
Determination of Possible Minimal Conflict Sets Using
Constraint Databases Technology and Clustering

M.T. Gómez-López, R. Ceballos, R. M. Gasca, and S. Pozo

Computer Engineering Superior Technical School of Seville, Spain
{mayte, ceballos, gasca, sergio}@lsi.us.es

Abstract. Model-based Diagnosis allows the identification of the parts which fail
in a system. The models are based on the knowledge of the system to diagnose, and
can be represented by constraints associated to components. Inputs and outputs
of components are represented as variables of those constraints, and they can be
observable and non-observable depending on the situation of sensors. In order to
obtain the minimal diagnosis in a system, an important issue is to find out the
possible minimal conflicts in an efficient way.

In this work, we propose a new approach to automate and to improve the
determination of possible minimal conflict sets. This approach has two phases. In
the first phase, we determine components clusters in the system in order to reduce
drastically the number of contexts to consider. In the second phase, we construct
a reduced context network with the possible minimal conflicts. In this phase we
use Gröbner bases reduction. A novel logical architecture of Constraint Databases
is used to store the model, the components clusters and possible minimal conflict
sets. The necessary information in each phase is obtained by using a standard
query language.

1 Introduction

Diagnosis allows to determine why a system correctly designed does not work as it was
expected. It is based on the monitorization of a system. The diagnosis aim is to detect
and to identify the reason of an unexpected behavior, or in other words, to identify the
parts which fail in a system. Our proposal is based on DX [1] approaches and in other
works as [2, 3]. These works were proposed to find out the discrepancies between the
observed and correct behaviors of the system.

In engineering applications it is often overlooked the storage of these data and query
processing. The key idea in this paper is to combine the power of Constraint Databases
(CDBs) [4, 5] with the data treatment of diagnosis. We are able to improve the efficiency
in some phases of the model-based diagnosis with CDBs. To improve the detection
of possible minimal context conflicts, we use a program implemented in JavaTM and
SQL (Standard Query Language). With CDBs technology [6] we are able to make the
information and models persistent. Most DX approaches for components characterize the
diagnosis of a system as a collection of minimal sets of failing components which explain
the observed behaviors (symptoms). A conflict is a set of assumptions where, at least,
one must be false. The assumptions are about behavioral modes of components. GDE
[7] coupled with an ATMS [8] as inference engine uses previously discovered conflicts

C. Lemaı̂tre, C.A. Reyes, and J.A. Gonzalez (Eds.): IBERAMIA 2004, LNAI 3315, pp. 942–952, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Determination of Possible Minimal Conflict Sets 943

to constrain the search in the candidate space. The most important disadvantage of using
this approach is the large number of possible conflicts (2n − 1), n being the number of
components.

In this work, we propose a new approach to automate and to improve the determi-
nation of possible conflicts, it is based on:

– A structural pretreatment in order to reduce drastically the computational complexity.
– The Reduction of the number of possible contexts to treat by means of symbolic

techniques in order to obtain the possible conflicts.

This technique for elimination is Gröbner bases [9] that is our projection operator to
manipulate multiple polynomial variables. It eliminates the non-observable variables of
the constraints of the different contexts of a previous step.

Finding all minimal conflict has been a problem active enough at last years using CS-
Tree [10]. Symbolic processing algorithms (Gröbner bases) of the initial model are used
by model-based diagnosis communities [11, 12]. Another proposition [13] presents the
concept of a possible conflict as an alternative to the use of pre-compiled dependency-
recording.

Our paper has been organized as follows: Section 2 reviews definitions and notation
to allowing to formalize the subsequence operations. Section 3 shows an example to
prove our solution. Section 4 describes the improvements to detect the possible minimal
conflicts using CDBs and components clusters. Finally we present our conclusions and
the future works in this research line.

2 Definitions and Notation

The definitions and notation used are based on the concepts proposed in the diagno-
sis community (DX). To introduce our work it is necessary the use of the following
definitions and notation:

Definition 1. The System Polynomial Model (SPM): It can be defined as a finite set
of polynomial equality constraints (P) which determine the system behavior. This is
done by means of the relations between the non-observable variables (Vnob) and the
observable variables (Vob) which are directly obtained from sensors that are supposed
to work correctly. Therefore, the tuple SPM (P,Vob,Vnob) is obtained for a system.

Definition 2. Context Set (CS): A context set of a SPM is a collection of components
which compose the system. The possible context set will be 2comp − 1, where comp is
the number of components of the system.

Definition 3. Context Network (CN): A graph formed by all the elements of the context
set of the system according to the way proposed by ATMS [8].

3 System Example: A System of Heat Exchangers

In order to explain our methodology, we will apply it to the system shown in Figure 1. It
was presented in [14]. This system consists of six heat exchangers, three flows fi coming



944 M.T. Gómez-López et al.

in at different temperatures ti. The functions of the system are described by polynomial
constraints, coming from three kinds of balance:

∑
i fi = 0: mass balance at each node,

∑
i fi ∗ ti = 0: thermal balance at each node,

∑
in fi ∗ ti − ∑

out fj ∗ tj = 0: enthalpic balance for each heat exchanger.

Fig. 1. System of Heat Exchangers

The system has 34 polynomial equations and 54 variables, from which 28 are ob-
servable: t11, t12, t13, t16, t17, t18, t19, t112, t21, t26, t27, t212, t31, t33,f11, f12, f13, f16,
f17, f18, f19, f112, f21, f26, f27, f212, f31 and f33. There is no direct measure of the
rest of the variables. This defines three different subsystems, each one formed by two
exchangers: {E1, E2}, {E3, E4} and {E5, E6}. Each of the six exchangers and each of
the eight nodes of the system are considered as components whose correct functioning
must be verified.

4 Computing All Possible Minimal Conflicts

The model which reflects the system structure and behavior is presented by a set of
polynomial constraints. All this information is stored in a CDB.

The key idea is to generate an equivalent constraints model which has the same
solution as the original one, but only with observable variables. In order to produce this
model we will use Gröbner bases as symbolic technique.

4.1 Gröbner Bases

Gröbner bases theory is the origin of many symbolic algorithms used to manipulate
multiple variable polynomials. It is a generalization of Gauss’ elimination of multivari-
able linear equations and of Euclides’ algorithm for one-variable polynomial equations.
Gröbner bases has better computational properties than the original system. We can
determine if a system can be solved or not.



Determination of Possible Minimal Conflict Sets 945

The main idea is to transform the polynomial constraint set into a standard form for
the resolution of problems. Having the set of equality polynomial constraints of the form
P = 0, Gröbner bases produce an equivalent system G = 0 which has the same solution
as the original one, but generally easier to be solved.

For our work, we have a function called GröbnerBasis, which calculates Gröbner
bases by means of a finite set of polynomial equations (SPM) and a set of observable
and non-observable variables.

This function allows building the context network. The signature of GröbnerBasis
function looks like this:

GröbnerBasis({Polynomials}, {Observable Variables},
{Non-observable Variables})

Let us consider, for instance, the context represented by {N12E1E2}. Gröbner Basis
function takes the parameters:

GröbnerBasis({polynomialsOf(N12, E1, E2)}, {f16, f12, f13, t16, t12, t13},
{f14, f15, f22, f23, f24, t14, t15, t22, t23, t24})

The result would be the system of polynomial constraints: {f12 + f13 − f16 = 0}.

4.2 Constraint Database Architecture

One of the difficulties in diagnosing a system is handling the information, therefore we
have important reasons to use CDBs in model-based diagnosis:

1. By using CDBs, it is possible to add or delete some components when our system
changes. In this way, rebuilding the full problem is not necessary.

2. If we do not use a CDB and the execution of the algorithm diagnosis fails, while
being executed, we must reexecute the full problem because there is not partial
information stored.

3. CDBs allow using the power of SQL in order to query the database and obtain the
necessary information.

Fig. 2. Constraint Database Architecture (k: Primary Key)



946 M.T. Gómez-López et al.

First of all, we are going to explain the database architecture, and how the information
is stored:

1. Components: This table contains the names and identifiers of the components which
make up the system. In this table, the cluster identification of each component is
also stored.

2. Polynomials: This table contains the different behaviors of the components. The
components can have more than one polynomial associated.

3. ContextNetwork: This table represents all the relations that the process must study
to obtain the minimal possible conflict context.

4. Variables: This table contains all the variables which participate in the system,
observable and non-observable.

5. VariablePolynomials: This table represents the variables in each polynomial. This
table is important because in order to obtain Gröbner bases we need to send the
observable and non-observable variables of the polynomials.

6. Constraints: All the constraints are stored in this table. We will fill in this table with
the GröbnerBasis function results.

7. ConstraintNet: This table relates each context to constraints.
8. Clusters: This table contains the relations between components and clusters.

4.3 First Improvement: Identification of Components Clusters

In our methodology, the first step is to isolate independent subsystems. This structural
pretreatment will allow us to divide the system into independent subsystems.The possible
minimal conflict sets of the system can be obtained by the conflicts of all independent
subsystems. The subsystems obtained are smaller than the whole system. Therefore the
computational complexity to detect conflicts from each subsystem is lower or equal than
the whole system. In order to clarify the following steps we need the following definition:

Definition 4. Components cluster (CC): A set of components C is a components cluster,
if the following predicates are true:

– All non-observable inputs and outputs of each component of C are always linked
only to components of C.

– It does not exist another set C’ with less elements than C, which validates the first
predicate and it is included in C.

With the first predicate we look for the independence among conflicts of different
components clusters. This predicate guarantees that it is possible to detect a conflict
in a components cluster without information about other components clusters. This is
possible because, in a components cluster, all the non-observable inputs and outputs are
among components of the same cluster. Therefore, there is not any connection with an-
other components cluster which is not monitored. We look for the division of our system
into the biggest possible number of clusters in order to obtain a smaller computational
cost. The second predicate guarantees that the components clusters will be as small as
possible.



Determination of Possible Minimal Conflict Sets 947

Example: For example, component E3 is not completely monitored because we are not
able to know the value of outputs f32 and t32. Likewise, E4 is not completely monitored
because we are not able to know the value of inputs f32 and t32. But we can monitor
these two components together like they were only one component. In this case, all the
inputs and outputs of this component are observable.

Algorithm: The following pseudo-code (see Figure 3) stores the set of components
clusters of a system. At first, the set C has all the components. The algorithm extracts
each time one component of C to create an instance (CP) of a components cluster. All the
components from C which have, at least, one non-observable variable in common with
one component of CP are added to CP. If it is impossible to find another component
with non-observable variable in common, the components cluster is completed. The
process continues with another component from C which has not been assigned to any
components cluster. The process is finished when the set C is empty, and all components
are assigned to one components cluster.

Set c = ObtainSystemComponents()
while (NotEmpty(c))

Component x = GetComponent(c)
Cluster cp = CreateCluster(x)
boolean change = true
while(change)

Set cno = GetCommonComp(cp,c)
deleteComponents(c,cno)
AddComponents(cp,cno)
Change=NotEmpty(cno)

endwhile
AddClusterToDB(cp)

endwhile

Fig. 3. Pseudocode of the components clusters algorithm

Methods to Select the Components Clusters:

– ObtainSystemComponents(): This method returns all the system components stored
in the CDB.

– GetComponent(Set c): It returns one component and delete it from the set C.
– CreateCluster(Component x): Here it is created a cluster with the component x.
– GetCommonComp(Cluster cp, Set c): This method returns and deletes (from the set

C) all the components from c which have, at least, one non-observable variable in
common with some of the components of cp.

– AddComponents(Cluster cp, Set cno): It adds all cno components to cp cluster.
– AddClusterToDB(Cluster cp): This method stores cp Cluster in the CDB.



948 M.T. Gómez-López et al.

For the example presented in Section 3, we obtain five components clusters, which
are A={{N11}, {N13}, {N12,N21,N22, E1,E2}, {N14,N23,N24,E5,E6}, {E3,E4}}. For
all the components clusters obtained we will build a different and independent context
network. With the structural pretreatment the number of nodes is 67. Without this struc-
tural pretreatment, the number of nodes of the context network (as it appears in [12]) is
214-1.

4.4 Second Improvement: Reduction Algorithm

In order to improve the computational time in the calculation of the possible minimal set
conflicts, we propose the algorithm of Figure 4. Previously we need two new definitions
to understand the algorithm better.

Definition 5. Observable Context: It is a context with only one component and, at least,
one polynomial without non-observable variables. It means that is not necessary to call
GröbnerBasis function. For example {N11} and {E3} are observable contexts.

Definition 6. Relevant Context: It is a context whose components have, at least, one
polynomial whose non-observable variables are also in other polynomial of the context.
If we call GröbnerBasis function in other cases, we will not obtain any important results,
because it is not possible to eliminate all non-observable variables from, at least, one
polynomial of all the context’s components:

C is a relevant context if
C≡ ⋃

i{ci} | ∀ ci ∈ C · ∃ pi ∈ ci

| ∀ x ∈ NonObsVar(pi) · x ∈ C
where ci is a component, pi a polynomial and NonObsVar(pi)
the set of non-observable variable of pi

foreach (cluster in clusters)
Set contexts=ObtainContexts(cluster)
foreach(context in contexts)

if(IsAnObservableContext(context))
AddContext(context)
UpdateTables(context)

else
if (RelevantContext(context))

AddContext(context)
CallGröbner(context)

endif
endif

endforeach
endfor

Fig. 4. Pseudocode of the reduction algorithm for Relevant Contexts



Determination of Possible Minimal Conflict Sets 949

Methods of the Reduction Algorithm:

– ObtainContexts(Cluster cluster): This function returns all the contexts of cluster
– IsAnObservableContext(Context c): This function returns true if the context is an

observable context.
– AddContext(Context c): This function adds the context c to table ContextNetwork .
– UpdateTables(Context c): This function stores all the polynomial constraints of the

context c, in the tables ConstraintNet and Constraint. Here it is not necessary to call
GröbnerBasis because the polynomials do not have any non-observable variables.

Table 1. CARCs

Index CC Constraints
1 1 f11 - f12 - f13
2 1 -f11 t11 + f12 t12 + f11 t13 - f12 t13
3 2 f17 - f18 - f19
4 2 -f17 t17 + f18 t18 + f17 t19 - f18 t19
5 3 f12 + f13 - f16
6 3 f21 - f26
7 3 f12 t12 + f13 t13 - f12 t16 - f13 t16 + f21 t21 - f21 t26
8 4 f18 + f19 - f112
9 4 f27 - f212
10 4 f18 t18 + f19 t19 - f18 t112 - f19 t112 + f27 t27 - f27 t212
11 5 f26 - f27
12 5 f16 - f17
13 5 f31 - f33
14 5 f16 t16 - f17 t17 + f26 t26 - f27 t27 + f31 t31 - f31 t33

– RelevantContext(Context c): This function returns true if the context c is a relevant
context.

Example: Context: N22, E1 and E2
In this case the component E1 do not have any polynomial with all
non-observable variable couple with other component

To implement this idea, we propose a query to know what are the non-observable
variables of a polynomial p which are also in the same context c but in different
polynomial.

SELECT DISTINCT v.VARNAME
FROM VARIABLES v, VARIABLES v2,

VARIABLEPOLYNOMIALS cv, POLYNOMIALS c,
VARIABLEPOLYNOMIALS cv2, POLYNOMIALS c2,
CONTEXTNETWORK rc, CONTEXTNETWORK rc2,

WHERE c.ID=p AND
c.IDCOMPONENT=rc.IDCOMPONENT AND
rc.ID=c AND c.ID=cv.ID
AND cv.VARIABLE=v.IDVARIABLE AND
v.OBSERVABLE=false AND c.ID<>c2.ID AND
rc2.ID=rc.ID AND c2.ID=cv2.ID AND
c2.IDCOMPONENT=rc2.IDCOMPONENT AND

cv.VARIABLE=cv2.VARIABLE



950 M.T. Gómez-López et al.

Comparing the query result and the non-observable variable of the polynomial,
we will know if all the non-observable variables of a polynomial are in another
polynomial, and therefore if it is a relevant context.

– CallGröbner(): We build GröbnerBasis function call with information from the
tables ContextNetwork, Polynomials, VariablePolinomial and Components. The re-
sults will be stored, if they are not in the table Constraints. Finally, the constraint
and the corresponding context will be stored in the table CostraintNet.

Table 2. Improvement using components cluster and relevant context

No reduction Using CC Using CC and RC
Number of Contexts 214-1 67 67
Calls to GB. function 214-1 67 7
Obtained Constraints 64 14 14
Elapsed time 4’2 days 7 Seconds 1 Second

(This test have been carried out in a Pentium IV-2Ghz with 512 MB)

With our solution, we only create 11 contexts and we only call GröbnerBasis function
7 times, because the contexts {N11}, {N13}, {E3} and {E4} are observable contexts.
The reduced algorithm obtains 14 constraints which are shown on Table 1. Table 2 shows
the differences among using all contexts (as in [12]) and using our approach.

4.5 Determination of Possible Minimal Conflict Contexts

In order to determinate the possible minimal conflicts we apply a constraint-driven
algorithm. The following definition is necessary in this process:

Definition 7. Context Analytical Redundancy Constraint (CARC): It is a constraint
derived from SPM, in such a way that only the observable variables are related.

In our approach, the set of CARCs of the system (Table 1) is the union of all the
constraints. These constraints were obtained in each components cluster in two ways,
directly from observable context or using GröbnerBasis function to each relevant context.

All the relevant context are shown in Figure 5 for the Heat Exchangers example.

5 Conclusions and Future Works

This paper proposes a new approach to automate and to improve the determination of
possible minimal conflict sets. The determination of components clusters of the system
reduces the number of contexts to consider. Only the relevant contexts are studied in order
to reduce the computational complexity. In this paper we propose a CDB architecture
to store polynomial constraints using standard SQL and JavaTM language to obtain and
handle the constraint information. Another advantage is the power of SQL storing and
getting information in CDBs.



Determination of Possible Minimal Conflict Sets 951

Fig. 5. Possible Minimal Conflict Network of the System

Extension to ODEs with polynomial constraints, in order to deal with dynamic sys-
tems, is our next objective. At the same time it is interesting for future works to study
how the minimal context network changes when some polynomials change, and to look
for techniques to avoid restudying all the system. In other way, there is a wide field to
study the diagnosis of systems with components are located in different CDBs.

Acknowledgements

This work has been funded by the M. de Ciencia y Tecnología of Spanish (DPI2003-
07146-C02-01) and the European Regional Development Fund (ERDF/ FEDER).

References

1. Davis, R.: Diagnostic reasoning based on structure and behavior. In Artificial Intelligence 24
(1984) 347–410

2. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 1 (1987)
57–96

3. Kleer, J.D., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems. Artificial
Intelligence 56 2-3 (1992) 197–222

4. Goldin, D., Kanellakis, P.: Constraint query algebras constraints. Journal E. F. editor (1996)
5. P. C. Kanellakis, G.M.K., Revesz, P.Z.: Constraint query languages. Symposium on Principles

of Database Systems (1990) 299–313
6. Revesz, P.: Introduction to Constraint Databases. Springer (2001)
7. Kleer, J.D., Williams, B.: Diagnosing multiple faults. Art. Int. (1987)
8. Kleer, J.D.: An assumption-based truth maintenance system. Artificial Intelligence 28 2

(1986) 127–161
9. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. Multidi-

mensional Systems Theory, N. K. Bose, ed. (1985) 184–232
10. de la Banda, M.G., Stuckey, P., Wazny, J.: Finding all minimal unsatisfiable subsets. Proc.

Of the 5th ACM Sigplan Internacional (2003)
11. Frisk, E.: Residual generator design for non-linear, polynomial systems - a gröbner basis

approach. In Proc. IFAC Safeprocess, Budapest (2000)



952 M.T. Gómez-López et al.

12. Gasca, R., Valle, C.D., Ceballos, R., Toro, M.: An integration of fdi and dx approaches to
polinomial models. 14th International Workshop on principles of Diagnosis - DX (2003)

13. Pulido, J.: Posibles conflictos como alternativa al registro de dependencias en línea para el
diagnóstico de sistemas continuos. PhD. degree, Universidad de Valladolid (2000)

14. Guernez, C., Petitot, M., Cassar, J., Staroswiecki, M.: Fault detection and isolation on non
linear polynomial systems. 15th IMACS World Congress (1997)


	Introduction
	Definitions and Notation
	System Example: A System of Heat Exchangers
	Computing All Possible Minimal Conflicts
	Gröbner Bases
	Constraint Database Architecture
	First Improvement: Identification of Components Clusters
	Second Improvement: Reduction Algorithm
	Determination of Possible Minimal Conflict Contexts

	Conclusions and Future Works



