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This paper deals with the problem of a particle that diffuses in a potential with a reflecting barrier and has a point of stable 
equilibrium and a point of unstable equilibrium. Based on the exact solutions obtained earlier for the Fokker-Planck equation 
of a class of these models, we analyze the behavior of the probability density, the mean path and the onset time which 
determines the transition from unimodal to bimodal probability densities. The study is made over different initial positions, 
two of them very close to the unstable point, which permits a clear comparison among the subsequent evolutions, and the 
observation of some intrinsic effects induced by non-linearities. 

1. Introduction 

The problem of diffusion in one-dimensional 
potentials, and particularly in non-harmonic po- 
tentials, has been the subject of many recent stud- 
ies. One of the motives for the importar~ce of this 
problem lies in its connection with Langevin's 
description of non-equilibrium phase transitions. 
When the white noise constitutes a good idealiza- 
tion of the fluctuations concerning a macrovari- 
able, the probabil i ty density of this macrovariable 
obeys a Fokker -P lanck  equation (FPE), which 
must  be solved under appropriate boundary con- 
ditions. 

In the theory of reaction kinetics, many studies 
use a model of a particle moving in a one-dimen- 
sional potential  under the effect of thermal noise 
and damping. Following Kramers [1], many use a 

model of a potential with a single well and one 
barrier. Initially the particle is placed in the poten- 

tial well and can only escape by passing over the 
potential barrier. The objective is to calculate the 
rate of escape out of the well, and the depend- 
ence of this rate on temperature, friction, and 
the parameters of the potential. In the high- 
friction regime one is led to analyze a FPE of the 
Smoluchowski type [2, 3]. 

The model of Kramers has played a central role 
in many areas, other than chemical reactions in 

condensed phases [4], such as surface desorption 
[5] and surface catalysis [6]. Since the original 
analysis by Kramers a number  of authors have 
considered parametric forms of the potential in an 
at tempt both to describe the evolution of different 
processes and to check the validity of Kramers '  
results. One of the first investigations is due to van 
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Kampen [7], who showed that Kramers' calcula- 
tion leads to a correct value for the case of a 
solvable double-well symmetric potential. 

Owing to its importance there has been consid- 
erable research both in the development of ap- 
proximation schemes [8-10] and in obtaining 
exactly solvable models [4, 11] which cover a rich 
variety of behaviours. Although the mathematical 
expressions for the potentials obtained for these 
exactly solvable models are relatively complicated, 
their qualitative forms are very close to some 
interesting potentials for which no exact solutions 
exist. We think that the study of these models is 
important for two reasons. First, to learn about 
intrinsic effects induced by non-linearities, such as 
time-controlled transitions from unimodal to bi- 
modal probability densities, branching times and 
boomerang behaviour of the mean path. Second, 
exact solutions can serve to test the validity of the 
different approximation methods. 

In ref. [12] we showed the existence of a large 
class of non-linear stochastic processes, with con- 
stant diffusion, which admits exact solutions. This 
class is defined by a two-parameter family of 
non-harmonic potentials, and includes potentials 
with either reflecting or absorbing barriers. This 
paper concerns with a particular model of that 
family: the model of the potential has a reflecting 
barrier at the origin of coordinates, a stable equi- 
librium point and an unstable equilibrium point. 
It is analogous to the potential used by Kramers 
[1] in the context of reaction kinetics, although in 
our case we can only treat the high-friction regime, 
as we only know the exact solutions corresponding 
to the FPE of the Smoluchowski type. 

This paper is organized as follows. First, we 
expose a summary of some previous results, show- 
ing a particular class of models which has exact 
solutions, its explicit solutions, and the three qual- 
itatively different kinds of potentials that are in- 
cluded. Second, we analyze a model of the type 
mentioned above by adequately selecting two val- 
ues for the parameters that define the family of 
potentials. Having centered on a specific model, 
we expose details on the evolution of the probabil- 

ity density, the behaviour of the mean path and 
the splitting of the probability density, for differ- 
ent types of initial conditions. We conclude with 
some comments about the observed phenomena 
and some further studies that are underway. 

2. Smmnary of previous results 

We consider the stochastic differential equation 
(Langevin equation) for a driven variable x(t):  

dx _ D(x) + 71(t) = d U ( x )  
dt  d------x~ + T/(t), (1) 

where U(x) is a potential field from which the 
drift D(x) is derived, and 7/(t) is a Gaussian 
white noise, characterized by 

( , / ( t ) )  = 0 ,  (2) 

(~/(t) ~i(t')) = 28(t  - t ') ,  (3) 

with the initial condition being 

x(0) = x  o. (4) 

Under these conditions, the corresponding FPE 
for the distribution function P(x, t) is 

OP(x,t)~t =-~[[~]a [[~U(X) Ip¢ ,t)] 

a2p(x,t) + 
~X 2 

with the properties 

P(x,t)>_O, Vxen, teR+=[0,  oo), (Sa) 

f rP(x , t )dx=l ,  V t~a  +, (5b) 

P ( x , o )  -- a ( x  - go) .  (5c) 

For some cases it may be required that x ~ R +. 
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There exist exact solutions for this FPE for the 
special choice of the potential U(x): 

U(x)  = - 2 1 n  V(x) ,  (6) 

with 

V(x)  = (½x 2)"+ 1/4 exp ( -  ¼x 2) 

X ,Fx(A, B, ½x2), (7) 

where ,FI(A, B, z) denotes Kummer's hypergeo- 
metric function of the first kind [13], and 

A = ½ + a - ~ f l ,  B = l + Z a ,  (8) 

with 

lit,) 

o] A=O B:6  

cl I : .18/5 I~ : 4.5 

F ig .  1. S h a p e s  o f  U(x) w i t h  a = 0.25 a n d  (a)  fl  = 6, (b) /8 = 

5.99, (c) fl  = 4.5. 

a > - } ,  A > 0 ,  (9) with 

When a > - ¼, the potential may adopt some 
physically interesting behaviours. The three quali- 
tatively different forms of U(x) when a > - ¼ are 
represented in fig. 1. All the curves tend asymptot- 
ically to + oo when x tends to zero, i.e. the point 
x = 0 represents a reflecting barrier. When A = 0 
the potentials tend to + m for x tending to + o0, 
i.e. the potentials are attractive Vx ~ [i +, like that 
represented in fig. la. When A q. 0, the potentials 
tend to - c~ for x tending to + oo. 

For a given value of a > -  ¼, there always 
exists a value A(a) > 0, such that if A ~ (0, A(a)) 
the potential adopts a form like that represented 
in fig. lb, i.e. with one stable point and one 
unstable point. The value A(a) may be found by 
solving a transcendental equation• In other cases, 
with A 4: 0, the potentials have no depth, i.e. they 
are like fig. lc. 

For the particular case a = ¼, U(x) adopts the 
form 

O(x)  = - 2 l n [ ( x / ¢ ~ ) e x p ( -  ¼x 2) 

XxFl( A,a2, ½x2)], (10) 

a = l - i # .  

With the prescription that x ~ R +, the solution 
for P(x, t), with P(x,O) = 8(x - Xo), is 

P(x ,  t) = Pl(X, t; Xo) + Pl(X, t; - go) , 

x ~ R +, (11) 

where 

Px( x, t; Xo) 

= (4~) - '/2(sinh t ) - ' /2(X/Xo) 

iFI(A,3v_; ½x 2) 
• 1 2 X ,Fx(A, 3, _~Xo) 

X e x p ( ¼ f l t ) e x p ( - ¼ ( X - X o e - t ) 2 e ' )  
sinh t 

(12) 

3. Analysis of the model 

We shall now show that our class of models 
covers a great variety of behaviours induced by 
non-linearity. Nevertheless, it is not possible to 
obtain an exact explicit calculation of all the rele- 
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vant physical quantities. The principal reason is 
that there is no possibility of choosing an initial 
value x 0 that makes (11) a symmetrical function. 
Thus, for example, for the calculation of the posi- 
tions and the nature of the extrema of P(x ,  t), 
which are determined by means of the equation 

P'(x ,  t ) ---0,  we are led to the resolution of a 
transcendental equation, which cannot generally 
be solved analytically. 

To overcome this difficulty partially we have 
made exhaustive computer determinations, using 
(11) and (12), of the most relevant quantities and 
of the time evolution of P(x ,  t) for several differ- 

ent values of the initial position x 0. In what 
follows we will expose details of some results 

concerning these computations. 
In our study we have fixed the parameters a 

and fl to the values a = 0.25 and fl --- 5.99. These 
give a potential U(x)  like that of fig. lb,  with one 
stable point x s and one unstable point x~. The 
computat ion of x s and of x u gives the values 
x s = 1.416 and x~ = 4.537. These parameters cor- 
respond to a potential with enough depth that one 
can expect a rich variety of phenomena to appear 

easily. For this case U(xu) - U(xs) --- 5.39. 

4. Time evolution of the probability density 

For  the study of the behaviour of the probabil- 
ity density P(x ,  t), and of some relevant physical 
quantities, we may select different initial positions 
x0, which correspond to qualitatively different ini- 
tial physical situations. We shall sketch and com- 
ment  on the time evolution of the probability 
density P(x ,  t) for cases which clearly show phe- 

nomena  induced by nonlinearity. 

P(xA) 

0.0 1.6 3.~ 

/ x,= 4.50 

4.B 6.4 8.0 9.6 II.2 12.8 
1( 

Fig .  2. P r o b a b i l i t y  d e n s i t y  P(x, t ) ;  x o = 4 .50 ,  t = 0.1 ~ (0 .1)  

0 .6 .  

evolution, for t = 0.1 --* (0.1) ~ 0.6. At t = 0.1 the 
curve is practically Gaussian, the abscissa of the 
maximum Xu is such that x M < xu. Nevertheless 
by t = 0.2 one may appreciate the existence of two 
peaks for the probability density. There exists a 
critical time t a, defined as the time for this split- 
ring of the probabili ty density such that t a _< 0.2. 
We observe that the ordinate of the first peak is 
greater than the ordinate of the second one, and 
that the abscissa of this second peak is greater 
than xu. The formation of this second peak in the 
region (x~, oo) may be viewed as a "tunneling 
process" through the potential barrier drawn in 
fig. lb .  Initially the abscissa of the first peak 
moves towards x s, and the abscissa of the second 
peak moves towards oo. 

4.1. Case x 0 = 4.50 

As the unstable point corresponds to x u =  
4.5379 , the initial situation is near this unstable 
point. One may expect phenomena such as the 
formation of two maxima for the probability den- 
sity, i.e. the occurrence of a transition from uni- 
modal  to bimodal states. Fig. 2 shows us this 

4.2. Case x o = 4.60 

Now x 0 >__ x u. There is also a transition to bi- 
modal states after a time greater than 0.1, as we 
can see in fig. 3. The "tunneling process" leads to 
the formation of a maximum in the region [x s, xu], 
i.e. it is produced in backward direction. If we 
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Ptx,L) 
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Fig .  3. P r o b a b i l i t y  d e n s i t y  P(x, t ) ;  x o = 4 .60 ,  t = 0.1 --* (0 .1 )  

--, 1.1. 

compare the forms of P(x,  t) for t - - 0 . 3  corre- 

sponding to the cases x 0 = 4.5 and x 0 = 4.6, we 
can see that for the second case the curve is more 
symmetrical, which is a consequence of the asym- 

metrical form of the potential in the region around 
x , .  Later on we shall comment  on this asymmetry. 
For the times considered in fig. 3, i.e. t = 0.1 
(0.1) ---, 1.1, there exists a monotonic movement of 

the abscissa of the first peak towards x,. At time 
t = 1.1 an increase in the ordinate of the first peak 
with respect to the ordinate for t = 0.9 is observed. 
The existence of this increase is much better ap- 
preciated in fig. 4, where for t = 60 the ordinate is 
greater than 0.2. At successive instants of time the 
ordinates decrease monotonically and abscissas 
are stabilized near x s. The existence of a reflecting 
wall at x = 0 prevents the probability density from 
passing through it. Reflection is responsible of the 
transient growing of the first peak and of the 
existence of a second "tunneling process" which 
causes a further decrease in the ordinates. 

P(x,LI 

6 

8 -  
,e~_ _ 

0.0 

x, : LGO 

I.fi 3.2 4.8 6.4 8.0 x 

Fig .  4. P r o b a b i l i t y  d e n s i t y  P(x, t ) ;  x o = 4.60,  t = 60  --, (60)  
--, 110.  

4. 3. Case Xo = 5 

This is the last case we consider. There exists 
also a transition to bimodal states as a conse- 
quence of a "tunneling process" through the po- 
tential barrier. Now the form of the curves of 
P(x, t )  after this transition are much more asym- 
metrical (see fig. 5). 

5. Behaviour of the mean path 

Let us analyze the behaviour of the mean path 

(x(t)> corresponding to the process (1) when the 
probability density is given by (11) and (12). This 

magnitude is determined by calculating the inte- 
gral 

(x( t )> = fo°°Xe(x, t) dx. (13) 

The analytical operations required to calculate 
this integral are quite tedious, so we have pre- 
ferred to determine this integral via computer 
calculation only for some special initial values x 0. 
No phenomena of interest appear for the cases 
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PIx,[I 

Xt= 5 

0 4 8 12 16 20 24 X 

Fig.  5. P r o b a b i l i t y  dens i ty  P(x,  t ) ;  x 0 = 5, t = 0.1 ~ (0.1) --* 

0.6. 

x 0 < Xs, or x 0 > x u. We have selected two cases 

cor responding  to x s < x 0 < x u. 
In  fig. 6 we represent (x(t)) versus t for x 0 = 

1.5. We observe that initially the values of  (x(t)) 
decrease until  a time t* ---0.1, and then the mean 

pa th  increases monotonically,  i.e. the mean path  is 

stabilized for t < t* and suffers a destabilization 
for t > t*. The  min imum value of  (x(t)) does not  

at tain x s, (X>n~n ~ 1.491. This situation is called 

boomerang  behaviour  of the mean path [14]. 
Fig. 7 corresponds to the case x o = 3. We ob- 

serve also the existence of an initial period of  

stabilization followed by a destabilization at t* 

1.5. As before the minimum value of  (x ( t )>  does 
not  attain xs, for this case ( x ) ~ n  --- 1.81. 

Fo r  the case x 0 = 4 . 5 0  we detect also a 

boomerang  behaviour,  but  in this case t* is of  the 
order  of  0.06, i.e. the initial period of  stabilization 

is negligible. 
The  numerical  studies that we have made  

demons t ra te  the existence of an interval of initial 

values x o for which the process presents a period 

< x > ~  I0-' 

,d-, 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 t 

Fig. 6. B o o m e r a n g  b e h a v i o u r  o f  the m e a n  p a t h  for  x o = 1.5. 

of stabilization followed by a destabilization of  

the mean path. Al though not  demonstra ted math-  

ematically, it could be inferred that the condit ion 

for the existence of the so-called " b o o m e r a n g  

effect" is that  x s < x 0 < x u. 

6. Transition to bimodal states. Times for 
bifurcation 

As we have pointed out  in section 4, for a given 

value x 0' the probabil i ty density P(x, t) presents 
two peaks after a critical time t m called the time 
for bifurcation or for transition to bimodal  states, 
which depends obviously on the initial position 

x 0. Bifurcation such that the two peaks have sig- 
nificant values, occurs only for a limited interval 

of  values x o a round x u. 
We can consider the space (x  o, t) as having the 

role of  a parameter  space C, and (x )  the role of a 
behaviour space X. In  this way the probabil i ty 

density is represented by a smooth map:  

P :  C x X ~ R.  (14) 
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Fig. 7. Boomerang behaviour for the mean path for x 0 = 3. 
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The time-dependent positions of the extrema of 
P(x, t) are determined by the equation 

3 P ( x ,  t) _ 0. (15) P'(x ,  t) - Ox 

The set M = ( (x  0, t, x) /P'(x ,  t) = 0} constitutes 
a manifold, of dimension two, that can be consid- 
ered as a catastrophe manifold. Each point of M 
corresponds to a minimum or a maximum of 
P(x, t). In plates I and II we represent two per- 
spective drawings of the manifold M. Axes are 
represented in blue, red and black, and corre- 
spond to x o, t, x, respectively. Plate I corresponds 
to a two-dimensional projection defined by the 
vector ( -0 .5 ,  5,4) of the space (x 0, t, x), and plate 
II is a projection defined by the vector (0.6, 
-0 .6 ,5 ) .  In this way, it is possible to give the 
same impression that one would obtain from look- 
ing through the actual three-dimensional surface, 
along the direction of projection. In both figures, 
the color black, of the projected surfaces, corre- 
sponds to the second maxima of P(x, t), red 
corresponds to the minima of P(x, t), and blue 
corresponds well to the first maxima, or well to 

~=, 
,=; 

8 

Fig. 8. Graphical representation of the behaviour of  the time 
for bifurcation, t~, for different values of x 0. 

the unique maxima for times prior to bifurcation. 
This manifold is like that corresponding to the 
so-called "dual cusp catastrophe" of catastrophe 
theory. In both pictures the fold line is relatively 
well distinguished, this being the smooth curve: 

Mr3 ((Xo, t , x ) / P " ( x , t  ) = 0 } .  (16) 

Projection of the fold line, onto the plane (x0, t), 
produces a curve, represented in fig. 8, that consti- 
tutes the bifurcation set, i.e. it gives us for each 
initial value x0, the corresponding time for bifur- 
cation t B. This bifurcation set has a singularity for 
X0m ~ 4.577, tBm = 0.137, and we observe that this 
value of Xom is slightly greater than the abscissa of 
the unstable point x u - 4.537. 

Our potential U(x) has an asymmetrical form 
for a neigbourhood of x u, i.e. the unstable region 
has not a symmetrical form. This can be seen by 
studying the behaviour of the second derivate of 
U(x) with respect to x, U"(x), in that unstable 
region. The curve, represented in fig. 9, has a 
minimum at x m --- 4.620, U"(Xm) -~ -7.481,  and 
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Plate I. Two-dimensional projection of the catastrophe manifold M, defined by the vector ( - 0.5, 5, 4). 

these  values  pe rmi t  us to de te rmina te  the coeffi- 

c ients  of  the  fol lowing app rox ima te  form of U ' ( x )  

for  a n e i g b o u r h o o d  of Xu: 

U ' (  x ) ~ a (  x - xu) 3 + b (  x - Xu) 2 

+c(x-Xu), (17) 

resul t ing  in a -~ 7.756, b -~ - 1.931, c ~- - 7.295. 

The  ~act tha t  b #: 0 indicates  a non-symmet r i ca l  

fo rm of  U ( x )  in the uns tab le  region.  

The  m i n i m u m  t ime for b i furca t ion  tBm corre- 

s p o n d s  to an  ini t ia l  pos i t ion  x 0 = X0m, such that  

x u < XOm < Xnr W e  observe a re la t ion of  tBm with 

U"(Xom ) given b y  

1 
/Bm ~ IU, ,(XOm)[.  (18) 
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Plate II. Two-dimensional projection of the manifold, defined by the vector (0.6, - 0.6, 5). 

By studying the same question with an exactly 
solvable model with a symmetrical unstable re- 
gion, as one of the models proposed by Hongler 
and Zheng [11], one obtains that the minimum 
time for bifurcation corresponds exactly to an 
initial position located at the unstable point. For 
an asymmetrical unstable region there is a dis- 
placement of x0m towards the point where the 
curvature is greater, i.e. the point where the abso- 
lute value of the second derivative of U(x) is 
greater. 

7. Final comment 

In this paper we have limited ourselves to some 
aspects of the behaviour of the solutions for an 
exactly solvable model of the Kramers type. By 
considering different initial conditions it has been 
possible to observe phenomena induced by non- 
linearity, such as boomerang behaviour of the 
mean path and splitting of the probability density. 
We have quantitative estimates both for the onset 

t ime  t B of this splitting and the time t* which 
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× 

Fig. 9. Second derivative of U(x) versus x for the unstable 
region. 

marks the end of the stabilization period of the 
mean path. More studies can be made, such as 
the calculation of the probability current over the 
working barrier, and its dependence on the height 
of this barrier, determination of the fluctuations at 

different scales of time, etc. Also the model can 
serve as a test for the study of the validity of 
different approximation schemes. We have now 
finished some of these studies and they will be 
published elsewhere. 
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