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a b s t r a c t 

Depth-averaged models, such as the Savage-Hutter model with Coulomb or Pouliquen fric- 

tion laws, do not in some cases preserve the physical threshold of motion. In particular, the 

simulated granular mass can start to flow (or stay at rest) even if the slope angle of its free 

surface is lower (or higher) than the repose angle of the granular material involved. The 

problem is related to the hydrostatic pressure assumption, associated with the direction of 

integration, which is orthogonal to a reference plane or a reference bottom. We propose 

here an initial method to correct this misleading behavior. Firstly, we define a correction 

of the friction term that accounts for the Jacobian of a change of coordinates, making it 

possible to reproduce the physical threshold of motion and thus the solutions at rest. Sec- 

ondly, we observe that the 3D model presented in [F. Bouchut, I. Ionescu, and A. Mangeney. 

An analytic approach for the evolution of the static-flowing interface in viscoplastic granular 

flows. Commun, Math. Sci. , 14(8):2101–2126, 2016] verifies the physical thresholds of mo- 

tion because it is based on a second order correction of the pressure valid for slow granu- 

lar flows. The correction proposed here ensures that the model preserves, up to the second 

order, the physical threshold of motion defined by the repose angle of the material. Sev- 

eral numerical tests are presented to illustrate certain problems related to classical depth 

averaged models and the remedial effect of the proposed correction, in particular through 

comparisons with experimental data. We finally show that this correction is not exact far 

from the starting and stopping phases of the granular avalanche and should be improved 

by adding other second order terms in the pressure approximation. 
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1. Introduction 

Because of their low computational cost, depth-averaged shallow models are often used to describe gravitational gran- 

ular flows at laboratory and field scales, based on the pioneering model proposed by Savage & Hutter [1] . In this model, the

flow is assumed to be thin in the direction normal to the topography compared to its length along the slope. To implement

this approximation, local coordinates are introduced, associated with a reference plane following the slope, and the govern- 

ing equations are averaged in the direction perpendicular to this plane. In depth-averaged shallow models, the rheology is 

reduced to the friction boundary condition at the bottom, i.e. at the interface between the base of the granular layer and

the topography. This so-called basal friction law must be consistent with the rheology of the granular material involved. 

Despite extensive work, the definition of rheological laws for granular materials is still an open issue [2] . The simplest

law describing granular flows is based on the Coulomb friction law that describes both the resistance due to friction during

the flow and the threshold of motion [1] . These laws imply that 

τ = −τc sgn (u ) if | τ | ≥ τc , 

u = 0 otherwise, 
where τc = μ | σn | and sgn (u ) = 

u 

| u | , (1) 

where u is the velocity of the granular material and σ the stress tensor. Then, if the material flows, the shear stress τ is

proportional to the normal stress σn through a friction coefficient μ that depends on the nature of the granular material 

involved and, when applied at the flow/topography boundary, on the nature of this interface (e.g. roughness). 

An important characteristic of the behavior of granular materials is the hysteresis that occurs near the transition between 

flowing and static states. This is observed in particular for a granular layer of thickness h on an inclined plane. If this

layer is initially at rest, in order to make the material flow, the inclination angle of the plane has to be increased up to a

critical angle θstart (also called the avalanche angle ). To make the flow stop, this inclination has to be decreased down to a

lower critical angle θstop (the repose angle ), i.e. θstop < θstart . In between these two angles hysteretic behavior is observed.

Laboratory experiments show that these angles depend on the thickness of the granular layer [3–5] . This dependence is

weak for large thicknesses (more than 20 times the grain diameter) and very strong for shallow layers for which θstop and

θstart strongly increase as the layer thickness h decreases [2,3] . Associated static and dynamic friction coefficients, describing 

the threshold of motion, can be defined: μstart = tan (θstart ) and μstop = tan (θstop ) . 

The so-called μ(I) -rheology, introduced experimentally in [6] and defined by Jop et al. in [7] , is widely used because

of its simplicity and its capacity to reproduce many experimental results. This law defines the internal friction coefficient 

μ in (1) in terms of the dimensionless number I (ratio of the characteristic time for microscopic rearrangements to the 

characteristic time for macroscopic deformations). This number, called inertial number in [8] , and the associated friction 

coefficient are defined as follows: 

I = 

d ˙ γ√ 

p/ρg 

; μ(I) = μ1 + 

μ2 − μ1 

I 0 + I 
I, (2) 

where ˙ γ is the shear rate, p is the pressure, and d and ρg the diameter and density of the grains, respectively. The constant

parameters I 0 , μ1 and μ2 ( μ1 < μ2 ) depend on the granular material involved [7] . 

Note that for inertial numbers close to zero, μ(I) reduces to μ1 which is the minimum value of the friction coefficient

and can thus be considered as the threshold of motion (see Eq. (1) ). The hysteresis behavior and the dependence of the

threshold on the layer thickness are not considered in the μ(I) -rheology. This is one of the limitations of this rheological

law [2] . 

The hysteresis detailed above has been empirically described in the basal friction law proposed by [3,9] , deduced from

laboratory experiments for depth-averaged models. The basal friction law is based on Eq. (1) applied at the base of the

flow with a basal friction coefficient μ = μb = μP that depends on the velocity u and on the thickness h of the flow. This

friction coefficient is defined for different regimes based on the values of the Froude number Fr = 

| u | √ 

gh 
, 

If Fr > β : μP = μstop 

(
h 

β

Fr 

)
, 

if 0 ≤ Fr ≤ β : μP = μstart ( h ) + 

(
Fr 

β

)
γ
(
μstop (h ) − μstart (h ) 

)
, 

(3) 

with 

μstop (h ) = tan δ1 + ( tan δ2 − tan δ1 ) 
1 

1 + 

h 
L 

; μstart (h ) = tan δ3 + ( tan δ2 − tan δ1 ) 
1 

1 + 

h 
L 

. 

The friction angles δ1 , δ2 , δ3 and the values of the parameters involved are measured empirically for glass beads [3] : β =
0 . 136 , L = 0 . 65 mm , γ = 10 −3 , δ1 = 21 o , δ2 = 30 . 7 o , δ3 = 22 . 2 o . 

This model allows the granular mass to flow when the threshold related to the static friction coefficient μstart is reached

and to stop for the threshold related to μstop (see also [4,5] ). This basal friction law is also compatible with the μ(I) -

rheology for the regime Fr > β when steady uniform flows occur. The previous μ(I) model can be matched for particular

choices of the parameters I and L where the angles δ and δ correspond respectively to the coefficients μ and μ in 
0 1 2 1 2 
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(2) , (see [10] for details). As a result, this empirical law describes key processes that are not accounted for in the simpler

Coulomb friction law with a constant basal friction coefficient 

μb = μC = tan δ0 , (4) 

as used in the pioneer Savage & Hutter model [1] 

As already mentioned, numerical models for gravitational flows based on the shallow approximation (i.e. hydrostatic 

pressure) have been shown to provide reasonable results when compared to laboratory and field observations [11] . As these

shallow models are used extensively to simulate lab-experiments and assess hazards related to real landslides, it is cru- 

cial to fully understand their limitations in order to quantify the associate errors and identify new directions for model 

improvement. 

Because of their simplicity and low computational cost, these models are often applied to granular flows that are not 

always suitable for the shallow approximation. For example, in a dam-break situation or for real landslides, the released 

mass may not be shallow at the initial instants, involving strong non-hydrostatic effects [12,13] . In these situations, shallow

models are known to overestimate the flow velocity even though they capture well the final deposit shape and runout 

distance [14] . Furthermore, even if the flow is shallow, this approximation may not be suitable during the stopping phase.

Indeed, other terms may then become important, for example additional terms in the pressure derivation involving thickness 

gradients [15] . These terms, leading to non-hydrostatic pressures are neglected in the first order asymptotic approximation, 

O(ε ) , where ε is the typical shallow thickness/length ratio. In the classical asymptotic analysis, it is assumed that μb is of

order ε γ for some γ > 0 . This assumption and the hydrostatic pressure approximation make it possible to approximate the

Coulomb friction term up to O(ε 1+ γ ) . Nevertheless, note that when μb is of order one, O(1) , which is generally the case,

it is necessary to consider higher order approximations of the bed pressure in the definition of the Coulomb friction term 

[16] . 

In this paper, we focus on how shallow models tackle the threshold of motion in granular flows over sloping beds and we

identify the key misleading behaviors of such models. The motion criterion ensures that the material flows when the driving 

forces - gravity, pressure gradients and inertia - exceed the friction force related to the Coulomb threshold (see Eq. (1) ) [4,5] .

When the flow is not uniform, the thickness gradient (i.e. hydrostatic pressure gradient) may play a significant role in the

force balance, especially during the starting phase, near the front or during the stopping phase [4] . We show here that

shallow (i.e. hydrostatic) models based on the integration of the equations in the direction normal to the topography fail to

describe the motion threshold in certain situations. For example, the material may start to flow even if its surface gradient

is smaller than the avalanche angle. This problem is related to the approximation of the bed pressure in the definition of the

Coulomb friction term, which modifies the motion criterion. As presented in [15] , a second order approximation of the bed

pressure includes the thickness gradient, leading to non-hydrostatic pressure. In 3D models the static equilibrium condition 

depends on the derivative of the pressure in the direction normal to the topography and not only on the bed pressure, as

in depth-averaged shallow models. In this paper we show that the static equilibrium criteria deduced for the 3D model 

proposed in [15] coincides with one of the depth-averaged models when including the proposed correction of the friction 

term. 

After presenting the model and coordinate system for granular flows over a 1D topography in Section 2 , we explain

the limitation of shallow flow models in terms of their capacity to handle the threshold of motion and propose a new

direction to modify the motion criterion ( Section 3 ). This is done in two subsections. The first deduces the definition of

the friction term from the preservation of the stationary solutions of the model. The second shows that this correction 

implies that the static equilibrium condition coincides with the criteria of the 3D model introduced in [15] , where a second

order correction of the pressure is considered. Then, in Section 4 , we extend the model and the modification of the motion

criterion to granular flows on 2D topography. Firstly the general case is presented, where the computed thickness of the 

granular flow is perpendicular to the bottom and curvature terms are considered. Secondly, a particular case, defined in 

terms of a reference plane, is presented. This section finishes with a proof that (1) the 1D models exactly preserve the

physical solutions at rest defined by the repose angle of the material, and (2) the 2D models preserve them up to second

order in terms of ε, the ratio between the characteristic thickness and along-slope length of the granular flow. Finally, in

Section 5 we show numerical results highlighting the problems related to the threshold of motion and how the modified 

criterion affects the simulations. The results and the limitation of the proposed modification are discussed on the basis of 

comparison with 2D and 3D laboratory experiments. 

2. Model equations and coordinate system 

For clarity we first focus on the 1D case. Cartesian coordinates are denoted by � x = (x, z) . As in classical models, we

consider a granular mass over an inclined plane of slope θ . The reference plane is then determined by a fixed point ( ̄x , ̄z )

and its slope tan θ ( Fig. 1 (b)). As in our previous work [17] , for every point M in the grain layer, we introduce the coordinates
�
 X = (X, Z) , X being the abscissa of the orthogonal projection of M onto the reference plane and Z being the distance from

M to the reference plane (see Fig. 1 (a)). The relation between Cartesian coordinates � x and 

�
 X coordinates is 

�
 x = (X − Z sin θ, B̄ (X ) + Z cos θ ) , (5) 
629
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Fig. 1. Coordinates and notation of the system. 

 

 

 

 

 

 

 

 

 

 

 

where B̄ (X ) is the level of the reference plane: 

B̄ (X ) = z̄ + tan θ (X − x̄ ) . (6) 

The fixed topography is defined by ˜ B (X ) as the distance, with sign, of the bottom level to the reference plane. Note that

B̄ (X ) + ̃

 B (X ) cos θ designates the vertical distance (with sign) from the bottom to the abscissa axis. 

As already mentioned, we focus on the depth-averaged shallow model developed to describe granular flows. We use here 

the Savage-Hutter model [1] as the base model for our case study by assuming isotropy of normal stresses ( σxx = σzz ). 

This model can be written in 

�
 X coordinates in the following form: ⎧ ⎨ ⎩ 

∂ t H + cos θ ∂ X (HU) = 0 , 

∂ t (HU) + cos θ∂ X (HU 

2 ) = −gH cos θ
(
∂ X B̄ + ∂ X ( ̃  B + H) cos θ

)
− P b μb sgn (U) , 

(7) 

where H = H(X, t) denotes the thickness of the granular mass perpendicular to the reference plane, U = U(X, t) the velocity

component parallel to the reference plane and μb the basal friction coefficient given by one of the laws (4) or (3) , already

presented and 

P b = 

p b 
ρ

, 

where p b is the bed pressure (i.e. normal stress) involved in the friction term. In most models, the pressure is assumed to

be hydrostatic. Let us denote the hydrostatic bed pressure as P bh = p bh /ρ , then 

P b = P bh = gH cos θ . 

Inertial forces are on the left hand side of the momentum equation while the right hand side corresponds to the force of

gravity parallel to the plane (first term), the hydrostatic pressure force linked to the thickness gradient (second term), and 

finally the friction force. 

Remark 1. Note that the local coordinates of a point M are given by (X/ cos θ, Z) when using the above notation. By denot-

ing ˆ X = X/ cos θ and taking into account that ∂ X B̄ = tan θ , the Savage-Hutter system is written in its original local coordinates

as follows: { 

∂ t H + ∂ ˆ X 
(HU) = 0 , 

∂ t (HU) + ∂ ˆ X 
(HU 

2 ) = −gH cos θ
(

tan θ + ∂ ˆ X 
( ̃  B + H) 

)
− P b μb sgn (U) . 

(8) 

For the sake of comparison with the model proposed in [1,18] , note that θ is measured with the opposite sign. 

3. Reasons for the friction correction 

In depth-averaged models, the interaction between the granular material and the bottom surface is determined by the 

basal friction force. The corresponding stress appears in the momentum equation as a term depending on a basal friction 

coefficient μb multiplied by the normal stress gH cos θ (see last term in the momentum equation in system (7) or (8) ). This

term not only defines the friction effect during the flow but it is responsible of an essential task intrinsic to this problem

which is to provide a threshold of motion for the Coulomb criterion. To better explain this effect and the related proposed

correction, we first consider the simplest case of a constant basal friction coefficient given by Eq. (4) : μb = tan δ0 . In this

case, the hysteresis is not described since μstart = μstop = μb . 
630 
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Fig. 2. A basic example showing the problem with the friction coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The natural threshold of motion for a material initially at rest is given by the repose angle θstart which is here equal to

δ0 . This angle is measured experimentally and corresponds to the limit slope of the free surface of a pile of the granular

material at rest. As a result the material stays at rest when: 

| ∂ x η(x ) | ≤ tan δ0 , (9) 

where η(x ) denotes the free surface. 

Let us now look at the momentum equation of system (7) 

∂ t (HU) + cos θ ∂ X (HU 

2 ) + gH cos θ∂ X 
(
B̄ + ( ̃  B + H) cos θ

)
= −P b μb sgn (U) . (10) 

The solution of the model stays at rest when 

gH cos θ | ∂ X 
(
B̄ + ( ̃  B + H) cos θ

)| ≤ | P b | μb . (11) 

Taking into account that P b = P bh = gH cos θ , the condition reduces to 

| ∂ X 
(
B̄ + ( ̃  B + H) cos θ

)| ≤ μb . 

Note that B̄ (X ) + ( ̃  B (X ) + H(X )) cos θ defines the free surface level η(x (X )) (hereafter called η(x ) ) in Cartesian coordinates

(see Fig. 1 ). So when | ∂ X (η(x )) | > μb , the mass should flow and it should not move when (11) is fulfilled. The same con-

dition (11) is found for the local coordinates because ∂ ˆ X 
( ̃  B + H) = cos θ ∂ X ( ̃  B + H) (see Remark 1 ). The threshold criteria

(11) should correspond to the physical criteria (9) . 

This directly implies the equality | ∂ X (η(x )) | = | ∂ x (η(x )) | . This is however not true for any definition of the � X coordinates

(equivalently, local coordinates). Let us illustrate this with the following basic example. Fig. 2 shows a granular avalanche 

flowing over an inclined plane. Consider two points X 1 and X 2 on the abscissa axis, and the two corresponding points

x i = X i −
(˜ B (X i ) + H(X i ) 

)
sin θ , i = 1 , 2 . If we look at the position of the free surface measured in the vertical direction we

see that 

η(x i ) = B̄ (X i ) + 

(˜ B (X i ) + H(X i ) 
)

cos θ . 

As X 2 − X 1 � = x 2 − x 1 , the slope of the blue line (local) is different from the slope of the red line (cartesian), (
B̄ (X 2 ) + ( ̃  B (X 2 ) + H(X 2 ) 

)
cos θ

)
−

(
B̄ (X 1 ) + ( ̃  B (X 1 ) + H)(X 1 ) 

)
cos θ

)
X 2 − X 1 

� = 

η(x 2 ) − η(x 1 ) 

x 2 − x 1 
. 

Hence, in general | ∂ X 
(
B + ( ̃  B + H) cos θ

)| � = | ∂ x η(x ) | , except for uniform flows for which 

˜ B + H is constant. This means that

the criterion of motion provided by the mathematical model (11) provides an erroneous threshold of motion. In order to get

the right free surface gradient to compare to the avalanche or repose angle, the criterion (11) must be modified and this is

what we propose to focus on below. 

At the free surface, the relation between Cartesian and 

�
 X coordinates is given by x = X −

(˜ B (X ) + H(X ) 
)

sin θ , so we have

∂ X (η(x )) = ∂ X 
(
B̄ (X ) + 

(˜ B (X ) + H(X ) 
)

cos θ
)

= J ∂ x (η(x )) , (12)

where J = ∂ X x = 1 − ∂ X 
(˜ B (X ) + H(X ) 

)
sin θ is the Jacobian of the previous change of coordinates related to the � X coordi-

nates. 

Keeping in mind the above connection between ∂ X η and ∂ x η, Fig. 3 shows pathological situations at the front and at the

rear parts of a typical initial condition of a granular mass on an inclined plane. For simplicity, we consider ˜ B = 0 . At the
631 
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Fig. 3. Pathological situations in the model without correction. Dashed lines have slope μb and dashed-dotted lines have slope ∂ X η. Left: a zoom of the 

front part of the granular avalanche ( J < 1 ); since | ∂ X η| < μb < | ∂ x η| , the avalanche should start flowing but the solution of the model will not. Right: a 

zoom of the rear part ( J > 1 ): then | ∂ x η| < μb < | ∂ x η| , so the avalanche should stay at rest but the solution will move upward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

front part J < 1 ( Fig. 3 (a)) while at the rear part J > 1 ( Fig. 3 (b)). In these figures, the dashed lines (respectively, dashed-

dotted lines) have slope μb (respectively, ∂ X η). In Fig. 3 (b), the granular mass should move downward since | ∂ x η| > μb , but

the solution of the model will not experience any motion because | ∂ X η| < μb . On the contrary, at the rear part ( Fig. 3 (b)),

the granular mass should stay at rest ( | ∂ x η| < μb ), but the model solution starts flowing since | ∂ X η| > μb . As a result, the

stopping criteria fails when 

(J < 1 and | ∂ X η| < μ) or (J > 1 and | ∂ X η| > μ) . 

So, in order to get the right threshold of motion defined by (9) and given that | ∂ x η(x ) | = |J 

−1 ∂ X (η(x )) | , we propose the

following correction of the bed pressure involved in the friction term, 

P b = P b, J = 

p bh 

ρ
|J | = gH cos θ |J | , with J = 1 − ∂ X 

(˜ B (X ) + H(X ) 
)

sin θ . (13)

P b should therefore be replaced by P b, J in model (7) . With this correction, the motion criterion (11) becomes 

| ∂ X (η(x )) | ≤ |J | μ (14) 

which is equivalent to | ∂ x η(x ) | ≤ μb in view of (12) and (13) . Note that P b, J = P bh for uniform flows. 

Note that the value of the Jacobian is affected not only by the variation of H but also by the variation of ˜ B (the distance,

with sign, between the bottom and a given reference plane). In general, to consider a reference plane is appropriate when

the bottom is close to a plane defined by an averaged slope. Nevertheless, the influence of the variation of ̃  B in the definition

of J could be significantly greater than the variation of H in situations where the bottom is far from the reference plane.

In order to study this influence in the numerical test section, we investigate separately the H- and 

˜ B - dependence of J by

introducing the following definition for the ˜ B related correction, 

J ˜ B = 1 − ∂ X 
(˜ B (X ) 

)
sin θ . (15) 

Remark 2. We have illustrated the failure of depth-averaged shallow models to accurately describe the motion threshold by 

first considering a constant basal friction coefficient (4) but the same reasoning can be followed for any other definition of

the friction coefficient. In the case of the more complex law proposed by Pouliquen and Forterre [3] two threshold angles

are considered, θstart and θstop . In any case, these angles are always measured from the horizontal and compared to the free

surface gradient. 

We have illustrated here the imprecision of the threshold motion criterion in depth-averaged models and exposed the 

main reasoning leading to their correction, based on simple geometrical considerations. In the following, we give a more 

formal derivation of this correction ( Subsection 3.1 ) and a possible interpretation of its origin ( Subsection 3.2 ). 

3.1. Formal model deduction of the correction in the friction term 

We will now provide a formal deduction of the correction proposed above (13) based on a depth-averaging process 

including a change of coordinates. For the sake of simplicity, the 1D case is presented. The general correction for 2D models

is presented in Section 4 . 
632 
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The last term of the right hand side of the momentum equation in system (7) corresponds to the bed shear stress of

the avalanche τb obtained after a Z-integration process and considering the Coulomb boundary condition at the bottom. We 

consider the system (7) as the starting point in the following manner: {
∂ t H + cos θ∂ X ( HU ) = 0 , 

∂ t ( HU ) + cos θ∂ X 
(
HU 

2 
)

= −gH cos θ ∂ X 
(
B + 

(
˜ B + H 

)
cos θ

)
− τb 

ρ , 
(16) 

ρ being the density of the granular material and τb the friction term at the bottom to be defined. The idea is to find the

expression of the friction term τb that would lead to the correct threshold of motion (9) . 

To write the above equations in Cartesian coordinates, we introduce the change of coordinates 

(x, t) �→ (X, t) 

where, for each (x, t) , X = X(x, t) is implicitly determined by the equality 

x = X (x, t) −
(˜ B 

(
X (x, t) 

)
+ H 

(
X (x, t) , t 

))
sin θ . (17) 

We use the following notation 

h (x, t) = H 

(
X (x, t) , t 

)
, u (x, t) = U 

(
X (x, t) , t 

)
, 

b̄ (x, t) = B̄ 

(
X (x, t) 

)
and 

˜ b (x, t) = ̃

 B 

(
X (x, t) 

)
. 

Then the Jacobian matrix is 

A := ∇ (x,t) (X, t) = 

(
1 + ∂ x ( ̃ b + h ) sin θ ∂ t ( ̃ b + h ) sin θ

0 1 

)
and the Jacobian of the change of coordinates is ̂ J := det (∇ (x,t) (X, t)) = 1 + ∂ x ( ̃ b + h ) sin θ . 

Hence J = det (∇ (X,t) (x, t)) = 

̂ J 

−1 . 

We apply this change to each equation of system (16) by using the divergence chain rule (see [19, Lemma 2.1] ),

∇ (X,t) · � f = 

1 ̂ J 

∇ (x,t) · ( ̂  J A 

−1 �
 f ) for any vector � f . This leads to {

∂ t 
(
h 

ˆ J 

)
+ ∂ x ( h u c ) = 0 , 

∂ t 
(
hu 

ˆ J 

)
+ ∂ x ( hu u c ) = −gh cos θ

(
∂ x 

(
b + 

(
˜ b + h 

)
cos θ

)
+ 

1 
gh cos θ

τb 

ρ
ˆ J 

) (18) 

where 

u c = cos θ u − ∂ t ( ̃ b + h ) sin θ . 

Note that b̄ + ( ̃ b + h ) cos θ = η(x ) . Then, when the material is at rest, the balance of forces on the right hand side member

of the momentum equation in (18) gives: 

| ∂ x (η(x )) | = 

∣∣∣ 1 

ρgh cos θ
τb ̂

 J 

∣∣∣. (19) 

In order to obtain | ∂ x η(x ) | = μb as the threshold of motion, it is necessary to define τb such that 

1 

ρgh cos θ
τb | ̂  J | = sgn (u ) μb 

(the absolute value is taken to ensure that the friction force acts opposite to the velocity, so its sign must be determined by

the sign of the velocity). Thus, considering that ̂ J = J 

−1 and returning to the previous notation, we have 

τb 

ρ
= gH cos θ |J | sgn (U) μb . (20) 

Then the corrected model becomes {
∂ t H + cos θ∂ X ( HU ) = 0 , 

∂ t ( HU ) + cos θ ∂ X 
(
HU 

2 
)

+ gH cos θ∂ X 
(
B + 

(
˜ B + H 

)
cos θ

)
= −P b, J μb sgn ( U ) . 

(21) 

where P b, J is defined in Eq. (13) . 

Nevertheless, note that the reasoning developed above is only true for the initiation of motion, that is, for a granular mass

initially at rest. Hence, once the avalanche is flowing, the balance of forces to obtain the Coulomb criterion also involves the

inertial forces [4] . So, additional terms would have to be considered and their orders of magnitude may be significant. As a

result, the validity of the modification of the bed pressure defining the friction term (13) proposed above may not be valid

during the flow. Taking into account the correction (13) in the momentum equations during the flowing phase, may lead to

an error of the order of H sin θμb ∂ X 
(˜ B + H 

)
, since P b, J μb = gH cos θ | 1 − ∂ X 

(˜ B + H 

)
sin θ | μb in the evolution phase. However,

for nearly uniform flows, this term will be close to zero. The effect of the correction during the flow will be analyzed in the

numerical tests. 
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3.2. Static equilibrium condition and second order correction of the pressure 

In this subsection we investigate another possible reason for the proposed correction. For simplicity we consider ˜ B = 0 . 

The Coulomb criterion is usually written in terms of the tangential and normal stresses at the bed, the latter being

multiplied by the friction coefficient. Thus for a depth-averaged model 

| τb | ≤ μb | (σn ) | b | = μb | p b | . (22) 

If we consider the hydrostatic pressure, then p b = p bh = ρP bh = ρgH cos θ , giving the friction term appearing on the right

hand side of the momentum equation in models (7) and (8) , 

μb P bh = μb sgn (U) gH cos θ . 

In this way, the modification (13) can be seen as a correction of the pressure value at the bottom, 

P ∗| b = gH cos θ |J | = gH cos θ | 1 − sin θ ∂ X H| . (23) 

Note that the additional term depends on the variation of the height (g cos θ sin θ H ∂ X H ) and it is of the order of ε 2 ( ε
denoting the classical parameter measuring the shallow flow assumption, considering asymptotically that H ∼ ε). This leads 

us to look for a more accurate approximation of the pressure, namely to the third order in ε. 

In [15] the authors introduce a model to describe the evolution of the static/flowing interface, denoted here by Z =
˜ b (t, X ) , in a viscoplastic flow with Drucker-Prager rheology. A third order approximation of the pressure is needed to obtain

a closed system. An interesting particular model is developed for the slow flow case, assuming a small downslope velocity 

( U ∼ ε) and a no-slip condition at the static/flowing interface. The following non-hydrostatic pressure value is deduced up 

to the third order in the flowing region (remember that ˜ B = 0 ), 

P ( X, Z, t ) = 

p ( X, Z, t ) 

ρ

= ε g cos θ ( H − Z ) + ε 2 g cos θ
(
sin θ∂ X H + 2 μ sgn ( ∂ Z U ) cos θ∂ X ̃  b 

)
( H − Z ) + O 

(
ε 3 

)
, for ˜ b < Z < H. (24) 

The first term gives the hydrostatic approximation, the second term comes from the normal momentum contribution 

to the σxz component of the stress and the last term comes from the rheology law in the σzz component. In the derived

approximation at the leading order, it is found that μsgn (∂ Z U) = − tan θ + O(ε) . We thus obtain 

P (X, Z, t) = ε g cos θ (H − Z) + ε 2 g cos θ
(

sin θ∂ X H − 2 sin θ∂ X ̃  b 

)
(H − Z) + O(ε 3 ) , for ˜ b < Z < H. (25)

The velocity equation of the deduced 2D model reads 

∂ t U + g( sin θ + cos θ∂ X (H cos θ )) + sgn (θ ) ∂ Z (μp) = O(ε 2 ) for ˜ b < Z < H. 

The model has to be completed with the static equilibrium condition 

g| sin θ + cos θ∂ X (H cos θ ) | ≤ −(∂ Z (μP )) | 
Z= ̃ b , (26) 

stating that the static region remains static. Using (25) in the case of constant μ, we obtain in dimensional variables 

−∂ Z (μP ) = μg cos θ
(

1 + sin θ∂ X H − 2 sin θ∂ X ̃  b 

)
for ˜ b < Z < H. (27) 

When the velocity tends to zero (full arrest of the flow), the static/flowing interface tends to the free surface, that is ˜ b = H.

As a consequence, from (26) and (27) the static equilibrium condition reads 

| sin θ + cos θ∂ X (H cos θ ) | ≤ μ cos θ (1 − sin θ∂ X H) . 

Since the free surface is η = B̄ + H cos θ , this is equivalent to 

| ∂ X η| ≤ μ(1 − sin θ∂ X H) . 

As μ is assumed to be constant, we have μ = μb , thus this static equilibrium condition coincides with (14) . That is, the

proposed friction correction for depth-averaged models will give the same equilibrium condition as in the model introduced 

in [15] , that is associated with the pressure expansion (25) . Nevertheless, we can not recover this additional term directly

from non-hydrostatic depth-averaged models such as the one in [20] . 

Furthermore, in [21,22] the authors present an accurate approximation of the pressure at the bottom at the third order 

in ε where no rheology is considered and for a non-slow flow ( U = O(1) ). The additional terms to the hydrostatic pressure

at the bottom involve the velocity and read as 

P | b = ε gH cos θ − ε 2 cos θ ∂ t 

(
H 

2 

2 

∂ X U 

)
− ε 2 ( cos θ ) 2 ∂ X 

(
H 

2 

2 

U ∂ X U 

)
+ O(ε 3 ) , 
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Fig. 4. Domain and notation. The general 2D topography is represented in gray and the granular mass in brown. 

 

 

 

 

 

 

 

 

or in the original local coordinates ˆ X = 

X 
cos θ

, 

P | b = ε gH cos θ − ε 2 ∂ t 

(
H 

2 

2 

∂ ˆ X 
U 

)
− ε 2 ∂ ˆ X 

(
H 

2 

2 

U ∂ ˆ X 
U 

)
+ O(ε 3 ) . 

Note that the correction terms vanish for U = 0 and become of order ε 3 under the previous slow flow assumption ( U ∼ ε).

Nevertheless they become significant during the evolution phase when the velocity is not small, and they are of the same

order ε 2 as the previous correction in (24) . 

The above discussion reinforces the idea already presented that the proposed modification to the friction coefficient 

(23) (hence (13) ) could be meaningful only when the flow is close to stopping or exactly static, and we have no guarantee

for its correctness otherwise. In the numerical tests we will assess the influence of the Jacobian correction during the flow

evolution, and show that its effect is more noticeable at the starting and stopping phases. 

4. Proposed 2D model with friction correction 

In this section we introduce a correction of the 2D model introduced by Bouchut and Westdickenberg in [16] for general

topographies. B (X, Y ) denotes the scalar function defining the topography and X , Y the horizontal coordinates (see Fig. 4 ). 

The normal to the topography at each point is calculated through a 3-D unit upward normal vector 

�
 n = ( 

−∇ X B √ 

1 + || ∇ X B || 2 , 
1 √ 

1 + || ∇ X B || 2 ) = (−s , c) ∈ R 

2 × R (28) 

where X = (X, Y ) ∈ R 

2 and, the scalar c = cos θ is the cosine of the angle between the vertical direction and the normal � n .

In our notation, the 3-D vectors are denoted by � . , whereas the 2-D vectors are written in bold. The flow is described by 

H(X , t) ≥ 0 , U 

′ (X , t) ∈ R 

2 (29) 

where H is the thickness of the avalanche in the direction normal to the topography. Then, the free surface position is

defined by (see Fig. 4 ), 

(x, y, η(x, y )) = (X, Y, B (X, Y )) + H(X, Y, t) � n (X, Y ) . (30)
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Fig. 5. Domain and notation. Definition of the topography represented in yellow with respect to a reference plane represented in gray. The granular mass 

is shown in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

The velocity vector U 

′ = (U 

′ , V ′ ) is a parametrization of the velocity. This parametrization has been defined to simplify

the equations with topography. The real 3-D material velocity has horizontal/vertical components defined by 

�
 U = ( c U 

′ , s · U 

′ ) . (31) 

This physical velocity is tangent to the topography, that is, � U · � n = 0 , as would be expected for shallow flows. In the hori-

zontal Cartesian coordinate formulation, the model can be expressed as ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∂ t ( H/c ) + ∇ X ·
(
HU 

′ ) = 0 , 

∂ t U 

′ + c U 

′ · ∇ X U 

′ + 

1 
c 

(
I − ss t 

)∇ X ( g ( H c + B ) ) = 

−1 
c 

(
U 

′ t H U 

′ ) s + 

1 
c 

(
s t HU 

′ )U 

′ 

− P b, J μb U 
′ 

H 
√ 

c 2 ‖ U ′ ‖ 2 + ( s ·U ′ ) 2 
(
1 + 

U ′ t H U ′ 
gc 

)
+ 

(32) 

where 

P b, J = gHc | 1 − s · ∇ X H| , 
∇ X is the gradient vector in the horizontal (X, Y ) plane, g is the acceleration due to gravity and I is the identity matrix.

The subscript + stands for the positive part, a + = max (0 , a ) (see [16] and [5] for more details). In this model the curvature

tensor of the topography is taken into account, expressed as 

H = c 3 

⎛ ⎜ ⎜ ⎝ 

∂ 2 B 

∂ X 

2 

∂ 2 B 

∂ X ∂ Y 

∂ 2 B 

∂ X ∂ Y 

∂ 2 B 

∂ Y 2 

⎞ ⎟ ⎟ ⎠ 

. (33) 

Note that model (32) differs from the one introduced in [16] in the term P b, J , by the factor | 1 − s · ∇ X H| . 
4.1. Model with a reference plane 

We will also consider a simplification of this model, where the topography is defined with respect to a reference plane

(see Figure 5 ), defined by 

B̄ (X, Y ) = z̄ + tan θ (X − x̄ ) . (34) 

The vector normal to the reference plane is 

�
 n = ( − sin θ , 0 , cos θ ) (35) 
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We will also denote by ˜ B (X, Y ) the distance, with sign, of the bottom level to the reference plane. Finally, H(X, Y, t) is

the thickness of the avalanche in the direction normal to the reference plane. Then, the free surface position is defined by 

(x, y, η(x, y, t) ) = (X, Y, B̄ (X, Y )) + H(X, Y, t) (− sin θ, 0 , cos θ ) . 

Note that in this case y = Y . The model can then be deduced as a particular case of (37) , by considering 

B (X, Y ) = B̄ (X, Y ) + cos θ ˜ B (X, Y ) , 

s = ( sin θ, 0 ) , c = cos θ and H = 0 . 

We then have that the following definition of velocity vector U 

′ , 

U 

′ = (U, V/ cos θ ) , 

where the velocity component parallel to the Y-axis is V and the 3D material velocity, tangent to the reference plane, is 

�
 U = ( cos θ U , V , sin θ U) . (36) 

The model including the bed pressure correction in the friction term can then be written as follows: { 

∂ t (H) + ∇ X · (H cos t U 

′ ) = 0 , 

∂ t U 

′ + cos t U 

′ · ∇ X U 

′ + g cos t ∇ X ( ̄B + cos t ( ̃  B + H)) = − P b, J μb U 

′ 

H 

√ 

U 

2 + V 

2 
, 

(37) 

where 

P b, J = gH cos θ | 1 − sin θ ∂ X ( ̃  B + H) | . 
Note that for 1D flows, where V = 0 , ∂ Y H = 0 and ∂ Y ˜ B = 0 , this system reduces to the 1D model proposed in Section 3 ,

defined by Eq. (21) . 

4.2. Well-balanced property of the models 

In this section we present the proof of the property of the proposed models: to preserve the material at rest solution

when the slope of the free surface is smaller than the tangent of the repose angle. As described above, this property is not

verified by classical depth-averaged models such as Savage-Hutter models. 

We consider the change of coordinates 

x = X − s H(X , t) , (38) 

and the notation 

h (x , t) = H 

(
X (x , t) , t 

)
, b(x , t) = B 

(
X (x , t) 

)
. (39)

Then, according to (30) the free surface is defined by 

η(x , t) = h (x , t) c + b(x ) . 

Theorem 1. The models defined either by system (32) or by system (37) preserve the steady solution of material at rest when

the maximum angle of the free surface, measured from the horizontal, is smaller than the repose angle of the material, that is 

‖ 

∇ x (h c + b) ‖ 

≤ μ, (40) 

up to second order ( O(ε2 ) ) for 2D shallow flows where H = O(ε) , ε being a small value. Moreover, it is exactly preserved for 1D

flows. 

Proof 

For the sake of brevity we present the proof only for the system (32) . The proof for system (37) is analogous. The exact

preservation of steady solutions at rest in 1D can be deduced from the reasoning in Subsection 3.1 . 

The solution to the system (32) is at rest if U 

′ = 0 and ∥∥∥∥I − ss t 

c 
∇ X (H c + B ) 

∥∥∥∥2 

topo 

≤ μ2 c 2 (1 − s · ∇ X H) 2 , (41) 

where for a two-dimensional vector R we set 

‖ R ‖ 

2 
topo = c 2 ‖ R ‖ 

2 + (s · R ) 2 . 
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Table 1 

Terminology of the proposed corrections. | U| max denotes the maximum velocity norm of the avalanche when no correction is 

applied to the model. 

Correction 

name 
C

NC C = 1 

J C = J = 1 − ∂ X ( ̃  B + H) sin θ

J ˜ B C = J ˜ B = 1 − ∂ X ( ̃  B ) sin θ

Velocity 

{
C = J if | U| ≤ 0 . 1 · | U| max 

C = 1 otherwise 

Velocity ∗
{
C = J if | U| ≤ 0 . 1 · | U| max 

C = J ˜ B otherwise 

Slope 

{
C = J if (J < 1 and | ∂ X η| < μ) or (J > 1 and | ∂ X η| > μ) 

C = 1 otherwise 

Slope ∗
{
C = J if (J < 1 and | ∂ X η| < μ) or (J > 1 and | ∂ X η| > μ) 

C = J ˜ B otherwise 

Mixed 

{
C = J if | U| ≤ 0 . 1 · | U| max and (J < 1 and | ∂ X η| < μ) or (J > 1 and | ∂ X η| > μ) 

C = 1 otherwise 

Mixed ∗
{
C = J if | U| ≤ 0 . 1 · | U| max and (J < 1 and | ∂ X η| < μ) or (J > 1 and | ∂ X η| > μ) 

C = J ˜ B otherwise 

 

When R = 

I−ss t 

c G for some two-dimensional vector G , note that 

‖ R ‖ 

2 
topo = G 

t (I − ss t ) G. 

For (41) we have G = ∇ X (H c + B ) , thus ∥∥∥∥I − ss t 

c 
∇ X (H c + B ) 

∥∥∥∥2 

topo 

= ∇ X (H c + B ) t (I − ss t ) ∇ X (H c + B ) . 

We have 

∇ X (H c + B ) = ∇ X (H c) + 

s 

c 
, 

therefore ∥∥∥∥I − ss t 

c 
∇ X (H c + B ) 

∥∥∥∥2 

topo 

= | s | 2 + 2 c s t ∇ X (H c) + (∇ X (H c)) 2 −
(
s t ∇ X (H c) 

)2 
. 

Since (∇ X (H c)) 2 = O(ε2 ) , up to O(ε2 ) we obtain ∥∥∥∥I − ss t 

c 
∇ X (H c + B ) 

∥∥∥∥2 

topo 

= ‖ 

s + c ∇ X (H c) ‖ 

2 = c 2 
∥∥∥ s 

c 
+ ∇ X (H c) 

∥∥∥2 

= c 2 ‖ 

∇ X (H c + B ) ‖ 

2 
. 

As a consequence, (41) is verified up to second order if 

‖ 

∇ X (H c + B ) ‖ 

≤ μ| 1 − s · ∇ X H| . 

Then, with the notation introduced in (39) , to obtain (40) up to a second order error from the previous inequality we

have to prove that 

‖ 

∇ X (H c + B ) ‖ 

= ‖ 

∇ x (h c + b) ‖ 

| 1 − s · ∇ X H| + O(ε2 ) , (42) 

The change of coordinates (38) gives 

∇ x (h c + b) = 

((
I − ∇ X (s H) 

)t 
)−1 

(∇ X (H c) + 

s 

c 
) . 

Using the approximation (I − A ) −1 = I + A + O(A 

2 ) , we obtain ((
I − ∇ X (s H) 

)t 
)−1 

= (I + ∇ X (s H)) t + O(ε2 ) 

thus 

∇ x (hc + b) = (I + ∇ X (s H)) t (∇ X (H c) + 

s 

c 
) + O(ε2 ) 

= 

s + 

1 ∇ X H + O(ε2 ) . 

c c 
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Fig. 6. Test 1: Initial condition. Left: profile of the initial released mass (gray) and inclined bed (black). Right: a zoom of the profile of the initial mass. 

 

 

 

 

 

 

Therefore 

‖ ∇ x (h c + b) ‖ 

2 = 

| s | 2 
c 2 

+ 

2 

s 
c 2 · ∇ X H + O(ε2 ) , 

and 

‖ 

∇ x (hc + b) ‖ 

2 
(1 − s · ∇ X H) 2 = 

| s | 2 
c 2 

+ 2 s · ∇ X H + O(ε2 ) . 

Independently we have 

‖ 

∇ X (H c + B ) ‖ 

2 = 

| s | 2 
c 2 

+ 2 s · ∇ X H + O(ε2 ) . 

Therefore we deduce that (42) holds, which concludes the proof. �

5. Numerical tests 

In this section we present several numerical tests to study the influence of the proposed correction. The following nota- 

tion is introduced to distinguish the models. 

• RP θ refers to a model defined with respect to a reference plane of slope θ , where the flow thickness ( H(X, t) ) is measured

perpendicularly to this plane. 
• CURV refers to a model over a general 1D topography, taking into account curvature terms. 
• SHALTOP corresponds to the shallow depth-averaged model specially designed to accurately describe a general 2D to- 

pography [5,14,16,23–25] . Note that Shaltop coincides with CURV in the tests over a 1D topography. 

The bed pressure involved in the friction term is used in all the mentioned models and can be viewed as a product 

P b = C P bh 

with P bh = gH cos θ , whereas the definition of C depends on the correction applied to the model. If no correction is used (i.e.

C = 1 ), the corresponding solution will be referred to as NC. The correction proposed in the previous sections corresponds

to C = |J | = | 1 − ∂ X ( ̃  B + H) sin θ | and will be labelled as J (see Table 1 ). 

As mentioned at the end of Subsection 3.1 and 3.2 , the proposed modification of the bed pressure could be meaningful

only for the initiation of motion and when the flow is close to the stopping phase. To limit the correction to these con-

ditions, we introduce several definitions of the correction. Table 1 summarizes the different types of corrections with the 

corresponding values of C. 

To finish this introduction, note that in the models with curvature effects (see Eq. (32) ), one of the terms involving H
results from a pressure correction involved in the friction term [25] . Accordingly, the bed pressure involved in the friction

term of the model with curvature can be defined as 

P b = C P bh 

(
1 + 

U 

′ t H U 

′ 

gc 

)
+ 
. 

Note also that, in 1D models with curvature, H is only involved in the friction term and 

P b = C P bh 

(
1 + 

U 

2 H 

g cos θ

)
+ 
, where H = cos 3 (θ ) ∂ 2 X 2 B. (43) 
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Fig. 7. Test 1: Comparison between the RP45-NC and RP45- J models ( δ0 = 30 ◦). 

 

 

 

 

For the SHALTOP and CURV models we will analyze the effect of the term U 

2 H, by setting H = 0 in some tests. In any case

both models take into account the curvature of the topography, by the variation of θ along the domain. 

5.1. Test 1: Correction effects for a flow over an inclined plane 

In this numerical test, we consider the spreading of a granular mass on a 45 ◦ inclined slope. The coordinate system

is related to the reference slope corresponding to the sloping bed and the resulting model is called RP45. The bottom is

defined as 

B̄ (X ) = tan (45 

◦) X 

and the initial condition consists in a parabolic profile given by 

H(X ) = max ( −5(X − 59)(X − 61) , 0 ) 

(see Fig. 6 ). We consider a test over a 1D topography where the domain X ∈ [0 , 70] is discretized in 140 0 0 cells and the CFL

condition is set to 0.9. 
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Fig. 8. Test 1: Comparison between the RP45-NC and RP45- J models ( δ0 = 37 ◦). 

 

 

 

 

 

 

 

 

 

 

 

 

We consider a constant friction μ = tan δ0 so, if the granular layer is at rest, the threshold of motion is determined by

the relation between | ∂ x η| and tan δ0 . In other words, if | ∂ x η| > tan δ0 the material should flow; otherwise, if | ∂ x η| ≤ tan δ0 ,

the material should not move. 

Firstly, we compare the simulations obtained with the model without correction RP45-NC and the model with correction 

RP45- J . Fig. 7 shows the corresponding solutions at the initial instants when δ0 = 30 ◦. Differences between the two models

appear in the front and the rear parts. In the rear part, the mass spreads further upslope for the model without correction

(RP45-NC) than for the model with correction (RP45- J ). To investigate the origin of these differences, we have computed

| ∂ x η| at the rear part of the initial parabolic profile using (12) , from which we have deduced the maximum angle of the

slope with respect to the horizontal, namely, arctan (| ∂ x η| ) = 36 . 95 ◦ (see Fig. 6 ). Since | ∂ x η| > tan δ0 , the rear part of the

mass slightly spreads upslope in both models. Nevertheless, Fig. 7 clearly shows that the rear part of the avalanche simulated

with the RP45-NC model spreads further upwards than the solution of the RP45- J model. If the same test is repeated for

δ0 = 37 ◦ (no movement should occur at the rear part), Fig. 8 shows that the model without correction does not satisfy the

Coulomb criterion of motion whereas the model with correction J does. 

Finally, we show the thickness H of the simulated mass corresponding to the different types of correction of the RP45 

model detailed in Table 1 (see Fig. 9 ). In these simulations we have increased the value of δ0 up to 52 ◦ to force the avalanche

to rapidly stop. The results show that the rear part of the avalanche stays at rest for all the corrected models and there-
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Fig. 9. Test 1: Solutions of the RP45 model with different corrections: evolution ( δ0 = 52 ◦). 

Fig. 10. Test 2: Initial condition. Landslide free surface, bottom and reference plane. 

 

 

 

 

 

 

 

 

fore satisfies the physical motion criterion. On the other hand, there are strong differences between the corrected models 

concerning the front dynamics and runout distance. The RP45- J model travels much further than the non-correction RP45- 

NC model and the models with other types of corrections (Slope, Velocity or Mixed). This means that the correction has

a significant impact during the dynamics, i.e. in flow regimes where the validity of this correction can be questioned. The

shape of the mass also differs slightly for the different models. The front part of the avalanches simulated with the partial

corrections, i.e. where the correction is only applied in restricted conditions (Slope, Velocity or Mixed), is close to the front

part simulated with the model without correction. On the other hand, the front simulated by the model with correction J 

goes significantly further. 

5.2. Test 2: Dynamics and deposits for models with different corrections 

In the second numerical test, we consider the spreading of a granular layer initially at rest and released on an inclined

plane connected to a horizontal plane (see Fig. 10 ). 

In Cartesian coordinates, the domain is [ −15 , 10] , that we discretize in 25,0 0 0 points and the CFL condition is set to 0.7.

The bottom is defined as follows: 

b(x ) = max ( tan (45 

◦) x, 0 ) 

and the initial condition for the granular free surface is 

η(x ) = max ( min (6 . 5 + 3(x − 6 . 5) , 8 . 0) , b(x )) . 

The simulations related to the RP models are computed with respect to the reference plane 

z ref (x ) = tan (45 

◦) x, 

of inclination angle θ = 45 ◦ (dashed line in Fig. 10 ). 

As in the previous test, a constant friction μ = tan δ0 is considered. Note that the maximum slope of the initial free

surface is | ∂ x η| = 3 . Then, if δ0 ≥ arctan (3) � 71 . 5 ◦ the material should stay at rest, while it should move if δ0 < arctan (3) .

The objectives of this test are: 
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Fig. 11. Test 2 on the inclined plane related to an horizontal plane: Mass thickness (added to 1 to make the visual comparison with the Jacobian easier) 

1 + H and Jacobian related to the RP-NC and RP45- J models at several times ( δ0 = 30 o ). 

Fig. 12. Test 2: Thickness of the deposit (added to 1 to make the visual comparison with the Jacobian easier) 1 + H and Jacobian related to the RP-NC and 

RP45- J models ( δ0 = 30 o ). 
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Fig. 13. Test 2: Comparison between the deposits calculated with the RP45 models (with and without correction J ) and with the SHALTOP code with 

H = 0 ( δ0 = 30 o ). 

Fig. 14. Test 2: Deposit simulated with the RP45 model with different corrections and comparison with the code SHALTOP ( δ0 = 30 o ). 

Fig. 15. Test 2: Solutions of the RP45 model with different corrections (evolution, δ0 = 30 o ). 

 

 

 

 

 

 

i) To check if the models ensure that the material is at rest for δ0 ≥ arctan (3) and that the material flows if δ0 is slightly

smaller than arctan (3) . 

ii) To compare the deposits on the horizontal plane simulated with the different models for δ0 = 30 ◦ ( < arctan (3) ). 

As expected, the simulations carried out with δ0 ≥ arctan (3) reveal that the initial solution stays at rest for both the 

RP45-NC and RP45- J models. If δ0 is slightly reduced, the granular mass should start moving. We have checked that the

solution corresponding to the RP45- J model fulfills this condition. However, the RP45-NC model does not since the simu- 

lated granular mass stays at rest until the value of δ0 is reduced by 20 % . 

Now, let us set δ0 = 30 o , for which the granular mass should spread on the sloping plane and finally stop on the hori-

zontal plane. The time evolution of the mass is shown in Fig. 11 and the deposit in Fig. 12 . The values of the Jacobian are

superimposed on the figures. In these figures, we plot 1 + H rather than H in order to compare the local thickness with

the Jacobian, for which the reference value is 1. Note that over the inclined plane (placed at X > 0 ), we have ˜ B (X ) = 0 so

J = 1 − ∂ (H) sin (45 ◦) . 
X 
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Fig. 16. Test 3: Initial condition. Landslide free surface and bottom. 

Fig. 17. Test 3: Deposit. Comparison of the thickness H calculated with the CURV models with and without correction J ( δ0 = 30 o ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the beginning of the motion, ∂ X (H) > 0 in the half of the avalanche towards the front, then J < 1 . Consequently,

μ · J < μ, so the solution of the RP45- J model is slightly faster than that of the RP45-NC model (see Fig. 11 (a)). As time

increases, the front of the avalanche of the model with correction J is located further downslope on the inclined plane

with respect to the solution of the model without correction. Nevertheless, the simulated mass obtained with both models 

is quite flat with ∂ X (H) � 0 . This behavior can be seen in Fig. 11 (b), corresponding to t = 1 . 5 s, in which the fronts of

the avalanches are flowing on the final part of the inclined plane. We can also observe that in this situation J � 1 , then

μ · J � μ. In this regime both models behaves in the same way, i.e. the correction plays a negligible role. 

When the avalanches reach the horizontal plane (placed at X < 0 ), we have ∂ X ̃  B (X ) = −1 , since the angle between the

bottom and the reference plane is 45 ◦. In fact, ˜ B is the most significant term in ∂ X ( ̃  B + H) when computing the Jacobian.

As a consequence, J > 1 , so μ · J > μ (see Fig. 11 (c)). This decelerates the avalanche simulated with the RP45- J model in

such a way that it is overtaken by the one simulated with the RP-NC model. As a result, the RP45- J deposit is located much

closer to the slope break than the RP-NC deposit, located far away ( Fig. 12 ). In this test the Jacobian reaches its maximum

value when calculated on the deposit. 

In Fig. 13 , we compare the RP45-NC and RP45- J deposits to the one obtained with the SHALTOP code where we have

imposed H = 0 in order to analyze the influence of the term defined by U 

2 H in the bed pressure correction (43) . Because,

SHALTOP imposes the shallow approximation and performs depth-averaging in the right direction whatever the topography, 

it is considered here as the reference solution [16] , [5] , [25] . The influence of the terms involving H in the models with

curvature will be analyzed in Test 3. Fig. 13 shows that the model with correction drastically improve the simulation of the

deposit that almost coincides with SHALTOP. 

Let us now compare in Fig. 14 the deposits obtained with all types of corrections applied to the RP45 model as defined in

Table 1 as well as the with SHALTOP with H = 0 . We observe two families of solutions: (1) those obtained using corrections

( ∗) that set C = J ˜ B if the criterion is not fulfilled. These solutions are close to that of RP45- J imposing the correction J in

all the domain; (2) those obtained by setting C = 1 if the criterion is not fulfilled. These solutions are close to that of the

RP45-NC model in which no correction is imposed at all. This reveals the importance of taking into account the value of ˜ B in

the correction when the reference plane is not close to the bottom. As discussed above, family (1) is close to the SHALTOP

simulation with H = 0 , which is very different from the solution obtained with the true curvature H. Note also that although

the slope of the bottom is singular at a point of the domain, the discretization of the bottom acts as a regularization that
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Fig. 18. Test 3: Flow thickness and relative flux (added to 1 to make the visual comparison with the Jacobian easier) 1 + H and 1 + Q/Q max , respectively 

and Jacobian related to CURV- J ( H = 0 ) and CURV- J at several times ( δ0 = 30 o ). Here, Q = HU and Q max = max (X,t) Q(X, t) . 
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Fig. 19. Test 3: Evolution in time of the front and rear flow positions calculated with the CURV models with and without correction J ( δ0 = 30 o ). 

Fig. 20. Test 4. Sketch of the experiment and notation. In our case, α = 35 ◦ , x 0 = 0 . 2199 m and h s 0 = 0 . 249 m. 

 

 

 

 

 

 

 

 

 

 

allows us to compute all terms of H. This highlights the strong role of curvature even in this simple case of two inclined

slope as will be detailed in Test 3. 

Finally, Fig. 15 shows the solutions of the RP45 model with different corrections when the avalanches are over the in-

clined plane (notice that ˜ B (X ) = 0 if X > 0 ). Now, apart from correction J , the behavior of the other solutions is similar to

that of the model without correction. 

5.3. Test 3: Dynamics and deposits for models with curvature 

The models compared in the previous tests are always defined with respect to a reference plane. In this test, we study

the influence of the corrections on models taking into account the curvature of the topography. To this end, the bottom is

defined as two planes with slopes 15 ◦ and 45 ◦ joined by a smooth curve. The equations for the two planes are 

B̄ 1 (X ) = 50 tan (15 

◦) + tan (15 

◦)(X − 50) , B̄ 2 (X ) = 50 tan (15 

◦) + tan (45 

◦)(X − 50) . 

To design a smooth connection between the planes, the vicinity of the intersection point (50 , 50 tan (15 ◦)) has been replaced

by an arc of circumference going from the point with abscissa 50 − 5 cos (15 ◦) in B̄ 1 to that with abscissa 50 + 5 cos (45 ◦) in
B̄ 2 (see Fig. 16 ). As in test 1, the initial condition is a parabolic profile given now by 

H(X ) = max 

(
− 5(X − 59)(X − 61) , 0 

)
The domain X ∈ [0 , 70] is discretized in 70 0 0 cells and the CFL condition is set to 0.7. In this test we consider a Coulomb

friction law with δ0 = 30 ◦. 

The thickness of the deposit simulated for the different models is compared in Fig. 17 . We observe that the maximum

height and spread of the avalanches are different for this test in the different cases, corresponding to applying or not the

friction correction and the curvature terms H. 
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Fig. 21. Test 4: Evolution of the avalanches in the first stages. The solution of the model without any correction (NC) is identical to that with correction 

Mixed ∗ . 

Fig. 22. Test 4: Solutions at rest. Comparison of results for models considering and not considering the curvature of the bottom with experimental data. 

The deposit relative to the CURV-NC model is identical to that of CURV-Mixed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 17 , we can observe that the cases with H = 0 correspond in general to a smaller friction force in this test related

to the modified pressure, because ∂ 2 
X 2 

B > 0 . The rear position and shape of the deposit are only slightly affected by the

correction whether H = 0 or not. The correction however strongly affects the frontal part of the mass, the avalanche always

spreading much further for the model with correction C = J . 

The value of the Jacobian at several times is presented in Fig. 18 . The highest values are reached at the earlier times

(the continuous lines overlap the dashed lines in Fig. 18 a). Nevertheless, during the evolution, the Jacobian is close to 1. The

discharge, Q = HU , is also presented in the form of 1 + Q/Q max , where Q max is the maximum of Q in space and time during

the simulation. We can see that at t = 5 . 2 s, a peak of the discharge coincides with an increase of the Jacobian. This is a

consequence of the stopping of the avalanche at the front, which induces an accumulation of the granular mass in the rear

part, as can be seen also in Fig. 18 b. This can also be observed on the deposit ( Fig. 18 c) where the Jacobian is only different

from about 1 near the rear of the avalanche. 

Finally, Fig. 19 shows the evolution in time of the front and rear of the avalanches simulated with the models with

different corrections. We can observe that the rear part corresponding to the no-correction model ( C = 1 ) spreads upwards

at the first instants (as shown in test 1) while the model with correction C = J does not. Interestingly, for the models using a

correction restricted to specific regimes (e. g. small velocity, etc.), the rear part also behaves correctly, i.e. it does not spread

upwards. The front of the models corresponding to C = J moves faster than the front simulated in all the other models,

since ∂ X (H) > 0 (thus, J < 1 ) during the whole flow, as explained in test 2. However, the front simulated with the models

using a correction restricted to specific regimes is close to the front calculated with the model without any correction. This

again shows the strong role of the correction all along the flow and therefore in regimes where this correction could not be

valid. The model with the correction based on Mixed criteria simulates a front position closer to the one obtained without

correction, while the model based on the Slope criterion is the fastest. 
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Fig. 23. Test 5. Initial condition and bottom. Left: a 3D perspective. Right: a section of the initial condition at y = 0 . 

Fig. 24. Test 5. Evolution of the avalanches for the RP45- J and RP45-NC models. 
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Fig. 25. Test 6. Initial condition and bottom. Left: a 3D perspective. Right: a section of the initial condition when y = 0 . 

Fig. 26. Test 6. Q at t = 0 . 05 s ( δ0 = 58 ◦). 

 

 

 

 

 

 

 

 

 

 

5.4. Test 4: Comparison with experimental data 

We compare here the numerical results of the models with the data from the experiment performed by Sylvain Viroulet 

and presented in [26] . 

The experiment consisted of a release of a granular mass confined behind a removable gate in the upper part of a plane

with slope α (see Fig. 20 for a sketch and notation). The granular material was made up of glass beads of diameter d s = 4

mm and density ρs = 2500 kg/m 

3 . A thin layer of these beads was stuck all along the bottom surface. The reservoir was

filled with 2 kg of beads after being compacted to a compaction index of ϕ = 0 . 6 . 

The tank was 2.20 m long, 0.20 m large and 0.40 m high. The experiment was been carried out for a slope α = 35 ◦.

The initial height of the granular layer was h s 0 = 0 . 249 m, maximum at point x 0 = 0 . 2199 m (given by the location of the

lifting gate). In our case, a longitudinal section was considered to perform the 1D simulation and we took the slope of the

reference plane equal to the inclination θ = α = 35 ◦. 

The results were obtained by using 20 0 0 points, �x = 0 . 001 m and a CFL condition of 0.9. The Pouliquen friction law

was considered with adapted rheological parameters since we had d s = 4 mm (the diameter of the glass beads used by

Pouliquen and Forterre in [3] was 0.5 mm). As in [27] , we took L = 5 . 2 mm and friction angles δ1 = 22 . 1 ◦, δ2 = 31 . 8 ◦ and

δ3 = 23 . 3 ◦. 

In Fig. 21 , we explore the evolution of the avalanches in the first stages (during the flow on the inclined plane) for

the RP35 model with different corrections (note that the solutions corresponding to these models coincide with those of 
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Fig. 27. Test 7. Initial condition and bottom. Left: a 3D perspective. Right: a section of the initial condition at y = 0 on the inclined plane; cartesian 

coordinates x and y are equal to 0 for the point at the rear part. 

 

 

 

 

 

 

 

 

 

 

 

CURV models when the avalanche is still on the inclined plane because ˜ B = 0 ). These solutions are compared with the

experimental data (the curves for the experiments were obtained from digital images and kindly provided by P. Poulain 

(IPGP)). Solutions corresponding to the RP35-NC and RP35-Mixed 

∗ models are identical and apparently slightly closer to the 

experimental data than that of the RP35- J model that extends further down the slope. 

Fig. 22 shows the deposit simulated with the different models as well as the experimental deposit. It reveals again how

different the behaviors of the RP35 models are. As in test 2, the runout of the RP35-NC model is larger than any other. The

models with no curvature effects all go further than those with curvatures, in agreement with [4] (see their Figure 11). The

deposits simulated with models accounting for curvature effects are all closer to the experimental deposit. They all give a 

similar position and shape of the rear part of the avalanche. The experimental deposit extends further upslope, possibly due 

to wall effects (see e.g. [13] , [28] ). The closest solution to experimental data for the front part is that of CURV- J , while the

runouts corresponding to the CURV-Mixed model and SHALTOP fall short. 

5.5. Test 5: Influence of the correction on 2D flow over an inclined plane 

In this test, analogous to test 1 but in 2D, we show the influence of the basic correction J applied to a model with

coordinates expressed in terms of a reference plane. We consider an initial parabolic granular mass released from rest on 

an inclined 45 ◦-sloped plane and explore its behavior during the dynamics and the deposit for the RP45- J and RP45-NC

models. 

The bottom is given by 

B̄ (X, Y ) = tan (45 

◦) X 

and the initial condition by 

H(X, Y ) = max 
(
−5(X − 19)(X − 21) − 5 Y 2 , 0 

)
(see Fig. 23 ). The domain (X, Y ) ∈ [0 , 24] × [ −8 , 8] is discretized in 480 × 320 cells and the CFL condition is set to 0.7. 

Keeping in mind that arctan (| ∂ x η| ) = 36 . 95 ◦ at the rear part of the initial condition, we consider a constant friction

μ = tan δ0 = 37 ◦ to evaluate its motion when the surface slope is close to the friction angle. As in the 1D case, the model

with correction J is the only one satisfying the Coulomb criterion of motion, as can be seen in Fig. 24 by comparing the

evolution of the level curves with the black discontinuous circular line, corresponding to the initial condition. 

5.6. Test 6: Motion threshold for 2D models with and without correction 

This test could be considered as an academic complement to the previous one since it focuses again on the comparison

of the RP models with and without a correction. The bottom is given using cartesian coordinates by 

b(x, y ) = tan (20 

◦) x 
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Fig. 28. Test 7. Time evolution of the thickness of the granular mass. Left: the RP23-NC model. Center: experimental data (contour of constant thickness 

every 0.005 m). Right: the RP23- J model. The initial condition is represented by the dashed black line in the upper row. 

652 



F. Bouchut, J.M. Delgado-Sánchez, E.D. Fernández-Nieto et al. Applied Mathematical Modelling 106 (2022) 627–658 

Fig. 28. Continued 

 

 

 

 

 

 

 

 

 

 

as well as the initial parabolic granular mass, namely, 

η(x, y ) = max 
(
1 . 5 − (x − 2 . 5) 2 − y 2 , b(x, y ) 

)
(see Fig. 25 ). The domain (X, Y ) ∈ [1 , 4] × [ −2 , 2] is discretized in 750 × 10 0 0 cells and the CFL condition is set to 0.7. 

We have computed arctan (| ∂ x η| ) � 62 . 76 ◦ at the front part (respectively, arctan (| ∂ x η| ) = 50 . 54 ◦ at the rear part) of the

initial condition so, if we consider a constant friction μ = tan (58 ◦) , motion should be detected only at the front part of

the avalanche. The solution of the corrected model well reproduces these features while the solution of the RP20-NC model 

behaves in the opposite way as shown in Fig. 26 . Indeed, at the first instants ( t = 0 . 05 s), motion only occurs at the rear

part of the granular mass. 

5.7. Test 7: 2D simulation of the Pouliquen-Forterre experiments 

Now we perform a simulation to compare the numerical results of the models with the data from the experiment per-

formed by [3] . The basic experimental set-up was the following. 

The bottom was an inclined plane with slope θ = 23 ◦, made rough by gluing one layer of particles (the same material as

the released mass) on the plane. A spherical cap full of these particles was placed at the top of the inclined plane and then

removed ( Fig. 27 ), so that the released material started to flow down the slope and finally stopped leaving a tear-shaped

deposit. Fig. 27 also shows the dimensions of the spherical cap used for the initial condition, i.e. r = 0 . 031 m and R = 0 . 06

m. 

This simulations were obtained for a domain (X, Y ) ∈ [ −0 . 05 cos (23 ◦) , cos (23 ◦)] × [ −0 . 15 , 0 . 15] discretized in 960 × 300

(thus, the inclined plane is considered to be 1.05 m long and 0.3 m wide). The CFL condition is set to 0.9. In this test, we

consider a friction coefficient μ = μ , where μ is Pouliquen’s friction coefficient as described in Section 1 . 
P P 
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Fig. 29. Test 7. Time evolution of the thickness profiles of the granular mass along the plane at y = 0 for the RP23 model with NC, J and Mixed corrections. 

Fig. 30. Test 8. Initial condition. 

 

 

 

 

 

 

 

Fig. 28 shows a comparison between the numerical solutions for both the RP23-NC and RP23- J models and the exper-

imental results at several times (for more details on the experiments see [3, p. 142] ). During the flow, the front part of

the model with correction J is ahead of the front simulated with the model without correction, itself being ahead of the

experimental front. The difference between the models and the experiments is smaller for the deposit. Overall the model 

without correction seems to better reproduce the experiments in that case. As a complement to the previous figure, the 

profiles of these avalanches along the plane for the cross-section located at y = 0 are represented in Fig. 29 at the same

times. Additionally, the numerical solution corresponding to the RP23-Mixed model is included, showing a behavior quite 

similar to that of RP23-NC. As a result, the restriction of the correction to specific regimes where it is expected to be valid

makes it possible to induce only small effects during the dynamics where this correction is questionable. 

5.8. Test 8: 2D simulation of the Gray-Wieland-Hutter experiments 

In this final test a comparison of model results with the experimental data presented in [29] is considered. It has been

frequently used as a benchmark to compare with models of granular flows (see for example [30] , [25] and [31] ). Details on
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Fig. 31. Test 8: Comparison of the solution of the RP40- J model with experimental data at several times, the latest one corresponding to the deposit 

(Coulomb friction law, δ0 = 30 ◦). 

Fig. 32. Test 8: Comparison of the solution of the SHALTOP model with experimental data and with those of the SHALTOP ( H = 0 ) and RP40-Mixed ∗

models (Coulomb friction law, δ0 = 30 ◦). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the definition of the initial condition and the topography can be found in [32] (see Fig. 30 ). In this test both Coulomb and

Pouliquen’s laws will be considered to analyze the results. 

One of the difficulties of this test is to correctly simulate the time at which the granular flow stops, i.e., at t = 1 . 79

seconds. In [29] the authors indicate that the friction law, related to a measured friction angle of 30 ◦, must be smaller

during the simulation in the sloped part of the domain. We can observe that with the proposed correction, defined by

C = J , we obtain this behavior without having to prescribe it. Indeed, J ≤ 1 in this simulation, inducing a smaller friction

term than in the classical model (i.e., in the model without correction). 

The results of the RP40- J model are presented in Fig. 31 . We observe that during the first instants of the simulation,

up to t = 1 s, the mass spreads further than the experimental mass. However, at the following times, the simulation comes

closer to the experimental data. The model correctly predicts the time when the flow stops and the final area of the deposit

is close to that observed. 

Figure 32 shows that SHALTOP (colored mass) better reproduces the mass spreading at t = 0 . 51 s with the simulated

mass that travels much slower than with the RP40-Mixed 

∗ model. At t = 1 s, when the frontal part of the mass reaches

the flat topography, the strong role of curvature can be observed in SHALTOP simulations: the simulation corresponding to 

the model without curvature H = 0 (red line) moves faster than the one with curvature effects (colored mass), as observed

in previous tests. In that case, the RP40-Mixed 

∗ model (black dotted lines) goes too far and SHALTOP with curvature too

slowly. This difference is even more pronounced on the deposit. As the correction is not implemented in SHALTOP, it is hard

to know if such a correction would improve the results. At t = 1 . 79 , we can observe that the front part of the avalanche

is correctly simulated by SHALTOP when H = 0 ; nevertheless, the rear part is very similar to the simulation of the model
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Fig. 33. Test 8: Comparison of the solution of the SHALTOP model (black line) with experimental data and with those of the RP40- J model (Pouliquen 

friction law, L = 3 . 9 mm , γ = 10 −3 , δ1 = 21 c irc, δ2 = 30 . 7 ◦, δ3 = 22 . 2 ◦). Figures (e) and (f) correspond to the solution of the RP40- J model adding 1.5 

degrees to δ1 , δ2 and δ3 . 

 

 

 

 

 

 

 

 

 

 

 

 

without neglecting the curvature terms. In the SHALTOP simulations (with H = 0 and H � = 0 ) the flow has not stopped at

the time observed in the experimental data. 

For the sake of brevity the results corresponding to other corrections are not included. We observe that the results of the

RP40-Velocity ∗ and RP40-Slope ∗ models are close to those of the RP40-Mixed 

∗ model. With the RP40-Velocity, RP40-Slope 

and RP40-Mixed models, the granular flow spreads out of the domain. 

In Fig. 33 , we present simulations using Pouliquen’s law with β = 0 . 136 , γ = 10 −3 , δ1 = 21 ◦, δ2 = 30 . 7 ◦, δ3 = 22 . 2 ◦. For

this experiment, the diameters of the particles are between 2 and 4 mm; we therefore consider L = 1 . 3 · 3 = 3 . 9 mm. In

this case we compare SHALTOP with RP40- J . We observe that when using the proposed correction the granular mass stops

at the correct time, while SHALTOP is still moving ( t = 1 . 79 s). The mass simulated with RP40- J spreads much faster than

the experiments until 1 s but then is in quite good agreement with the experimental mass. Note that this behavior was

observed in test 4 when a reference plane and the proposed correction were considered. In Figs. 33 (e) and (f), we observe

that by adding 1.5 degrees to δ1 , δ2 and δ3 , the spreading of the avalanche is close to that of the experiment at these later

times. In any case, both simulations with the RP40- J model give a correct stopping time. 

Conclusions 

We propose here a correction of the friction term for depth-averaged shallow models. This correction is introduced in 

depth-averaged models in which the direction of integration is orthogonal to some reference non-flat plane or to a general 

bottom, taking into account curvature terms. It has been obtained by defining the friction bed term in such a way that

the model well reproduces the physical threshold of motion and therefore preserves solutions at rest. It is shown that this

correction could be interpreted as a second order approximation of the bed pressure for slow flows, thus going further 

than the leading order approximation of a hydrostatic pressure. As a consequence, the proposed modification of the friction 

term may be meaningful only when the flow is close to the stopping phase or exactly static. Indeed, in other regimes, the
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additional terms related to a higher order shallow approximation will co-exist with other second order terms related to 

inertia or to the visco-plastic rheology of the granular material involved. 

To highlight the problem of models without correction and to quantify the effect of the proposed corrections in differ- 

ent regimes, a series of 8 tests have been performed by simulating granular flows in various configurations. In particular 

different types of criteria, on the slope or on the flow velocity, have been tested, in order to apply the proposed correction

only in certain regimes: for slow flows or when the slope computed by the model without correction is not in some of the

pathological situations described in section 3. 

We show several examples in which classical models fail to preserve the solutions at rest by predicting a mass motion (or

mass stopping) when the physical threshold of motion is not (or is) fulfilled. The proposed correction, while not completely 

satisfactory in all regimes, makes it possible to eliminate these misbehaviors. Three comparisons of simulated solutions 

with experimental data are presented. In the first, corresponding to a 1D problem, we observe that the proposed correction 

improves the results. In the second case, we observe that the results are analogous to the case of the model without any

correction, because the flow is nearly uniform. In the last comparison, we show that the 2D model written on a reference

plane with the proposed correction is the only one that correctly captures the time at which the avalanche stops, with good

agreement of the spreading area of the granular flow at final times. However, the correction is shown to have a significant

impact in the dynamic regime where its validity is questionable. This could be the reason why, except for the starting and

stopping phases, this correction does not clearly improve the simulation results. More advanced corrections including other 

second order terms in the equations of mass and momentum should be developed to fully address this issue. 
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