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Abstract
Given a finite set of weighted points in R

d (where there can be negative weights),
the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that
the sum of the weights of the points that it contains is maximized. We consider that
each point of the input has a probability of being present in the final random point
set, and these events are mutually independent; then, the total weight of a maximum
box is a random variable. We aim to compute both the probability that this variable
is at least a given parameter, and its expectation. We show that even in d = 1 these
computations are #P-hard, and give pseudo-polynomial time algorithms in the case
where the weights are integers in a bounded interval. For d = 2, we consider that each
point is colored red or blue, where red points have weight +1 and blue points weight
−∞. The random variable is the maximum number of red points that can be covered
with a box not containing any blue point. We prove that the above two computations
are also #P-hard, and give a polynomial-time algorithm for computing the probability
that there is a box containing exactly two red points, no blue point, and a given point
of the plane.

Keywords Random weighted points · Boxes · Red and blue points · #P-hardness

1 Introduction

The maximum box problem receives as input a finite point set in Rd , where each point
is associated with a positive or negative weight, and outputs an axis-aligned rectangle
(i.e., box) such that the sum of the weights of the points that it contains is maximized
[3]. We consider this problem on a recent uncertainty model in which each element of
the input has assigned a probability. Particularly, each point has assigned its own and
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independent probability of being present in the final (hence random) point set. Then,
one can ask the following questions: What is the probability that for the final point set
there exists a box that covers a weight sum greater than or equal to a given parameter?
What is the expectation of the maximum weight sum that can be covered with a box?
Uncertainty models come from real scenarios in which large amounts of data, arriving
frommany sources, have inherent uncertainty. In computational geometry, we can find
several recent works on uncertain point sets such as: the expected total length of the
minimum Euclidean spanning tree [5]; the probability that the distance between the
closest pair of points is at least a given parameter [11]; the computation of the most-
likely convex hull [16]; the probability that the area or perimeter of the convex hull is
at least a given parameter [15]; the smallest enclosing ball [9]; the probability that a 2-
colored point set is linearly separable [10]; the area of theminimumenclosing rectangle
[17]; and Klee’s measure of random rectangles [20]. We deal with the maximum box
problem in the above mentioned random model. The maximum box problem is a
geometric combinatorial optimization problem, different from most of the problems
considered in this random setting that are computations of some measure or structure
of the extent of the geometric objects.

For d = 1, the maximum box problem asks for an interval of the line. If the
points are uncertain as described above, then it is equivalent to consider as input a
sequence of random numbers, where each number has two possible outcomes: zero if
the number is not present and the actual value of the number otherwise. The output is
the subsequence of consecutive numberswith maximum sum.We consider the simpler
case when the subsequence is a partial sum, that is, it contains the first (or leftmost)
number of the sequence.More formally:We say that a random variable X is zero-value
if X = v with probability ρ, and X = 0 with probability 1− ρ, for an integer number
v = v(X) �= 0 and a probability ρ. We refer to v as the value of X and to ρ as the
probability of X . In any sequence of zero-value variables, all variables are assumed
to be mutually independent. Let X = X1, X2, . . . , Xn be a sequence of n mutually
independent zero-value variables, whose values are a1, a2, . . . , an , respectively. We
study the random variable

S(X ) = max{0, X1, X1 + X2, . . . , X1 + · · · + Xn},

which is the maximum partial sum of the random sequence X . The fact that
E[max{X ,Y }] is not necessarily max{E[X ],E[Y ]}, even if X and Y are independent
random variables, makes hard the computation of the expectation E[S(X )].

Kleinberg et al. [13] proved that the problem of computing Pr[X1 + · · · + Xn > 1]
is #P-complete, in the case where the values of the variables X1, X2, . . . , Xn are all
positive. The proof can be straightforwardly adapted to also show that computing
Pr[X1 + · · · + Xn > z] is #P-complete, where the values of X1, X2, . . . , Xn are all
positive, for any fixed z > 0. This last fact implies that computing Pr[S(X ) ≥ z]
for any fixed z ≥ 1 is #P-hard. We show hardness results when the probabilities of
X1, X2, . . . , Xn are the same, and their values are not necessarily positive. Namely,
we prove (Sect. 2.1) that computing Pr[S(X ) ≥ z] for any fixed z ≥ 1, and computing
the expectationE[S(X )] are both #P-hard problems, even if all variables ofX have the
same less-than-one probability.When a1, a2, . . . , an ∈ [−a..b] for bounded a, b ∈ N,
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we show (Sect. 2.2) that both Pr[S(X ) ≥ z] and E[S(X )] can be computed in time
polynomial in n, a, and b. For two integers u < v, we use [u..v] to denote the set
{u, u + 1, . . . , v}.

For d = 2, we consider the maximum box problem in the context of red and blue
points, where red points have weight +1 and blue points weight −∞. Let R and B be
disjoint finite point sets in the plane with a total of n points, where the elements of R
are colored red and the elements of B are colored blue. The maximum box problem
asks for a box H such that |H ∩R| is maximized subject to |H ∩B| = ∅. This problem
has been well studied, with algorithms whose running times go from O(n2 log n) [6],
O(n2) [3], to O(n log3 n) [2]. Let S ⊆ R∪B be the randompoint set where every point
p ∈ R ∪ B is included in S independently and uniformly at random with probability
π(p) ∈ [0, 1]. Let box(S) denote the random variable equal to the maximum number
of red points in S that can be covered with a box not covering any blue point of S.

We prove (Sect. 3.1) that computing the probability Pr[box(S) ≥ k] for any given
k ≥ 2, and computing the expectation E[box(S)], are both #P-hard problems. We
further show (Sect. 3.2) that given a point o of the plane, computing the probability
that there exists a box containing exactly two red points of S, no blue point of S,
and the point o can be solved in polynomial time. If we remove the restriction of
containing o, this problem is also #P-hard. This fact is a direct consequence of the
previous #P-hardness proofs.

In all running time upper bounds in this paper, in both algorithms and reductions,
we assume a real RAM model of computation where each arithmetic operation on
large-precision numbers takes constant time. Otherwise, the running times should be
multiplied by a factor proportional to the bit complexity of the numbers, which is
polynomial in n and the bit complexity of the input probability values [5,11].

2 Weighted Points

2.1 Hardness

Theorem 1 For any integer z ≥ 1 and any ρ ∈ (0, 1), the following problem is #P-
hard: Given a sequenceX = X1, X2, . . . , Xn of n zero-value random variables, each
with probability ρ, compute Pr[S(X ) ≥ z].

Proof Let z ≥ 1 be an integer, and ρ ∈ (0, 1) be a probability. We show a Turing
reduction from the #SubsetSum problem, which is known to be #P-complete [8]. Our
reduction assumes an unknown algorithm (i.e., oracle)A(X ) computing Pr[S(X ) ≥ z]
for any finite sequence X of zero-value random variables, that will be called twice.
#SubsetSum receives as input a set {a1, . . . , an} ⊂ N of n numbers and a target t ∈ N,
and counts the number of subsets J ⊆ [1..n] such that∑ j∈J a j = t . It remains #P-hard
if the subsets J must also satisfy |J | = k, for given k ∈ [1..n]. Let ({a1, . . . , an}, t, k)
be an instance of this #SubsetSum, in which we assume t ≤ a1 + · · · + an .

Let m = max{z, 1 + a1 + · · · + an} > t , and X = X0, X1, X2, . . . , Xn be a
sequence of n + 1 zero-value random variables, each with probability ρ, where the
value of X0 is−km− t + z, and the value of Xi ism+ai for every i ∈ [1..n]. Observe
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that for J ⊆ [1..n] we have

∑

j∈J

(m + a j ) = km + t ⇔
⎛

⎝
∑

j∈J

a j = t and |J | = k

⎞

⎠ .

Furthermore, |J | > k implies
∑

j∈J (m + a j ) > km + t .
Let JX = { j ∈ [1..n] : X j �= 0}, and for any s, let

Ns =
∣
∣
∣J ⊆ [1..n] : |J | = k,

∑

j∈J
a j ≥ s

∣
∣
∣ .

Then, #SubsetSum asks for Nt − Nt+1. Call A(X ) to compute Pr[S(X ) ≥ z]. Then:

Pr[S(X ) ≥ z] = Pr[S(X ) ≥ z, X0 = 0] + Pr[S(X ) ≥ z, X0 = −km − t + z]

where,

Pr[S(X ) ≥ z, X0 = 0] = Pr[X0 = 0] · Pr[S(X ) ≥ z | X0 = 0]
= (1 − ρ) · Pr[|JX | ≥ 1] = (1 − ρ) · (1 − Pr [|JX | = 0])

= (1 − ρ) · (1 − (1 − ρ)n),

and

Pr[S(X ) ≥ z, X0 = −km − t + z]
= Pr[X0 = −km − t + z] · Pr[S(X ) ≥ z | X0 = −km − t + z]

= ρ · Pr
⎡

⎣−km − t + z +
∑

j∈JX

(m + a j ) ≥ z

⎤

⎦

= ρ · Pr
⎡

⎣
∑

j∈JX

(m + a j ) ≥ km + t

⎤

⎦

= ρ ·
⎛

⎝Pr

⎡

⎣|JX | = k,
∑

j∈JX

(m + a j ) ≥ km + t

⎤

⎦

+
n∑

i=k+1

Pr

⎡

⎣|JX | = i,
∑

j∈JX

(m + a j ) ≥ km + t

⎤

⎦

⎞

⎠

= ρ · Pr
⎡

⎣|JX | = k,
∑

j∈JX

a j ≥ t

⎤

⎦ + ρ ·
n∑

i=k+1

Pr[|JX | = i]

= ρ · Nt · ρk · (1 − ρ)n−k + ρ ·
n∑

i=k+1

(
n

i

)

· ρi · (1 − ρ)n−i .
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Hence, we can compute Nt in polynomial time from the value of Pr[S(X ) ≥ z].
Consider now the random sequence X ′ = X ′

0, X1, X2, . . . , Xn , where X ′
0 has value−km−(t+1)+z. Using arguments similar to those above, by callingA(X ′) to compute

Pr[S(X ′) ≥ z], we can compute Nt+1 in polynomial time from this probability. Then,
Nt − Nt+1 can be computed in polynomial time, plus the time of calling twice the
oracle A. This implies the theorem. ��
Theorem 2 For any ρ ∈ (0, 1), the following problem is #P-hard: Given a sequence
X = X1, . . . , Xn of n zero-value random variables, each with probability ρ, compute
E[S(X )].
Proof Let X = X1, X2, . . . , Xn be a sequence of zero-value random variables, each
with probability ρ, and consider the sequence X ′ = X0, X1, . . . , Xn , where X0 is a
zero-value random variable with value −1 and probability ρ. Let w be the sum of the
positive values among the values of X1, . . . , Xn . Then:

E[S(X )] =
w∑

i=1

i · Pr[S(X ) = i] =
w∑

i=1

Pr[S(X ) ≥ i],

and

E[S(X ′)] =
w∑

i=1

Pr[S(X ′) ≥ i]

=
w∑

i=1

(Pr[S(X ′) ≥ i, X0 = 0] + Pr[S(X ′) ≥ i, X0 = −1])

=
w∑

i=1

(Pr[X0 = 0] · Pr[S(X ′) ≥ i | X0 = 0]

+ Pr[X0 = −1] · Pr[S(X ′) ≥ i | X0 = −1])

=
w∑

i=1

((1 − ρ) · Pr[S(X ) ≥ i] + ρ · Pr[S(X ) ≥ i + 1])

=
w∑

i=1

(1 − ρ) · Pr[S(X ) ≥ i] +
w+1∑

i=2

ρ · Pr[S(X ) ≥ i]

= (1 − ρ) · Pr[S(X ) ≥ 1] +
w∑

i=2

Pr[S(X ) ≥ i].

Then, we have that

E[S(X )] − E[S(X ′)] = ρ · Pr[S(X ) ≥ 1].

Since computing Pr[S(X ) ≥ 1] is #P-hard (Theorem 1), then computing E[S(X )] is
also #P-hard via a Turing reduction. ��
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2.2 Pseudo-Polynomial Time Algorithms

LetX = X1, X2, . . . , Xn be a sequence of n zero-value random variables, with values
a1, a2, . . . , an ∈ [−a..b] ⊂ Z and probabilities ρ1, ρ2, . . . , ρn , respectively, for some
a, b ∈ N. We show that both Pr[S(X ) ≥ z] and E[S(X )] can be computed in time
polynomial in n, a, and b. Let J = { j ∈ [1..n] : a j < 0} and

w0 =
∑

j∈J

|a j | = O(na) and w1 =
∑

j∈[1..n]\J
a j = O(nb).

For every t ∈ [1..n], let

St = X1 + · · · + Xt , Mt = max{0, S1, S2, . . . , St }, and

Lt = {Pr[Mt = k, St = s] : k ∈ [0..w1], s ∈ [−w0..w1], k ≥ s}.

Observe that Lt has size O(w1(w0 + w1)) = O(nb(na + nb)) = O(n2b(a + b))
for every t , and that L1 can be trivially computed. Using the dynamic programming
algorithm design paradigm, we next show how to compute the values of Lt , t ≥ 2,
assuming that all values of Lt−1 have been computed. Note that:

Pr[Mt = k, St = s] = Pr[Mt = k, St = s, Xt = 0] + Pr[Mt = k, St = s, Xt = at ],

where

Pr[Mt = k, St = s, Xt = 0] = Pr[Xt = 0] · Pr[Mt = k, St = s | Xt = 0]
= (1 − ρt ) · Pr[Mt−1 = k, St−1 = s]

and

Pr[Mt = k, St = s, Xt = at ] = Pr[Xt = at ] · Pr[Mt = k, St = s | Xt = at ]
= ρt · Pr[Mt = k, St = s | Xt = at ].

When k = s, we have for at < 0 that Pr[Mt = k, St = s | Xt = at ] = 0, since this
event indicates that St = X1 + · · · + Xt is a maximum partial sum of X1, . . . , Xt , but
this cannot happen because any maximum partial sum ends in a positive element. For
at > 0 we have

Pr[Mt = k, St = s | Xt = at ] = Pr[Mt−1 ≤ k, St−1 = s − at ]

=
k∑

i=s−at

Pr[Mt−1 = i, St−1 = s − at ].

When k > s, Mt does not count the element at , hence Mt−1 = Mt . Then

Pr[Mt = k, St = s | Xt = at ] = Pr[Mt−1 = k, St−1 = s − at ].
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Modeling each set Lt as a 2-dimensional table (or array), note that each value of Lt

can be computed in O(k − (s − at )) = O(w1) time, and hence all values of Lt can
be computed in O(w1) · O(n2b(a + b)) = O(n3b2(a + b)) time. Finally, once all the
values of Ln have been computed in O(n) · O(n3b2(a + b)) = O(n4b2(a + b)) time,
we can compute Pr[S(X ) ≥ z] as

Pr[S(X ) ≥ z] =
w1∑

k=z

Pr[S(X ) = k] =
w1∑

k=z

k∑

s=−w0

Pr[Mn = k, Sn = s]

in O(w1(w0 + w1)) = O(n2b(a + b)) time, and E[S(X )] as

E[S(X )] =
w1∑

z=1

Pr[S(X ) ≥ z]

in O(w1) = O(nb) time. As a consequence, we get the following result.

Theorem 3 LetX = X1, X2, . . . , Xn be a sequence of n zero-value random variables,
with values a1, a2, . . . , an ∈ [−a..b] ⊂ Z and probabilities ρ1, ρ2, . . . , ρn, respec-
tively, for some a, b ∈ N. Then, both Pr[S(X ) ≥ z] and E[S(X )] can be computed in
time polynomial in n, a, and b.

3 Red and Blue Points

3.1 Hardness

Given a graph G = (V , E), a subset V ′ ⊆ V is an independent set of G if no pair of
vertices of V ′ define an edge in E . Let N (G) denote the number of independent sets of
G. The problem #IndSet of counting the number of independent sets in a graph is #P-
complete, even if the graph is planar, bipartite, and with maximum degree 4 [18]. We
show in what follows a one-to-many Turing reduction from #IndSet to the problem of
computing Pr[box(S) ≥ k], for any given k ≥ 2. The proof uses techniques similar to
that of Kamousi et al. [11] to prove that counting vertex covers in weighted unit-disk
graphs is #P-hard, and that of Vadhan [18] to prove that counting weighted matchings
in planar bipartite graphs is #P-hard.

Let G = (V , E) be the input of #IndSet, where G is a planar, bipartite graph with
maximum degree 4. Let n = |V | and m = |E | = O(n). For an overview of the whole
proof, refer to Fig. 1.

For any subset V ′ ⊆ V and any edge e = {u, v} ∈ E , we say that V ′ 1-covers edge
e if exactly one of u and v belongs to V ′. We also say that V ′ 2-covers e if both u
and v belong to V ′. Let Ci, j denote the number of subsets of V that 1-cover exactly i
edges and 2-cover exactly j edges. Then,

N (G) =
m∑

i=0

Ci,0.
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Fig. 1 Given an instance G = (V , E) of #IndSet, for every s in the set {h, h + 1, . . . , h + m} of m + 1
integers polynomially bounded in n, we construct the random colored point set Rs ∪Bs . LetGs be the graph
obtained from G by subdividing each edge with exactly s new vertices. Assuming that an oracle computes
Pr[box(S) ≥ 2], where S ⊆ Rs ∪ Bs is the random sample, we show that N (Gs ) can be computed
in constant time from this probability. From all of the values N (Gh), N (Gh+1), . . . , N (Gh+m ) already
computed, we show that N (G) can be computed in polynomial time

For s ≥ 1, let Gs = (Vs, Es) be the graph obtained from G by adding exactly s
intermediate vertices on each edge of E . Let { fi }∞i=1 be the Fibonacci sequence, with
f1 = f2 = 1 and fi = fi−1 + fi−2 for i ≥ 3. Let αi = fi+1/ fi+2 for i ≥ 0. The next
lemma relates the number N (Gs) of independent sets of Gs to the values Ci, j in G.

Lemma 4 We have

N (Gs) = ( fs+2)
m ·

∑

0≤i+ j≤m

Ci, j · (αs)
i · (1 − αs)

j .

Proof Any independent set V ′
s ⊆ Vs of Gs induces the subset V ′

s ∩ V of V , which
is not necessarily an independent set of G because it may 2-cover some edges. Let
V ′ ⊆ V be any subset of V that 1-covers i edges and 2-covers j edges. For any edge
e ∈ E , let pe denote the path induced by the s vertices added to e when constructing
Gs from G. An independent set of Gs inducing V ′ can be obtained by starting with
V ′ and adding vertices in the following way. For every edge e = {u, v} ∈ E :

(1) if V ′ neither 1-covers nor 2-covers e, then add any independent set of pe.
(2) if V ′ 1-covers e, say u ∈ V ′, then add any independent set of pe not containing

the extreme vertex of pe adjacent to u in Gs .
(3) if V ′ 2-covers e, then add any independent set of pe with no extreme vertex.

It is well known that the number of independent sets of a path of length � is exactly
f�+3 [18]. Since pe has length s−1 for every e, the number of choices for cases (1), (2),

123



Algorithmica (2021) 83:3741–3765 3749

and (3) are fs+2, fs+1, and fs , respectively. Therefore, the number of independent sets
of Gs inducing a subset of V that 1-covers i edges and 2-covers j edges is precisely
Ci, j · ( fs+1)

i · ( fs) j · ( fs+2)
m−i− j . Hence, the number N (Gs) of independent sets of

Gs satisfies

N (Gs) =
∑

0≤i+ j≤m

Ci, j · ( fs+1)
i · ( fs)

j · ( fs+2)
m−i− j

= ( fs+2)
m ·

∑

0≤i+ j≤m

Ci, j ·
(

fs+1

fs+2

)i

·
(

fs
fs+2

) j

= ( fs+2)
m ·

∑

0≤i+ j≤m

Ci, j ·
(

fs+1

fs+2

)i

·
(

1 − fs+1

fs+2

) j

= ( fs+2)
m ·

∑

0≤i+ j≤m

Ci, j · (αs)
i · (1 − αs)

j ,

which completes the proof. ��

Lemma 5 Let T be a set of m + 1 integers, each bounded by a polynomial in n. If we
know the value of N (Gs) for every s ∈ T , then the number N (G) can be computed in
time polynomial in n.

Proof For every s ∈ T , the value of ( fs+2)
m can be computed in O(log s + logm) =

O(log n) time, and the value of αs also in O(log s) = O(log n) time. Let bs =
N (Gs)/( fs+2)

m for every s ∈ T . Consider the polynomial

P(x) =
∑

0≤i+ j≤m

Ci, j · xi · (1 − x) j = a0 + a1x + a2x
2 + · · · + amx

m,

of degree m, whose coefficients a0, a1, . . . , am are linear combinations of the terms
Ci, j . By Lemma 4, and using the known values of bs and αs for every s ∈ T , we
have m + 1 evaluations of P(x) of the form bs = P(αs), each corresponding to
the linear equation bs = a0 + a1 · αs + a2 · α2

s + · · · + am · αm
s with variables the

coefficients a0, a1, . . . , am . The main matrix of this system of m + 1 linear equations
is Vandermonde, with parameters αs for every s ∈ T . All αs are distinct (refer to [18]
or Appendix A for completeness), so the determinant of the main matrix is non-zero,
and the system has a unique solution a0, a1, . . . , am , which can be computed in time
polynomial in n. Finally, observe that for j = 0, the coefficient of the polynomial
P(x) = Ci, j · xi · (1 − x) j = Ci,0 · xi is Ci,0. Furthermore, for j > 0, all the
coefficients of the polynomial

P(x) = Ci, j · xi · (1 − x) j

= Ci, j · xi ·
((

j

0

)

−
(
j

1

)

x1 +
(
j

2

)

x2 − · · · + (−1) j
(
j

j

)

x j
)
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Fig. 2 a An embedding of G. b
The embedding of Gs for s = 2:
two intermediate vertices are
added to each edge of G so that
all polyline bends are covered

(a) (b)

sum up to zero. Indeed, it suffices to note that P(1) = 0. Hence, we obtain

a0 + a1 + a2 + · · · + am =
m∑

i=0

Ci,0 = N (G).

which shows that N (G) can be computed in time polynomial in n. ��

In polynomial time, the graph G = (V , E) can be embedded in the plane using
O(n2) area in such a way that its vertices are at integer coordinates, and its edges are
drawn so that they are polylines made up of line segments of the form x = i or y = j ,
for integers i and j [19] (see Fig. 2a). Let h = O(n) be the maximum number of
bends of the polylines corresponding to the edges.

For s = h, h + 1, . . . , h + m, we embed the graph Gs in the following way. We
embed the graph G as above; scale the embedding by factor 2(s + 1); and for each
edge of G, add s intermediate vertices to the polyline of the edge so that they have
even integer coordinates and cover all bends of the polyline (see Fig. 2b). Then, each
edge of Gs is represented in the embedding by a vertical or horizontal segment. Let
the point set R0 = R0(s) ⊂ Z

2 denote the vertex set of the embedding, and color
these points in red. By translation if necessary, we can assume R0 ⊂ [0..N ]2 for some
N = O(n2). Let B0 = B0(s) be the following set of blue points: For each horizontal
or vertical line � through a point of R0, and each two consecutive points p, q ∈ R0
in � such that the vertices p and q are not adjacent in Gs , we add a blue point in the
segment pq connecting p and q, in order to “block” this segment, so that the blue point
has one odd coordinate. In this way, blue points blocking horizontal segments have
odd x-coordinates and even y-coordinates; and blue points blocking vertical segments
have even x-coordinates and odd y-coordinates. Hence, a blue point cannot block at
the same time a horizontal and a vertical segment defined by two red points. Note that
|B0| = O(|R0|) = O(n + m · s) = O(n2). Now, a horizontal or vertical segment
connecting two points p and q of R0 ∪ B0 represents an edge of Gs if and only if
p, q ∈ R0 and the segment does not contain any other point of R0 ∪ B0 in its interior
(see Fig. 4).

We perturb R0 ∪ B0 ⊂ [0..N ]2 to obtain a point set with rational coordinates by
applying the function λ : [0..N ]2 → Q

2, where

λ(p) =
(

x(p) + x(p) + y(p)

4N + 1
, y(p) + x(p) + y(p)

4N + 1

)

,
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Fig. 3 The way in which points are perturbed using function λ

Fig. 4 The point set R0 ∪ B0 for the embedding Gs , s = 2, depicted in Fig. 2b. The grid lines are equally
spaced in two units, then their intersection points have even coordinates. After the perturbation with the
function λ (see Fig. 3), the extra blue points {p + (1/2, 1/2), p + (δ, −δ) | p ∈ Rs } are included in Bs to
avoid that the box D(λ(p), λ(q)) contains no blue point, for any two points p, q ∈ R0 which do not belong
to the same edge of the embedding. See for example the points p and q, denoted in the figure (Color figure
online)

to every p ∈ R0 ∪ B0, where x(p) and y(p) denote the x- and y-coordinates of p,
respectively. Similar perturbations can be found in [1,4], and refer to Fig. 3. Since λ is
injective [4], let λ−1 denote the inverse of λ. For A ⊂ [0..N ]2, let λ(A) = {λ(p) | p ∈
A}, and for A′ ⊂ λ([0..N ]2) let λ−1(A′) = {λ−1(p) | p ∈ A′}. Let δ = 1/(4N + 2),
and define the sets

Rs = λ(R0) and Bs = λ(B0) ∪ {p + (1/2, 1/2), p + (δ,−δ) | p ∈ Rs} .

To simplify the notation, let R = Rs and B = Bs . Note that |R| = O(n2) and
|B| = O(n2). For two points a and b, let D(a, b) be the box with the segment ab as
a diagonal. The proof of the next technical lemma is deferred to Appendix B.

Lemma 6 For any different p, q ∈ R, the vertices λ−1(p) and λ−1(q) are adjacent in
Gs if and only if the box D(p, q) contains no point of B.

Theorem 7 Given R ∪ B, it is #P-hard to compute Pr[box(S) ≥ k] for every integer
k ≥ 2, and it is also #P-hard to compute E[box(S)].
Proof Let k = 2. Assume that there exists an algorithm (i.e., oracle)A that computes
Pr[box(S) ≥ 2]. Consider the planar bipartite graph G = (V , E), with maximum
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degree 4, the input of #IndSet. Let T = {h, h+1, . . . , h+m}. For each s ∈ T wecreate
the graph Gs , embed Gs in the plane, and build the colored point set R∪ B = Rs ∪ Bs

from this embedding. For each red point p ∈ R we set its probability π(p) to 1/2,
and for each blue point q ∈ B we set π(q) = 1. Note from Lemma 6 that there does
not exist any box containing more than two red points of R and no blue point from B.
Then, we have Pr[box(S) ≥ 2] = Pr[box(S) = 2], where S ⊆ R ∪ B is the random
subset of R ∪ B. Furthermore,

Pr[box(S) = 2] = Pr[λ−1(S ∩ R) is not an independent set in Gs]
= 1 − Pr[λ−1(S ∩ R) is an independent set in Gs]
= 1 − N (Gs)

2|R|
N (Gs) = 2|R| · (1 − Pr[box(S) ≥ 2]).

Then, for each s ∈ T we can compute N (Gs) by callingA once. By Lemma 5, we can
compute N (G) from the m + 1 computed values of N (Gs) for each s ∈ T . Hence, it
is #P-hard to compute Pr[box(S) ≥ 2] via a Turing reduction from #IndSet. To show
that computing E[box(S)] is also #P-hard, for each s ∈ T consider the above point
set R ∪ B and note that

E[box(S)] = 1 · Pr[λ−1(S ∩ R) is an independent set in Gs, S ∩ R �= ∅] +
2 · Pr[λ−1(S ∩ R) is not an independent set in Gs]

= N (Gs) − 1

2|R| + 2 ·
(

1 − N (Gs)

2|R|

)

= 2 − N (Gs) + 1

2|R|

N (Gs) = 2|R| · (2 − E[box(S)]) − 1.

Let now k ≥ 3. For each s ∈ T , the graph Gs can be colored with two colors, 0 and
1, because it is also a bipartite graph. Each red point in R corresponds to a vertex in
Gs . Then, for each red point p ∈ R with color 0 we add new � k

2� − 1 red points close
enough to p (say, at distance much smaller than δ), and for each red point q ∈ R with
color 1 we add new � k

2� − 1 red points close enough to q. Let R′ = R′(s) be the set
of all new red points, and assign π(u) = 1 for every u ∈ R′. In this new colored point
set R ∪ R′ ∪ B, there is no box containing more than k red points and no blue point.
Furthermore, every box containing exactly k red points and no blue point contains

two points p, q ∈ R such that λ−1(p) and λ−1(q) are adjacent in Gs ; and for every
p, q ∈ R such that λ−1(p) and λ−1(q) are adjacent in Gs such a box containing p
and q exists. Then, when taking S ⊆ R ∪ R′ ∪ B at random, we also have

Pr[box(S) ≥ k] = Pr[box(S) = k]
= Pr[λ−1(S ∩ R) is not an independent set in Gs]
= 1 − N (Gs)

2|R| .

Hence, computing Pr[box(S) ≥ k] is also #P-hard for any k ≥ 3. ��
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3.2 Two-Point Boxes

From the proof of Theorem 7, note that it is also #P-hard to compute the probability
that in S ⊆ R ∪ B there exists a box that contains exactly two red points p, q and no
blue point; and that this box can be restricted to be the minimum box D(p, q) having
p and q as opposed vertices. In this section, we present a polynomial-time algorithm
to compute such a probability when the box is further restricted to contain a given
point o /∈ R ∪ B of the plane in the interior. We assume general position, that is, there
are no two points of R ∪ B ∪ {o} with the same x- or y-coordinate. We further assume
w.l.o.g. that o is the origin of coordinates.

Given a fixed X ⊆ R ∪ B, and S ⊆ R ∪ B chosen at random, let E(X) = E(X , S)

be the event that there exist two red points p, q ∈ S ∩ X such that the box D(p, q)

contains the origin o, no other red point in S ∩ X , and no blue in S ∩ X . Then, our
goal is Pr[E(R ∪ B)].
Theorem 8 Given R ∪ B, Pr[E(R ∪ B)] can be computed in polynomial time.

Proof Let X ⊆ R ∪ B, and define X+ = {p ∈ X | y(p) > 0} and X− = {p ∈ X |
y(p) < 0}. Given points q ∈ X+ and r ∈ X−, define the events

Uq(X , S) =
[

q = arg min
p∈X+∩S

{y(p)}
]

and Wr (X , S) =
[

r = arg max
p∈X−∩S

{y(p)}
]

.

Let Uq(X) = Uq(X , S) and Wr (X) = Wr (X , S). Using the formula of the total
probability, we have:

Pr[E(X)] =
∑

q∈X+
Pr
[
E(X) | Uq(X)

] · Pr [Uq(X)
]

=
∑

q∈X+
Pr
[
E(X) | Uq(X)

] ·
⎛

⎝π(q) ·
∏

p∈X+:y(p)<y(q)

(1 − π(p))

⎞

⎠ .

To compute Pr
[
E(X) | Uq(X)

]
, we assume x(q) > 0. The case where x(q) < 0 is

symmetric. If q ∈ B, then observe that when restricted to the event Uq(X) any box
D(p′, q ′) defined by two red points p′, q ′ ∈ S ∩ X , containing the origin o and no
other red point in S∩X , where one between p′ and q ′ is to the right of q, will contain q.
Hence, we must “discard” all points to the right of q, all points between the horizontal
lines through q and o because they are not present, and q itself. Then, we have that:

Pr
[
E(X) | Uq(X)

] = Pr[E(Xq)],

where Xq ⊂ X contains the points p ∈ X such that x(p) < x(q) and either y(p) >

y(q) or y(p) < 0. If q ∈ R, we expand Pr
[
E(X) | Uq(X)

]
as follows:

Pr
[
E(X) | Uq(X)

] =
∑

r∈X−
Pr
[
E(X) | Uq(X),Wr (X)

] · Pr [Wr (X)]
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=
∑

r∈X−
Pr
[
E(X) | Uq(X),Wr (X)

] ·
⎛

⎝π(r) ·
∏

p∈X−:y(p)>y(r)

(1 − π(p))

⎞

⎠ .

There are now three cases according to the relative positions of q and r .
Case 1: x(r) < 0 < x(q). Let Yq,r ⊂ X contain the points p ∈ X (including q) such
that x(r) < x(p) ≤ x(q) and either y(p) < y(r) or y(p) ≥ y(q). If r ∈ R, then
Pr
[
E(X) | Uq(X),Wr (X)

] = 1. Otherwise, if r ∈ B, given that Uq(X) and Wr (X)

hold, any box D(p′, q ′) defined by two red points p′, q ′ of S∩X , containing the origin
o and no other red point in S ∩ X , where one between p′ and q ′ is not in Yq,r , will
contain q or r in the interior. Then

Pr
[
E(X) | Uq(X),Wr (X)

] = Pr[E(Yq,r ) | Uq(Yq,r )].

Similar arguments are given in the next two cases.
Case 2: 0 < x(q) < x(r). We have

Pr
[
E(X) | Uq(X),Wr (X)

] = Pr[E(Xq ∪ {q}) | Uq(Xq ∪ {q})].

Case 3: 0 < x(r) < x(q). If r ∈ R, then

Pr
[
E(X) | Uq(X),Wr (X)

] = Pr[E(Zq,r ∪ {r}) | Wr (Zq,r ∪ {r})],

where Zq,r ⊂ X contains the points p ∈ X such that x(p) < x(r) and either
y(p) < y(r) or y(p) > y(q). Note that the event [E(Zq,r ∪ {r}) | Wr (Zq,r ∪ {r})] is
symmetric to the event [E(X) | Uq(X)], thus its probability can be computed similarly.
Otherwise, if r ∈ B, we have

Pr
[
E(X) | Uq(X),Wr (X)

] = Pr[E(Zq,r )].

Note that in the above recursive computation of Pr[E(X)], for X = R ∪ B, there is a
polynomial number of subsets Xq , Yq,r , and Zq,r ; each of such subsets can be encoded
in constant space (i.e., by using a constant number of coordinates). Then, we can use
dynamic programming, with a polynomial-size table, to compute Pr[E(R ∩ B)] in
time polynomial in n. ��

4 Discussion and Open Problems

For fixed d ≥ 1, the maximum box problem for non-probabilistic points can be solved
in O(nd) time [3]. This fact, combined with the Monte Carlo method and known tech-
niques, can be used to approximate the expectation of the total weight of the maximum
box on probabilistic points, in polynomial time and with high probability of success.
That is, we provide a FPRAS, which is explained in Appendix C. Approximating the
probability that the total weight of a maximum box is at least a given parameter is
an open question of this paper. To this end, we give in Appendix D a FPRAS for
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approximating this probability, but only in the case where the points are colored red
or blue, each with probability 1/2, and we look for the box covering the maximum
number of red points and no blue point (i.e. red points have weight+1 and blue points
weight −∞).

For d = 2 and red and blue points, there are several open problems: For example,
to compute Pr[box(S) ≥ k] (even for k = 3) in d = 2 when the box is restricted to
contain a fixed point. Other open questions are the cases inwhich the box is restricted to
contain a given point as vertex, or has some side contained in a given axis-parallel line.
This two latter variants can be solved in nO(k) time (see Appendix E), which means
that they are polynomial-time solvable for fixed k. This contrasts with the original
question that is #P-hard for every k ≥ 2.

For red and blue points in d = 1, both Pr[box(S) ≥ k] and E[box(S)] can be
computed in polynomial time by using standard dynamic programming techniques.
This implies that for d = 2 and a fixed direction, computing the probability that there
exists a strip (i.e., the space between two parallel lines) perpendicular to that direction
and covering at least k red points and no blue point can be done in polynomial time.
If the orientation of the strip is not restricted, then such a computation is #P-hard for
every k ≥ 3 (see Appendix F).
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A Fibonacci Numbers

Lemma 9 Let { fn}∞n=1 be the Fibonacci sequence, with f1 = f2 = 1 and fn =
fn−1 + fn−2 for n ≥ 3. Then, the numbers fi/ fi+1 for i ≥ 1 are all different.

Proof Let 1 ≤ i < j be integers such that fi/ fi+1 = f j/ f j+1. Assume also that
i is minimum over all possible pairs (i, j) satisfying this property. If i = 1, then
f j = f j+1 because f1 = f2 = 1. Since f2, f3, f4, . . . are all different, this is a
contradiction. Otherwise, if i > 1,

fi · f j+1 = f j · fi+1

fi · ( f j + f j−1) = f j · ( fi + fi−1)
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fi−1/ fi = f j−1/ f j .

Then, the pair (i − 1, j − 1) satisfies the property, which is a contradiction because
(i, j) is such that i is minimum. Hence, the lemma follows. ��

B Proof of Lemma 6

Lemma 6. For any different p, q ∈ R, the vertices λ−1(p) and λ−1(q) are adjacent
in Gs if and only if the box D(p, q) contains no point of B.

Proof (⇒) Let p, q ∈ R be red points such that vertices p0 = λ−1(p) and q0 =
λ−1(q) are adjacent in Gs . We have either x(p0) = x(q0) or y(p0) = y(q0). We
will prove that D(p, q) ∩ B is empty by assuming x(p0) = x(q0) = a; the case
where y(p0) = y(q0) is similar. Further assume w.l.o.g. that y(p0) < y(q0). Since
the segment p0q0 contains no other point of R0 ∪ B0, then D(p, q) does not contain
points inλ(R0)∪λ(B0) different from p and q (refer to Lemma 7 in [4]). Then,we need
to prove that D(p, q) does not contain any blue point of the form λ(u0) + (1/2, 1/2)
or λ(u0) + (δ,−δ), for u0 ∈ R0. Assume that there exists u0 ∈ R0 such that u =
λ(u0) + (1/2, 1/2) ∈ D(p, q) ∩ B. We must have x(p) ≤ x(u) ≤ x(q), that is

a + a + y(p0)

4N + 1
≤ x(u0) + x(u0) + y(u0)

4N + 1
+ 1

2
≤ a + a + y(q0)

4N + 1
. (1)

The left inequality implies

a < x(u0) + 2N

4N + 1
+ 1

2
< x(u0) + 1,

that is, a − 1 < x(u0). The right inequality implies

x(u0) + 1

2
< a + 2N

4N + 1
< a + 1

2
,

that is, x(u0) < a. Since both a and x(u0) are integers, a − 1 < x(u0) < a is a
contradiction. Hence, such a point u0 does not exist. Assume now that there exists
u0 ∈ R0 such that u = λ(u0) + (δ,−δ) ∈ D(p, q) ∩ B. Then, Eq. (1) translates to

a + a + y(p0)

4N + 1
≤ x(u0) + x(u0) + y(u0)

4N + 1
+ δ ≤ a + a + y(q0)

4N + 1
. (2)

The left inequality again implies a − 1 < x(u0), and the right one implies x(u0) <

a + 1/2 − δ < a + 1. Then, we must have x(u0) = a, and Eq. (2) simplifies to

y(p0)

4N + 1
≤ y(u0)

4N + 1
+ 1

4N + 2
≤ y(q0)

4N + 1
.
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This implies y(u0) < y(q0), and then y(p0) = y(u0) (i.e., u0 = p0) because the
segment p0q0 is empty of points of R0 ∪ B0 in its interior. Then, we have y(u) =
y(p)−δ < y(p) < y(q)which contradicts u ∈ D(p, q). Hence, such a point u0 does
not exist.
(⇐) Let p, q ∈ R be red points such that vertices p0 = λ−1(p) and q0 = λ−1(q)

are not adjacent in Gs . We will prove that D(p, q) ∩ B is not empty. We have several
cases:

(a) x(p0) = x(q0)or y(p0) = y(q0), and segment p0q0 contains a pointu0 ∈ R0∪B0.
Consider x(p0) = x(q0), if y(p0) = y(q0) then the proof is similar. Assume
y(p0) < y(q0) w.l.o.g., let u = λ(u0), and note that x(p0) = x(u0) = x(q0) and
y(p0) < y(u0) < y(q0). If u0 ∈ B0, then

x(p0) + x(p0) + y(p0)

4N + 1
< x(u0) + x(u0) + y(u0)

4N + 1
< x(q0)

+ x(q0) + y(q0)

4N + 1
,

and

y(p0) + x(p0) + y(p0)

4N + 1
< y(u0) + x(u0) + y(u0)

4N + 1
< y(q0) + x(q0) + y(q0)

4N + 1
.

which imply x(p) < x(u) < x(q) and y(p) < y(u) < y(q). Hence, u ∈
D(p, q) ∩ B. Otherwise, if u0 ∈ R0, then let v = u + (δ,−δ) ∈ B. Similarly as
above, we have x(p) < x(u) = x(v) − δ < x(v) and y(v) = y(u) − δ < y(u) <

y(q). Then,

x(v) = x(u0) + x(u0) + y(u0)

4N + 1
+ δ = x(q0) + x(q0) + y(u0)

4N + 1
+ 1

4N + 2

< x(q0) + x(q0) + y(q0) − 4N+1
4N+2

4N + 1
+ 1

4N + 2

= x(q0) + x(q0) + y(q0)

4N + 1
= x(q),

and

y(p) = y(p0) + x(p0) + y(p0)

4N + 1
= y(p0) + x(u0) + y(p0)

4N + 1

< y(u0) + x(u0) + y(u0) − 4N+1
4N+2

4N + 1

= y(u0) + x(u0) + y(u0)

4N + 1
− 1

4N + 2
= y(u) − δ = y(v),

which imply x(p) < x(v) < x(q); y(p) < y(v) < y(q); and v ∈ D(p, q) ∩ B.
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(b) (Up to symmetry) x(p0) < x(q0) and y(p0) < y(q0). Let u = p + (1/2, 1/2) ∈
B. Then,

x(u) = x(p) + 1

2
= x(p0) + x(p0) + y(p0)

4N + 1

+1

2
< x(q0) + x(q0) + y(q0)

4N + 1
= x(q),

and

y(u) = y(p) + 1

2
= y(p0) + x(p0) + y(p0)

4N + 1

+1

2
< y(q0) + x(q0) + y(q0)

4N + 1
= y(q).

Hence, x(p) < x(u) < x(q); y(p) < y(u) < y(q); and u ∈ D(p, q) ∩ B.
(c) (Up to symmetry) x(p0) < x(q0) and y(p0) > y(q0). Let v = p + (δ,−δ) ∈ B.

Then,

x(v) = x(p) + δ = x(p0) + x(p0) + y(p0)

4N + 1
+ δ

< x(p0) + 2N

4N + 1
+ 1

4N + 2
< x(q0) < x(q),

and

y(v) = y(p) − δ = y(p0) + x(p0) + y(p0)

4N + 1
− δ

> y(p0) − 1

4N + 2
≥ y(q0) + 1 − 1

4N + 2
> y(q0) + 2N

4N + 1

> y(q0) + x(q0) + y(q0)

4N + 1
= y(q).

Hence, x(p) < x(v) < x(q); y(p) > y(v) > y(q); and v ∈ D(p, q) ∩ B.

The result thus follows. ��

C RandomApproximation of the Expectation

In this section, let P ⊂ R
d be an n-point set, for fixed d ≥ 1, with weights w : P →

R \ {0}, and probabilities π : P → (0, 1]. Let S ⊆ P be the random sample where
each p ∈ P is included in S with probability π(p). We assume the model in which
deciding whether a given p is in the sample S can be done in O(1) time, then any
random sample of J ⊆ P can be generated in O(|J |) time.

Let box(S) denote the total weight of the maximum box of S. We show, given
ε, δ ∈ (0, 1), how to compute in time polynomial in n, ε−1, and δ−1, the estimate μ̃
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of μ = E[box(S)] such that

Pr[(1 − ε)μ ≤ μ̃ ≤ (1 + ε)μ] > 1 − δ. (3)

Let Q = {p ∈ P | w(p) > 0}, m = |Q|, and q1, q2, . . . , qm denote the elements
of Q such that w(q1) ≤ w(q2) ≤ · · · ≤ w(qm). For j = 1, . . . ,m, let w j = w(q j ),
Q j = {q1, . . . , q j }, and μ j be defined as follows:

μ j = E
[
box(S) | S ⊆ Q j ∪ (P \ Q), q j ∈ S

]
,

that is,μ j is the expectation of box(S) conditioned on q j being the element of heaviest
weight in S. By the formula of the total probability, we have that:

μ =
m∑

j=1

Pr
[
S ⊆ Q j ∪ (P \ Q), q j ∈ S

] · μ j

=
m∑

j=1

⎛

⎝π(q j )

m∏

i= j+1

(1 − π(qi ))

⎞

⎠μ j .

Then, to approximate μ we compute the approximation μ̃ j of μ j , for j = 1, . . . ,m.
We do this by using the Monte-Carlo method, within the proof of the next lemma:

Lemma 10 Let ε, δ ∈ (0, 1), j ∈ [1..m], and N = �(4 j/ε2) ln(2/δ)�. Let
S1, S2, . . . , SN be N random samples of Q j ∪ (P \ Q), each containing q j , and
let μ̃ j be the average of box(S1), box(S2), . . . , box(SN ). Then, we have that

Pr[(1 − ε)μ j ≤ μ̃ j ≤ (1 + ε)μ j ] > 1 − δ. (4)

Furthermore, μ̃ j can be computed in N · (O( j + n − m) + O(nd)) = O((nd+1/ε2)

log(1/δ)) time.

Proof A standard Chernoff bound [14] asserts that if X1, . . . , XN are i.i.d. random
variables over a bounded domain [0,U ]with expectation α = E[Xi ], then the average
X = 1

N

∑N
i=1 Xi satisfies:

Pr[(1 − ε)α ≤ X ≤ (1 + ε)α] > 1 − 2e−N (α/U )ε2/4. (5)

By letting Xi = box(Si ) for i = 1, . . . , N , we have that α = μ j , X = μ̃ j , and
U = w1 + w2 + · · · + w j ≤ j · w j . Furthermore, since q j ∈ Si for all i , we must
have w j ≤ Xi ≤ U (because there is a small enough box containing only point q j ,
and Xi is the weight of a maximum box of Si ), which implies w j ≤ μ j ≤ U . For
N ≥ (4/ε2)(U/α) ln(2/δ) = (4/ε2)(U/μ j ) ln(2/δ), Eqs. (5) and (4) hold. This is
ensured by the definition of N , and because w j ≤ μ j and U ≤ j · w j . That is,

(4/ε2)(U/μ j ) ln(2/δ) ≤ (4/ε2)(U/w j ) ln(2/δ) ≤ (4 j/ε2) ln(2/δ) ≤ N .
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Since for any d ≥ 1, the maximum box problem on n points in R
d can be solved in

O(nd) time [3] (after sorting the points), the running time follows. ��
We use Lemma 10 and the union bound to compute μ̃ to satisfy Eq. (3). Namely,

within O(m · (nd+1/ε2) log(m/δ)) = O((nd+2/ε2) log(n/δ)) time we compute the
estimates μ̃1, μ̃2, . . . , μ̃m , such that for all j ∈ [1..m]we have Eq. (4) in the following
way:

Pr[(1 − ε)μ j ≤ μ̃ j ≤ (1 + ε)μ j ] > 1 − δ/m.

Let

μ̃ =
m∑

j=1

Pr
[
S ⊆ Q j ∪ (P \ Q), q j ∈ S

] · μ̃ j ,

which by the union bound andBernoulli’s inequality satisfies (1−ε)μ ≤ μ̃ ≤ (1+ε)μ

with probability at least (1 − δ/m)m ≥ 1 − δ. Hence, μ̃ satisfies Eq. (3).

D RandomApproximation of the Probability

In this section, let P ⊂ R
d , d ≥ 1, be an n-point set of two-colored points. Let

P = R ∪ B, where R is the set of red points and B the set of blue points. We assume
that P is in general position, which means that no two points of P belongs to the
same axis-parallel hyperplane. Let S ⊆ P be a random sample in which each element
of P is included in S independently with probability 1/2, and let box(S) denote the
maximum number of red points in S that can be covered with a box, without covering
any blue point.

Given an integer z ≥ 1, we show how to approximate the probability f =
Pr[box(S) ≥ z]. Namely, we show how to compute in O(nO(min{z,n−z}) · ε−2) time a
value f̃ that satisfies

Pr[(1 − ε) f ≤ f̃ ≤ (1 + ε) f ] ≥ 3/4. (6)

Note that the running time is polynomial if min{z, n − z} = O(1).
The idea of the algorithm is to reduce the computation of the probability to count the

number of satisfiable assignments of some DNF formula. Given n boolean variables
x1, x2, . . . , xn , a DNF formula on these variables is a disjunction of clauses, where
each clause is a conjunction of variables or negations of variables (e.g. (x1 ∧ x2 ∧
x3) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4)). The key observation for the reduction is that there exists
a box covering at least z red points of S, without covering any blue points, if and only
if there exists a similar box covering exactly z points. This follows from the fact that
a box with more than z red points can be shrunk to cover exactly z of them.

For every p ∈ P , let xp ∈ {0, 1} be the boolean, or indicator, (random) variable
such that xp = 1 if and only if p ∈ S. For every set Q ⊆ R of cardinality z, let CQ
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denote the clause

CQ =
⎛

⎝
∧

p∈Q
xp

⎞

⎠ ∧
⎛

⎝
∧

q∈B∩bb(Q)

xq

⎞

⎠ ,

where bb(Q) denotes the minimum box covering Q. That is, CQ stands for the event
that Q ⊆ S and the elements of Q, all of them red, can be covered with a box without
covering any blue point of S (because bb(Q) is forced to be empty of elements of B).
Let F = ∨

Q∈2R :|Q|=z CQ be the DNF formula consisting of the disjunction of CQ

over all subsets Q ⊆ R with |Q| = z, which has n variables and m = (n
z

)
clauses.

Let N be the number of satisfying assignments to F . Then, note that f = N/2n .
Using the algorithm of Karp, Luby, and Madras [12], we can find in O(nm · ε−2) =
O(nO(min{z,n−z}) ·ε−2) time a value Ñ such that Pr[(1−ε)N ≤ Ñ ≤ (1+ε)N ] ≥ 3/4.
This implies that f̃ satisfies Eq. (6).

E Anchored Boxes

In this section, we consider the computation of Pr[box(S) ≥ k] when the box is
restricted to contain the origin o of coordinates as bottom-left vertex. We assume that
R ∪ B is in general position and k is an integer. For simplicity, we further assume
that R ∪ B is contained in the first quadrant, π(b) = 1 for every b ∈ B, the elements
b1, b2, . . . , b|B| of B form a staircase (i.e., x(b1) < x(b2) < · · · < x(b|B|) and
y(b1) > y(b2) > · · · > y(b|B|)), and x(b1) < x(r) < x(b|B|) for every r ∈ R. We
show that Pr[box(S) ≥ k] can be computed in nO(k) time. If all the simplifications
are dropped, or it is considered that the box has a side in a given axis-parallel line, the
computation (although more detailed) can also be done within this time.

For every i ∈ {1, 2, . . . , |B|−1}, let Di = D(o, bi ), and let Hi be the smallest box
covering o, bi , and bi+1. Let D|B| = D(o, b|B|). Let E(i, Q) denote the event such
that for S ⊆ R chosen at random, at least one of Hi , Hi+1, . . . , H|B|−1 contains k red
points (or more) of S subject to |Di ∩ S| = Q. Then, [box(S) ≥ k] = E(1,∅). We
compute Pr[E(i, Q)] recursively (see Fig. 5). We have that:

Pr[E(i, Q)]
= Pr

[
E(i, Q)

∣
∣
∣ |(Hi \ Di ) ∩ S| ≥ k − |Q|

]
· Pr

[
|(Hi \ Di ) ∩ S| ≥ k − |Q|

]

+Pr
[
E(i, Q)

∣
∣
∣ |(Hi \ Di ) ∩ S| < k − |Q|

]
· Pr

[
|(Hi \ Di ) ∩ S| < k − |Q|

]

= 1 − Pr
[
|(Hi \ Di ) ∩ S| < k − |Q|

]

(
1 − Pr

[
E(i, Q)

∣
∣
∣ |(Hi \ Di ) ∩ S| < k − |Q|

])
.

Note that Pr
[|(Hi \ Di ) ∩ S| < k − |Q|] can be computed in nO(k) time since we

need to consider all subsets of size less than k of (Hi \ Di ) ∩ R. Also note that
Pr
[
E(i, Q)

∣
∣ |(Hi \ Di ) ∩ S| < k − |Q| ] = 0 if i = |B| − 1. Otherwise, if
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Fig. 5 Recursive computation of Pr[E(i, Q)]

i < |B| − 1, then:

Pr
[
E(i, Q)

∣
∣
∣ |(Hi \ Di ) ∩ S| < k − |Q|

]

=
∑

T⊆(Hi\Di )∩R
|T |<k−|Q|

Pr
[
E(i, Q)

∣
∣
∣ (Hi \ Di ) ∩ S = T

]

=
∑

T⊆(Hi\Di )∩R
|T |<k−|Q|

Pr
[
E(i + 1, Q′ ∪ T ′)

]
,

whereQ′ = Q∩Di+1 andT ′ = T∩Di+1. The sumhasnO(k) terms, andusingdynamic
programming on a table of size nO(k), we can compute Pr[box(S) ≥ k] = Pr[E(1,∅)]
in nO(k) time and space.

F Covering with a Strip

Let R and B be disjoint finite point sets in the plane with a total of n points, where the
elements of R are colored red and the elements of B are colored blue. Let S ⊆ R∪B be
the random point set where every point p ∈ R ∪ B is included in S independently and
uniformly at random with probability π(p) ∈ [0, 1]. Let strip(S) denote the random
variable equal to the maximum number of red points in S that can be covered with a
strip without covering any blue point.

Theorem 11 Given R ∪ B, it is #P-hard to compute the probability Pr[strip(S) ≥ k]
for every integer k ≥ 3, and it is also #P-hard to compute E[strip(S)].
Proof Let k = 3, and the bipartite graph G = (V1 ∪V2, E) be an instance of #IndSet.
Assume w.l.o.g. V1 = {−1,−2, . . . ,−N }, V2 = {1, 2, . . . , N }, and every edge of E
connects a vertex of V1 and a vertex of V2. For every i ∈ V1 and j ∈ V2, define the
following points on the curve y = x3:

pi =
(
i, i3

)
, q j =

(
j

N
,

(
j

N

)3
)

, and si, j =
(

−i − j

N
,

(

−i − j

N

)3
)

.

123



Algorithmica (2021) 83:3741–3765 3763

Note that pi , q j , and si, j are collinear for every i, j . Furthermore, for i ′ ∈ V1 and
j ′ ∈ V2 such that i ′ �= i or j ′ �= j we have si, j �= si ′, j ′ . Consider the next sets of red
points:

R1 = {p1, p2, . . . , pN }, R2 = {q1, q2, . . . , qN }, and R1,2 = {
si, j | {i, j} ∈ E

}
,

in which the only triplets of points that are collinear are those of the form (pi , q j , si, j ).
There exist rational numbers δ > 0 such that the following set

B = {
(x, y + δ), (x, y − δ) | (x, y) ∈ R1 ∪ R2 ∪ R1,2

}

of blue points ensures that every triangle with vertices in R1 ∪ R2 ∪ R1,2 and positive
area contains in the interior a vertex from B [7]. Note that we are excluding the
degenerate triangles (those with zero area) with vertices at pi , q j , and si, j for some
i, j . Such a value of δ can be computed in polynomial time. For ε > 0, let us define

s′
i, j = si, j + (ε, 0) and R′

1,2 =
{
s′
i, j | {i, j} ∈ E

}
.

In polynomial time, we can also compute a rational value for ε such that the set
R = R1 ∪ R2 ∪ R′

1,2 of red points ensures that a triangle with vertices at elements of
R contains in the interior a point of B if and only if the triangle does not have vertices
at pi , q j , and s′

i, j for some i, j . Furthermore, for every i ∈ V1 and j ∈ V2 such that
{i, j} ∈ E , there exists a (very thin) strip containing pi , q j , and s′

i, j and no other point
of R ∪ B. These conditions imply that three red points of R can be covered with a
strip that does not cover any blue point if and only if they are pi , q j , and s′

i, j for some
i, j . For every u ∈ R1 ∪ R2 assign π(u) = 1/2, and for every v ∈ R′

1,2 ∪ B assign
π(v) = 1. When taking S ⊆ R ∪ B at random, we have strip(S) ≥ 3 if and only if
V (S ∩ (R1 ∪ R2)) is not an independent set in G, where for U ⊆ R1 ∪ R2 we denote
V (U ) = {x(u) | u ∈ U } ⊆ V1 ∪ V2. Then,

Pr[strip(S) ≥ 3] = Pr[strip(S) = 3]
= Pr[V (S ∩ (R1 ∪ R2)) is not an independent set in G]
= 1 − Pr[V (S ∩ (R1 ∪ R2)) is an independent set in G]
= 1 − N (G)

2|R1∪R2| = 1 − N (G)

2|V |
N (G) = 2|V | · (1 − Pr[strip(S) ≥ 3]).

Hence, computing Pr[strip(S) ≥ 3] is #P-hard via a reduction from #IndSet. To show
that computing E[strip(S)] is also #P-hard, note that strip(S) ∈ {2, 3} and

E[strip(S)] = 2 · Pr[V (S ∩ (R1 ∪ R2)) is an independent set in G]
+3 · Pr[V (S ∩ (R1 ∪ R2)) is not an independent set in G]

= 2 ·
(
N (G)

2|V |

)

+ 3 ·
(

1 − N (G)

2|V |

)
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N (G) = 2|V | · (3 − E[strip(S)]).

When k ≥ 4, as in the proof of Theorem 7, for each red point s ∈ R′
1,2 we can add

k − 3 new red points with probability 1 close enough to s. The proof then follows
similar arguments. ��
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