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vesicular traffi cking events ( 1 ). Many secretory proteins 
that are delivered to the cell surface, including a wide diver-
sity of receptors, adhesion molecules, and enzymes, are at-
tached to the external leafl et of the plasma membrane via 
a glycosylphosphatidylinositol (GPI) anchor ( 2 ). The core 
structure of the GPI anchor precursor is largely conserved 
in evolution and consists of a phospholipid moiety (acyl-
phosphatidylinositol) with a glycan backbone [Man4-
(EtNP)Man3-(EtNP)Man2-(EtNP)Man1-GlcN], where EtNP 
is a side-branch ethanolamine-phosphate, Man is mannose 
(the numbers represent the positions of the Man in the an-
chor), and GlcN is glucosamine). Once the GPI anchor pre-
cursor has been made by a series of sequential reactions at 
the ER membrane, it is then attached en bloc in the ER lu-
men by a GPI-transamidase complex to newly synthesized 
proteins containing a GPI attachment signal sequence at 
their C terminus. Immediately after attachment to the pro-
tein, the structure of the lipid and glycan parts of the GPI 
anchor are modifi ed by several remodeling enzymes ( 3 ). 
This remodeling process converts the GPI anchor into a 
transport signal that actively promotes the ER export of 
GPI-anchored proteins (GPI-APs) to the Golgi apparatus, 
from where they are subsequently routed to their functional 
site of residence, the plasma membrane. 

 The presence of the GPI anchor confers to GPI-APs 
a unique mode of membrane association within the lumen 
of secretory organelles that leads them to be transported 
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 The   eukaryotic secretory pathway is responsible for the 
synthesis and delivery of correctly assembled proteins from 
the endoplasmic reticulum (ER) to their fi nal functional 
destination, the extracellular media, the plasma membrane, 
or the endocytic/secretory membrane system. The vast 
majority of proteins are transported by a series of specifi c 
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proteins ( 5 ).  35 S-methionine and cysteine were used to la-
bel newly synthesized proteins in cells, which were then 
permeabilized and used for a cytosol-dependent in vitro 
budding assay. After vesicle formation, two independent 
isolation methods to separate the ER-derived vesicles were 
used; vesicle immuno-isolation and gradient separation. 
Both of these methods showed that plasma membrane 
amino acid transporters and GPI-APs were found in dis-
tinct ER-derived vesicles. On the other hand, pro- �  factor, 
a soluble secretory protein, was co-isolated with the amino 
acid transporters. To complement the genetic and bio-
chemical studies, a morphological approach provided de-
fi nitive evidence for GPI-AP sorting at the level of ERESs 
( 7 ). Using fl uorescent protein-labeled GPI-APs and plasma 
membrane transporters together with a thermosensitive 
COPII mutant allele that accumulates secretory cargo in 
the ERESs at restrictive temperature, it was observed that 
GPI-APs accumulate in ERESs that are distinct from those 
in which other secretory proteins accumulate. Different 
GPI-APs could be colocalized to the same ERES, as could 
polytopic plasma membrane proteins, but the overlap of 
the two classes of proteins was minimal. The selective con-
centration of GPI-APs at specifi c ERESs and subsequent 
incorporation into distinct transport vesicles indicate the 
existence of at least two parallel pathways for routing se-
cretory proteins from the ER to the Golgi in yeast. 

 In contrast to the remarkable segregation observed in 
yeast, in mammalian cells GPI-APs are not sorted from 
other secretory proteins upon COPII vesicle formation. In-
deed, it has been shown that GPI-APs and transmembrane 
secretory proteins are found in the same ERESs and COPII 
vesicles ( 13 ). Recent fi ndings strongly suggest that GPI-APs 
use different mechanisms to concentrate into COPII vesi-
cles during exit from the ER in the two organisms. More 
importantly, the difference between these export mecha-
nisms might explain the propensity of yeast GPI-APs to seg-
regate from other secretory proteins upon the ER exit. 

 Lipid-based sorting of GPI-APs in yeast 
 In contrast to other secretory proteins, it seems that 

yeast GPI-APs do not require the COPII machinery for 
their concentration at ERESs ( 7 ). First, it is impossible for 
GPI-APs to interact directly with the COPII coat because 
GPI-APs are not exposed to the cytoplasm. Second, among 
the known adaptors that link luminal cargoes with the CO-
PII coat, only mutants in the members of the p24 family, 
 emp24  and  erv25 , affect GPI-AP transport ( 10, 14 ). It has 
been clearly shown that these mutants do not affect GPI-
AP concentration into ERESs ( 15 ). Therefore, an alterna-
tive mechanism for cargo concentration needs to function 
in this case. It seems that GPI-APs are most likely concen-
trated and sorted by a lipid-based mechanism, which in-
volves the structural remodeling of the lipid moiety of the 
GPI anchor ( 7 ). This is consistent with the chemical and 
genetic evidence presented earlier. The process of GPI-
anchor remodeling begins immediately after protein at-
tachment to the GPI anchor and, in yeast, consists of 
inositol deacylation by Bst1p ( 16 ), followed by fatty acid 
remodeling, which involves the removal of the long-chain 

differently than transmembrane secretory proteins. Indeed, 
GPI-APs are segregated and sorted from other plasma mem-
brane proteins along the secretory pathway ( 4–7 ). Thus, 
they constitute an exceptional system to study sorting mech-
anisms, and in particular, to understand the role of the in-
teraction of secretory proteins with membrane lipids in 
their transport and sorting along the secretory pathway. In 
this sense, the study of the GPI-AP biosynthetic pathway has 
led to several novel concepts in membrane traffi cking. In 
this review, we will examine the proposed mechanisms by 
which GPI-APs are selectively transported and sorted along 
the secretory pathway in different cell systems, focusing on 
the events that occur during the export from the ER and 
from the trans-Golgi network (TGN). 

 EXPORT FROM THE ER 

 To initiate the secretory pathway, correctly folded and 
assembled secretory proteins are selectively incorporated 
into protein-coated membrane vesicles that transport them 
from the ER to the Golgi apparatus. These vesicles are 
generated by polymerization of the cytosolic coat protein 
complex II (COPII), which locally bends the ER mem-
brane at specifi c domains called ER exit sites (ERESs). For 
effi cient ER export, most secretory proteins are actively 
captured by direct or indirect interactions with the COPII 
coat to be fi rst concentrated at ERESs and then packaged 
into nascent COPII vesicles ( 8 ). At fi rst, it was believed that 
all secretory proteins travel together in the same COPII 
vesicles to the Golgi, from where they are sorted to their 
fi nal destinations. However, fi rst chemical and genetic evi-
dence, and then biochemical and morphological evi-
dence, showed that in yeast, GPI-APs are segregated from 
other secretory proteins, in particular other plasma mem-
brane proteins, already in ERESs and subsequently incor-
porated into distinct COPII vesicles ( 5, 7 ). The initial 
chemical and genetic experiments showed that GPI-APs 
had specifi c requirements for transport from the ER to the 
Golgi in yeast. Myriocin, an inhibitor of the fi rst enzyme in 
ceramide biosynthesis, serine palmitoyltransferase, showed 
a rapid effect on the transport of only GPI-APs, suggesting 
that ongoing sphingolipid synthesis is required for their 
transport, but not for other secretory proteins. The  lcb1-
100  temperature-sensitive mutant affecting this same en-
zyme, confi rmed this fi nding, and additional mutants, 
including a mutant in the COPI coat,  ret1-1 , and a mutant 
in a conserved family of small proteins of the early secre-
tory pathway,  emp24 �   ( 9–11 ), also confi rmed specifi c re-
quirements for GPI-AP transport. Further exploration of 
the role of sphingolipid biosynthesis in GPI-AP transport 
in yeast showed that only stereoisomers of sphinganine 
that can be converted to ceramide were able to comple-
ment the  lcb1-100  mutation for GPI-AP transport, showing 
that ceramide synthesis was also necessary. This study also 
showed that ceramide synthesis was required for the stable 
membrane association of the GPI-APs ( 12 ). 

 Biochemical evidence in yeast demonstrated that GPI-
APs leave the ER in distinct vesicles from other secretory 
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GPI-anchor lipid remodeling changes the physical proper-
ties of the GPI-APs and perhaps their functional association 
with the membrane. The chemical and genetic experi-
ments described above are consistent with the role of cer-
amide in GPI-AP transport. Because the GPI-AP transport 
phenotype associated with the  cwh43  mutation is much 
less severe than myriocin treatment or the  lcb1-100  muta-
tion, it is highly likely that ceramide plays an additional 
role in GPI-AP transport besides its use as a substrate in 
anchor remodeling. In artifi cial membranes, biophysical 
experiments suggest that ceramides can coalesce to form 
platforms with specifi c physical properties ( 22 ). It is likely 
that the remodeled GPI-AP lipid moieties, with a very 
long saturated acyl chain at the sn2 position, have similar 
properties to ceramide. The current best hypothesis, in our 
opinion, is that ceramides and remodeled GPI-APs take 
advantage of their physical properties to coalesce into 

unsaturated fatty acid at the sn2 position by Per1p ( 17 ) 
and its replacement with a very long-chain saturated fatty 
acid (C26) by Gup1p ( 18 ) (  Table 1  ).  In most cases, the 
C26 diacylglycerol formed as part of the anchor is replaced 
with a ceramide that also contains a very long-chain satu-
rated fatty acid (C26), by Cwh43p   ( 19, 20 ). In yeast, the 
entire remodeling process occurs in the ER and is a pre-
requisite for GPI-APs to effi ciently exit from the ER, with 
the function of Cwh43p being somewhat less critical. In-
deed, unremodeled GPI-APs generated in  bst1 ,  per1 , or 
 gup1  mutants fail to be concentrated into their specifi c ER-
ESs ( 7 ). In addition, GPI-anchor lipid remodeling is re-
quired for the isolation of GPI-APs as detergent-resistant 
membranes (DRMs) ( 15, 17, 21 ), which has been pro-
posed to refl ect their association to ceramide-enriched do-
mains, although this interpretation of the experiments is 
debatable. Nevertheless, these results clearly show that 

 TABLE 1. Intracellular localization of the GPI anchor remodeling enzymes in yeast and mammals        

Yeast Mammals

ER Golgi ER Golgi

GPI anchor remodeling enzymes
 GPI ethanolamine phosphate 

 phosphoesterase
Ted1p   �  PGAP5   �  

 GPI inositol deacylase Bst1p   �  PGAP1   �  
 GPI phospholipase A2 Per1p   �    �  PGAP3
 GPI O-acyltransferase Gup1p   �    �  PGAP2
 Ceramide remodelase Cwh43p   �    �    �  
Resistant to detergent extraction  +  +   �   + 
Ceramide synthesis and transport C26 Cer Mainly vesicular C16-24 Cer Vast majority 

nonvesicular
GPI-AP sorting event  + ?   �   + 

Enzymes, properties, and events occuring in the secretory pathway. + indicates presence,  �  indicates absence.

  Fig. 1.  In yeast, GPI-APs use a specialized COPII vesicle budding system for ER export, which is actively regulated by the structural remod-
eling of the GPI anchor. After protein attachment, lipid and glycan parts of the GPI anchor are remodeled. The GPI-lipid remodeling leads 
to the sorting and concentration of GPI-APs at specifi c ERESs. The GPI-glycan remodeling allows the subsequent recruitment of the p24 
complex, which functions as a specifi c lectin by recognizing the remodeled GPI-glycan moiety of GPI-APs, to these ERESs. This lectin-based 
GPI-cargo binding stimulates the p24 complex to selectively recruit and stabilize Lst1p-Sec23p prebudding complexes, which afterwards 
favor the assembly of the external COPII layer to generate specialized COPII vesicles enriched in GPI-APs. Because GPI anchor remodeling 
occurs after protein attachment, this implies that COPII vesicle production is fi ne-tuned by the number of cargo proteins that are correctly 
anchored and ready for ER export. Acyl-PI, acyl-phosphatidylinositol; IPC, inositolphosphoceramide.   
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mutation reduced formation of vesicles containing GPI-
APs without adversely affecting the formation of vesicles 
with other cargoes ( 28 ). Pretreatment of the membranes 
with antibodies against the cytoplasmic tail of Emp24p be-
fore the budding reaction had a similar effect. Morpho-
logical experiments showed that even though Emp24p was 
not required for concentration of GPI-APs at ERESs, mu-
tants that were unable to concentrate GPI-APs showed a 
mislocalization of Emp24p to the ER and virtual absence 
from ERESs ( 15 ). These results strongly suggest that there 
is a functional association between Emp24p and GPI-APs, 
which is supported directly by cross-linking experiments 
( 28 ). 

 If the Emp24p complex directly interacts with GPI-APs, 
what is recognized by the complex and how is this binding 
regulated? Recognition of GPI-APs by the p24 complex 
(containing Emp24p) in yeast has been recently shown to 
be directly regulated by the remodeling of the glycan por-
tion of the GPI anchor ( 27 ). This remodeling process in-
volves the removal of the initial side-chain EtNP on the 
second Man of the GPI-glycan by the specifi c phosphodies-
terase, Ted1p ( 27, 34, 35 ) ( Table 1 ). The GPI-glycan 
remodelase activity of Ted1p is required for GPI-AP recog-
nition by the p24 complex in vivo. Furthermore, the p24 
complex is able to bind, in vitro, a synthetic glycan 
that mimics the remodeled GPI-glycan, and this interac-
tion can be out-competed by Man, but not glucose. There-
fore, the p24 complex acts as a lectin by specifi cally 
recognizing the remodeled structure of the GPI-glycan 
moiety only after the EtNP has been removed by Ted1p 
( 27 ). The same study also addressed how this lectin-based 
recognition is then coupled to the COPII coat assembly 
for ER export of GPI-APs. Interestingly, binding of the re-
modeled GPI-APs was found to induce the p24 complex to 
specifi cally recruit the COPII subunit, Lst1p, to ERESs 
( 27 ). Lst1p is one of two paralogs of the major COPII 
cargo binding subunit, Sec24p ( 36, 37 ). Although the p24 
proteins can interact with both Lst1p and Sec24p ( 37 ), 
GPI-APs are only connected by the p24 complex to Lst1p, 
but not to Sec24p ( 27 ). The binding preference of the p24 
complex for Lst1p when it is bound to GPI-APs could be 
explained in two ways. First, cargo binding could trigger 
a structural change of the p24 proteins that selectively 
enhances their affi nity for Lst1p, but not for Sec24p. Alter-
natively, a special lipid environment, such as the ceramide-
enriched domains proposed to be associated with lipid 
remodeled GPI-APs, could play a role. It is possible that 
Sec23p/Lst1p subcomplexes of the COPII coat might pre-
fer to bind to the ceramide-enriched domains postulated 
above. Interaction with p24 complexes bound to GPI-APs 
would then stabilize their recruitment to the specifi c ER-
ESs ( Fig. 1 ). In both cases, the p24 complex should show a 
certain degree of local activation, which might be sup-
ported by the fact that Lst1p and Sec24p were observed to 
be unevenly distributed at ERESs ( 38 ). 

 In order to ensure effi cient vesicle formation and pack-
aging of GPI-APs from their specifi c ERESs, Lst1p must be 
selectively recruited by the p24 complex ( 15, 39, 40 ). In-
deed, recent data have shown that the local concentration 

ordered domains in the relatively disordered lipid envi-
ronment of the ER. These domains would be selectively 
concentrated at specifi c ERESs from where they can be 
cotransported to the Golgi in the same specialized COPII 
vesicles (  Fig. 1  ).  This is consistent with a previous hypothe-
sis suggesting cotransport of ceramides and GPI-APs ( 23, 
24 ). Whether there is a link between these ordered domains 
with an ERES with specifi c properties is still a mystery. 
However, an alternative and plausible explanation for lo-
calization to specifi c ERESs could be that the formation of 
highly ordered domains of ceramides and GPI-APs could 
provide a hostile membrane environment for the incorpo-
ration of transmembrane proteins, thus creating specifi c 
ERESs by exclusion. Upon formation of specifi c COPII 
vesicles enriched in GPI-APs, vesicle-associated soluble 
N-ethylmaleimide-sensitive factor attachment protein re-
ceptors (v-SNAREs) must be incorporated as they are required 
for subsequent vesicle fusion events  . The exclusion mech-
anism is less likely to have an effect on SNARE proteins than 
on multi-spanning plasma membrane proteins, because they 
either span the membrane only once or, for some SNAREs, 
even not at all. Interestingly, some v-SNAREs and specifi c 
tethering factors have been shown to be required for sort-
ing of GPI-APs upon the ER exit, although the underlying 
mechanism still remains elusive ( 25, 26 ). 

 Packaging of GPI-APs into ER-derived vesicles in yeast 
 Once GPI-APs have been selectively sorted and concen-

trated into specifi c ERESs upon GPI-anchor lipid remodel-
ing, they must then be incorporated into COPII vesicles 
for transport to the Golgi. Due to their complete luminal 
topology, GPI-APs need a transmembrane cargo-coat 
adaptor or cargo-receptor to be indirectly connected with 
the cytosolic COPII coat if they are to be actively packaged 
into nascent COPII vesicles. This adaptor role for GPI-APs 
is achieved by the p24 proteins ( 15, 27, 28 ). The conserved 
p24 family members are abundant type I transmembrane 
proteins with a large luminal domain and a short cytoplas-
mic tail harboring COPII and COPI coat binding signals 
( 29–32 ). The founding member of this family, Emp24p, 
was shown to be required for the effi cient maturation of 
GPI-APs, but its mutation had less effect on several, but 
not all, other secretory proteins ( 10 ). Emp24p, as well as a 
second member of the family, Erv25p, have been identi-
fi ed as proteins enriched in COPII vesicles formed in vitro 
( 14 ). They have been shown to function together. Indeed, 
the p24 proteins assemble in heteromeric complexes that 
cycle between ER and Golgi compartments ( 33 ). A large 
set of experimental evidence has shown that the yeast p24 
complex is required for the selective ER-to-Golgi transport 
of GPI-APs and fulfi lls specifi c cargo receptor require-
ments: engaging newly synthesized GPI-APs with the CO-
PII coat to drive their incorporation into the nascent 
COPII vesicles, traveling together to the Golgi ( 15, 27, 28 ). 

 Complementing the genetic experiments above that 
suggested a role for Emp24p in GPI-AP transport, both 
biochemical and morphological studies have been per-
formed that confi rm the link between GPI-APs and Emp24p. 
In vitro budding experiments showed that the  emp24  
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cells cannot use the lipid-based sorting mechanism to con-
centrate at ERESs. Consistent with this, unlike yeast, ER-to-
Golgi transport of GPI-APs in mammalian cells does not 
depend on de novo sphingolipid biosynthesis ( 13 ). Never-
theless, it has been recently suggested that the transport 
of the longer ceramides (C24), but not the shorter ones, 
depends on GPI ( 24 ). In addition, it has been shown that 
cholesterol is required for the effi cient ER export of GPI-APs, 
although their potential association with cholesterol is 
most likely not suffi cient to sort GPI-APs into specifi c 
ERESs and COPII vesicles ( 49 ). In contrast to yeast, GPI-
AP concentration at ERESs depends on the p24 complex 
( 50 ). This is consistent with a COPII-mediated concentra-
tive mechanism in mammalian cells, by which the cytosolic 
COPII coat captures luminal GPI-APs through the trans-
membrane p24 proteins to concentrate them in ERESs 
prior to budding. 

 Despite these differences between the mammalian and 
yeast p24 complex imposed by the GPI-anchor lipid compo-
sition, the mammalian p24 complex likely recognizes the 
GPI-AP in the same way as the yeast p24 complex. Ted1p is 
the ortholog of PGAP5 which has GPI-glycan remodelase 
activity, and PGAP5 is also required for GPI-AP recognition 
by the p24 complex ( 34, 50 ). Recent data has involved the 
membrane-adjacent  � -helical region as the binding domain 
of the p24 proteins ( 51 ). Furthermore, both mammalian p24 
and GPI-APs use the same specifi c isoforms of the COPII 

of both GPI-APs and p24 proteins at specifi c ERESs im-
poses special COPII coat scaffolding requirements for 
vesicle budding, such as the presence of Lst1p and more 
dependence on Sec13p, a subunit of the outer layer of the 
COPII coat ( 41, 42 ). Sec13p could confer suffi cient rigidity 
to the coat in order to overcome the membrane-bending 
force potentially associated with GPI-AP-enriched mem-
branes, because the size of the heavily glycosylated GPI-AP 
luminal domains are large in relation to their membrane 
anchors. In turn, Lst1p has been proposed to adjust this 
coat rigidity by creating a larger diameter vesicle bud, 
which is consistent with the observation that mixed Sec24p-
Lst1p COPII vesicles formed in vitro are slightly larger 
than those vesicles formed only by Sec24p ( 43 ). Thus, 
Lst1p, together with Sec13p, functions to provide special-
ized structural scaffolding to the COPII coat, which would 
be required to encapsulate potentially larger cargos, such 
as clusters of GPI-APs and p24 proteins embedded into more 
rigid ceramide-enriched membranes ( 42 ). Interestingly, 
supporting this idea, a genetic screen looking for mutants 
that bypass the requirement for  SEC13  found mutants that 
are defective in GPI-AP remodeling and transport, includ-
ing mutants in  BST1  and  BST2/EMP24  genes ( 44 ). 

 A remarkable aspect of this specialized COPII vesicle 
budding is that it is actively regulated by GPI anchor re-
modeling ( 27 ). Whereas GPI-anchor lipid remodeling 
sorts and concentrates GPI-APs at their specifi c ERESs ( 7 ), 
GPI-glycan remodeling subsequently promotes the re-
cruitment of the specialized ER export machinery that en-
ables vesicle formation from these ERESs ( 27 ). The p24 
complex must fi rst be recruited to specifi c ERESs, where it 
binds to concentrated remodeled GPI-APs. Next, this 
binding stimulates the p24 complex to selectively recruit 
and stabilize Lst1p to generate specialized COPII vesicles 
enriched in GPI-APs. Therefore, this specialized COPII 
system reacts to the presence of mature cargo, which func-
tionally links luminal cargo maturation to COPII vesicle 
budding. Because GPI anchor remodeling occurs after 
protein attachment, this implies that COPII vesicle pro-
duction is fi ne-tuned by the number of cargo proteins that 
are correctly anchored and ready for ER export. 

 Mechanisms of GPI-AP export from the ER in 
mammalian cells 

 In mammalian cells, in contrast to yeast, GPI-APs are 
not segregated and sorted from other secretory proteins 
upon the ER exit, being incorporated in the same ERESs 
and COPII vesicles for delivery to the Golgi ( 13 ). This 
apparent discrepancy in mechanism can be explained by 
the fact that GPI-anchor glycan remodeling occurs in the 
ER, as in yeast, but lipid remodeling occurs in the Golgi 
( 21, 45 ) (  Fig. 2  ).  This also correlates with differences in 
the ceramide population and mechanism of transport. 
Most mammalian cells have shorter (C16–C24) ceramides 
than yeast ( 46 ), and most of the mammalian ceramide 
transport is carried out by CERT, a cytosolic protein that 
picks up ceramide from the ER and delivers it directly to 
the Golgi ( 47 ). In yeast, most of the ceramide transport is 
via vesicular traffi c ( 48 ). Therefore, GPI-APs in mammalian 

  Fig. 2.  GPI-APs are segregated and sorted from other types of 
cell surface proteins during their transport through the secretory 
pathway. This fi gure illustrates the known sites for sorting of GPI-
APs in yeast and mammalian cell systems. In yeast, this sorting oc-
curs upon the ER export. Newly synthesized GPI-APs are sorted 
and concentrated at specifi c ERESs from where they are subse-
quently incorporated into distinct COPII vesicles for Golgi delivery. 
The speculative possibility that GPI-APs continue to travel sepa-
rately from other secretory proteins through different Golgi cister-
nae to the plasma membrane is shown, although this issue has not 
been experimentally addressed yet. In mammalian polarized epi-
thelial cells, GPI-AP sorting takes place later, in the Golgi, during 
export from the TGN toward the apical plasma membrane (PM). 
GPI-APs and other apically-targeted proteins are segregated from 
basolateral proteins into different secretory vesicles that follow 
separate routes to the cell surface.   
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that follow separate routes to the cell surface. This sorting 
step has been shown to occur in nonpolarized cells, al-
though it has been better studied in polarized cells, such 
as neurons or epithelial cells, in which GPI-APs are pre-
dominantly sorted to the axon or to the apical domain of 
the plasma membrane, respectively ( 55–58 ). Nevertheless, 
there are exceptions to this rule, because in different epi-
thelial cell lines some GPI-APs are sorted and transported 
basolaterally ( 59, 60 ). An especially interesting case is the 
GPI-anchored high density lipoprotein-binding protein 1 
(GPIHBP1), which is a GPI-AP that transports lipoprotein 
lipase from the subendothelial spaces to the luminal face 
of capillary endothelial cells, being thus enriched in both 
the basolateral and apical plasma membrane domains of 
endothelial cells ( 61 ). Finally, in yeast, because GPI-APs 
are already sorted from other secretory proteins at the 
level of the ER, it is still unknown whether they continue 
traveling separately through distinct Golgi stacks to the 
plasma membrane or whether they mix in the same Golgi 
stacks to be sorted again in the TGN. 

 Mechanisms of sorting and export from the TGN 
 In most polarized epithelial cells, the GPI anchor ap-

pears to act as an apical sorting signal, because in these 
cells GPI-APs are delivered in specifi c secretory vesicles 
from the TGN to the apical, but not to the basolateral, 
membrane ( 62 ). Interestingly, this sorting step correlates 
with the acquisition of two saturated fatty acids by the GPI 
anchor through GPI-lipid remodeling in the Golgi and 
leads to the recovery of GPI-APs with DRMs ( 21, 45 ). Fur-
thermore, in addition to the GPI-APs and other proteins, 
the apical membrane is also enriched in saturated lipids 
such as sphingolipids, which are made in the Golgi, and 
cholesterol ( 63, 64 ). These facts have led to the proposal 
of a lipid-based mechanism for apical sorting of GPI-APs 
from the TGN. It is postulated that GPI-lipid remodeling 
in the Golgi leads GPI-APs to cluster and associate through 
the two saturated fatty acids with sphingolipids and choles-
terol into specialized lipid-ordered domains which serve as 
selective platforms for vesicle budding at the TGN ( 65, 
66 ). Supporting this model, inhibitors of sphingolipid bio-
synthesis and/or removal of cholesterol impairs the apical 
sorting of GPI-APs ( 67, 68 ). However, the proposed role of 
GPI-lipid remodeling in apical sorting is not clear yet. In-
deed, recent evidence indicates that unremodeled GPI-
APs with unsaturated fatty acids are transported with the 
same effi ciency to the plasma membrane as remodeled 
GPI-APs with saturated fatty acids ( 69 ). Furthermore, a 
previous study had shown that lyso forms of GPI-APs (GPI-
lipid remodeling intermediates containing only one satu-
rated fatty acid) are apically sorted independent of DRM 
association, although sorting is still sensitive to cholesterol 
depletion in polarized epithelial cells ( 70 ). These data 
suggest the possible existence of alternative pathways that 
redundantly regulate apical targeting. Nevertheless, fur-
ther studies testing the behavior of native unremodeled 
GPI-APs (containing phosphatidylinositol) in polarized 
epithelial cells will be required to conclusively clarify the pu-
tative role of GPI-lipid remodeling in apical sorting of GPI-APs. 

cargo binding subunit, Sec24p (Sec24C and Sec24D), to 
exit the ER ( 49 ). Taken together, these fi ndings suggest that 
the mammalian p24 complex could also link GPI-APs with 
the COPII coat for their effi cient packaging in COPII vesi-
cles, as has been shown in yeast. 

 Golgi arrival and post-ER quality control 
 During or after arrival to the Golgi, remodeled GPI-APs 

dissociate from the p24 complex, as seen from the fact that 
only the ER form of GPI-APs can be found associated with 
the p24 proteins ( 15 ). This dissociation could be caused by 
a decreasing pH in a later Golgi subcompartment that 
would induce conformational changes in the p24 proteins 
to lower their affi nity for bound ligand. Indeed, it has been 
reported that the interaction of mammalian p24 proteins 
with GPI-APs depends on pH, which is consistent with a 
binding in the ER and dissociation in a post-ER acidic com-
partment, such as ERGIC or  cis -Golgi ( 50 ). Upon their 
release, remodeled GPI-APs can progress through the secre-
tory pathway to be fi nally delivered to the plasma mem-
brane. Released p24 proteins can be recycled to the ER in 
COPI vesicles to initiate another round of ER export. The 
p24 proteins have been proposed to play an additional 
role in COP I budding from the Golgi ( 52–54 ). It has been 
reported in yeast that the retrieval of the p24 complex is 
involved in a post-ER quality control system that monitors 
the completion of anchor remodeling and contributes to 
the retention of unremodeled GPI-APs in the ER ( 15 ). The 
yeast p24 complex functions in the retrieval of escaped un-
remodeled GPI-APs from the Golgi to the ER in COPI vesi-
cles. Although the precise mechanism of retrieval is still 
unclear, it has been shown that p24 interacts in a different 
manner with escaped unremodeled GPI-APs in the Golgi 
than with remodeled GPI-APs destined for ER export. In-
deed, the p24 interaction with unremodeled GPI-APs can 
only be detected by using cross-linking reagents, but not by 
native co-immunoprecipitation in the presence of deter-
gent. The lack of co-immunoprecipitation could be ex-
plained by a lower affi nity and/or by a detergent sensitivity 
of p24 binding to the GPI-AP. It is possible that detergent 
could interfere with a p24 protein-GPI-anchor lipid interac-
tion. Consistent with this idea, the p24 proteins from mam-
malian cells have been shown to directly bind specifi c 
sphingomyelins ( 54 ). Finally, once retrieved to the ER, un-
remodeled GPI-APs would have another opportunity to ac-
quire a properly remodeled anchor. Thus, the yeast p24 
complex senses the status of the GPI anchor, regulates GPI-
AP intracellular transport, and coordinates this with correct 
anchor remodeling. 

 EXPORT FROM THE TGN 

 After being fully glycosylated during their passage 
through the Golgi cisternae, GPI-APs exit the Golgi from 
the TGN in secretory vesicles that transport them to the 
plasma membrane. In mammalian cells, GPI-APs are sorted 
from other secretory proteins at the level of the TGN, 
where they are segregated into different secretory vesicles 
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apical glycosphingolipid in MDCK cells, called the Forss-
man glycolipid (galectin 9), and are stronger candidates to 
have a clustering function ( 77, 79 ). Interestingly, the GPI an-
chor of certain GPI-APs is modifi ed with the addition of 
branched N-acetylgalactosamine (GalNAc) residues to the 
GPI-glycan ( 2 ), which could potentially be recognized by 
multivalent galectins. It is possible, then, that galectins can 
cross-link GPI-APs through their GPI-glycan moieties with the 
surrounding glycosphingolipids to promote the stabilization 
of GPI-AP clusters in domains enriched in glycosphingolip-
ids, thereby facilitating their sorting into apically delivered 
vesicles. It would be interesting to explore this possibility. 

 Finally, it is still unclear whether specifi c transmembrane 
cargo-coat adaptors analogous to the p24 complex and cyto-
solic coat proteins are required for the formation of vesicles 
enriched in GPI-APs from the TGN. Several accessory factors, 
such as MAL/VIP17, annexins, fl otillins, or stomatin, have 
been proposed to contribute to the apical sorting by promot-
ing clustering of GPI-APs, as well as other apically-targeted 
proteins in lipid domains, although their mechanisms are 
still not clear ( 81–87 ). In addition, the Golgi-associated 
protein, FAPP2, through its PH domain, also seems to play 
a relevant role in apical sorting by mediating membrane de-
formation for generation of apical transport carriers ( 88 ). 

 CONCLUSIONS 

 Although there are differences between the sites and 
details of the process of sorting of GPI-APs in the secretory 
pathway in yeast and mammalian cells, there is an overall 
conservation of mechanism. GPI-glycan remodeling in the 
ER is conserved and is used to regulate the association of 
GPI-APs with p24 proteins, linking them to the formation 
of COPII vesicles and exit from the ER. In both cases, the 
lipid anchors are remodeled, although the exact modifi ca-
tions and locations are different, but this seems to play an 
important role in how the GPI-APs associate with the 
membrane and most likely helps to ensure GPI-AP con-
centration and sorting.  

 The authors would like to thank Andreas Conzelmann who 
initially sparked our interest in and made seminal contributions 
to GPI anchoring in yeast. 
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