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Abstract- Biclustering techniques aim at extracting signif-
icant subsets of genes and conditions from microarray gene
expression data. This kind of algorithms is mainly based on two
key aspects: the way in which they deal with gene similarity
across the experimental conditions, that determines the quality
of biclusters; and the heuristic or search strategy used for
exploring the search space. A measure that is often adopted
for establishing the quality of biclusters is the mean squared
residue. This measure has been successfully used in many
approaches. However, it has been recently proven that the
mean squared residue fails to recognize some kind of biclusters
as quality biclusters, mainly due to the difficulty of detecting
scaling patterns in data. In this work, we propose a novel
measure for trying to overcome this drawback. This measure
is based on the area between two curves. Such curves are
built from the maximum and minimum standardized expression
values exhibited for each experimental condition. In order
to test the proposed measure, we have incorporated it into
a multiobjective evolutionary algorithm. Experimental results
confirm the effectiveness of our approach. The combination of
the measure we propose with the mean squared residue yields
results that would not have been obtained if only the mean
squared residue had been used.

I. INTRODUCTION

Microarray technologies offer the possibility of studying
the activity of thousand of genes simultaneously [1], [2],
and allow us to analyze biological phenomena such as de-
velopment or evolution, determining the functionality of new
genes, or even detect how a large number of genes interact
one each other. Thus, from a collection of microscopic DNA
spots attached to a solid surface, gene expression values
can be represented as bidimensional numerical matrices,
where each column corresponds to a gene, and each row
corresponds to a sample (experimental condition). Each entry
of the matrix denotes, therefore, the expression level of a
gene under a certain condition.

Clustering techniques can be used to group genes that
behave similarly under a set of conditions [3]. A set of genes
is said to behave in a similar way when all the genes exhibit
coherent rises and falls of their expression values across all
the conditions. However, relevant genes are not necessarily
related to every condition. In other words, some genes may
be relevant only for a subset of conditions. From this point
of view, clustering cannot be addressed with respect to genes
or conditions independently, but also in the two dimensions
simultaneously. This approach is called biclustering and aims
at grouping genes presenting similar trends under a subset of
conditions. That is, genes in a bicluster would be correlated
with regard to a specific subgroup of samples. Biclustering
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was first introduced by Hartigan [4], and was first applied
to biological data by Cheng and Church [5]. Since then,
a number of methods for biclustering of biological and
biomedical data have been proposed [6], [7]. Biclustering
techniques can be characterized by two main features: the
search strategy used for finding relevant subsets of genes
and samples, and the specific measure used for evaluating
the quality of the biclusters.

With regard to the first feature, it is important to mention
those methods based on a greedy search strategy, such as
those proposed by Cheng and Church [5], by Ben-Dor et al.
[8], and most recently a polynomial time algorithm presented
by Liu and Wang [9] (however, with several constraints).
Other search methods include exhaustive search [10], [11],
or stochastic techniques [12], [13], [14].
One of the most widely used measures for assessing the

quality of biclusters is the mean squared residue (MSR) [5].
MSPR evaluates the numerical coherence of gene expression
values across the selected experimental conditions. In order
to do so, the arithmetic means of the values in each row,
column, and the full matrix are computed, and the numerical
differences among the data are quantified. MSR has proven
to be an effective quality measure. Nevertheless, it may fail
to recognize some kind of quality biclusters, as it has been
demonstrated in [15]. In this work, the author unambiguously
settles the definition of the two main elements inherent to
biclusters: shifting and scaling patterns, which induce linear
correlations among genes. In the case of a perfect shifting
pattern, the genes of the bicluster present a parallel behavior
[15], i.e., the expression values of a gene can be obtained
by adding a certain offset to the value of another gene. A
bicluster presents a scaling pattern when the expression level
values of genes are proportional to the value of another gene,
i.e., the genes can assume the same trend but not necessarily
parallel. Thus, genes in a bicluster might present either one
of these patterns or both of them simultaneously. With regard
to the effectiveness of MSR for evaluating biclusters, it has
been proven that this measure is effective for recognizing
shifting patterns, but it may fail to identify scaling trends
within a bicluster, due to the variance of the scaling factor
(for a detailed discussion, see [15]).

This fact represents the main motivation for this work,
where we propose a new measure for evaluating biclusters.
This new measure is named MSA (Maximal Standard Area),
due to the way in which the coherence among genes is
calculated.

In order to test the performance of our proposal, we in-
corporated MSA in a multi-objective Evolutionary Algorithm
(MOEA). The main reason why we have chosen to use a
MOEA, is that when searching for biclusters in microarray

1-4244-1210-2/07/$25.00 C 2007 IEEE.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:20:49 UTC from IEEE Xplore.  Restrictions apply. 



2,5-
- genel 2,5

- - - -gene2 1,5
- - -- - gene3 10-

-as 0,5

-0,5
-1-

-1,5-
-2

-Al

1 2 3 4

Conditions

(a) Bicluster B

-2,5

2,5
2-

15

-as 0,5-05-
.0

-1,
-1

LU 1

-2

-2,5

Conditions

(b) Standardized Bicluster B'

Conditions

(c) M( B'), m(B') and MSA

Fig. 1. Example to illustrate the Maximal Standard Area (MSA). In (a) a bicluster example; in (b) its standardization; in (c) the MSA.

data, several objectives, e.g., the volume and MSA of the
biclusters, are to be optimized at the same time. Often, these
objectives are in conflict with each other. It follows that the
problem of finding biclusters can be straightforwardly seen

as a multi-objective optimization problem.
The remainder of the paper is organized as follows:

Section II describes the quality measure which is proposed.
A description of the MOEA used in this paper, and of how
MSA has been included into the algorithm, is given in Section
III, while some experimental results are discussed in Section
IV. Finally, Section V summarizes the main conclusions.

II. MAXIMAL STANDARD AREA

As already stated, the MSPR cannot recognize some kind
of biclusters as quality biclusters. In order to overcome this
drawback, we propose a novel measure for assessing the
quality of biclusters on microarray, called Maximal Standard
Area (MSA). The idea we base our proposal on is the area

of the region between the maximum and minimum values
of expression levels that genes assume under the conditions
contained in the bicluster. Thus, what is measured is the
area depicted by the maximal fluctuation of expression levels
for each experimental condition. For each condition, the
minimum and maximum values of expression level for all
the genes contained in the bicluster are taken. These pairs of
values define a band across all the conditions in the bicluster,
and the area of this band is therefore the measure MSA.
In the following of this section we will provide a detailed
description of the measure we are proposing.
An important observation that can be extracted from an

analysis of previously found biclusters (e.g., [5], [12], [14]),
is that the range of expression values assumed by genes

can vary substantially depending on the specific microarray
taken as input. Therefore, in order to make an appropriate
comparison between each gene and the pattern, it would be
desirable to define a mechanism for scaling the expression
levels to a common range. This mechanism would also be
responsible for softening every gene behaviour, since the
most important aspect is to characterize its tendency rather
than its numerical values.

In the following, let B be a bicluster containing J genes

and I conditions, and let bij denote the elements of B, for
1 < i < I and 1 <j < J.

Definition 1 (Standardization) We define the standardiza-
tion of B as the bicluster B', whose element b' are obtained
as follows:

bl i-Xj1<i<I < < ff
0gj

where agj is the standard deviation of all the expression
values of gene j and pgj is the mean of column j.

By means of the standardization, two distinct tasks are

carried out. The first one is to shift all the genes to a

similar range of values (near 0 in this case). The second
one is to homogenize the expression values for each gene,

modifying in this way their values under all the conditions,
and smoothing their graphical representation, due to the
correction of the global scaling factor in the denominator
(notice that the global scaling factor is not the same as the
local scaling factor, as it is described in [15]) .

Definition 2 (Bounds of bicluster B) We define the upper

bound of a bicluster B for condition i as

Mi (B) = maxj bij, Vj

and similarly the lower bound of bicluster B for condition i
as

mi (B) = mi'nj bij, Vj
We can now define the proposed measure:

Definition 3 (MSA) We define the Maximal Standard Area,
MSA(B'), as the area delimited by the bounds for each
condition as follows:

JVhMi(B3') rni (B') + JVI 1(B') rn ±i 1(B3')MSA(B/) )2

where B' is the standardized bicluster.

As an example, Figure 1(a) shows a bicluster B containing
three genes and four conditions. In Figure l(b) the resulting
standardized bicluster B' is displayed. It can be noticed that
the standardized genes assume closer values than the original
ones. In particular, in Figure l(a), the value assumed by the
second gene under the second condition is about 2.5 times
greater than the value assumed by the other two genes under
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)utput: List of Biclusters L
load Expression Matrix EM
list L = {}
bicluster b
repeat

b = MOEB (EM)
if b is not null

add b to L
adjust weights of EY

else
end cond met

if max_iter is reached
end cond met

until endrcond is met
return L

(a) SMOB for Sequential Covering

Input: Expression Matrix EM
Dutput: Best individual in population

initialize Population
evaluate Population
repeat

select parents
recombine pairs of parents
mutate the resulting offspring
evaluate new individuals
select individuals for next generation

until maxpiter is reached
best_ind = best individual in Population
return best_ind

(b) Procedure MOEB

Fig. 2. A general scheme of both the sequential covering algorithm and of the procedure MOEB.

the same condition. As a result of the standardization, this
difference is much less stressed, while the general tendency
of the three genes is maintained. Finally, Figure l(c) shows
M(13') and Tn(13') for each condition. MSA(B') is illustrated
by the grey region.

If the genes of a bicluster B have a perfectly coherent
trend then MSA(B) is equal to zero. On the contrary, MSA
will assume higher values when the genes are less correlated
with each other, due to the fact M(B') and m(B') are
more distant from each other. It follows that we assume
that biclusters characterized by a low MSA are interesting
for further biological studies.

III. THE ALGORITHM

In order to assess the validity of MSA, we introduce
a multi-objective evolutionary algorithm (MOEA), called
SMOB (for Sequential Multi-Objective Biclustering). SMOB
is outlined in Figure 2. The algorithm is similar to SEBI
[14] and adopts a sequential covering strategy. Unlike SEBI,
where a single-objective EA was used, SMOB invokes several
times a multi-objective evolutionary algorithm. Each time the
MOEA is called, a bicluster is returned. Biclusters returned
are stored in a list, until the evolutionary algorithm is called a
maximum number of times. In [14] a threshold d on MSR was
used in order to reject biclusters. In SMOB we do not use any
threshold. This is because several objectives are optimized at
the same time, and thus biclusters cannot be rejected based
on a bad result of a single objective.

Four objectives are to be optimized simultaneously: MSA,
MSR, volume and gene variance. By optimizing MSA and
MSR, we aim at overcoming the drawbacks of the MSR
regarding the large size of some biclusters, which are usually
flat, with very low variance of expression levels. Still, the
advantages of such measure with respect to the discover of
shifting patterns are taken into account. In short, the MSR
and MSA will be minimized, while the volume and the gene
variance will be maximized.
We can individuate two main reasons that justify the use of

a MOEA for finding biclusters. First, the problem of finding
biclusters in an expression matrix can be straightforwardly
seen as a multi-objective problem. Indeed, we are interested

in finding biclusters with high volume, low mean square
residue, low area and relatively high expression level vari-
ance. Thus, there are at least four objectives to optimize and
these objectives are in conflict with each other. For example,
a bicluster consisting of just one element has mean squared
residue equal to zero, or, again, a constant bicluster have
gene variance equal to zero, but also mean squared residue
equal to zero. Second, by using a MOEA it will not be
necessary to combine all the objectives into a single fitness
function, which might become complicated, especially when
both maximization and minimization are involved. Finding
a way to combine the objectives in a single function can be
problematic, and may require more parameters to set [16].
The encoding of biclusters is the one proposed in [14],

where bit strings are used. A bit is associated to each gene
and each condition of the expression matrix. If a bit is set to
one, it means that the relative gene/condition belongs to the
bicluster, otherwise it does not.

Individuals are initialized in the following way. First the
number of genes J and of conditions I contained in the bi-
clusters are randomly determined. Then, J bits corresponding
to genes and I bits corresponding to conditions are randomly
selected. The selected bits are set to one, which means
that the relative gene/condition is contained in the bicluster
encoded by the individual. We perform this initialization
instead of a pure random initialization of bit-strings, because
in that way the initial biclusters would contain all about the
same number of genes and conditions.
The fitness f(x) of an individual x is calculated on the

basis of the Pareto dominance, namely f(x) is based on
the number of individuals n that x dominates. x is said to
dominate another individual y if x is not worst than y on all
objectives, and x is better than y on a least one objective.

Moreover, in order to promote diversity in the population,
two distance measures are used: one is calculated on the
objective set and the other one on the decision set. The
former is implemented by calculating the distance from the
nearest neighbor in terms of objectives, i.e., MSA, MSR,
volume and expression level variance. The latter is the
normalized average number of individuals covering the same
elements of the expression matrix included in the bicluster
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being evaluated. The inverses of these two distances are
added to the fitness.
The fitness of an individual x is then given by f(x)

1 + i +P( x), where n is computed as described above,
dist,bj is the distance considering the objectives. P(x) is
used in order to avoiding overlapping among biclusters, and
is described in the following. Notice that the fitness has to
be minimized.

Individuals are selected with a tournament mechanism,
with a tournament size of four. Three crossover operators are
used with different probabilities: one-point crossover, two-
point crossover and uniform crossover. The application of the
uniform crossover is the one having the highest probability.
Uniform crossover is preferred to the other two crossovers
because one-point and two-point crossover would prohibit
certain combinations of bits to be crossed over together [12].

Three mutation operators are used: a classical mutation
operator, one that can add a row and one that can add a
column. We consider columns and rows separately, because
typically there are many more columns than rows, thus
considering them together, would give more probability of
mutation to columns than to rows.

Elitism is applied by letting the non-dominated individuals
survive to the next generation.

In order to avoid overlapping among biclusters, after each
call of MOEB, we assign a weight to each element eii of the
expression matrix. This weight wij is equal to the number
of biclusters stored in the Results list that contain eij.
When a bicluster x is evaluated inside MOEB, a penalty

P(x) 1v=I -i Wij is added to the fitness of x,
where Vx is the volume of x. In this way, if a bicluster has
low volume and it covers elements of the expression matrix
that are already contained in many biclusters already found,
P(x) will be high. On the other hand, if the bicluster has a
high volume and it overlaps with few biclusters, the penalty
will be lower. If the bicluster x does not overlap with any
bicluster then P(x) is zero.

IV. EXPERIMENTS

In order to show the validity of our approach, we perform
experiments on two-well known datasets: the yeast Saccha-
romyces cerevisiae cell cycle expression dataset [17], and the
human B-cell expression data [18]. The former dataset is a
microarray which contains 2884 genes and 17 conditions,
while the latter consists of 4026 genes and 96 conditions.
With regard to the parameters of SMOB, we used a pop-

ulation size of 200 individuals and a number of generations
of 100. The crossover probability is set to 0.85 and the
mutation probability to 0.2. The number of biclusters was
set to 100, that is, SMOB generated one hundred biclusters
for each dataset.
We want to highlight the fact that all the biclusters found

on both datasets showed interesting behaviors, especially re-
garding the shifting patterns located in them. In the following
we show six biclusters for each dataset. These biclusters were
selected in order to show the different types of biclusters that
were found by the algorithm.

TABLE I

INFORMATION RELATIVE TO THE SIX BICLUSTERS SHOWN IN FIGURE 3.

Bicluster MSA MSR Volume Gene Var.
yeast-39 30.9 504.0 154 1590
yeast-53 14.2 176.1 110 1023
yeast-78 23.8 524.2 120 1752
yeast-95 26.4 445.3 240 2402
yeast-96 23.8 338.8 143 1028
yeast-97 18.8 226.7 132 1007

A. Yeast Dataset

Figure 3 shows the six selected biclusters out of the one
hundred found on the yeast dataset. We can notice from a
visual inspection of the six biclusters that the genes present
a similar behavior under a subset of conditions. As we
mentioned before, this holds also for all the biclusters found.
Moreover, most of the obtained biclusters show both shifting
and scaling patterns.

Table I gives the numerical results for such bicluster. The
first column of the table shows the name of the biclusters
and the next four columns give the obtained values for the
objectives considered: the MSA, the mean squared residue, the
volume and the gene expression level variance, respectively.

In general, most of the biclusters obtained on this dataset,
presented high values of MSR. Nevertheless many of such
biclusters were interesting, presenting good level of coher-
ence among genes. For instance, taking into account that the
d value used by Cheng and Church [5] in the experiment
with the yeast dataset was 300, four out of the six selected
biclusters would have been rejected. Among the biclusters
that would not have been accepted, bicluster yeast-95 is
the clearest example of the drawback of MSPR discussed
in the Introduction. This is an important issue, and it is
due to the dependency of the mean squared residue on the
scaling factor, as it was demonstrated in [15]. Therefore, our
approach is able to discover these kind of biclusters as well.
The other biclusters shown in Figure 3 are also interesting.

Bicluster yeast-97 shows a clear scaling pattern. Two genes
present a parallel behavior as the others with different level
of expression values. Another example of noticeable bicluster
is yeast-96. This bicluster also shows a clear scaling pattern.
In fact, under 5th, 6th and 7th conditions the expression
values assumed by the genes decrease and increase again
with different slopes. This bicluster has also a value of MSR
higher than the d used in [5].

It is also worth noticing that MSR and MSA are not
necessarily correlated. This can be observed from biclusters
yeast-96 and yeast-78. These two biclusters present the same
level of MSA while the MSR of yeast-78 is higher than the
MSR of yeast-96.

B. Human Dataset

Six out of one hundred biclusters obtained on the human
dataset are shown in Figure 4. Information about the shown
biclusters is given in table II.
As it can be noticed these are very interesting biclusters.

The genes contained in them present an extremely similar
behavior. In particular the four genes contained in bicluster

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:20:49 UTC from IEEE Xplore.  Restrictions apply. 



yeast-53

-Z~~ ~~~~\

0 2 4 6 8 10 12 14
Conditions

yeast-78

Conditions

yeast-96

350

300

250

200

150

100

50

0

450

400

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0 2 4 6
Conditions

yeast-95

Conditions

yeast-97

Fig. 3. Six biclusters found on the Yeast dataset.

human-45 behave practically in the same way. This fact is
reflected by the very low MSR and MSA characterizing this
bicluster. Moreover, of the six selected bicluster, human-45
is the only one having a level of MSR smaller than the d
(1200) used in [5]. As in the yeast dataset, also most of
the biclusters found by SMOB on the human dataset present
values of MSR higher than 6.
As an example of such bicluster, we can consider biclus-

ters human-34, which presents a very high level of MSR.
Nevertheless, this bicluster is graphically interesting. Another
instance of this fact is bicluster human-14, whose genes
behave very similarly. Finally, another evidence that MSR and
MSA are not correlated is provided by biclusters human-15

V. CONCLUSIONS

In this paper we have presented a novel measure for as-

sessing the quality of bicluster on microarray gene expression
data, called MSA. Our main motivation is represented by the
fact that even if MSR has been successfully used by many

algorithms for finding biclusters on microarray data, it fails
to recognize some kind of biclusters as quality biclusters.

In order to test the validity of our proposal, we used MSA
as an objective to be optimized in a MOEA, together with

TABLE II

INFORMATION RELATIVE TO THE SIX BICLUSTERS SHOWN IN FIGURE 4.

Bicluster MSA MSR Volume Gene Var.
human-] 50.4 3470.2 434 20877
human-14 33.2 2077.2 238 16571
human-15 40.3 2054.0 420 7794
human-34 38.3 5523.0 315 19919
human-45 8.1 83.3 124 7388
human-100 26.9 2916.6 162 11548

the MSR, the volume and the gene variance. In this way we
wanted to exploit the good characteristics of MSR and try to
overcome its drawback by using MSA.

Experimental results obtained on two datasets shows that
MSA is effectiveness for overcoming the drawback of MSR.
In fact, by using MSA as an objective, the algorithm could
find biclusters that are interesting, but that are characterized
by high values of MSR. Discovering such biclusters would
be difficult for a heuristic based exclusively on MSR.

Another conclusion that we can draw regards the effec-
tiveness of the MOEA used in this paper. A multiobjective
approach allows to optimize simultaneously different objec-
tives that are in conflict with each other, without the need of
combining them into a single fitness function.
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