQ), which measures physical and psychological fatigue, with an 11-
item questionnaire rating as 0 (better than usual), 1 (not worse than
usual), 2 (worse than usual), 3 (much worse than usual) (Aghdam et al.,
2019).

On the other hand, in the past few years, there has been an increase
in the use of wearable devices, capable to provide monitoring in
real time, recording, and communication of individuals’ physical and
environmental exposures. These devices have been developed in shapes
of watches, wrist bands, glasses, jewellery, skin patches and even
smart textiles (Seneviratne, Hu, Nguyen, Lan, Khalifa, Thilakarathna,
Hassan, & Seneviratne, 2017). One of the most important element
in wearable devices are sensors and their use is widespread mostly
across sports environment, and with improvement in semiconductor
technology, monitoring a full range of parameters is a possibility and
the application of wearable devices in medicine is closer (Mostafa
et al., 2017). Some wearable devices to monitor health parameters and
biosignals are ECG monitors, blood pressure monitors and biosensors,
among others (Lee & Lee, 2020). Although the availability and use
of these devices in health field is slow-going because of the need of
validation in the context of different pathologies, multiple works have
demonstrated the feasibility of its use in research projects to predict,
monitor or assess several diseases and disabilities (Beniczky et al.,
2021; Dominguez-Morales et al., 2019).

In addition to ratings of perceived exertion to assess work-related
fatigue as mentioned earlier, the use of wearable devices to moni-
tor body parameters is under research and appears to be a possibil-
ity, so that physical exposures of subjects in the workplace can be
quantified, monitoring brain activation using electroencephalography
(EEG) or monitoring changes in local muscle with electromyography
(EMG) (Dong et al., 2014). However, EEG- and EMG-based methods to
measure physical fatigue are intrusive, because both of them require
several electrodes and are unlikely to resist operational environment
as they are most suitable for stationary tasks, besides being expensive
technologies (Baghdadi et al., 2019; Balkin et al., 2011). For this rea-
son, researchers are focusing on the possibility of using non-intrusive
wearable sensors to workplaces in order to monitor physical activity
and mobility, since these devices are cheaper and easier to use (Fu
et al., 2019). One of the most used wearable sensors to detect subjects
movement is the inertial measurement unit (IMU) to obtain angular
velocity and acceleration data.

In the last years, many work-related investigations use IMUs for
ergonomic evaluation (Vignais et al., 2013), posture analysis (Battini
et al., 2014), musculoskeletal disorders evaluation (Tee et al., 2017),
assessment of body motion and lifting risks while doing handling
tasks (Barim et al., 2019) or falling risk during daily activities (Luna-
Perejón et al., 2019, 2021), among others. Moreover, recently, more
studies using IMUs have addressed to the detection of physical activity
and fatigue (Karvekar et al., 2021; Lamooki et al., 2020; Schmidt et al.,
2016).

In order to develop generalist systems capable of detecting the
fatigue state by processing large amounts of data, the use of Artificial
Intelligence has been extended. Many previous works have made use
of Machine Learning (ML) or Deep Learning (DL) techniques applied
on physiological signals to develop systems capable of more easily
extracting relevant features from the dataset (Al-Saegh et al., 2021; Lih
et al., 2020; Muñoz-Saavedra et al., 2020).

Regarding DL applied to fatigue classification, in 2017 Sedighi
Maman et al. used IMUs to obtain acceleration and jerk data from
participants performing manufacturing tasks, together with Heart Rate
(HR) data and RPE values to implement a Least Absolute Shrinkage
and Selection Operator (LASSO) model to select features from data
and apply regression and logistic models to estimate physical fatigue
level. Years later, the previous author proposed a framework centred
on detection, identification, diagnosis and recovery from fatigue, in
order to quantify and predict changes in workers’ performance (Sedighi

Maman et al., 2020). On the other hand, Karvekar et al. (2019) used
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accelerometers embedded on smartphones in order to measure motion
and gait parameters of the participants, along with RPE values collected
to label the data, and they applied a ML algorithm (SVM model) to
classify subjects’ fatigue level, as well as (Zhang et al., 2013), Baghdadi
et al. (2018), and Kuschan and Krüger (2021) who also used a SVM
model to detect physical fatigue. Another research focused on this
area have measured cycle acceleration of workers doing several tasks
with IMUs for fatigue detection, applying Statistical Process Control
(SPC) techniques (Lamooki et al., 2020). More recently, Lambay et al.
(2021) used the dataset from (Sedighi Maman et al., 2017) in order
to perform fatigue prediction for manual material handling task. All of
these studies facilitate the implementation of a proactive approach in
continuous monitoring of operators’ fatigue level, which may increase
work performance and reduce risks mentioned earlier (Darbandy et al.,
2020; Nasirzadeh et al., 2020).

The aim of this work is to study the relationship between physical
activity and fatigue, and to develop a classifier system capable of
estimating the variation of physical fatigue in periods of 10 min.
In this way, every 10 min of work, it would be possible to know
whether the worker is more (or less) tired and to what extent. In future
works, integrating the classifier in an embedded systems, personalized
information could be provided in real time to the worker so that he/she
knows his/her degree of fatigue and, in this way, he/she can take
breaks when the fatigue reaches dangerous levels.

On the other hand, for future work, a similar method could be used
with people with pathologies that cause a sudden increase in physical
fatigue in certain circumstances (such as chronic fatigue syndrome) al-
though of course the characteristics of this kind of fatigue are different
to worker’s physical fatigue. Anyway, with this approach, these people
could be helped to plan the tasks to be carried out based on the degree
of accumulated fatigue detected by the system.

As noted, multiple techniques can be applied to predict work-related
fatigue state. In this study, we have used a time-series dataset which
contains acceleration and jerk data from four IMUs disposed on seven
participants and HR data, while they were doing three different tasks.
With this dataset, we have applied a Discrete Wavelet Transform (DWT)
and extracted adequate features, which are the inputs of a Sequential
Neural Network, and with RPE window-variation values as target of the
network, the perceived exertion level has been predicted. In Section 2
of this study, we review the physiological signals measured, along with
the manufacturing tasks performed from the dataset obtained, as well
as we detail data pre-processing, feature extraction and the neural
network implemented. In the last point of this section, we explain the
evaluation mechanism followed. Section 3 includes our results and a
discussion of work-related fatigue prediction; and, finally, in Section 4
the conclusions of the work are presented.

2. Materials and methods

In this section, the proposed system for classifying the fatigue state
of the user is described. This section focuses on the description of the
techniques and decisions applied in the development and testing of
the classification system, while the results of their application will be
presented in Section 3.

So, first, the dataset used for this work is presented in the first sub-
section; after that, the internal structure of the classification system is
explained in the second subsection; in the third place, the mechanisms
and metrics used to evaluate the proposed system are described; and,
finally, the comparative evaluation of results with previous work and a
brief state of the art about them is detailed. The graphical abstract that
3

better describes the complete work is shown in Fig. 1.
2.1. Dataset

Inertial motion of body parts is a common measure to assess phys-
ical fatigue, especially in an industrial environment, since, as men-
tioned earlier, physiological measurements based on EMG or EEG
activity are often impractical to implement in work conditions: they
can lose contact over time and can only measure the activity of par-
ticular body parts (Jiang et al., 2021). To obtain this kinematic data,
IMUs are the most commonly used. These are devices that include
built-in sensors: accelerometers, gyroscopes and magnetometers along
three axes (Ahamed et al., 2021). With this wearable device, there
are many advantages such as low cost, good portability, small size,
non-intrusiveness, versatility and ease of operation (Dzeng et al., 2014).

In fact, a wide variety of studies demonstrate the feasibility of
using accelerometers to detect physical fatigue, although most of them
are addressed to fall detection, to detect binary fatigue (fatigue vs.
non-fatigue), gait movement or running analysis (Atiya et al., 2021;
Buckley et al., 2017; Strohrmann et al., 2012; Zhang et al., 2013).
Movement parameters obtained with an inertial measurement unit
represents acceleration, angular velocity and magnetic orientation over
time. Physical fatigue has been linked to a reduction in motor control
and in strength capacity, which is assessed by measuring jerk. Jerk
is obtained from the first time-derivative of acceleration, and several
studies, e.g., Zhang et al. (2019), demonstrated the feasibility of using
jerk metric to detect physical fatigue. In order to capture fatigue
from physical tasks, the best range of movement parameters should be
measured from the hip, wrist, ankle, and torso (Sedighi Maman et al.,
2017; Zhang et al., 2020). Thus, it is known that the use of IMUs have
a high potential to be used as a fatigue assessment tool.

The dataset used to train and test the proposed system was obtained
from Sedighi Maman et al. (2017), when they investigate the feasibility
of using wearable sensors to monitor and detect physical fatigue in
working occupations. A brief summary about the sensors used and their
body location to monitor physical tasks, an explanation of the tasks
performed by the workers and the measures obtained are shown in the
next subsections.

2.1.1. Sensors
For the measurement of inertial motion, eight participants, 3 female

and 5 female, aged from 18 to 62 years, were instrumented with
four IMUs, localized on their ankle, wrist, torso and hip, while they
realized three different types of manufacturing tasks. IMU model used
for the dataset was the Shimmer3, which contains a low-noise analog
accelerometer, a wide range accelerometer and magnetometer, and a
digital gyroscope. The data was recorded at a sampling rate of 51.2 Hz,
even though after recording, data was cleaned and down-sampled at
25 Hz in order to make it consistent.

2.1.2. Tasks
All eight participants had to complete three physically fatiguing

tasks within three one-hour periods each. The first task consisted
on part assembly operation (PA), where the subjects had to build
assemblies based on visual instructions while in a stationary standing
position, so after three hours, physical fatigue is very likely to occur.
The second one was a supply pickup and insertion task (SPI), consisting
of walking with supplies and bending to a bolt box. Lastly, the third and
most physical fatiguing task, named manual material handling (MMH),
simulated warehousing operations.

2.1.3. Measures
Acceleration was measured from all four IMUs of each participant

while they were performing the previously explained tasks. From this
measure, which was recorded every 40 ms, jerk was also calculated
as the derivative of acceleration with respect to time. Besides these
two measures, participants had to provide in 10 min time-window their

subjective exertion value using Borg’s RPE scale.
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Fig. 1. Graphical abstract of the complete system.
2.2. Perceived exertion classifier

The proposed system for perceived exertion’s prediction is based on
a Multi-Layer Perceptron Neural Network trained with the data from
the previously described dataset. However, in order to train and test
the classification system, two previous stages need to be performed: a
discrete wavelet transform and a feature extraction step (see Fig. 1).

These two stages, together with the description of the neural net-
work used to classify the perceived exertion or effort, are described
next.

2.2.1. Discrete Wavelet Transform
The pre-processing step is very important in order to improve neural

network’s accuracy. For the dataset employed, data have been com-
pressed using Discrete Wavelet Transform (DWT), so that acceleration
and jerk data, measured every 40 ms during 3 h, could be divided into
10-minutes time windows. This time division is based on the tagging
process performed for the dataset, which includes a subjective fatigue
level questionnaire after every 10 min; so we divide the study on
those time windows in order to have valid labels to train and test the
classification system.

The selection of frequency approach prior to the feature extraction
process in order to assess physical fatigue is due to the good results
obtained in fatigue studies, where it is demonstrated that frequency do-
main features can replace time-domain method (Braccesi et al., 2015).
The traditional methods used for features extraction (next stage), as
mean or median of the frequency spectrum, are commonly used with
Discrete Fourier Transform (DFT). Using this method, the frequency
domain is well quantified, but it does not give any timing information;
i.e., DFT estimates how much of each frequency exists in the spectrum,
but cannot determine when a particular frequency component takes
place in time (Chowdhury et al., 2013). This is a good method for peri-
odic analog signal, but for physiological signals like acceleration, where
the components vary their periodicity, using DFT is not efficient. For
such cases, Discrete Wavelet Transform (DWT) provides simultaneous
spectral and temporal information from the signal (Muñoz-Saavedra
et al., 2020).

The DWT uses filter banks, which contains high and low frequency
filters for the analysis and reconstruction of a signal. In this way, DWT
decomposes the signal in approximation coefficients (high frequencies)
and detail coefficients (low frequencies), filtering them through scaling
and wavelet filters, respectively, and then, the approximation coeffi-
cients are subsampled into new coefficients (Mitchell et al., 2013).
4

Moreover, DWT needs a mother wavelet, where, one of the most used is
Daubechies wavelet (Sekine et al., 2000). In this investigation, a third-
order Daubechies wavelet (db3) is applied, in order to obtain a set
of approximation coefficient vectors, 𝐴𝑖, and detail coefficient vectors
𝐷1, 𝐷2,… , 𝐷𝑖, at the 𝑖𝑡ℎ level. So, DWT is more suitable for the system
we propose.

As for the labelled information regarding the perceived exertion,
which contains scoring values from 6 to 20 (according to Borg scale),
it has been converted to the variation values between each RPE time
window. This means that, instead of maintain the original labels (which
refer to the absolute value of perceived exertion), the new labels
contain the RPE variation between the beginning and the end of that
10-minutes time windows (this is the increase in perceived exertion
during that time window).

For example: at the beginning of the 10-minutes window the subject
has indicated a level of 6 in perceived exertion. During the next 10 min
of doing physical tasks, the level of perceived exertion increments to
8 at the end of the time window. So, the variation label used in our
system will be 2 for that time window. Hence, perceived effort state is
discretized in variation levels of −1, 0, 1, and 2; that is because, for all
the users and tasks included in the dataset, the variation RPE from the
beginning to the end of a time window does not vary more than 2.

Previous works have used this dataset to train a classification system
using the absolute values, but the results have not been very satisfac-
tory (Lambay et al., 2021). This is because the perceived exertion/effort
is cumulative and, therefore, if we want to train the system with
absolute values, we will have to include the physical activity from the
beginning to the current point (not just the 10-minutes time window).

Therefore, the labelling used for this work is more consistent with
reality since, by extracting information from a 10-minutes time win-
dow, we will only be able to detect the variation in the perceived
exertion during those 10 min. However, in order to obtain an absolute
value of the user’s state in our system, we will have to accumulate
the variations in the perceived exertion during all the 10-minutes time
windows from the beginning to the current point.

After this step, and before the feature extraction process (described
next), the Wavelet Coefficients’ values of each time window are nor-
malized. Normalization consists in a re-scale process in order to obtain
an output between 0 and 1, known as min–max normalization; where,
for each value, the minimal range value is subtracted, and then divided
by the feature’s range.
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2.2.2. Features extraction
The feature extraction is a process of dimension reduction without

losing important information, where a large amount of data is reduced
in a feature. In this study, in order to train the system and improve
neural network’s accuracy, frequency features are previously extracted
using DWT (described before).

After obtaining wavelet coefficients, features can be extracted. For
acceleration signals, several studies have used DWT to calculate the
total energy of the wavelet transform decomposition (Ayrulu-Erdem &
Barshan, 2011). Specifically, the energy ratio of the DWT coefficients
to the total energy can give discriminatory results. 𝐸𝑇 represents the
total energy at level 𝑖, while 𝐸𝐷𝑅𝐴 represents the energy ratio of the
approximation coefficients vector at level 𝑖 and 𝐸𝐷𝑅𝐷𝑗

refers to the
energy ratio of the detail coefficient vector 𝑗, where 𝑗 = 1,… , 𝑖. All of
these are given by (Ayrulu-Erdem & Barshan, 2011):

𝐸𝑇 = 𝐴𝑖𝐴
𝑇
𝑖 +

𝑖
∑

𝑗=1
𝐷𝑗𝐷

𝑇
𝑗 (1)

𝐸𝐷𝑅𝐴 =
𝐴𝑖𝐴𝑇

𝑖
𝐸𝑇

(2)

𝐸𝐷𝑅𝐷𝑗
=

𝐷𝑖𝐷𝑇
𝑗

𝐸𝑇
(3)

Besides these features related to the DWT energy distribution,
Ayrulu-Erdem and Barshan (2011) and Mitchell et al. (2013), demon-
strated that the combination of the latter and the normalized variances
provide the most informative features. Therefore, in this work, the
number of features extracted consist of the normalized variances of the
acceleration and jerk data, which gives a number of 2 features, and
the 𝐸𝐷𝑅𝐴 and 𝐸𝐷𝑅𝐷𝑗

features, which are equal to 𝑖 + 1 number of
features at 𝑖𝑡ℎ level. Combining both variances and energy features of
acceleration and jerk data gives a total of 2 × (𝑖 + 2) features at level 𝑖.
Finally, taking in account the four IMUs located in subjects’ body, the
total number of features for a participant is 8×(𝑖+2). In this work, level
3 of the decomposition is used, so the total amount of coefficients per
sample are 8 × (3 + 2) = 40.

2.2.3. Neural network model
For the prediction of perceived exertion state, we use a feed-forward

Multilayer Perceptron (MLP) neural network architecture, with a fully-
connected structure and a Sequential model, which contains three
layers: input layer, hidden layer and output layer.

This architecture was used for each different physical task. Thus,
three neural networks were applied to estimate fatigue state from data
of physical tasks (PA, SPI, MMH). All three networks have 40 nodes
in the input layer, which represents the number of features extracted
from the dataset, 16 nodes in the hidden layer and 4 nodes in the output
layer (according to the 4 possible RPE values variations between each
time window). In Fig. 2 the neural network architecture used for the
three tasks is shown.

For all three neural networks, we use a ReLU (rectified linear)
activation function in the input layer and in the hidden layer, on
account of a better performance achieved with this function, and
a Softmax activation function is applied to the output layer, which
converts a vector of values to categorical probabilities. The category
with more probability is chosen as the output in order to obtain a
unique classification.

Regarding network’s training parameters, we used the Adam
gradient-based optimizer and the Categorical Crossentropy loss func-
tion, since the networks have to classify more than two classes. We
first trained the neural networks with 500 epochs, and then with 1000
epochs, both processes with a batch size of 8. However, the three
architectures employed differ in the learning rate used: for PA task, the
learning rate is 0.01; for SPI task, 0.0001; and for MMH task, 0.005.

To adjust the final values of the hyperparameters (batch size and
learning rate), 9 different tests were previously carried out for each
5

Fig. 2. Neural network architecture.

Table 1
Accuracy results after training data from PA task recordings with three
different learning rates (LR) and three different batch sizes (BS).
PA task LR 1e−4 LR 1e−3 LR 1e−2

BS 8 84.6% 94.2% 98.1%
BS 16 84.6% 90.4% 96.1%
BS 32 84.6% 88.5% 94.2%

Table 2
Accuracy results after training data from SPI task recordings with three
different learning rates (LR) and three different batch sizes (BS).
SPI task LR 1e−4 LR 1e−3 LR 1e−2

BS 8 92.6% 88.9% 87.0%
BS 16 90.7% 90.7% 87.0%
BS 32 88.9% 90.7% 77.8%

Table 3
Accuracy results after training data from MMH task recordings with
three different learning rates (LR) and three different batch sizes (BS).
MMH task LR .5e−4 LR .5e−3 LR .5e−2

BS 8 81.2% 87.5% 93.7%
BS 16 78.1% 84.3% 90.6%
BS 32 76.5% 85.9% 92.9%

task: three batch size and 3 learning rates were trained for each task.
The values finally selected correspond to the option with the best result
for each case. The tests carried out for this purpose are summarized in
Table 1 for PA task, Table 2 for SPI task, and Table 3 for MMH task.

2.3. Performance evaluation

At this point, the complete system used to classify the perceived
exertion has been described. However, in order to evaluate the results
obtained after the training process, we need to describe the metrics and
mechanisms used for this task.

In total, three datasets have been created from the original data, in
order to have one dataset for each physical task. Thus, the classification
model was generated for each one of them, using 80% of each dataset
for the neural network’s training, and keeping 20% for testing purposes.
Once the training is completed, the test phase of the model can be
achieved by using the testing dataset with the final weights obtained
from the training process. In order to make a complete performance
evaluation, a set of metrics have been used for each class, which are
detailed as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑐

𝑇𝑃𝑐 + 𝑇𝑁𝑐
𝑇𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (4)

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑ 𝑇𝑃𝑐 , 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (5)

𝑐 𝑇𝑃𝑐 + 𝐹𝑁𝑐
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Fig. 3. Accuracy evolution during a 500-epoch training for PA task (top-left), SPI task (top-right) and MMH task (bottom).
Table 4
Total amount of samples obtained for each activity.

Activity Train (80%) Test (20%) Total

PA 100 (10 for validation) 26 126
SPI 86 (9 for validation) 22 108
MMH 100 (10 for validation) 26 126

𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 =
∑

𝑐

𝑇𝑁𝑐
𝑇𝑁𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (6)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑐

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (7)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(8)

Where 𝑇𝑃 stands for True Positives, or the number of cases that
belong to the class and are correctly classified; 𝑇𝑁 denotes True Neg-
atives, or the number of cases that do not belong to the class and have
not been classified as it; 𝐹𝑃 stands for False Positives, or the number
of cases that do not belong to the class but are incorrectly classified as
belonging to the class; and 𝐹𝑁 denotes False Negatives, which are the
number of cases that belong to the class but are incorrectly classified as
belonging to other class. In the following section, all of the performance
results are indicated and compared.

2.3.1. Cumulative RPE evaluation
As previously indicated, the labelling and training of the system

focuses on the variation of perceived exertion during each 10-minutes
time window. With the evaluation described above, the performance
of the system can be verified against these assumptions and the results
will show how good the system is.
6

However, as an additional evaluation to this work, the cumula-
tive perceived exertion for each user will be calculated independently
based on the classification of our system in each time window and its
accumulation until the completion of each 3-hour activity.

After this last study, we intend to evaluate the error that this type
of cumulative systems based on time increments may have at the end
of each complete activity. After these tests, the percentage of error
compared with the final absolute labels of the dataset will be presented.

2.4. Related works

In order to verify the effectiveness of the proposed system, a com-
parison with similar works in recent years is ultimately carried out.

To this end, a search is carried out in the main search engines
(Scopus, IEEExplorer and Google Scholar) with the following keywords:
fatigue, machine learning, sensor (physiological or physical sensor).
The results obtained are filtered by year, restricting the works to those
published in the last 5 years (with the only restriction of the work
published in 2013 by Zang et al. which is considered one of the first in
the field and cited in most of the current works).

The results reflect a total of 8 papers after eliminating articles not
focused on the design of a classifier and/or those with no citations. The
selected works are presented below together with a brief summary of
each one:

• (Zhang et al., 2013): binary muscle fatigue classifier using Sup-
port Vector Machines (SVM) with inertial sensors (IMU). Applied
to walking sessions with 17 participants, looking the relationship
between gait pattern and fatigue. 11 features selected, data nor-
malization pre-processing and cross-validation technique applied
in the testing phase. The classification is performed after the full
trial.
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Table 5
Metrics’ results for PA task.

Epochs 𝐶𝑙𝑎𝑠𝑠 𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹1𝑠𝑐𝑜𝑟𝑒

500

−1
0
1
2
TOTAL

1
18
4
1
24

25
6
20
25
76

0
2
0
0
2

0
0
2
0
2

1
0.923
0.923
1
0.961

1
1
0.667
1
0.923

1
0.75
1
1
0.974

1
0.9
1
1
0.923

1
0.947
0.8
1
0.923

1000

−1
0
1
2
TOTAL

1
18
6
1
26

25
8
20
25
78

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

Table 6
Metrics’ results for SPI task.

Epochs 𝐶𝑙𝑎𝑠𝑠 𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹1𝑠𝑐𝑜𝑟𝑒

500

−1
0
1
2
TOTAL

1
13
8
1
23

26
10
14
26
76

0
4
1
0
5

0
0
4
0
4

1
0.852
0.815
1
0.917

1
1
0.667
1
0.852

1
0.714
0.933
1
0.938

1
0.765
0.889
1
0.821

1
0.867
0.762
1
0.836

1000

−1
0
1
2
TOTAL

1
13
9
1
24

26
11
15
22
74

0
3
0
0
3

0
0
3
0
3

1
0.889
0.889
1
0.942

1
1
0.75
1
0.889

1
0.785
1
1
0.961

1
0.812
1
1
0.889

1
0.896
0.857
1
0.889
Table 7
Metrics’ results for MMH task.

Epochs 𝐶𝑙𝑎𝑠𝑠 𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹1𝑠𝑐𝑜𝑟𝑒

500

−1
0
1
2
TOTAL

1
16
10
1
28

31
12
18
31
92

0
2
2
0
4

0
2
2
0
4

1
0.875
0.875
1
0.937

1
0.889
0.833
1
0.875

1
0.857
0.9
1
0.958

1
0.889
0.833
1
0.875

1
0.889
0.833
1
0.875

1000

−1
0
1
2
TOTAL

1
17
12
1
31

31
14
19
31
95

0
0
1
0
1

0
1
0
0
1

1
0.968
0.968
1
0.984

1
0.944
1
10.968

1
1
0.95
1
0.989

1
1
0.923
1
0.968

1
0.971
0.96
1
0.968
• (Baghdadi et al., 2018): binary worker’s fatigue classifier using
SVM with an ankle-placed IMU. Applied to 3-hour manual ma-
terial handling sessions with 14 participants. Kalman filtering
pre-processing to extract motion features and detect kinematics.
Classification based on the mean of distance-based scores (deter-
mined by the mean of the first 10 min fatigue level provided by
participants, and the mean of the last 10 min fatigue level).

• (Karvekar et al., 2019): 2 and 4 class worker’s fatigue classifier
using SVM with ankle-placed smartphone. Experiment with 24
participants performing a fatiguing exercise (squatting), manually
classifying the fatigue level after each 2-minutes exercise. Classi-
fication based on the gait pattern, using several features: mean,
variation, acceleration, peaks, etc.

• (Nasirzadeh et al., 2020): several binary fatigue classifiers (k-
nearest neighbours, Decision Tree, neural network, etc.) using
heart rate signals, and manually classifying fatigue level after
each 1-hour task. Experiments performed by 8 participants and
consisted on three physical tasks (PA, SPI and MMH). Classifica-
tion based on classic features like mean, variance and standard
deviation, using cross-validation.

• (Sedighi Maman et al., 2017): fatigue classifier using several
classifiers (random forest, SVM, Logistic regression, etc.) with
four IMU sensors and one heart rate sensor. 24 participants
performing MMH and SPI tasks. Classification based on several
feature combinations (finally, less than 7 are used), using cross-
7

validation.
• (Darbandy et al., 2020): physical fatigue classifier using KNN with
heart rate signals. Experiments performed over 8 participants
during 3-hour of MMH activities (divided in 1-hour periods). Clas-
sification based on nonlinear features (mean, standard deviation,
minimum and maximum).

• (Lambay et al., 2021): binary fatigue classifier using recurrent
neural networks (RNN) with IMU and heart rate signals. Using
dataset with 18 participants performing manual tasks. Classifica-
tion based on 23 features (not specified).

• (Kuschan & Krüger, 2021): 3 and 5 class worker’s physical fatigue
classifier using SVM with IMU sensors places in a exoskeleton.
Classification based on 63 acceleration features.

As can be seen from the selected papers, there is no standard
processing mechanism, as it depends on the sensors used and the type
of classifier. The use of SVM and, curiously, the little use of neural net-
works stand out. Regarding the classified classes, many papers opt for
defining a binary state (fatigue and non-fatigue) based on subdividing
some scale of perceived exertion (such as RPE or CR10), while other
papers extend the classes to define more ranges (as is the case of the
last work). Among all the papers, only one of them classifies with the
full range of values of the Borg scale (Lambay et al., 2021), but it will
be seen in the results section that this has a negative impact on the
classification.

With respect to the system proposed in this paper, which will be
evaluated in the following section, it uses basic characteristics (mean,

deviation, standard deviation, zero crossing, etc.) but extracted from
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Fig. 4. Confusion matrix after 500 epochs for PA task (top-left), SPI task (top-right) and MMH task (bottom).
Fig. 5. Confusion matrix after 1000 epochs for PA task (top-left), SPI task (top-right) and MMH task (bottom).
the frequency components obtained from the application of the DWT.

Among the previous works indicated, none can be found that uses this

transform. Similarly, and as can be seen in this manuscript, this work

classifies values belonging the full Borg scale (6 to 20), applying a
8

novel mechanism for calculating absolute fatigue by means of the ac-
cumulation of fatigue variations in 10-minute intervals; this allows the
number of classes to be classified to be reduced to 4, but maintaining
the full range of the final scale (with which, this work presents a greater
resolution in its detection).
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Table 8
RPE for users 2–5 with 500-epoch network after each 10-min period (participant 5 did not perform SPI task). 𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠): RPE from the questionnaires. 𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟): variation from
revious checkpoint. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑: network output (variation from previous checkpoint). 𝐴𝑐𝑢𝑚: accumulative estimation using the outputs of the network from the beginning to this
oint.
User Task Value 10’ 20’ 30’ 40’ 50’ 1 h 1 h 10’ 1 h 20’ 1 h 30’ 1 h 40’ 1 h 50’ 2 h 2 h 10’ 2 h 20’ 2 h 30’ 2 h 40’ 2 h 50’ 3 h

2

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

8
+1
+1
8

9
+1
+1
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

10
+1
+1
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

7
+0
+0
7

8
+1
+1
8

9
+1
+0
8

9
+0
+0
8

9
+0
+0
8

10
+1
+1
9

10
+0
+0
9

11
+1
+1
10

11
+0
+0
10

12
+1
+1
11

12
+0
+0
11

13
+1
+1
12

13
+0
+0
12

14
+1
+1
13

14
+0
+0
13

15
+1
+0
13

15
+0
+0
13

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

8
+1
+1
8

8
+0
+0
8

9
+1
+1
9

9
+0
+1
10

9
+0
+0
10

10
+1
+1
11

10
+0
+0
11

11
+1
+1
12

11
+0
+0
12

11
+0
+0
12

12
+1
+1
13

12
+0
+0
13

12
+0
+0
13

13
+1
+1
14

14
+1
+1
15

15
+1
+1
16

15
+0
+0
16

3

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

10
+1
+1
10

12
+2
+2
12

12
+0
+0
12

13
+1
+1
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+1
16

17
+1
+1
17

17
+0
+0
17

17
+0
+0
17

17
+0
+0
17

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

9
+2
+2
9

11
+2
+2
11

12
+1
+1
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

15
+1
+0
14

16
+1
+1
15

16
+0
+0
15

17
+1
+1
16

17
+0
+0
16

17
+0
+0
16

18
+1
+1
17

18
+0
+0
17

19
+1
+1
18

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

9
+0
+0
9

10
+1
+1
10

11
+1
+1
11

13
+2
+2
13

14
+1
+1
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

4

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

10
+2
+2
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

12
+2
+2
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

10
+1
+1
10

9
-1
-1
9

11
+2
+2
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

10
+1
+1
10

11
+1
+0
10

11
+0
+0
10

11
+0
+0
10

11
+0
+0
10

11
+0
+0
10

11
+0
+0
10

12
+1
+1
11

12
+0
+0
11

13
+1
+1
12

14
+1
+1
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

5

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

11
+2
+2
11

11
+0
+0
11

10
-1
-1
10

11
+1
+1
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
13

15
+1
+1
15

14
-1
-1
14

15
+1
+1
15

15
+0
+0
15
1
p

This comparison will be detailed deeply with quantitative results in
he final part of the next section.

. Results and discussion

In this section, the results obtained after training the neural network
odel with the three different physical tasks are shown, considering the
etrics and the mechanism explained in the previous section, so that

he goodness of the classification can be evaluated. After presenting
he results, we examine different case studies for each task, to show
hat, after the prediction of the variation of the RPE values between
0-minutes time windows, the estimated RPE score between 6 and
0 can be calculated for the three-hours tasks as the accumulation of
he variations. Comparing these case studies results with the actual
alues, we calculate the absolute error and show the goodness of the
lassification.

First, it is important to describe the size of each tasks’ dataset used
or the training and the testing phases. As explained in Section 2.1,
he original dataset has been divided into 10-minutes time windows
nd the three different tasks have been grouped in three different
atasets. Thus, from +800000 acceleration and jerk data samples, the
inal dataset was reduced to less than 400 samples with 40 features
ach. In Table 4 we show the division of the latter in three parts, mixed
nd randomized.

So, the content of the dataset is initially divided into a subset for
raining (80%) and a subset for testing (20%); but, in addition, to adjust
9

he hyperparameters of the system (batch size and learning rate), the h
training set is also subdivided in two parts: one for training only and
one for validation (10% of the initial training subset). The use of these
three divisions is as follows:

• Training subset: used to find the correspondence between inputs
and outputs of the network, adjusting the weights of the neurons’
connections.

• Validation subset: used to validate the partial classification result
of the network and serve as a goodness-of-fit aid for the real-time
system in order to adjust hyperparameters.

• Testing subset: used to evaluate the final classification results. No
neurons’ connections weight adjustment can be performed at this
point. The results obtained are used as the classifier final results.

However, as the division of these subsets is done randomly, slightly
different results may be obtained in different training sessions. There-
fore, cross-validation technique is applied to generate 10 random (and
non-matching) combinations of training and test subsets. The results
presented in the manuscript correspond to the arithmetic mean of the
values obtained in these ten combinations.

Before checking the results it is important to mention that, after
relabelling the samples in which we calculate the variation of the
perceived exertion (instead of the absolute states), the four classes are
not balanced. In fact, the classes with the most extreme values (−1 and
2) have few occurrences compared to the intermediate classes (0 and
). This is due to the fact that, in 10-minute stretches for the tasks
erformed by the workers, the perceived exertions were not of very

igh or very low intensity, but of intermediate intensities. Therefore,
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o

n

Table 9
RPE for users 6–8 with 500-epoch network after each 10-min period. 𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠): RPE from the questionnaires. 𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟): variation from previous checkpoint. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑: network
utput (variation from previous checkpoint). 𝐴𝑐𝑢𝑚: accumulative estimation using the outputs of the network from the beginning to this point.
User Task Value 10’ 20’ 30’ 40’ 50’ 1 h 1 h 10’ 1 h 20’ 1 h 30’ 1 h 40’ 1 h 50’ 2 h 2 h 10’ 2 h 20’ 2 h 30’ 2 h 40’ 2 h 50’ 3 h

6

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

11
+2
+2
11

13
+2
+2
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+0
15

16
+0
+0
15

17
+1
+0
15

17
+0
+0
15

18
+1
+0
15

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+7
7

8
+1
+1
8

8
+0
+1
9

9
+1
+1
10

10
+1
+1
11

10
+0
+1
12

10
+0
+0
12

10
+0
+0
12

11
+1
+1
13

11
+0
+0
13

12
+1
+1
14

12
+0
+0
14

12
+0
+0
14

12
+0
+0
14

12
+0
+1
15

12
+0
+0
15

7

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

9
+1
+0
8

9
+0
+0
8

9
+0
+0
8

10
+1
+1
9

10
+0
+0
9

10
+0
+0
9

11
+1
+1
10

12
+1
+1
11

12
+0
+0
11

12
+0
+0
11

13
+1
+1
12

14
+1
+1
13

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

8
+1
+0
7

8
+0
+0
7

8
+0
+0
7

8
+0
+0
7

9
+1
+0
7

9
+0
+0
7

9
+0
+0
7

9
+0
+0
7

9
+0
+0
7

9
+0
+0
7

10
+1
+0
7

10
+0
+0
7

10
+0
+0
7

10
+0
+0
7

10
+0
+0
7

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

8
+1
+0
7

8
+0
+0
7

9
+1
+1
8

10
+1
+1
9

10
+0
+0
9

10
+0
+0
9

11
+1
+1
10

11
+0
+0
10

11
+0
+0
10

12
+1
+1
11

12
+0
+0
11

12
+0
+0
11

12
+0
+0
11

8

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

7
+1
+0
6

7
+0
+0
6

7
+0
+0
6

7
+0
+0
6

7
+0
+0
6

7
+0
+0
6

8
+1
+1
7

8
+0
+0
7

10
+2
+2
9

11
+1
+1
10

11
+0
+0
10

11
+0
+0
10

12
+1
+1
11

12
+0
+0
11

12
+0
+0
11

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

8
+0
+0
8

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

11
+2
+2
11

12
+1
+1
12

12
+1
+1
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

14
+1
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

15
+1
+1
14

14
-1
-1
13

14
+0
+0
13

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

11
+1
+1
11

12
+1
+1
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

13
-1
-1
13

15
+2
+2
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+1
16
in a 10-minute stretch for a physical activity of medium intensity, it is
usual for the worker to experience qualitatively no increase in fatigue
(class 0) or a slight increase (class 1).

As this is a problem caused by the dataset and the activities carried
out, we have maintained the unbalancing of the classes, as it is adapted
to a real case where the tasks involve a slight variation in fatigue in
10-minute stretches (if this were not the case, the worker would not be
able to complete the working day satisfactorily).

After this clarification and using the parameters aforementioned for
the neural network, we firstly apply a 500-epoch training and then use
a random 20% of the dataset for testing and evaluate the validity of the
model, with the metrics explained in Section 2.3. After this approach,
we then applied the same process but using a 1000-epoch training for
each of the three task dataset.

A quick summary about the accuracy tendency during the training
process of each neural network (one for each activity) can be observed
in Fig. 3.

The results obtained for PA task dataset with 500- and 1000-epoch
training are shown in Table 5.

According to these metrics, for 500-epoch training, the overall error
is very close to zero, as well as for each classification class. We can
observe that classes −1 and 2 obtain a 100% accuracy because of the
few occurrences that those classes have; but in the intermediate classes
the accuracy results are very high too (more than 92%). However, for
the class 1 the parameter 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is low because of the relatively
high amount of 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 with respect of the 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠; this
metric does not affect the accuracy as the amount of 𝑡𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
is very high (and that situation mitigate the problems caused by the
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠). However, the final metrics obtained in this case
show acceptable results: 96.1% 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 92.3% 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 97.4%
𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦, 92.3% 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 92.3% 𝐹1𝑠𝑐𝑜𝑟𝑒.

To solve the problems detected before for the class 1, the neural
10

etwork is trained with 1000 epochs. For this case, results improve
significantly, obtaining a perfect classification without any sample
misclassified. So all the evaluation metrics obtain a value of 100%.

The same processing is performed for the network related to SPI
task dataset. The results obtained are presented in Table 6.

For the 500-epoch training, results are similar to the ones obtained
for PA task. We can observe that class 1 obtains a 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 results
very low, because of the amount of 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 classified. For this
task, as there are more misclassifications than the previous one, more
errors are observed for the intermediate classes, obtaining acceptable
but lower results for the metrics used to evaluate the system: 91.7%
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 85.2% 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 93.8% 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦, 82.1% 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and
83.6% 𝐹1𝑠𝑐𝑜𝑟𝑒.

However, as observed before, the 1000-epoch training obtains a
more accurate neural network. For this task, there is not a perfect classi-
fication (as observed for PA task), but the results improve significantly.
The results obtained increase around 5% in all metrics with this second
network.

Finally, following the same process, evaluation metrics for MMH
task dataset are exposed in Table 7.

In this case, there is a difference: as can be observed, MMH task
requires more time to be performed (or has be performed during more
time) because this dataset has more samples than the others. However,
the behaviour around the classes distribution is the same: the most
populated classes are 0 and 1, but there are more samples on these
classes. Working with a larger dataset allow us to better generalize the
system behaviour. In fact, as there are more samples, the 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
cases are reduced in a significant way; so the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 parameter has
a higher value for this task. However, as detailed in the previous cases,
performing a 1000-epoch training improves the results obtained as can
be seen in Table 7.

For all three task datasets, it can be observed that evaluation metrics
are worse for classes of 0 and 1, while classes of −1 and 2 obtain an
error of zero for all metrics. That case was commented at the beginning,
but it can be summarized that it is due to the fact that the number of
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Table 10
RPE for users 2–5 with 1000-epoch network after each 10-min period (participant 5 did not perform SPI task). 𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠): RPE from the questionnaires. 𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟): variation from
revious checkpoint. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑: network output (variation from previous checkpoint). 𝐴𝑐𝑢𝑚: accumulative estimation using the outputs of the network from the beginning to this
oint.
User Task Value 10’ 20’ 30’ 40’ 50’ 1 h 1 h 10’ 1 h 20’ 1 h 30’ 1 h 40’ 1 h 50’ 2 h 2 h 10’ 2 h 20’ 2 h 30’ 2 h 40’ 2 h 50’ 3 h

2

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

8
+1
+1
8

9
+1
+1
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

10
+1
+1
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

7
+0
+0
7

8
+1
+1
8

9
+1
+0
8

9
+0
+0
8

9
+0
+0
8

10
+1
+1
9

10
+0
+0
9

11
+1
+1
10

11
+0
+0
10

12
+1
+1
11

12
+0
+0
11

13
+1
+1
12

13
+0
+0
12

14
+1
+1
13

14
+0
+0
13

15
+1
+1
14

15
+0
+0
14

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+1
+1
7

8
+1
+1
8

8
+0
+0
8

9
+1
+1
9

9
+0
+0
9

9
+0
+0
9

10
+1
+1
10

10
+0
+0
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

14
+1
+1
15

15
+1
+1
15

15
+0
+0
15

3

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

10
+1
+1
10

12
+2
+2
12

12
+0
+0
12

13
+1
+1
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+1
16

17
+1
+1
17

17
+0
+0
17

17
+0
+0
17

17
+0
+0
17

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

9
+2
+2
9

11
+2
+2
11

12
+1
+1
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

15
+1
+0
14

16
+1
+0
14

16
+0
+0
14

17
+1
+0
14

17
+0
+0
14

17
+0
+1
15

18
+1
+1
16

18
+0
+1
17

19
+1
+1
18

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

9
+0
+0
9

10
+1
+1
10

11
+1
+1
11

13
+2
+2
13

14
+1
+1
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

4

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

10
+2
+2
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

12
+2
+2
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

10
+1
+1
10

9
-1
-1
9

11
+2
+2
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

10
+1
+1
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

13
+1
+1
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

5

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

11
+2
+2
11

11
+0
+0
11

10
-1
-1
10

11
+1
+1
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
13

15
+1
+1
15

14
-1
-1
14

15
+1
+1
15

15
+0
+0
15
samples for the first and last classes are much less than for the classes
of 0 and 1, since it is less likely that the physical fatigue decreases in
one during effort, or that it increases in two in such a short time as
10 min.

In order to evaluate the performance of the perceived exertion
model, confusion matrices for all three tasks for the case of 500-epoch
training are shown in Fig. 4 for the three tasks.

With the confusion matrices, we can appreciate that the few errors
occur between the medium values of 0 and 1, which indicates that the
error is acceptable, since the model does not classify a 0 value as 2 or
vice versa. Following the same steps, the confusion matrices are shown
for all three test datasets for a 1000-epoch training in Fig. 5 for the
three tasks.

As expected, results are better with a 1000-epoch training than
the ones obtained with a 500-epoch training, even for PA dataset,
where there are no errors; although, for SPI dataset three mistaken
classification occur from estimating a variation label of 1 as 0, and one
classification error takes place for MMH dataset predicting a variation
of 0 as 1.

As a final aspect to analyse the system proposed in this work, and
relating the results to the study of perceived exertion during the full
working day, an exhaustive study has been carried out comparing the
accumulation of the partial classifications of effort for each worker
independently. In this way, at the end of the working day, we are
able to compare the variation of absolute perceived exertion (by means
of partial accumulations of ratings every 10 min) with respect to the
absolute values labelled in the original dataset.
11
This study, although it does not provide an additional classification
or additional information on the system, helps us to observe qualita-
tively the variation of the cumulative model with respect to the labelled
model. We recall at this point that, in previous works, this dataset has
been used to classify on the basis of absolute values but, according
to the results obtained, there is no direct relationship; this is why the
cumulative model, after the results shown above, shows that it is the
ideal one for this type of system. The study was performed to all the
workers, but due to errors in the recording process, participant 1 is
not included. Results are shown in Table 8 (users 2–5) and Table 9
(users 6–8) for the 500-epoch training; and in Table 10 (users 2–5) and
Table 11 (users 6–8) for the 1000-epoch training. After this evaluation,
the summary of the results obtained for all the workers is presented.

As can be observed in Tall those tables, the first two rows of each
activity indicate the real RPE value obtained from the questionnaires
after each 10-minute evaluation, and the RPE variation between one
time period to another. The next rows are the results related to the
classification system: the third one is the output of the classifier (RPE
variation) and the fourth is the accumulate RPE from the beginning
(that cam be compared with the real RPE obtained from the question-
naires). Values coloured in green are those whose values (RPE variation
and RPE accumulated) are exactly the same as the real ones; values
in red are those related with misclassifications of the neural network
(RPE variation classified does not correspond to real RPE variation);
and values in yellow indicate those classifications where the classifier
hit but, because of a previous miss the RPE accumulated is not the same
as the real one. It is important to mention that, for the neural network,
only those values coloured in red are harm the accuracy results.
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Table 11
RPE for users 6–8 with 1000-epoch network after each 10-min period. 𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠): RPE from the questionnaires. 𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟): variation from previous checkpoint. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑: network
utput (variation from previous checkpoint). 𝐴𝑐𝑢𝑚: accumulative estimation using the outputs of the network from the beginning to this point.
User Task Value 10’ 20’ 30’ 40’ 50’ 1 h 1 h 10’ 1 h 20’ 1 h 30’ 1 h 40’ 1 h 50’ 2 h 2 h 10’ 2 h 20’ 2 h 30’ 2 h 40’ 2 h 50’ 3 h

6

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

9
+0
+0
9

11
+2
+2
11

13
+2
+2
13

14
+1
+1
14

14
+0
+0
14

14
+0
+0
14

14
+0
+0
14

15
+1
+1
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+1
16

16
+0
+0
16

17
+1
+1
17

17
+0
+0
17

18
+1
+1
18

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+7
7

8
+1
+1
8

8
+0
+0
8

9
+1
+1
9

10
+1
+1
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

11
+1
+1
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

7

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

9
+1
+1
9

9
+0
+0
9

9
+0
+0
9

10
+1
+1
10

10
+0
+0
10

10
+0
+0
10

11
+1
+1
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

13
+1
+1
13

14
+1
+1
14

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

8
+1
+1
8

8
+0
+0
8

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

9
+0
+0
9

10
+1
+1
9

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

10
+0
+0
10

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

9
+1
+1
9

10
+1
+1
10

10
+0
+0
10

10
+0
+0
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

12
+0
+0
12

8

PA

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

6
+0
+0
6

6
+0
+0
6

6
+0
+0
6

7
+1
+1
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

7
+0
+0
7

8
+1
+1
8

8
+0
+0
8

10
+2
+2
10

11
+1
+1
11

11
+0
+0
11

11
+0
+0
11

12
+1
+1
12

12
+0
+0
12

12
+0
+0
12

SPI

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

8
+0
+0
8

8
+0
+0
8

8
+0
+0
8

9
+1
+1
9

11
+2
+2
11

12
+1
+1
12

12
+1
+1
12

13
+1
+0
12

13
+0
+0
12

13
+0
+0
12

14
+1
+1
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

14
+0
+0
13

15
+1
+1
14

14
-1
-1
13

14
+0
+0
13

MMH

𝑅𝑒𝑎𝑙 (𝑎𝑏𝑠)
𝑅𝑒𝑎𝑙 (𝑣𝑎𝑟)
𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑
𝐴𝑐𝑢𝑚

11
+1
+1
11

12
+1
+1
12

13
+1
+1
13

13
+0
+0
13

13
+0
+0
13

14
+1
+1
14

13
-1
-1
13

15
+2
+2
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

15
+0
+0
15

16
+1
+1
16
Table 12
Accuracy comparison with other classifiers using the same preprocessing chain and the
same extracted features from the dataset.

Accuracy SVM RNN NN
(500-epoch)

NN
(1K-epoch)

PA task 81% 92.3% 96.1% 100%
SPI task 77% 74.1% 91.7% 94.2%
MMH task 66% 82.8% 93.7% 98.4%

If we take into account only the absolute RPE obtained after the
omplete work activity, nine of the twenty cases presented in Tables 8
nd 9 obtain a 0% error, seven obtain a 5% error (as the Borg scale
aximum value is 20), one obtains a 10% error and three obtain a 15%

rror. If we check the results for all the participants of the dataset, the
ean error obtained in the absolute RPE value at the end of every work

ask is 4.25%.
The same study was performed with the full dataset using the neural

etwork trained after 1000 epochs. As could be observed in the results
ables and the confusion matrices, the results improve. However, the
ame is study for users 2 to 8 is presented in Tables 10 and 11. As
an be observed in those tables, misclassifications are reduced in all
he users (with the exception of user 3). For the 1000-epoch trained
etwork, seventeen of the twenty cases presented in Tables 10 and 11
btain a 0% error and the other three obtain a 5% error (only fail in
ne classification). If we check the final results for all the participants,
he mean error obtained in the absolute RPE value at the end of every
ork task is less than 1% (0.75%).

With these two accumulative studies we can affirm that the clas-
ification system based on RPE variations every 10-minute window is
uitable for estimating absolute RPE with an error less than 1% for the
est system and 4.25% for the worst system.
12
However, classical neural networks are not the only technology that
allows the design of such classifiers. As we will see in the next compar-
ison with previous works, there are multiple statistical and/or artificial
intelligence mechanisms that can help in this task. To corroborate that
the mechanism used in this work is indeed the most adequate, the same
preprocessing and feature extraction has been applied to two other
classifiers: a simpler classifier (SVM) and a more complex one (RNN).
The summary of the results can be seen in Table 12.

Finally, after presenting and analysing the results of the RPE es-
timation system to detect physical fatigue, we show a comparison in
Table 13 with similar studies related to the prediction of physical effort
in work environments. The works presented have some differences
between them: sensors used, tasks performed and collected in the
dataset used, technology used for the classification system and metric
classified. However, there are not very much works similar to this in the
area, and that is the reason some of them have important differences.

As can be observed in Table 13, the first improvement of this
work compared with last years’ studies is the accuracy obtained with
the neural network model. Although the main difference between our
system and the others is the partial RPE classification as the variation
between one period to the next one, we have experimentally verified
that this classification can be used to estimate the absolute RPE value
(calculated as the accumulate value of the predicted variation between
each time window). So, our system obtains the best accuracy results
from all of the works included in the comparison. Moreover, the results
presented in Table 13 are the ones regarding the 500-epoch training
neural network; so, using the second implementation presented in this
work, the results would be much better.

On the other hand, in other works with a high accuracy (Baghdadi
et al., 2018; Karvekar et al., 2019; Zhang et al., 2013), the classification
system is trained to detect only binary fatigue (no fatigue vs. fatigue),
which does not give such a precise fatigue result. Other investigations
have predicted Borg’s RPE values from 6 to 20; however, as the number
of classes to classify increases, the accuracy gets worse. That are the
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Table 13
Comparison with recent works.

Study Year Sensors Tasks Technology Detection Accuracy

Zhang et al. 2013 IMU Squatting
Walking

SVM Binary fatigue 96%

Baghdadi et al. 2018 IMU MMH SVM Binary fatigue 90%

Karvekar et al. 2019 IMU Walking SVM Binary fatigue
4 classes

91%
65%

Nasirzadeh et al. 2020 HR PA, SPI, MMH

NN
KNN
NB
DT
RF
RI
LiR
LoR
LDA

RPE

90.4%, 69.4%, 77.8%
86.6%, 60.5%, 73.7%
79.9%, 51.1%, 64.7%
85.3%, 58.4%, 72.9%
86.6%, 60.4%, 75.9%
87.8%, 71.9%, 79.7%
86.2%, 64.7%, 77.3%
82.8%, 59.2%, 77.7%
87.6%, 66.0%, 77.3%

Sedighi Maman et al. 2020 IMU
HR SPI, MMH

RF
BAG
BO
SVM
LoR
PLoR

RPE

89.7%, 87.9%
88.6%, 87.0%
88.0%, 87.0%
78.7%, 82.0%
62.4%, 77.8%
80.0%, 85.9%

Darbandy et al. 2020 HR MMH KNN RPE 78.2%

Lambay et al. 2021 IMU
HR

SPI, MMH RNN Binary fatigue 65%

Kuschan and Krüger 2021 IMU PA SVM 3-class CR10
5-class CR10

93.3%
83.8%

This work (500-epoch) 2021 IMU PA, SPI, MMH NN RPE 96.1%, 91.7%, 93.7%

This work (1000-epoch) 2021 IMU PA, SPI, MMH NN RPE 100%, 94.2%, 98.4%

Legend:
IMU: Inertial Movement Unit HR: Heart Rate
PA: Part Assembly SPI: Supply Pickup and Insertion MMH: Manual Material Handling
SVM: Support Vector Machine NN: Neural Network KNN: k-Nearest Neighbours
NB: Naive Bayes DT: Decision Tree RF: Random Forest
RI: Rule Induction LiR: Linear Regression LoR: Logistic Regression
LDA: Linear Discriminant Analysis BAG: Bagging BO: Boosting
PLoR: Penalized Logistic Regression RNN: Recurrent Neural Network
RPE: Rating of Perceived Exertion CR10: Normalized 0–10 Borg Scale
ases of works (Darbandy et al., 2020; Nasirzadeh et al., 2020; Sedighi
aman et al., 2020).

And, finally, there are other works that try to classify the RPE
bsolute value (Lambay et al., 2021). However, the experience obtained
fter this work shows that the calculation of the absolute RPE value
hrough partial accumulations is more effective and better results are
btained.

If we analyse the similarities of our system with the others, we can
ind that the most common activities proposed to the participants are
A, SPI and MMH; but not all the papers use all the activities: the
ost used is MMH, and few are the papers that include the PA activity.

urthermore, with regard to the subjective scale of perceived fatigue,
he Borg scale (in its classic version from 6 to 20, or in its standardized
ersion CR10 from 0 to 10) is the most widely used. However, because
he scale encompasses multiple values, it is common for studies to
educe the number of classes (grouping values close together) in order
o obtain better results. Finally, regarding the sensors used to measure
ctivity, our work uses the most common sensor (IMU), as it is the
ensor whose response is most closely linked to physical activity. It is
rue that heart rate also varies, but it is a subject-dependent variable
a fitter worker would have less variation in heart rate than a less fit
orker, even if both were doing the same activity).

Finally, if we focus on the differences found between this work
nd previous works, it is worth highlighting the use of classical neural
etworks (which are only used in one previous work) and the inclusion
13
of features extracted from frequency components (only one previous
work uses frequency components, but it uses the Fourier transform,
while this work applies the DWT). Last but not least, the calculation
of the final fatigue as the accumulation of fatigue variations over
the day is only used in this work. Other works make intermediate
measurements, but provide absolute (not relative) values.

With the approach proposed in this study about predicting the
RPE variation values between 10-minute time windows, we obtain
less classes, which gives a higher accuracy than studies that predicted
absolute RPE values. Furthermore, as we calculate RPE values from the
predicted variations, we can obtain a better precision than those works
that only detected between fatigue and non-fatigue state.

4. Conclusions

In this work, the importance of monitoring the fatigue state of a user
is presented and analysed. This task is of particular interest to workers
who perform physical tasks that cause heavy physical wear and tear.

Using a public dataset containing information from several workers
performing three different tasks on several occasions during temporary
periods of 3 h duration, a Machine Learning system has been designed,
implemented and tested for the automatic classification of the varia-
tions of the perceived exertion during the time slots labelled in the

dataset (of 10 min duration).
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For this purpose, a frequency study of the variation of the different
sensors within the time slots has been carried out, extracting the most
relevant features that are used as inputs of the neural network.

The classification results for 500 and 1000 epochs training show
positive results in the accuracy of the system (over 91% in all cases),
which demonstrates that this system is viable for use as a detector of
the worker’s state of fatigue.

In order to obtain the absolute fatigue results, the system has been
evaluated by accumulating the partial classification results of each time
slot, in order to obtain the final absolute fatigue value for each user and
compare it with the labelled values of the dataset. The results show
an error of less than 3% in all cases, supporting the feasibility of the
system.

If we compare this work with other similar works in the field of
worker fatigue classification, the results show an improvement in all
cases. Moreover, in other works, fatigue levels are reduced to improve
the results or classification mechanisms of the absolute value of fatigue
(not relative) are used; but, even so, the results of this work are better
compared to them.

Finally, it can be concluded that a relationship between physical
activity and fatigue using the information provided by inertial sensors
has been established, demonstrating the usefulness of this system. For
future work, this system will be integrated in an embedded system to
provide real-time recommendations; and, on the other hand, it will be
adapted to study the fatigue in pathologies that cause a sudden increase
in physical fatigue (such as chronic fatigue syndrome).
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