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Abstract

The kinetic energy of a flow is proportional to the square of the L2(Ω ) norm of the velocity. Given a sufficient regular
elocity field and a velocity finite element space with polynomials of degree r , then the best approximation error in L2(Ω ) is
f order r + 1. In this survey, the available finite element error analysis for the velocity error in L∞(0, T ; L2(Ω )) is reviewed,
here T is a final time. Since in practice the case of small viscosity coefficients or dominant convection is of particular interest,
hich may result in turbulent flows, robust error estimates are considered, i.e., estimates where the constant in the error bound
oes not depend on inverse powers of the viscosity coefficient. Methods for which robust estimates can be derived enable
table flow simulations for small viscosity coefficients on comparatively coarse grids, which is often the situation encountered
n practice. To introduce stabilization techniques for the convection-dominated regime and tools used in the error analysis,
volutionary linear convection–diffusion equations are studied at the beginning. The main part of this survey considers robust
nite element methods for the incompressible Navier–Stokes equations of order r − 1, r , and r + 1/2 for the velocity error in

L∞(0, T ; L2(Ω )). All these methods are discussed in detail. In particular, a sketch of the proof for the error bound is given
hat explains the estimate of important terms which determine finally the order of convergence. Among them, there are methods
or inf–sup stable pairs of finite element spaces as well as for pressure-stabilized discretizations. Numerical studies support the
nalytic results for several of these methods. In addition, methods are surveyed that behave in a robust way but for which only
non-robust error analysis is available. The conclusion of this survey is that the problem of whether or not there is a robust
ethod with optimal convergence order for the kinetic energy is still open.
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1. Introduction

Incompressible flows are modeled by considering the conservation of linear momentum and the conservation of
mass, leading to the incompressible Navier–Stokes equations, given here already in dimensionless form,

∂t u − ν∆u + (u · ∇)u + ∇ p = f in (0, T ] × Ω ,

∇ · u = 0 in (0, T ] × Ω ,

u = 0 in [0, T ] × ∂Ω ,

u(0, ·) = u0(·) in Ω ,

(1)

where Ω is a bounded domain in Rd , d ∈ {2, 3}, with polyhedral and Lipschitz continuous boundary ∂Ω , T ∈ R is a
final time, u is the velocity field, p the pressure, ν > 0 the kinematic viscosity coefficient, u0 a given initial velocity,
nd f represents the external body accelerations acting on the fluid. Eq. (1) is already given as an equation without
hysical dimensions, as it is used in numerical analysis and simulations. Consider now the underlying physical
roblem. Let ρ [kg/m3] be the density of the fluid, µ [kg/m s] be its dynamic viscosity and define a characteristic
ength scale L [m] and a characteristic velocity scale U [m/s]. Then, the dimensionless number

Re =
ρU L

µ

is called Reynolds number. Utilizing the characteristic time scale L/U [s], then one finds the relation ν = Re−1.
hus, a high Reynolds number flow leads to a small coefficient ν in (1).

An important physical quantity of incompressible flows is the contained energy, which is the sum of the kinetic
nergy 1

2∥u(t)∥2
0 at time t ∈ (0, T ], where ∥ · ∥0 denotes the norm in L2(Ω ), and the dissipative energy. It is known

hat a distributional solution exists, satisfying the energy inequality

1
2
∥u(t)∥2

0 + ν∥∇u∥
2
L2((0,t),L2(Ω)) ≤

1
2
∥u(0)∥2

0 +

∫ t

0

∫
Ω

f · u dx dt,

or all t ∈ (0, T ], e.g., see [1, Chapter V, Theorem 3.1.1] or [2, Lemma 7.21]. In the present paper, we will
ssume sufficient regularity so that weak solutions are indeed strong solutions and, hence, unique. More precisely,
eray–Hopf solutions are considered, e.g., see [3]. The unique weak solution in two dimensions satisfies even an
nergy equality. The kinetic energy of a flow belongs to the quantities of interest in many simulations.

This paper surveys available analytic results for the order of convergence of the finite element error in the kinetic
nergy, more precisely, of the convergence of the velocity in L∞(L2), where

L p(Ls) := L p(0, T ; Ls(Ω )) =

⎧⎨⎩v :

(∫ T

0

(∫
Ω

|v|
s dx

)p/s

dt

)1/p

< ∞, p, s ∈ [1, ∞)

⎫⎬⎭ ,

ith the application to each component of a vector-valued function and the usual replacement of the integrals with
he essential supremum if p = ∞ or s = ∞. Since in applications often the case of small viscosity coefficients is of
mportance, which leads eventually to turbulent flows, especially error estimates are considered where the constant
f the error bound does not explicitly depend on inverse powers of ν, such that it does not blow up for ν → 0. The
ase where ν is small (relative to the product of a typical velocity scale and a typical length) is often referred to
s convection-dominated, since, if ∇u and ∆u have norms of similar sizes, the first order term (u · ∇)u dominates
he second order term −ν∆u.

Our aim is to investigate finite element approximations of the Navier–Stokes equations that are suitable for the
onvection-dominated regime. This requires to analyze how the different terms in the Navier–Stokes equations affect
heir finite element approximation at high Reynolds numbers. To this end, we begin this survey with a simpler case,
ime-dependent linear convection–diffusion–reaction equations, in order to study a linear convective term. Then, we
onsider the incompressibility condition and finally we also add the nonlinear term of the Navier–Stokes equations.
t will be analyzed how the different terms affect the rate of convergence of finite element methods for a regular
olution and ν → 0. Typically, in the error bounds, it appears a product of an error constant and of norms of
he solution in Sobolev spaces. Our error analysis aims for error bounds with constants that are independent of
nverse powers of ν. Of course, one must be aware that in practical situations the norms of the solutions will grow

s ν → 0, but error constants that do not explode as ν → 0 can be considered as the minimal requirement or
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necessary condition for a robust performance of a method in practical convection-dominated problems. Hence, this
survey provides both, some insight into which methods are expected to fail in practice, because they do not meet
the minimum requirement, and in particular a survey of those methods which are expected to be robust. Finally,
from the theoretical point of view, the question of deriving local error bounds for the methods is still open. Since
for realistic problems, a high global regularity of the solution cannot be expected, such local error estimates would
be more appropriate. That means, to prove bounds for the methods in a subset of the domain where the solution
is smooth, and to get optimal bounds for the error depending on norms of the solution in this subdomain. To the
best of our knowledge, there is almost no error analysis in this direction and the techniques needed probably have
not been developed yet. For evolutionary problems, the only references we know are [4] and [5], where local error
bounds for the SUPG method applied to linear evolutionary convection–reaction–diffusion equations are obtained.

Accordingly, we first consider the following time-dependent linear convection–diffusion–reaction problem

∂t u − ν∆u + b · ∇u + cu = f in (0, T ] × Ω ,

u = 0 on [0, T ] × ∂Ω ,

u(0, x) = u0(x) in Ω ,

(2)

where b(t, x), c(t, x), and f (t, x) are given functions, ν > 0 is a constant diffusion coefficient, and u0(x) is the
initial data. Problem (2) describes the passive transport of a scalar quantity, like temperature or concentration, by
molecular motion, modeled with the diffusive term −ν∆u, and by a convective transport via a flow field b. One
speaks of a convection-dominated regime if ν ≪ ∥b∥L∞(L∞)L , where L is a characteristic length scale. To provide
an idea of a typical range for diffusion and convection, in the temperature balance of the crystallization process
studied in [6], the diffusion coefficient is around 1.5 · 10−7 m2

/s and the maximal velocity is of order 0.1 m/s. If
L = 1 m is used for deriving non-dimensionalized equations, the convection in these equations is stronger than the
diffusion by around six orders of magnitude.

A common feature of the solutions of both the Navier–Stokes equations (1) and the linear convection–diffusion–
reaction equation (2) in the convection-dominated regime is the appearance of (very) small structures. The smallest
physically important structures or scales of turbulent incompressible flows are the so-called Kolmogorov scales
whose size, away from walls, is proportional to Re−3/4L . The solution of (2) typically possesses layers, i.e., regions
of a small width of O(ν) to O(ν1/2) with very steep slopes of the gradient.

Standard spatial discretizations of (1) and (2), like central finite differences or the Galerkin finite element method,
try to predict the behavior of all important scales of the solution. However, in the convection-dominated regime, the
smallest scales are usually much smaller than the affordable mesh width, such that most of the small scales even
cannot be represented on such grids. Of course, scales that cannot be represented cannot be simulated. Standard
discretizations cannot cope with this situation and they lead usually either to a blow up of the simulations or to
meaningless numerical solutions that are globally polluted with spurious oscillations, compare also the numerical
results presented in Section 4.1.3.

The remedy consists in using so-called stabilized discretizations, which are usually denoted as turbulence models
in the case of turbulent flows. Such discretizations introduce in some sophisticated way numerical (artificial)
diffusion/viscosity in the discrete equations. A mile stone in this direction was the proposal of the Streamline-
Upwind Petrov–Galerkin (SUPG) method in [7,8] for steady-state convection–diffusion–reaction equations. The
first finite element error analysis for the steady-state as well the time-dependent convection–diffusion equations can
be found in [4,9]. The analysis was extended to the steady-state Navier–Stokes equations in [10,11] and the time-
dependent equations in [12,13]. The SUPG method is the core of a variational multiscale turbulence model proposed
in [14]. For other stabilized discretizations, like the Continuous Interior Penalty (CIP) method or Local Projection
Stabilization (LPS) methods, one can observe a similar development: they were first proposed for the steady-
state convection–diffusion–reaction equation and then extended to other equations, including (2) and (1). Since the
same ideas can be utilized for discretizing scalar convection–diffusion–reaction equations and incompressible flow
equations, these classes of equations are sometimes jointly presented in the literature, like in the most often cited
monograph in the field [15]. For completeness, it should be noted that, besides the purely mathematical approaches
for turbulence modeling mentioned above, there are many turbulence models whose derivation is based on physical
insight in turbulent flows, e.g., see [16], which do not have a counterpart for the scalar equation (2). Often, a
numerical analysis for such turbulence models is not available.

Finite element convergence analysis of partial differential equations usually assumes that the solution of these
equations is sufficiently regular, i.e., that it belongs to certain Sobolev spaces. Then, the goal consists in deriving
3
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so-called optimal estimates, where the order of convergence equals the order of the best approximation error in the
corresponding norm. The techniques for proving such estimates differ for different norms. For convection-dominated
problems, there is an additional important aspect: one has to track the dependency of the error bound on the data of
the problem, in particular on the coefficient ν. The goal is to obtain error bounds where the constant does not contain
inverse powers of ν and therefore it does not blow up as ν → 0. Such estimates are called robust or semi-robust. The
atter notion is inspired from the fact that the error bounds contain norms of the solution of the partial differential
quation in Sobolev spaces, which are usually of higher order with respect to the spatial variable, these norms might
epend implicitly on ν, and they might grow as ν → 0. Another aspect for convection-dominated problems is that
he convergence of the method, in the sense that the mesh width tends to zero, is not of interest, because if the

esh is sufficiently fine such that all important scales are resolved, a stabilization is not longer necessary. Instead,
he behavior on coarse grids is of importance, especially in practice. To distinguish these aspects, one speaks often
f ‘order of error reduction’ or ‘order of error decay’ instead of ‘order of convergence’ in the latter situation.

The main topic of this survey is the provable order of error reduction of the velocity error, where with respect
o the spatial variable the space L2(Ω )d is considered. Given a finite element velocity space with continuous
iecewise polynomials of order r and assuming for the velocity solution of (1) that u(t) ∈ H r+1(Ω )d , then the best
pproximation error in L2(Ω )d is of order r + 1. Since for the kinetic energy error, applying the Cauchy–Schwarz
nequality, one has

∥u(t)∥2
0 − ∥uh(t)∥2

0 ≤ ∥u(t) − uh(t)∥0∥u(t) + uh(t)∥0,

his error is proportional to the L2(Ω ) norm of the velocity error and the optimal order of error reduction for the
inetic energy is (r + 1). The finite element error analysis of time-dependent problems leads usually to estimates
here a sum of errors in different norms is finally bounded. One of these terms, emerging from the temporal
erivative, is the velocity error in L∞(L2). To facilitate the comparison with the literature, also in this survey the
rror analysis will be presented in terms of the velocity error in L∞(L2) instead of the kinetic energy. One of our
otivations for compiling this survey is an open problem stated recently in [17]: It is open whether optimal and

emi-robust L∞(0, T ; L2(Ω )d ) error bounds for the velocity can be proved for some method.
The present paper provides a survey on the state of the art of error estimates in L∞(L2)1 for the convection-

ominated regime of problems (1) and (2). The available analysis was revised for this survey such that the formulas
re dimensionally correct, i.e., if all quantities in a formula are equipped with physical units, then the operations in
his formula are well defined. In this way, the numerical analysis becomes physically consistent. The complete error
nalysis of finite element discretizations of (1) and (2) needs usually several pages of estimates. In this survey, we
estrict the presentation only to the key steps of the analysis, which lead to the dominating term in the error bounds.

ith this presentation, also important differences of the analysis between different methods are illustrated. Further
spects of the realization of the methods, e.g., fully implicit approaches vs. implicit–explicit (IMEX) methods,
olution as a coupled velocity–pressure problem vs. projection methods, etc. will not be discussed here to focus the
resentation on the main topic. Several results from the finite element error analysis are supported with numerical
xamples. Here, the expectations are illustrated for an academic problem with smooth solution, because only with
uch a setup, it is possible to support the rates of convergence predicted by the analysis. Numerical simulations for
ealistic problems, i.e., turbulent flows, possess usually quantities of interest that are not covered by the numerical
nalysis and such simulations are outside the scope of this survey.

Section 2 sets up weak formulations of (1) and (2), introduces some notations, and provides some tools that
re used in the numerical analysis. Discretizations of the convection–diffusion–reaction equation (2) are studied
n Section 3. The bulk of the paper, Section 4, is devoted to finite element discretizations of the incompressible
avier–Stokes equations (1). The current state of the art is summarized in Section 5.

. Weak formulations and notations

Throughout the paper, standard notations will be used for Lebesgue and Sobolev spaces. The dimension is not
ndicated in symbols of time–space function spaces and the corresponding norms.

1 When surveying the literature, error bounds will be discussed that were obtained for fully discrete problems. Strictly speaking, these
bounds are valid only in the discrete time instants and not in the whole time interval. For not unnecessarily complicating the notation, we
will use L∞(L2) also in the case of fully discrete problems.
4
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For the convection–diffusion–reaction equation (2), it will be assumed that b and c are sufficiently smooth
unctions with respect to x and that

µ0 ≤ µ(t, x) =

(
c −

1
2
∇ · b

)
(t, x) ∀ (t, x) ∈ [0, T ] × Ω (3)

is satisfied. Let V = H 1
0 (Ω ). A variational form of (2) reads as follows: Given f ∈ H−1(Ω ), find u : (0, T ] → V

uch that

(∂t u, v) + ν(∇u, ∇v) + (b · ∇u, v) + (cu, v) = ⟨ f, v⟩ ∀ v ∈ V, (4)

nd u(0, x) = u0(x). Here, (·, ·) denotes the inner product in L2(Ω )d and ⟨·, ·⟩ the dual pairing of H 1
0 (Ω )d and

H−1(Ω )d , d ∈ {1, 2, 3}. Inner products in L2(ω) with ω ̸= Ω will be denoted with (·, ·)ω and a similar convention
s used for the notation of norms.

Using for the incompressible Navier–Stokes equations (1) the function spaces

V = H 1
0 (Ω )d , Q = L2

0(Ω ) =
{
q ∈ L2(Ω ) : (q, 1) = 0

}
,

weak formulation of problem (1) is as follows: Given f ∈ H−1(Ω )d , find (u, p) : (0, T ] → V × Q such that for
ll (v, q) ∈ V × Q,

(∂t u, v) + ν(∇u, ∇v) + ((u · ∇)u, v) − (∇ · v, p) + (∇ · u, q) = ⟨f , v⟩, (5)

nd u(0, ·) = u0(·) ∈ V. An important subspace of V is the space of weakly divergence-free functions

Vdiv
= {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q} . (6)

Let {Th} be a family of triangulations of Ω , where h > 0 indicates the fineness of Th . The mesh cells of Th

re denoted by K with hK being the diameter of K and h = maxK∈Th hK . It will be assumed that the meshes are
onforming and quasi-uniform. In practice, anisotropic grids are of considerable importance. However, the analysis
f finite element discretizations on such grids has many open questions, in particular there are no contributions with
espect to the topic of this survey.

In numerical simulations, the infinite-dimensional spaces are replaced by finite-dimensional ones, e.g., V by Vh,r ,
by Vh,r , and Q by Qh,l where r, l ∈ N denote the degrees of the local finite element polynomials. Most of the

vailable finite element analysis is for the case of conforming finite element spaces, i.e., the finite element spaces
re subspaces of the corresponding infinite-dimensional spaces, e.g., Vh,r ⊂ V.

For the Navier–Stokes equations, the space of discretely divergence-free functions is defined by

Vdiv
h =

{
vh ∈ Vh,r : (∇ · vh, qh) = 0 ∀ qh ∈ Qh,l

}
. (7)

learly, there are less conditions for a function to be contained in Vdiv
h than to belong to Vdiv. In fact, for many

airs Vh,r/Qh,l of finite element spaces, it turns out that Vdiv
h ̸⊂ Vdiv.

The following inverse inequality holds for each vh ∈ Vh,r , e.g., see [18, Theorem 3.2.6],

∥vh∥W m,q (K ) ≤ cinvh
l−m−d

(
1
q′ −

1
q

)
K ∥vh∥W l,q′ (K ), (8)

here 0 ≤ l ≤ m ≤ 1, 1 ≤ q ′
≤ q ≤ ∞, and ∥ · ∥W m,q (K ) is the norm in W m,q (K ).

We will denote by πhu ∈ Vh,r the elliptic projection defined by

(∇πhu, ∇ϕh) = (∇u, ∇ϕh) ∀ϕh ∈ Vh,r . (9)

he following bound holds for any u ∈ H 1
0 (Ω ) ∩ H r+1(Ω ), e.g., see [18],

∥u − πhu∥0 + h∥u − πhu∥1 ≤ Chr+1
∥u∥r+1. (10)

Generic constants that do not depend neither on the mesh width h nor on the diffusion/viscosity coefficient ν

will be denoted by C .
To avoid technicalities that are not significant for the topic of this survey, the actual regularity assumptions on

the weak solution will not be stated explicitly in the formulation of the theorems, but it will be assumed that the
solution is sufficiently regular such that all terms appearing in the error bounds are well defined.
5
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3. Convection–diffusion–reaction equations

The first part of this section discusses briefly the Galerkin finite element discretization of the convection–
diffusion–reaction equation (4). If the best approximation error in L2(Ω ) is r+1, then an error bound in L∞(L2) with
onstants independent of inverse powers of the diffusion coefficient of order r can be proved. Stabilized methods,
ith the emphasis on the SUPG method, are the topic of the second part of the section. For these methods, robust

stimates of order r + 1/2 can be derived.

.1. The Galerkin method

The time-continuous finite element problem aims to find a function uh ∈ Vh,r that fulfills a problem of form (4)
or all test functions from Vh,r . More precisely, uh : (0, T ] → Vh,r is called Galerkin approximation if

(∂t uh, vh) + ν(∇uh, ∇vh) + (b · ∇uh, vh) + (cuh, vh) = ⟨ f, vh⟩ ∀ vh ∈ Vh,r , (11)

ith uh(0, x) being an appropriate approximation of u0(x).
It is well known that the standard Galerkin method leads to numerical solutions with non-physical spurious

scillations in the convection-dominated regime when the solution of (4) possesses layers. However, if the solution of
4) does not exhibit layers and if it is sufficiently smooth, the Galerkin method produces meaningful approximations
hat tend to the solution of (4) with an order of error reduction r in L∞(L2), independently of the value of ν, which
ill be proved in Theorem 3.1 and illustrated numerically in Example 3.2.
In most works on convection-dominated problems, the case µ0 > 0, the constant in (3), is assumed; see [15]. In

heorem 3.1, we consider both cases µ0 > 0 and µ0 ≤ 0.

heorem 3.1 (Error Estimate for the Galerkin Method). Let u be the sufficiently smooth solution of (2) and uh be
he finite element approximation defined in (11). Assume b ∈ L∞(L∞) and c ∈ L∞(L∞), then the following bound

holds for 0 < t ≤ T

∥u(t) − uh(t)∥0 ≤ e−µ0t
∥uh(0) − πhu0∥

2
0 + Chr Ku

⏐⏐1 − e−µ0t
⏐⏐

|µ0|
+ Chr+1

∥u∥L∞(Hr+1), (12)

he bound being also valid for µ0 = 0 if
⏐⏐1 − e−µ0t

⏐⏐ /|µ0| is replaced by t. The constant is

Ku = ∥∂t u∥L∞(Hr ) +
(
∥b∥L∞(L∞) + h∥c∥L∞(L∞)

)
∥u∥L∞(Hr+1). (13)

roof. The error is split into e = u − uh = (u − πhu) − (uh − πhu) = η − eh , where πhu is the elliptic projection
efined in (9). Subtracting (11) from (2) gives the error equation

(∂t eh, vh) + ν(∇eh, ∇vh) + (b · ∇eh, vh) + (ceh, vh) = (τ1 + τ2, vh), (14)

ith the truncation errors τ1 = (∂t u −πh∂t u)+cη and τ2 = b ·∇η. Here, the commutation of elliptic projection and
emporal differentiation ∂t (πhu) = πh∂t u was used. Choosing vh = eh in the error equation (14) and integrating by
arts yields

1
2

d
dt

∥eh∥
2
0 + µ0∥eh∥

2
0 ≤ (τ1 + τ2, eh). (15)

ecause of using the elliptic projection, the right-hand side of (15) does not depend on ν. The non-negative term
ith ν on the left-hand side was neglected. Altogether, estimate (15) does not contain ν such that the arising error
ound will also not depend on ν.

Applying the Cauchy–Schwarz inequality gives

(τ1 + τ2, eh) ≤ (∥τ1∥0 + ∥τ2∥0) ∥eh∥0,

and then, arguing as in [19, Lemma 3.1] leads to

∥eh∥0
d

∥eh∥0 + µ0∥eh∥
2

=
1 d

∥eh∥
2
+ µ0∥eh∥

2
≤ (∥τ1∥0 + ∥τ2∥0) ∥eh∥0,
dt 0 2 dt 0 0

6
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which yields
d
dt

∥eh∥0 + µ0∥eh∥0 ≤ ∥τ1∥0 + ∥τ2∥0.

Multiplying by eµ0t and integrating with respect to time, one obtains

∥eh(t)∥0 ≤ e−µ0t
∥eh(0)∥0 +

∫ t

0
e−µ0(t−s)(∥τ1(s)∥0 + ∥τ2(s)∥0) ds

≤ e−µ0t
∥eh(0)∥0 +

(1 − e−µ0t )
µ0

max
0≤s≤T

(∥τ1(s)∥0 + ∥τ2(s)∥0) , (16)

here, in the last term, the factor (1−e−µ0t )/µ0 must be replaced by t if µ0 = 0. Utilizing (10) and the assumptions
n the regularity of the coefficient functions leads to

max
0≤s≤T

(∥τ1(s)∥0 + ∥τ2(s)∥0) ≤ Chr Ku, (17)

here Ku is the constant in (13). Inserting (17) in (16) and applying the triangle inequality together with (10) gives
12). □

A similar result to that of Theorem 3.1 can be found in [20], where the error of the time derivative ∥∂t u −∂t uh∥0
s proved to be O(hr ) with a constant independent of inverse powers of ν, assuming sufficient regularity for the
olution.

xample 3.2 (Galerkin Method). Let Ω = (0, 1)2 and consider the convection–diffusion–reaction equation (2) with
he prescribed solution

u(x, y) = sin(π t) sin(2πx) sin(2πy),

he convection field b = (1 − y, −2/3 + x)T , the reaction field c = 1, the final time T = 2, and Dirichlet boundary
onditions on ∂Ω .

Fig. 1 displays the initial grid (level 1). This grid was refined uniformly using the standard regular refinement
y dividing each triangle into four triangles. Piecewise linear P1 and piecewise quadratic P2 finite elements were
sed, see Table 1 for information on the numbers of degrees of freedom.

To mimic the continuous-in-time situation, a second order time stepping scheme, the Crank–Nicolson scheme,
as applied with the very small time step ∆t = 10−5. We checked that almost the same results were obtained for
t = 10−4, such that the temporal error can be considered to be negligible.
If not mentioned otherwise, the linear systems of equations in all examples of this paper were solved with the

parse direct solver UMFPACK [21].
The computational results obtained with the Galerkin method for four small values of the diffusion coefficient

re presented in Fig. 2. First of all, one can see that the errors in L∞(L2) are small, which indicates that for
his smooth problem even the standard Galerkin method computes meaningful numerical solutions. For P1 finite
lements, the optimal second order of convergence can be observed in Fig. 2. In contrast, for P2 finite elements,
he error reduction on coarse grids is not optimal. In the cases ν = 10−6 and ν = 10−8, it is only of second order,
xactly as predicted by the analysis. For ν = 10−4, it can be already seen that the order of convergence improves
o third order when the grids become sufficiently fine. Finally, if the diffusion is sufficiently large, ν = 10−2, the
ptimal order is observed already on very coarse grids. Since similar observations were made in all other numerical
tudies for convection–diffusion–reaction equations and the emphasis of this survey is on the convection-dominated
egime, only numerical results for ν ≤ 10−4 will be presented in the remainder of this section. □

.2. Stabilized methods of order r + 1/2 in L∞(L2)

As mentioned before, the Galerkin method produces numerical solutions in the convection-dominated regime
hat are globally polluted with spurious oscillations if the solution of (4) possesses layers. In this situation, one has
o introduce a stabilizing mechanism in the discretization. In the ideal case, this mechanism removes all spurious
scillations and gives numerical solutions with sharp layers. However, numerical assessments in [22,23] show that
here are only very few finite element methods with these properties, which are methods that use a so-called algebraic
tabilization. Most stabilized finite element methods localize the spurious oscillations in a vicinity of the layers and

educe them considerably compared with the Galerkin method.

7
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Fig. 1. Initial grid (level 1).

Fig. 2. Example 3.2 Galerkin method for the convection–diffusion–reaction equation.

Table 1
Numerical examples for convection–diffusion–reaction
equation, number of degrees of freedom (including
Dirichlet nodes).

Level P1 P2

3 41 145
4 145 545
5 545 2113
6 2113 8321
7 8321 33025
8 33025 131585

3.2.1. The SUPG method
The most popular method of this kind is the streamline-upwind Petrov–Galerkin (SUPG) method. This residual-

ased stabilization adds artificial diffusion along the streamlines of the solution. It reads as follows: Given f ∈

L2(Ω ), find uh : (0, T ] → Vh,r such that

(∂t uh, vh) + aSUPG(uh, vh) +

∑
K∈Th

δK (∂t uh, b · ∇vh)K = ( f, vh) +

∑
K∈Th

δK ( f, b · ∇vh)K ∀ vh ∈ Vh,r , (18)

ith uh(0, x) being an appropriate approximation of u0(x) and

aSUPG(uh, vh) = ν(∇uh, ∇vh) + (b · ∇uh, vh) + (cuh, vh) +

∑
δK (−ε∆uh + b · ∇uh + cuh, b · ∇vh)K .
K∈Th

8
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Here, {δK } are local parameters that have to be chosen appropriately.
Let u have the physical unit unit(u), then the term (∂t uh, vh) possesses the unit unit(u)2md

/s, where the unit md

comes from integration and the term 1/s from the differentiation with respect to time. For all other terms in (18),
one finds the same physical unit unit(u)2md

/s by taking into account the units for the diffusion coefficient m2
/s, the

onvection field m/s, and the reaction field 1/s. The stabilization term of the SUPG method has the physical unit
nit(δK)unit(u)2md

/s2. In order that adding this term to the other terms is correct from the dimensional point of view,
t has to have the same unit as the other terms. Consequently, it follows that unit(δK) = s. Thus, the stabilization
arameter is a time scale.

The numerical analysis for a stabilized method is performed usually in an associated norm. For uh ∈ Vh,r , this
orm for the SUPG method is as follows

∥uh∥SUPG :=

⎛⎝ν∥∇uh∥
2
0 +

∑
K∈Th

δK ∥b · ∇uh∥
2
0,K + ∥µ1/2uh∥

2
0

⎞⎠1/2

.

The SUPG method for evolutionary convection–diffusion equations is analyzed in [24]. A main topic in [24],
or a full discretization in time and space, is the discussion whether the stabilization parameters {δK } should

depend on the length of the time step or on the mesh width. The latter situation can be studied by considering
the continuous-in-time method, because this method does not contain a time step. Assume that

b(t, x) = b(x), ∇ · b(x) = 0, c(t, x) = c(x), (19)

µ0 > 0, the mesh is uniform with mesh width h, and the stabilization parameters are the same for all mesh cells,
i.e., δK = δ. Also, considered only the convection-dominated regime, i.e., it is assumed that ν ≤ ∥b∥L∞ h. The
stabilization parameter is defined to be

δ = min

{
h

4cinv∥b∥L∞

min

{
1
2
,

µ0

4∥c∥L∞

,
µ

1/2
0

∥c∥1/2
L∞

,
∥b∥L∞h
4νcinv

}
,

1
µ 0

,
1

∥c∥L∞

}
. (20)

ote that the physical unit of δ is seconds. Formula (20) for the stabilization parameter can be obtained with a
light revision of the analysis of [24] by carefully taking into account the dimensional issue. Then, the following
rror estimate is derived in [24, Theorem 5.2].

heorem 3.3 (Error Estimate for the SUPG Method). Let t ≤ T < ∞, let ν < ∥b∥L∞ h, let the solution of
2) be sufficiently regular, and let (19) and (20) be satisfied. Then, there exists a positive constant Mu depending
n ∥u0∥r+1, ∥u∥L∞(Hr+1), ∥∂t u(0)∥L∞(Hr+1), ∥∂t t u∥L2(Hr+1), and the coefficients of the problem, but not on inverse
owers of ν, such that the following error estimate holds:

∥(u − uh)(t)∥0 + ∥u − uh∥L2(SUPG) ≤ Muhr+1/2. (21)

roof (Sketch). The proof of (21) in [24] covers several pages. Here, only a sketch is given that concentrates on
xplaining the reason why estimate (21) leads to the order r + 1/2 in L∞(L2).

As usual, the error is decomposed into an interpolation or projection error and a discrete remainder. The analysis
n [24] defines for this decomposition a function Πhu(t) which is the solution of a formally steady-state problem.
he idea is to consider the solution u(t) of the evolutionary problem (2) as the solution of a steady-state problem
ith right-hand side f (t) − ∂t u(t). Then, given t ∈ (0, T ], Πhu(t) ∈ Vh,r satisfies

aSUPG (Πhu(t), vh) = aSUPG (u(t), vh) ∀ vh ∈ Vh,r , (22)
9
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i.e., Πhu(t) is the SUPG approximation to a steady-state problem whose solution is u(t). An error estimate for the
solution of the steady-state problem (22) is well known, e.g., see [15, Thm. III, 3.27],

∥u(t) − Πhu(t)∥SUPG ≤ C1hr+1/2
∥u(t)∥r+1, (23)

where C1 = C
(
∥b∥L∞ + δ−1

0 + ∥c∥L∞ h
)1/2

and δ0 satisfies 0 < δ0 < (δ/h).
One obtains with the triangle inequality

∥u(t) − uh(t)∥SUPG ≤ ∥u(t) − Πhu(t)∥SUPG + ∥Πhu(t) − uh(t)∥SUPG. (24)

he first term on the right-hand side is of order r + 1/2 by (23). The estimate of the second term is technically
nvolved. In the first step, a weaker norm is bounded: ∥Πhu(t) − uh(t)∥0. To bound this norm requires an estimate
f the error ∥∂t u(t) − ∂t (Πhu)(t)∥0. Using assumption (19), the convection–diffusion–reaction equation (2) can be
ifferentiated with respect to time to give a convection–diffusion–reaction equation for ∂t u of the same form as for
and it is straightforward to show that ∂t (Πhu)(t) = Πh(∂t u)(t). Then, applying (23) to ∂t u(t) yields

∥∂t u(t) − ∂t (Πhu)(t)∥SUPG = ∥∂t u(t) − Πh(∂t u)(t)∥SUPG ≤ C1hr+1/2
∥∂t u(t)∥r+1. (25)

he expression ∥∂t u(t) − ∂t (Πhu)(t)∥0 can be estimated with (25), since the L2(Ω ) norm is part of the SUPG norm.
n the second step, a bound for ∥∂t (Πhu)(t) − ∂t uh(t)∥0 is obtained using again (19) and applying the error analysis
f the first step. Both steps lead finally to a bound for the second term on the right-hand side of (24) in the stronger
UPG norm with order r + 1/2. □

Since the result of Theorem 3.3 holds for ν < ∥b∥L∞ h, such that the situation h → 0 is not covered, the
otion error reduction will be used for discussing the error estimate, instead of convergence. The error estimate
21) of Theorem 3.3 states that the order of error reduction of the SUPG method in L∞(L2) is r + 1/2, i.e., it is
alf an order better than for the Galerkin method, but still suboptimal by half an order, while the error reduction
f the L2(SUPG) norm of the streamline derivative is optimal of order r . In [24], also fully discrete cases are
onsidered and error bounds are derived for stabilization parameters that do not depend on the length of the time
tep. As shown in the sketch of the proof of Theorem 3.3, an essential idea consists in reducing the error estimate
or the time-dependent convection–diffusion–reaction equation to an error estimate for a stabilized discretization
f a steady-state convection–diffusion–reaction equation. The finite element error analysis of stabilizations for the
teady-state equation is quite far developed, see [15]. In particular, checking the convergence analysis of the SUPG
ethod, e.g., [15, Thm. III, 3.27], one finds that the estimates of several terms, namely the diffusive term, the

onvective term, and terms coming from the stabilization, lead only to order r + 1/2. The sharpness of this order
or the steady-state problem will be discussed at the end of this section.

Both, a weakly consistent SUPG method and a SUPG method using a reconstructed Laplacian are analyzed
n [25], where the order r + 1/2 for the error in L∞(L2) is proved. This order comes from using a result from the
umerical analysis of the stationary problem.

xample 3.4 (SUPG Method). The behavior of the SUPG method is illustrated at the same example that was utilized
or the standard Galerkin method, see Example 3.2. Exactly the same setup was used with respect to the temporal
iscretization and the spatial meshes. The stabilization parameter, constant in each mesh cell, was set to be

δK =
1
16

{
hK if ν ≤ hK ,

h2
K /ν else.

The choice for the convection-dominated regime corresponds to the proposal of the parameter (20) with respect to
the mesh width.

The computational results for three small values of the diffusion coefficient are presented in Fig. 3. It can be
observed that for P1 finite elements, the optimal order of convergence of the error in L∞(L2) can be observed. For
P2 finite elements, the order of error reduction on coarse grids, where coarse is to be understood with respect to the
diffusion coefficient, is suboptimal. The analysis predicts an order of r + 1/2 = 2.5, which can be clearly observed
for ν = 10−6 and 10−8. Thus, the numerical results match the analytic predictions very well. □
10
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Fig. 3. Example 3.4 SUPG method for the convection–diffusion–reaction equation.

.2.2. Other stabilized methods
Apart from the SUPG method, other types of stabilizations can be applied and are analyzed in the literature.

alerkin Least Squares (GLS) stabilizations are studied in [26] in combination with one-step θ -schemes as temporal
discretization. The continuous-in-time case is not considered. The GLS stabilization term has the form∑

K∈Th

δK ( f − (∂t u − ν∆u + b · ∇u + cu), −ν∆v + b · ∇v + cv)K .

ssumption (19) is made in the analysis of the GLS method and the spatial stabilization parameter is assumed to
e δK = δ for all mesh cells K with δ = O(∆t), ∆t being the length of the time step. This type of assumption is
ometimes called inverse CFL condition. Observe that under this assumption, the spatial stability vanishes in the
ontinuous-in-time limit ∆t → 0. Also for the GLS stabilization, the physical unit of the stabilization parameter
s a time unit (second) since it is a residual-based stabilization. For applying the GLS stabilization in numerical
imulations in [26], a parameter is designed independently of the constraint coming from the length of the time step,
y minimizing the ‘elliptic part’ of the error bound, i.e., those terms that do not arise from the discretization of the
emporal derivative. This parameter depends on the mesh width. If the mesh width is sufficiently fine compared with
he length of the time step, such that the analytic results are applicable, one obtains in the convection-dominated
egime order r + 1/2 for the L∞(L2) error.

An orthogonal subscale (OSS) method is analyzed in [27]. This method adds the stabilization term, in the fully
iscrete case as considered in [27],∑

K∈Th

(
1
δK

+
1
∆t

)−1 (
Π ⊥(b · ∇un+1),Π ⊥(b · ∇v)

)
K −

∑
K∈Th

(
1
δK

+
1
∆t

)−1 (
ũn, b · ∇v

)
K ,

where Π is the L2(Ω ) projection in the finite element space and ũn are so-called orthogonal subscales from the
previous time instant. These subscales can be computed locally. The analysis in [27] is performed for the backward
Euler scheme. It assumes that the stabilization parameters are constant δK = δ and that they are bounded by a
multiple of the length of the time step: δ ≤ C∆t for some fixed positive C . Then, the error analysis leads to a
convergence of order r + 1/2 in L∞(L2). The reduction comes from estimating the diffusion, the convective, and
the stabilization terms with respect to a stabilized norm. In practice, a parameter choice of the form

δK =

(
C1

ν

h2
K

+ C2
∥b∥L∞(K )

hK
+ ∥c∥L∞(K )

)−1

is proposed, which is a time scale. In the convection-dominated regime, the stabilization parameter behaves like
hK /(C2∥b∥L∞(K )).

The local projection stabilization (LPS) method, as analyzed in [28,29], adds a stabilization term of the form∑
δK ((Id − ΠK )∇uh, (Id − ΠK )∇vh)K , (26)
K∈Th

11
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where ΠK is a local projection operator and Id is the identity operator. Clearly, (26) is a diffusive term, with the
additional diffusion acting only on the so-called fluctuations defined by (Id−ΠK ). The goals of both papers [28,29]
are to analyze the LPS method for different classes of temporal discretizations. In addition, an analysis for the
continuous-in-time situation is provided in [28]. The analysis for the LPS method is performed for a norm that
contains a contribution from the stabilization term (26), where the stabilization parameter should be chosen to be
δK ∼ hK (note that from the dimensional point of view something like δK ∼ hK ∥b∥L∞(K ) is appropriate since δK

represents a diffusion). Like in [24], it is assumed that b and c are time-independent functions. As usual, the error is
ecomposed into an interpolation error, or here projection error, and a discrete remainder. From the results obtained
n [28,29], one finds that the order of error reduction in L∞(L2) is r + 1/2 in the convection-dominated regime
ν ≤ ∥b∥L∞ h. In [28], already the considered projection error possesses this order, whereas in [29] this order comes
from bounding the discrete remainder. Inspecting the proofs, one finds that in both cases estimates of the diffusive,
the convective, and the stabilization term result in this order. A LPS method with fluctuations of the streamline
derivative b · ∇uh and additional nonlinear crosswind diffusion is analyzed in [30]. The analysis covers the case of
ime-dependent coefficients. Also for this method, the order of error reduction r + 1/2 is obtained for the error in
L∞(L2) in the convection-dominated regime ν ≤ ∥b∥L∞ h.

A class of symmetric stabilization methods is studied in [31]. Several general assumptions on the stabilizing
term are made. A stabilization that satisfies these assumptions is the continuous interior penalty (CIP) method
whose stabilization term is given by

δ

2

∑
K∈Th

∑
F∈∂K

∫
F

h2
F |b · nF | [|∇uh · nF |]F [|∇vh · nF |]F ds,

here δ > 0 is a constant, F is a facet of K with diameter hF , nF is a fixed unit normal of F , and [|·|]F denotes the
jump across F . Other examples that fit into the framework of [31] are certain LPS methods and the OSS method.
The analysis is performed for the imposition of Dirichlet boundary conditions via Nitsche’s method. Two fully
discrete cases are analyzed. Both of them lead to the order of error reduction r + 1/2 in L∞(L2) if ν ≤ ∥b∥L∞ h.

his order is determined by estimates of the diffusive, convective, and stabilization terms.
In [32], a so-called subgrid stabilization is analyzed. To this end, a decomposition Vh = VH ⊕ V H

h of a finite
lement space is utilized, where VH is the standard space, e.g., P1. The space Vh is constructed with the help of a
ner grid and V H

h is the subgrid space. Then, the stabilization is defined by a bilinear form V H
h × V H

h → R, which
s assumed to be in an appropriate sense coercive and bounded. A straightforward realization consists in defining
his bilinear form to be a diffusion acting on the subgrid scales. Another realization uses the streamline derivative
f the subgrid scales. The numerical analysis presented in [32] leads to the order of error reduction r + 1/2 in

L∞(L2) if ν ≤ ∥b∥L∞ h. This order comes from interpolation estimates in certain norms that contain the diffusive
nd the convective term.

Altogether, the principal motivation for the subgrid stabilization from [32], the OSS method analyzed in [27],
nd LPS methods is the same: to introduce additional (streamline) diffusion on some appropriately defined small
r subgrid scales. In this way, all these methods fit in the framework of the variational multiscale method proposed
n [33].

Also for the discontinuous Galerkin (DG) approach, a robust finite element analysis is available, see [34] or
35, Chapter 4.6]. In the considered methods, an interior penalty (IP) discretization of the diffusion term is applied.
or the coercivity of the corresponding bilinear form, a parameter in a term containing jumps across facets has

o be positive for the non-symmetric IP and it has to be also sufficiently large for the symmetric and incomplete
P. The convective term is discretized with an upwind method. It is well known that upwind discretizations in the
ontext of DG methods lead to a control of the streamline derivative of the error, e.g., see [36]. In the situation that
≤ ∥b∥L∞ h, a robust estimate for the error in L∞(L2) of order r + 1/2 can be proved, see [35, Theorem 4.28].
The error analysis of convection–diffusion equations aims at deriving error bounds where the constants are

ndependent of inverse powers of the diffusion coefficient ν. Since the case of small diffusion coefficients is of
nterest, a natural question is: What is known for the limit case ν = 0, i.e., for linear transport equations? To survey
he literature concerning the error analysis of this type of equations is beyond the scope of this paper. That is why,
nly some selected results will be mentioned here. The SUPG method is studied for linear transport equations
n [37]. For fully discrete cases, error bounds are derived such that the error in L∞(L2) is of order r + 1/2, where

he stabilization parameter depends on the length of the time step. A numerical example for linear finite elements

12
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Fig. 4. SUPG method for the convection–diffusion–reaction equation from Example 3.4 on a family of triangulations of Friedrichs–Keller
type. The initial grid (level 0) was obtained by dividing the unit square with a diagonal from bottom left to top right. It was refined
uniformly using the division of each triangle into four triangles.

is presented which shows second order convergence for the error in L∞(L2). In [32], the subgrid scale method
s analyzed also for the transport equation. The order of convergence in L∞(L2) is r + 1/2. The work [31] on
ymmetric stabilizations considers also the case ν = 0, for which the order r + 1/2 in L∞(L2) is proved. A certain
ind of LPS method is analyzed in [38], for which an error bound for L∞(L2) of order r + 1/2 is derived and
econd order convergence is observed in numerical simulations.

This section will finish with a brief summary.

For many popular stabilized methods, the order of error reduction r + 1/2 for the error in L∞(L2) can be proved
in the convection-dominated regime.
The estimate for the error in L∞(L2) is just a byproduct of the error analysis for a sum of (semi-) norms that
includes, besides the error in the L∞(L2) norm, the error term of ∇(u − uh) in L2(L2) multiplied with ν1/2 and
some error term that is related to the studied stabilization.
The reduction of the convergence order is caused by estimating terms that appear already in the stabilized method
for the steady-state problem. In fact, there is a principal open problem with respect to the steady-state case, which
is formulated in [39], see also [17]: no stabilized discretization of steady-state convection–diffusion–reaction
equations is known for which one can prove an optimal robust error estimate in L2(Ω ). For the SUPG method
and P1 finite elements in two dimensions, it is known that the order of convergence 1.5 for the error in L2(Ω )
is sharp, see [40], which is proved by considering special types of grids. However, on many other grids, second
order convergence can be observed such that for the steady-state problem optimal convergence in L2(Ω ) might be
possible to prove for certain finite element spaces and with some appropriate assumptions on the mesh. For the
time-dependent problem, optimal order error reduction in L∞(L2) for the SUPG method and the P1 finite element
could be already observed in Example 3.4. However, for P2 finite elements, even using a structured family of
triangulations of Friedrichs–Keller type leads only to the order 2.5 predicted by Theorem 3.3 for ν = 10−6 and
ν = 10−8, compare Fig. 4.

. The incompressible Navier–Stokes equations

The first part of this section considers the Galerkin finite element discretization of the incompressible Navier–
tokes equations. A robust estimate for the L∞(L2) error of the velocity is derived whose order is r − 1. In
ection 4.2, methods are surveyed for which robust estimates of order r can be proved. Then, Section 4.3 presents
tabilized methods where robust error bounds of order r + 1/2 could be derived. To the best or our knowledge, the
overage of methods, for which provable robust estimates of order r − 1, r , or r + 1/2, respectively, can be found
n the literature so far, is complete. As it is already noticed in the introduction, it is an open problem whether or
ot there are methods which allow robust estimates of optimal order r + 1. Finally, Section 4.4 presents briefly

ethods that behave in a robust way but for which only estimates are derived so far which are not robust.

13
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4.1. The Galerkin method

Section 4.1.1 reviews results from the classical finite element convergence theory. In this theory, optimal order
of convergence of the L∞(L2) velocity error can be proved, however, the error bounds are not robust. Then, in

ection 4.1.2, the role of the continuity equation in the finite element error analysis and its impact on the convergence
rder is highlighted. Considering a linearized flow equation and assuming in L2(Ω ) a best approximation error for
he velocity of order r + 1, for certain inf–sup stable pairs of finite element spaces, including the popular Taylor–
ood pairs, only order r − 1 can be proved for the velocity error in L∞(L2). The presented numerical example
emonstrates that robust estimates provide in fact correct information on the order of error reduction on coarse
rids. Section 4.1.3 discusses the effect of the discretization of the nonlinear convective term on the stability of the
iscretization. It is shown that the so-called EMAC form of the discrete nonlinear term leads to a robust estimate
f order r − 1.

.1.1. Classical finite element convergence theory
The convergence theory of the Galerkin finite element method for the evolutionary Navier–Stokes equations (5)

as developed in the seminal papers of Heywood and Rannacher [41–44]. In all of these papers, the viscosity
oefficient is assumed to be ν = 1. Hence, there is no need to track the dependency of the error bounds on
his coefficient. Applying the analysis developed in [41–44] for small viscosity coefficients, it turns out that the
orresponding bounds are not robust. We like to emphasize that the small viscosity case was not a concern of the
uthors of [41–44] in the development of their theory.

Let {Vh ⊂ V} and {Qh ⊂ Q} be two families of finite element spaces that correspond to a family of partitions
Th} of Ω . The papers [41–44] consider pairs of finite element spaces that satisfy the discrete inf–sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
∥∇vh∥0∥qh∥0

≥ β0 > 0, (27)

here β0 is independent of the mesh width h and the polynomial degree r .
In the first paper, [41], a bound of second order is proved for the L∞(L2) error of the velocity. This order is

ptimal for inf–sup stable pairs with velocity finite element spaces of first order, e.g., for the MINI element [45].
he constants in the error bound grow exponentially in time, in general, even in the case in which the regularity
f the solution is uniform in time. For this reason, they are called local error estimates, regarding to their blow-up
or t → ∞. The error analysis in [41] is restricted to second order convergence, independently of the polynomial
egree of the finite element spaces, because getting higher order error bounds would require the solution of the
avier–Stokes equations to satisfy non-local compatibility conditions at the initial time, which are not assumed.
The second paper [42] considers the case in which a stable solution is approximated in order to derive uniform

ounds for the error constants as t goes to infinity. Several concepts of stability are introduced: exponential stability,
uasi-exponential stability, and contractive stability to a tolerance. Error bounds of second order in space are proved
ith constants that remain bounded as t → ∞ for exponentially stable solutions. Analogous bounds are also
erived in the case of quasi-exponentially stable solutions with the difference that u(t, x) in the error is replaced by
(t + βh(t), x + wh(t, x)), where wh is a spatial rotation and βh is a time shift with both time derivatives being of
rder h2. Finally, for the case of a solution with a contractive stability to a tolerance, the discrete approximations
re proven to remain within a tolerance neighborhood of the solution of the continuous equation (5) and, with
ppropriate additional assumptions, to inherit the property of contractive stability to a tolerance.

In the third paper, [43], optimal bounds of order up to five are proved for the L∞(L2) error of the velocity,
ithout assuming local compatibility conditions. Thus, the presented analysis applies, e.g., to the Taylor–Hood
airs of finite element spaces Pr/Pr−1, r ∈ {2, 3, 4}, [46]. As in [41], the constants in the error bounds in [43] grow
xponentially in time. In addition, they possess a factor t1−r/2, r being the rate of convergence, so that except for
he case r = 2, considered in [41], the bounds explode as t tends to zero. Under the assumption that the solution
s exponentially stable, the exponentially growing behavior in time could be removed from the constants of the
rror bound. Whether the limitation to fifth order convergence in space can be avoided is left as an open question,
lthough in the special case of weakly divergence-free elements, it is stated that the results could be extended to
onvergence order six up to a logarithmic term.

Finally, the fourth paper [44] provides an error analysis of a fully discrete method with the Crank–Nicolson
cheme as time integrator. A second order in time error bound is proved for the L∞(L2) error of the velocity
14
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between the fully discrete approximation and the continuous-in-time approximation. The constant in the error
estimate behaves as t−1 as t goes to zero. The bounds are valid for t → ∞ when an exponentially stable solution
is approximated.

In summary, the classical finite element convergence theory of the Galerkin discretization of the evolutionary
Navier–Stokes equations provides, with some restrictions as mentioned above, optimal estimates for the velocity
error in L∞(L2). However, the error bounds are not robust. In the following, it will be shown that taking robustness
into account leads to an order reduction of the error bounds and that, in fact, the reduced order can be observed
for small viscosity coefficients on coarse grids, i.e., in the convection-dominated regime. Nevertheless, it would be
interesting to study carefully the classical analysis keeping track of the dependency on ν−1, and, in particular, to
heck if it is possible to obtain error bounds without exponential factor in the case of exponentially stable solutions.

.1.2. On the impact of the continuity equation
This section studies the role of the continuity equation in the Navier–Stokes equations. To this end, the

volutionary Oseen equations are considered, which contain the continuity equation but there is no influence of
nonlinear convection term.
The time-dependent Oseen problem reads as follows

∂t u − ν∆u + (b · ∇)u + ∇ p = f in (0, T ] × Ω ,

∇ · u = 0 in (0, T ] × Ω ,

u = 0 on (0, T ] × ∂Ω ,

u(0, ·) = u0(·) in Ω ,

(28)

here the functions have the same meaning as for the Navier–Stokes equations (1) and b : (0, T ] ×Ω → Rd is a
solenoidal vector field, i.e., ∇ · b(t, x) = 0 in Ω and for all times.

A weak formulation of problem (28) is: Find (u, p) : (0, T ] → V × Q such that for all (v, q) ∈ V × Q,

(∂t u, v) + ν(∇u, ∇v) + ((b · ∇)u, v) − (∇ · v, p) + (∇ · u, q) = ⟨f , v⟩, (29)

nd u(0, ·) = u0(·) ∈ V. Note that from the assumption ∇ · b = 0, it follows that the convective term is
kew-symmetric, i.e.,

((b · ∇)v, w) = −((b · ∇)w, v) ∀ v, w ∈ V. (30)

The space of weakly divergence-free functions is defined in (6) and the space of discretely divergence-free
unctions in (7). Note that for many pairs of finite element spaces, discretely divergence-free functions are in
eneral not weakly divergence-free, i.e., Vdiv

h ̸⊂ Vdiv. This property causes a number of difficulties in the analysis
nd simulation of incompressible flow problems, compare [47]. In this section, only the situation Vdiv

h ̸⊂ Vdiv is
onsidered, for the other case see Section 4.2.1.

To fix ideas in the exposition, we will study the Taylor–Hood pair of mixed finite elements in which Vh = Vh,r

s the space of piecewise continuous polynomials of degree r ≥ 2, satisfying homogeneous Dirichlet boundary
onditions, and Qh = Qh,r−1 is the space of piecewise continuous polynomials of degree r − 1 with vanishing
ntegral mean value. For the Taylor–Hood pairs, it holds that Vdiv

h ̸⊂ Vdiv. The Taylor–Hood pair with r = 2 is
robably the most popular inf–sup stable pair of finite element spaces.

In the analysis, the L2(Ω ) projection Π r−1
h p of the pressure p in (28) onto Qh,r−1 is used. It is known that the

ollowing estimate holds for m ∈ {0, 1}

∥p − Π r−1
h p∥m ≤ Chr−m

∥p∥r ∀ p ∈ H r (Ω ). (31)

ollowing [48], a modified Stokes projection sh : V → Vdiv
h is considered for the velocity, satisfying

(∇sh, ∇vh) = (∇u, ∇vh) ∀ vh ∈ Vdiv
h . (32)

he following bound holds for m ∈ {0, 1}, compare [48],

∥u − sh∥m ≤ Chr+1−m
∥u∥r+1 ∀ u ∈ V ∩ H r+1(Ω )d . (33)

t holds, see [49, (3.32)], [50, (21)], [51], that

∞
1/2

∞ ∞
∥sh∥L ≤ C (∥u∥d−2∥u∥2) , ∥∇sh∥L ≤ C∥∇u∥L . (34)
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Using sh as test function in (32) gives ∥∇sh∥0 ≤ ∥∇u∥0. Then, one can conclude with (34) and the Riesz–Thorin
interpolation theorem that

∥∇sh∥L p ≤ C∥∇u∥L p for p ∈ (2, ∞). (35)

ssuming the necessary smoothness in time, a Stokes projection like (32) can be defined for ∂t u. Then, an error
ound of form (33) can be derived also for ∂t (u − sh).

In this section, the Galerkin method for the Oseen equations (29) without any added stabilization is analyzed.
et uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r−1 be the Galerkin approximation satisfying

(∂t uh, vh) + ν(∇uh, vh) + ((b · ∇)uh, vh) − (∇ · vh, ph) = ⟨f , vh⟩ ∀ vh ∈ Vh,r ,

(∇ · uh, qh) = 0 ∀ qh ∈ Qh,r−1. (36)

ince the pair Vh,r/Qh,r−1 satisfies the discrete inf–sup condition (27), this problem is well posed. The following
heorem states an error bound for the Galerkin approximation to the velocity in L∞(L2) in which the constant in
he error bound does not depend on inverse powers of the viscosity.

heorem 4.1 (Error Estimate for the Galerkin Method). Let (u, p) be the sufficiently smooth solution of (29) and
ssume b ∈ L∞(L∞). Let uh be the velocity finite element approximation defined in (36). Then, the following bound
olds for 0 < t ≤ T

∥u(t) − uh(t)∥0 ≤ ∥uh(0) − sh(0)∥0 + Cthr−1 Mu,p + Chr+1
∥u∥L∞(Hr+1),

here

Mu,p = h
(
∥∂t u∥L∞(Hr ) + ∥b∥L∞(L∞)∥u∥L∞(Hr+1)

)
+ ∥p∥L∞(Hr ). (37)

roof. The proof is similar to the proof of Theorem 3.1. The error is split into an interpolation error between u and
its modified Stokes projection sh and the discrete remainder φh = uh − sh ∈ Vdiv

h . A straightforward calculation,
taking into account the definition of the Stokes projection, leads to the error equation

(∂tφh, vh) + ν(∇φh, ∇vh) + ((b · ∇)φh, vh) = (τ1, vh) + (∇ · vh, τ2) ∀ vh ∈ Vdiv
h , (38)

here

τ1 = (∂t u − ∂t sh) + ((b · ∇)(u − sh)), τ2 = p − Π r−1
h p.

aking vh = φh in (38), neglecting a non-negative term on the left-hand side, and using the skew-symmetry (30),
hich gives in particular ((b · ∇)φh, φh) = 0, yields

∥φh∥0
d
dt

∥φh∥0 ≤ (τ1, φh) + (∇ · φh, τ2). (39)

his inequality does not contain the viscosity ν any more, hence the resulting estimate will not depend explicitly
n ν. The key step for estimating the last term consists in utilizing integration by parts

(∇ · φh, τ2) = (∇ · φh, p − Π r−1
h p) = −

(
φh, ∇(p − Π r−1

h p)
)
. (40)

ow, the estimate of the right-hand side of (39) continues by applying the Cauchy–Schwarz inequality, (33), and
31) leading to

(τ1, φh) + (∇ · φh, τ2) ≤ C Mu,phr−1
∥φh∥0,

here Mu,p is the constant in (37). To conclude proof, one argues as in the proof of Theorem 3.1, applies the
riangle inequality and again (33). □

In view of Theorem 4.1, one observes that for the Galerkin approximation to the velocity in the Oseen equations,
he suboptimal order of convergence r − 1 is proved with constants independent of inverse powers of ν while, as
heorem 3.1 shows, for the convection–reaction–diffusion model an order of convergence r can be proved. The

reduction of one order comes from the error bound of the second term in (39), which is the truncation error of the

pressure, see (40). Alternatively, an inverse estimate could be used, which leads finally to the same error bound.
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Table 2
Numerical examples for the Stokes and Navier–Stokes equations, number of degrees of freedom
(including Dirichlet nodes) for inf–sup stable pairs of finite element spaces on triangular grids.

P2/P1 P2/Pdisk
1 , barycentric P3/P2

Level Velocity Pressure Velocity Pressure Velocity Pressure

2 210 144 170 41
3 290 41 802 576 626 145
4 1090 145 3138 2304 2402 545
5 4226 545 12418 9216 9410 2113
6 16642 2113 49410 36864 37250 8321
7 66050 8321

Fig. 5. Example 4.2 Galerkin method for the evolutionary Stokes equations, P2/P1 (left) and P3/P2 (right).

A first way to improve the situation is the use of inf–sup stable pairs of finite element spaces where the term
(∇ · φh, τ2) does not appear. This is the case if discretely divergence-free functions are weakly divergence-free,
see Section 4.2.1. Another way consists in adding appropriate stabilization terms to the Galerkin method, see
Section 4.2.2.

Example 4.2 (Galerkin Discretization of the Evolutionary Stokes Equations). The order of convergence predicted
by Theorem 4.1 is determined by the pressure term in Mu,p, the last term in (37). As already mentioned, the
term (∇ · φh, τ2), a coupling term of the finite element velocity and pressure that does not vanish if the finite
element velocity solution is not weakly divergence-free, is responsible for the appearance of the pressure in Mu,p.
Dominating convection does not play any role in this respect. To support this observation, a numerical study for
the evolutionary Stokes equations, i.e., for (28) with b = 0, will be presented here.

The considered example is defined in Ω = (0, 1)2, the final time is T = 2, and the prescribed solution is given
by

u(t; x, y) = 2π sin(π t)
(

sin2(πx) sin(πy) cos(πy)
− sin2(πy) sin(πx) cos(πx)

)
, p(t, x, y) = 20 sin(π t)

(
x2 y −

1
6

)
. (41)

The same spatial meshes and the same temporal discretization as in Example 3.2 were used. For the spatial
discretization, the Taylor–Hood pairs P2/P1 and P3/P2 of finite element spaces were utilized. The numbers of
degrees of freedom are given in Table 2. A quadrature rule was applied that is exact for polynomials of degree
eight on triangles. This order of the quadrature rule is not necessary for assembling the matrices but it keeps the
quadrature error small for the calculation of the right-hand side and the L2(Ω ) error of the velocity. Simulations
were performed for ν ∈ {10−2, 10−4, 10−6, 10−8

}.
Fig. 5 presents the numerical results. There are two important observations. First, if the mesh is sufficiently fine

with respect to the viscosity coefficient, one can see numerically the optimal order of convergence, as predicted
by the classical finite element convergence theory. But second, in the other situation, there is a clear decrease of
17
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the order of error reduction for ν ≤ 10−4. Note that coarse meshes with respect to the viscosity coefficient are the
typical situation for high Reynolds number flows. In this case, the order of error reduction is described obviously
better by robust error bounds. From the results for the P3/P2 pair of spaces, one can conclude that the order r − 1
is a sharp prediction. □

4.1.3. On the impact of the discretization of the nonlinear term
In this section, the Galerkin approximation to the Navier–Stokes equations (5) is studied. Again, the situation

Vdiv
h ̸⊂ Vdiv will be considered and for fixing ideas, as in previous section, the analysis will be presented for the

inf–sup stable Taylor–Hood pair of mixed finite element spaces.
Given f ∈ L2(Ω )d , let uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r−1 be the solution of the following Galerkin

approximation of (5)

(∂t uh, vh) + ν(∇uh, ∇vh) + ((uh · ∇)uh, vh) − (∇ · vh, ph) = (f , vh) ∀ vh ∈ Vh,r ,

(∇ · uh, qh) = 0 ∀ qh ∈ Qh,r−1. (42)

he nonlinear term in (42) is called convective form of the nonlinear term in [2, Chapter 6]. It is not skew-symmetric
or Taylor–Hood pairs of finite element spaces. For (uh, ph) satisfying (42), one cannot even prove boundedness of
he approximations, since in the stability analysis, the term ((uh · ∇)uh, uh) cannot be bounded.

Next, in addition to (42), a Galerkin approximation with a skew-symmetric bilinear form of the nonlinear term
s considered: Find uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r−1 such that

(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) − (∇ · vh, ph) = (f , vh) ∀ vh ∈ Vh,r ,

(∇ · uh, qh) = 0 ∀ qh ∈ Qh,r−1, (43)

here, the so-called divergence form of the nonlinear term is given by

b(u, v, w) = ((u · ∇)v, w) +
1
2

((∇ · u)v, w) ∀ u, v, w ∈ V. (44)

otice the well-known property

b(u, v, w) = −b(u, w, v) ∀ u, v, w ∈ V, (45)

uch that, in particular, b(u, v, v) = 0 for all u, v ∈ V. There are several ways for estimating the convective term
44) in the error analysis, depending on the smoothness assumptions on its arguments. Assuming somewhat more
han the minimal regularity, it holds that

b(u, v, w) ≤ ∥u∥0∥∇v∥L∞∥w∥0 +
1
2
∥∇ · u∥0∥v∥L∞∥w∥0 ∀ u, w ∈ V, v ∈ W 1,∞(Ω )d . (46)

A standard stability analysis proves that the velocity approximation using the skew-symmetric form (44) is
ounded in L∞(L2) with a constant that does not depend on inverse powers of ν.

heorem 4.3 (Stability for Skew-Symmetric Form of the Nonlinear Term). Let uh be the velocity approximation
efined in (43). Then, the following stability estimate is valid for all t ∈ [0, T ]

∥uh(t)∥0 ≤ ∥uh(0)∥0 +

∫ t

0
∥f (s)∥0 ds. (47)

roof. From the theory of the Galerkin method developed in [3], it is known that (43) has a unique velocity solution
h . Taking vh = uh in (43), using the skew-symmetric property (45) and the Cauchy–Schwarz inequality gives

∥uh∥0
d
dt

∥uh∥0 + ν∥∇uh∥
2
0 =

1
2

d
dt

∥uh∥
2
0 + ν∥∇uh∥

2
0 ≤ ∥f∥0∥uh∥0.

eglecting the second term on the left-hand side to get rid of ν, dividing by ∥uh∥0 and integrating in (0, T ) lead
o (47). □

Despite the stability, it is not possible to derive error bounds with constants that are independent of inverse
owers of the viscosity. The important terms of the error equation are

1 d
∥φ ∥

2
+ ν∥∇φ ∥

2
= −b(φ , sh, φ ) − b(uh, φ , φ ) + · · · = −b(φ , sh, φ ) + · · · , (48)
2 dt h 0 h 0 h h h h h h
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Fig. 6. Example 4.4 Galerkin method for the Navier–Stokes equations, ν = 10−6, level 5, solution at t = 1.3409, left: convective form of
he convective term (42), right: divergence form of the convective term (44); note the different scalings.

here φh = uh − sh , with sh being the Stokes projection defined in (32). The second term on the right-hand side of
48) vanishes due to (45). Then, using the estimate (46) for the convective term, Young’s inequality, and bounding
he norm of the divergence by the norm of the gradient yields

1
2

d
dt

∥φh∥
2
0 + ν∥∇φh∥

2
0 ≤ ∥∇sh∥L∞∥φh∥

2
0 +

1
2
∥sh∥L∞∥∇ · φh∥0∥φh∥0 + · · ·

≤
ν

2
∥∇φh∥

2
0 +

(
∥∇sh∥L∞ +

1
8ν

∥sh∥
2
L∞

)
∥φh∥

2
0 + · · · . (49)

ence, the application of Gronwall’s lemma leads to the appearance of ν−1 in the exponential factor. Note that with
inimal regularity assumptions on u, one even gets ν−3 in the exponential factor, e.g., see [2, Theorem 7.35]. An

lternative estimate that can be considered uses the inverse inequality (8)

∥∇ · φh∥0 ≤ ∥∇φh∥0 ≤
cinv

h
∥φh∥0,

which, however, leads finally to an inverse power of the mesh width in the exponential factor of the error bound.

Example 4.4 (Galerkin Method: Impact of the Discretization of the Nonlinear Term: Convective and Divergence
Form). For this example, in principle the same configuration is considered as in Example 4.2. Only, the right-hand
side of the problem is different since the prescribed solution (41) is now inserted in the evolutionary Navier–Stokes
equations (1) instead of the evolutionary Stokes equations. In each time instant, a nonlinear problem has to be solved.
For this purpose, a standard fixed point iteration (Picard iteration) was employed. This iteration was stopped if the
Euclidean norm of the residual vector was smaller than 10−9.

Simulations were performed again on levels 3 to 7 and for ν ∈ {10−4, 10−6, 10−8
}. Using the convective form of

the nonlinear term (42), usually the numerical simulations blew up. Only if the spatial resolution was sufficiently
fine with respect to the viscosity, there was no blow-up: here for ν = 10−4 on levels 5–7 and for ν = 10−6 on
level 7.

In contrast, we could not observe any blow-up if the divergence form of the convective term (43) was applied.
Fig. 6 presents a comparison of numerical solutions obtained with both discretizations of the convective term, shortly
before the blow-up of the simulation with the convective form of the convective term. Even if we could not observe
a blow-up if the divergence form was used, the numerical solution is globally polluted with spurious oscillations.
The errors of the velocity in L∞(L2) for the simulations with the divergence form are presented in Fig. 7. One
can observe that the errors are quite large, of order 1, which fits the theory since both ∥u(t)∥0 and ∥uh(t)∥0 are
bounded for a finite time interval, Theorem 4.3, so that also the maximal L2(Ω ) error is bounded. Apart of this
act, the Galerkin method with the divergence form of the nonlinear term cannot be used without stabilization in
he convection-dominated regime on coarse grids, in view of Figs. 6 and 7, where again coarse is to be understood

ith respect to the size of the viscosity coefficient. □
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Fig. 7. Example 4.4 Galerkin method for the Navier–Stokes equations, P2/P1, divergence form of the convective term.

Recently, a new discrete form of the nonlinear term has been proposed in [52], the so-called EMAC form

c(u, v, w) = (2D (u) v, w) + ((∇ · u)v, w),

where D (u) = (∇u + (∇u)T )/2 is the velocity deformation tensor. The EMAC form is the only discrete form
that conserves kinetic energy (for ν = 0, f = 0), momentum (for f with zero linear momentum), and angular
momentum (for f with zero angular momentum) in the case that u is not weakly divergence-free. Using the EMAC
form requires a modification of the pressure. In [53], the Galerkin discretization of the Navier–Stokes equations (5)
with the EMAC form of the nonlinear term is analyzed. It is shown that under the assumption of a sufficiently
smooth solution, the nonlinear term can be bounded in a robust way. Altogether, a non-robust estimate of order r
is presented in [53], where the dependency on ν−1 appears in the pressure term of the error bound. However, it is
possible to derive a robust estimate, but only of order r − 1. The numerical study in Example 4.6 will demonstrate
that this estimate is sharp.

Theorem 4.5 (Error Estimate for the Galerkin Method with EMAC Form of the Nonlinear Term). Let the solution
of the Navier–Stokes equations (5) be sufficiently smooth and define

L(T ) = C
∫ T

0
∥∇u(s)∥L∞ ds,

Mu,p = C
(∫ T

0

(
h∥∂t u(s)∥r + h (∥u(s)∥1∥u(s)∥2)

1/2
∥u(s)∥r+1 + ∥p(s)∥r

)
ds
)

.

Then, the following error estimate holds for the Galerkin method with EMAC form of the nonlinear term

∥u(t) − uh(t)∥0 ≤ eL(T ) (
∥uh(0) − sh(0)∥0 + Mu,phr−1)

+ Chr+1
∥u∥L∞(Hr+1),

with sh being the Stokes projection. The constant Mu,p is dimensionally correct in three dimensions. For Mu,p to
be dimensionally correct in two-dimensional problems, the term (∥u(s)∥1∥∥u(s)∥2)1/2 in Mu,p must be replaced by

(h∥u(s)∥1∥u(s)∥2)
1/2

+ (∥u(s)∥0 ∥u(s)∥2)1/2. (50)

roof (Sketch). The error is decomposed in the form u−uh = (u− sh)− (uh − sh) = η−φh , where sh is the Stokes
rojection defined in (32). Then, deriving the error equation in the usual way and using φh as test function lead to

∥φh∥0
d
dt

∥φh∥0 ≤
⏐⏐c(u, u, φh) − c(uh, uh, φh)

⏐⏐+ |(∇ · φh, P − qh)| + · · · (51)

or arbitrary qh ∈ Qh,r−1.
The estimate of the difference of the convective terms in (51) follows [53]. A direct calculation yields

c(u, u, φ ) − c(u , u , φ )
h h h h
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= c(η, u, φh) + c(sh, η, φh) − c(sh, φh, φh) − c(φh, sh, φh) − c(φh, φh, φh). (52)

he last term on the right-hand side vanishes due to a property of the EMAC form. Now, a part of the fourth term
n the right-hand side is reformulated. Using the definition of the deformation tensor, integration by parts, the skew
ymmetry of the divergence form of the nonlinear term, and again the definition of the deformation tensor yields

2(D
(
φh
)

sh, φh)

= ((∇φh)sh, φh) + (sh, (∇φh)φh)

= ((sh · ∇)φh, φh) + ((φh · ∇)φh, sh)

= −((∇ · sh)φh, φh) − ((sh · ∇)φh, φh) − ((∇ · φh)φh, sh) − ((φh · ∇)sh, φh)

= −
1
2

((∇ · sh)φh, φh) − ((∇ · φh)φh, sh) − ((φh · ∇)sh, φh)

= −
1
2

((∇ · sh)φh, φh) − ((∇ · φh)φh, sh) − (D (sh) φh, φh).

Inserting this expression in (52) and collecting terms give

c(u, u, φh) − c(uh, uh, φh) = c(sh, η, φh) + c(η, u, φh) −
1
2

((∇ · sh)φh, φh) − (D (sh) φh, φh). (53)

pplying Hölder’s inequality, the stability (35) of the Stokes projection, a Sobolev embedding, and an interpolation
n Sobolev spaces yields for the first term

c(sh, η, φh) = (2D (sh) η, φh) + ((∇ · sh)η, φh)

≤ 2∥D (sh) ∥L3∥η∥L6∥φh∥0 + ∥∇ · sh∥L3∥η∥L6∥φh∥0

≤ C∥∇sh∥L3∥η∥L6∥φh∥0 ≤ C∥∇u∥L3∥η∥1∥φh∥0 ≤ C∥∇u∥1/2∥η∥1∥φh∥0

≤ C (∥u∥1∥u∥2)
1/2

∥η∥1∥φh∥0.

To estimate the second term, Hölder’s and Agmon’s inequality are used to get

c(η, u, φh) ≤ C∥∇η∥0∥u∥L∞∥φh∥0 ≤ C (∥u∥1∥u∥2)
1/2

∥η∥1∥φh∥0.

The third and the fourth term in (53) are bounded just with Hölder’s inequality. One observes that there is no inverse
power of the viscosity in the error bound of the discrete convective term.

The arguments above are dimensionally correct in three dimensions. In two dimensions, both ∥ · ∥L3 and ∥ · ∥L6

should be replaced by ∥ · ∥L4 , and arguing similarly, one concludes that the term (∥u(s)∥1 ∥ ∥u(s)∥2)1/2 in Mu,p

should be replaced by (50).
The pressure term on the right-hand side of (51) can be bounded robustly in the same way as in the proof of

Theorem 4.1, which gives a term of order r − 1. □

Example 4.6 (Galerkin Method: EMAC Form of the Nonlinear Term). The same problem as in Example 4.4 is
considered, with the same setup. Only the EMAC form was used as discrete nonlinear form. The results are presented
in Fig. 8.

Comparing with Fig. 7, it can be seen that there is a much better error reduction if the EMAC form is used
instead of the divergence form. For small viscosity coefficients and on coarse grids, one can observe for the P2/P1

pair of spaces an order of error reduction of 1.5, which is the same observation as for the evolutionary Stokes
problem in Example 4.2. In case of the P3/P2 pair of spaces, the order of error reduction is 2, which is exactly the
order that is proposed by the robust error bound from Theorem 4.5. □

Theorem 4.5 and Example 4.6 allow to address another open problem stated in [17]: From the theoretical point
of view, the new EMAC form offers several attractive features. Further numerical studies are necessary to clarify
whether this form should be preferred also in simulations. With respect to robust velocity estimates in L∞(L2) for
the evolutionary Navier–Stokes equations, the answer is twofold. On the one hand, for the Galerkin method and

non weakly divergence-free and inf–sup stable pairs of finite element spaces, the EMAC form outperforms all other
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Fig. 8. Example 4.6 Galerkin method for the Navier–Stokes equations, EMAC form of the discrete convective term.

discrete nonlinear forms. It is the only form for which a robust estimate is possible, which is of order r − 1. But
n the other hand, as it will be shown in Section 4.2, using weakly divergence-free pairs of spaces or applying a
ather simple stabilization (grad–div stabilization) for non weakly divergence-free pairs with arbitrary form of the
iscrete convective term leads to robust estimates of order r , i.e., one order higher.

.2. Methods of order r in L∞(L2)

This section presents discretizations whose order of robust error reduction for the velocity error in L∞(L2) is
. First, the Galerkin discretization with inf–sup stable pairs of finite element spaces and weakly divergence-free
elocity is studied, in Section 4.2.1. Second, Section 4.2.2 considers non weakly divergence-free and inf–sup stable
airs of finite element spaces, where the Galerkin method is augmented either with a grad–div stabilization or with
LPS stabilization for the velocity gradient. The final part, Section 4.2.3, discusses three methods for pairs of finite

lement spaces that are not inf–sup stable and thus require a pressure stabilization. Two of these methods achieve
tability with respect to dominating convection with the same mechanisms as the methods from Section 4.2.2. For
he last method, it is shown that an appropriate pressure stabilization might be sufficient for stabilizing also dominant
onvection.

.2.1. Inf–sup stable and weakly divergence-free pairs of finite element spaces
This section considers the Galerkin method (42) for conforming inf–sup stable pairs of finite element spaces

ith Vdiv
h ⊂ Vdiv. There are a number of pairs that satisfy this property. The most popular one is the Scott–Vogelius

air [54], Pr/Pdisk
r−1 , r ≥ d . However, the discrete inf–sup condition for the case r = d can be proved only for

pecial grids, so-called barycentric-refined grids, see [55,56]. Barycentric-refined grids are constructed from a given
implicial grid by connecting the vertices of each mesh cell with the barycenter of that mesh cell. Notice that
lthough Vdiv

h ⊂ Vdiv, one should not use the notion that the approximation uh is pointwise divergence-free, since
∇ · uh is not continuous across boundaries of mesh cells.

The use of weakly divergence-free pairs of finite element spaces is attractive from the point of view of the physical
consistency of numerical solutions. First, there is an exact conservation of mass in the sense that ∥∇ ·uh(t)∥0 = 0 for
ll times. Second, provided that possible consistency errors do not depend on the pressure, the numerical solution
atisfies a so-called fundamental invariance property: gradient forces on the right-hand side possess an impact only
n the discrete pressure. Closely connected to this property is the so-called pressure robustness of the method,
.e., error bounds for the velocity do not depend on the pressure, compare (58). Thus, possibly large norms of the
ressure are not of importance for velocity errors. All these properties are in contrast to pairs of finite element
paces that are not weakly divergence-free, see [47] for a comprehensive discussion of this topic.

If Vdiv
h ⊂ Vdiv, the finite element velocity solution uh is weakly divergence-free, hence the second term of

he divergence form (44) of the nonlinear term vanishes for uh and the convective form is skew-symmetric.

onsequently, one can use the convective form of the convective term in the numerical analysis as well as
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in simulations. There are less terms to be estimated with the convective form compared with the divergence
form.

The error analysis of the Galerkin method can be found in [57]. Error bounds of order r are proved for the L∞(L2)
orm of the velocity. Here, a simplified proof is presented. In this proof, the velocity approximation is compared
ith the Stokes projection sh defined in (32) and the decomposition u−uh = (u− sh)− (uh − sh) = (u− sh)−φh is

utilized. From the error equation, one obtains by using the definition of the Stokes projection and that φh is weakly
divergence-free

∥φh∥0
d
dt

∥φh∥0 ≤
⏐⏐((uh · ∇)uh, φh

)
−
(
(sh · ∇)sh, φh

)⏐⏐+ ⏐⏐(τ1, φh)
⏐⏐ , (54)

here τ1 = (∂t u−∂t sh)+ ((u · ∇)u − (sh · ∇)sh) . Note that in contrast to the case where the finite element velocity
is not weakly divergence-free, there is no pressure contribution in the error equation, i.e., a term like the last term
on the right-hand side of (39) does not appear. It was shown in Section 4.1.2 that exactly this term is responsible
for obtaining only order r −1 for the velocity error in L∞(L2). Using the skew-symmetric property of the nonlinear
term for weakly divergence-free functions and Hölder’s inequality leads to⏐⏐((uh · ∇)uh, φh

)
−
(
(sh · ∇)sh, φh

)⏐⏐ ≤
⏐⏐((φh · ∇)sh, φh

)⏐⏐+ ⏐⏐((uh · ∇)φh, φh
)⏐⏐ (55)

=
⏐⏐((φh · ∇)sh, φh

)⏐⏐ ≤ ∥∇sh∥L∞∥φh∥
2
0.

The first term of the truncation error is bounded by using the Cauchy–Schwarz inequality and (33) for the temporal
derivative

(∂t u − ∂t sh, φh) ≤ ∥∂t u − ∂t sh∥0∥φh∥0 ≤ Chr
∥∂t u∥r∥φh∥0.

For estimating the second term, Hölder’s inequality, Sobolev embedding and interpolations, (34), and (33) are
utilized(

(u · ∇)u − (sh · ∇)sh, φh
)

=
(
((u − sh) · ∇)u − (sh · ∇)(sh − u), φh

)
≤
(
∥u − sh∥L6∥∇u∥L3 + ∥sh∥L∞∥∇(sh − u)∥0

)
∥φh∥0

≤ C
(
∥∇u∥1/2 + ∥sh∥L∞

)
∥sh − u∥1∥φh∥0

≤ C
(
(∥u∥1∥u∥2)1/2

+ ∥sh∥L∞

)
∥sh − u∥1∥φh∥0

≤ Chr (∥u∥1∥u∥2)
1/2

∥u∥r+1∥φh∥0. (56)

Inserting the bounds for the truncation error and (55) in the error equation (54) and applying (34) yield

d
dt

∥φh∥0 ≤ ∥∇sh∥L∞∥φh∥0 + Chr (
∥∂t u∥r + (∥u∥1∥u∥2)1/2

∥u∥r+1
)

≤ C∥∇u∥L∞∥φh∥0 + Chr (
∥∂t u∥r + (∥u∥1∥u∥2)1/2

∥u∥r+1
)
.

efining

L(T ) = C
∫ T

0
∥∇u(s)∥L∞ ds, Mu = C

(∫ T

0

(
∥∂t u(s)∥r + (∥u∥1∥u∥2)1/2

∥u(s)∥r+1
)

ds
)

, (57)

nd applying Gronwall’s lemma give

∥φh(t)∥0 ≤ eL(T )
∥φh(0)∥0 + eL(T ) Muhr .
23
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The proof is finished by applying the triangle inequality. Note that all steps of the proof are dimensionally correct
for d = 3, with the unit md+2

/s3 on both sides of all estimates.2

heorem 4.7 (Error Estimate for the Galerkin Method and Weakly Divergence-Free Pairs of Finite Element Spaces).
or T > 0, assume that the solution of (5) is sufficiently regular and choose uh(0) = sh(0). Then, it holds for
∈ (0, T ]

∥u(t) − uh(t)∥0 ≤ eL(T ) Muhr
+ Chr+1

∥u∥L∞(Hr+1), (58)

here L(T ) and Mu are defined in (57).

It should be emphasized that the error bound (58) for the velocity error does not depend on the pressure, since,
s already noted above, the pressure terms in the error equation vanish. This kind of error estimate is called
ressure-robust.

In [58], a fully discrete finite element method for the incompressible Navier–Stokes equations is analyzed where
cott–Vogelius pairs of spaces Pr/Pdisk

r−1 , r ≥ d, are utilized for the spatial discretization and the so-called rotational
orm of the nonlinear convective term is used. The rotational form goes along with a modified pressure, the so-
alled Bernoulli pressure. Thanks to the use of weakly divergence-free finite elements for the velocity, the method
s pressure robust. The velocity error in L∞(L2) is proved to be of order r , but the corresponding error bound is

not robust for small values of the viscosity coefficient.

Example 4.8 (Galerkin Method with a Weakly Divergence-Free Pair of Finite Element Spaces). The same problem
s in Example 4.4 is considered but with the Scott–Vogelius pair of spaces P2/Pdisk

1 . A barycentric refinement
eeds to be applied to the grids arising from refining the initial grid from Fig. 1 leading to the number of degrees
f freedom given in Table 2. The errors obtained for the Galerkin method (42) are shown in Fig. 9. One can see that
he errors are small, where the order of error reduction is two on coarse grids and for small viscosity coefficients.
his observation corresponds to the analytic prediction. Third order convergence can be observed for the large
iscosity coefficient ν = 10−2 already on coarse grids and for smaller viscosity coefficients on finer grids. □

The optimal behavior for large viscosity coefficients on coarse grids was observed also for other methods and it
ill not be reported in further numerical studies.

emark 4.9 (Summary of the Results for the Plain Galerkin Method). At this point, we can summarize the changes
n the rate of error reduction of the L∞(L2) error of the velocity for the plain Galerkin method applied to the
ifferent equations, which are discretized with H 1-conforming velocity finite elements. For linear convection–
eaction–diffusion equations, using piecewise polynomials of degree r , while the optimal rate r + 1 is achieved
or ν large relative to the coefficients of the first order terms, only rate r can be obtained when ν → 0. For the
tokes and Oseen equations only the rate r −1 is achieved, while for the Navier–Stokes equations, one cannot even
rove robust error reduction unless the EMAC form of the nonlinear term is utilized (in that case the rate r − 1 is
ecovered) or weakly divergence-free pairs of finite elements are used (in that case the rate is increased to r ).

By far most of the finite element analysis for evolutionary incompressible flow problems has been performed for
H 1-conforming velocity finite element spaces. However, many pairs with such velocity spaces do not lead to weakly

2 In order not to overload the presentation, dimensional correctness will be taken care of in the following only for d = 3. Only for this
method, the changes for d = 2 are addressed in some detail once more. Instead of (56), the following estimate is performed, applying the
ame tools,(

(u · ∇)u − (sh · ∇)sh , φh
)

=
(
((u − sh ) · ∇)u − (sh · ∇)(sh − u), φh

)
≤
(
∥u − sh∥L4 ∥∇u∥L4 + ∥sh∥L∞∥∇(sh − u)∥0

)
∥φh∥0

≤ C
(
∥u − sh∥1/2∥∇u∥1/2 + ∥sh∥L∞∥∇(sh − u)∥0

)
∥φh∥0

≤ C
(
(∥u − sh∥0∥u − sh∥1)

1/2 (∥u∥1∥u∥2)
1/2

+ (∥u∥0∥u∥2)
1/2

∥u − sh∥1

)
∥φh∥0

≤ Chr
(

h1/2 (∥u∥1∥u∥2)
1/2

+ (∥u∥0∥u∥2)
1/2
)

∥u∥r+1∥φh∥0.

hen, the expression for M changes accordingly.
u
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Fig. 9. Example 4.8 Galerkin method for the Navier–Stokes equation, P2/Pdisk
1 on a barycentric-refined grid, convective form of the convective

term.

divergence-free discrete velocity solutions. Exceptions require usually a high polynomial degree and sometimes
special grids, like the Scott–Vogelius pair of spaces for r = d . An attractive alternative approach consists in using
H (div)-conforming velocity spaces. Such spaces are actually used for simulations of flows with small viscosity,
e.g., in [59], and one can find numerical analysis for stationary problems, e.g., in [60,61]. To the best of our
knowledge, there are only few contributions that study the finite element analysis of weakly divergence-free H (div)-
conforming finite elements for evolutionary incompressible flow problems. In [62], this kind of discrete velocity
spaces is considered together with pressure spaces such that a discrete inf–sup condition is satisfied. Concrete
examples for such pairs are Raviart–Thomas (RT) spaces of order r for the velocity and discontinuous pressure
paces of order r on simplicial grids. Also, Brezzi–Douglas–Marini (BDM) spaces can be used for approximating
he velocity. It is referred to [47, Sec. 4.4] for more details concerning these spaces. The analysis in [62] is performed
or the evolutionary Oseen equations (29). Because H (div)-conforming functions are generally not H 1-conforming,
pecial care has to be taken for discretizing the viscous term such that the consistency error becomes sufficiently
mall. In [62], the symmetric interior penalty (SIP) form, which is well known from discontinuous Galerkin methods,
s applied. Since weakly divergence-free velocity finite element functions are considered, the convective form of the
onvective term can be applied. It is augmented with an upwind term defined on the facets of the mesh cells. An
rror bound of order r with constants independent of inverse powers of the viscosity is proved for the L∞(L2) norm
f the velocity. Like in the H 1-conforming case, (58), the bound is independent of the pressure. The restriction to
rder r is caused from the bound of the convective term. The results from [62] are extended to the Navier–Stokes
quations in [63]. In [64], the authors improve the error bounds of [62], obtaining order r+1/2 for the Navier–Stokes
quations. This result fits into Section 4.3 and a sketch of the proof will be presented there, see Theorem 4.23.

.2.2. Non weakly divergence-free inf–sup stable pairs of finite element spaces
This section presents two methods that achieve robust error reduction of order r for the velocity error in L∞(L2) if

he standard skew-symmetric form (44) of the nonlinear term is utilized. For one of these methods, even convergence
or the convective form of the nonlinear term is shown.

The Galerkin method with grad–div stabilization and inf–sup stable pairs of mixed finite elements is analyzed
n [50]. More precisely, the following discretization is considered: Find uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r−1

satisfying

(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) + µ(∇ · uh, ∇ · vh) − (∇ · vh, ph) = (f , vh) ∀ vh ∈ Vh,r ,

(∇ · uh, qh) = 0 ∀ qh ∈ Qh,r−1, (59)

where the nonlinear term is defined in (44) and µ > 0 is the grad–div stabilization parameter. Note that the grad–div
term vanishes for weakly divergence-free finite element velocities, which gives the Galerkin method considered in
the previous subsection. The additional term in (59) can be derived by adding to the strong form of the momentum

balance of the Navier–Stokes equations (1) the vanishing term −µ∇(∇ · u), integrating the corresponding weak
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term by parts, and discretizing. This strong form is the origin for the notion grad–div stabilization, but sometimes
one finds also the notion div–div stabilization in the literature. From the dimensional point of view, the stabilization
parameter µ has the physical unit m2

/s, like a kinematic viscosity, e.g., compare the optimal parameters derived
in [65] for the Stokes equations with viscosity.

Grad–div stabilization was proposed originally in [66] for penalizing the violation of mass conservation of pairs
of finite element spaces where the velocity is not weakly divergence-free. This goal is usually achieved only to
some extent, e.g., see [47]. However, it is shown in [50] that also dominant convection is stabilized with grad–div
stabilization. The proof of the following error bound can be found in [50, Theorem 1].

Theorem 4.10 (Error Estimate for the Galerkin Method with grad–div Stabilization). Consider T > 0, assume
hat the solution of (5) is sufficiently smooth, and let r ≥ 2. Then, there exists a positive constant Mu,p depending
n ∥u0∥

2
r and(∫ T

0

(
∥p(s)∥2

Hr /R

µ
+ T ∥∂t u(s)∥2

r + (µ + T ∥u(s)∥1 ∥u(s)∥2) ∥u(s)∥2
r+1

)
ds

)1/2

, (60)

uch that for t ∈ [0, T ] the following bound holds

∥u(t) − uh(t)∥0 ≤ exp(L(T )/2)hr Mu,p + Chr+1
∥u∥L∞(Hr+1), (61)

here L(T ) is

L(T ) = 1 + C
∫ T

0

(
2 ∥∇u(s)∥L∞ +

∥u(s)∥2
L∞

2µ

)
ds.

or (60) to be dimensionally correct in the case d = 2, the term ∥u(s)∥1 ∥u(s)∥2 must be replaced by
h ∥u(s)∥1 ∥u(s)∥2 + ∥u(s)∥0 ∥u(s)∥2.

roof (Sketch). Here, not the complete proof will be given, but only the usefulness of the grad–div stabilization in
he derivation of the error bound will be explained. The grad–div term is used in the error analysis for absorbing
ome contributions from the nonlinear convective term. Considering only the important terms in the error equation
or φh = uh − sh , see (48), yields with (46)

1
2

d
dt

∥φh∥
2
0 + ν∥∇φh∥

2
0 + µ∥∇ · φh∥

2
0 ≤ −b(φh, sh, φh) + · · ·

≤ ∥∇sh∥L∞∥φh∥
2
0 +

1
2
∥sh∥L∞∥∇ · φh∥0∥φh∥0 + · · ·

≤
µ

4
∥∇ · φh∥

2
0 +

(
∥∇sh∥L∞ +

1
4µ

∥sh∥
2
L∞

)
∥φh∥

2
0 + · · · . (62)

Another term that is bounded with the grad–div stabilization is the term coming from the pressure, i.e., the
econd term on the right-hand side in (39)

(∇ · φh, p − Π r−1
h p) ≤

µ

4
∥∇ · φh∥

2
0 +

1
µ

∥p − Π r−1
h p∥

2
0.

In contrast to (49), inverse powers of the viscosity are not present on the right-hand side of (62), but inverse
owers of the grad–div stabilization parameter. □

The result of Theorem 4.10 holds true for inf–sup stable pairs of mixed finite elements where the polynomial
egree r of the velocity space is larger by one than the degree of the pressure space. It is well known for the steady-
tate Stokes and Oseen problem from [65,67] that an appropriate choice of the grad–div stabilization parameter
ncludes (semi-) norms of the solution in higher order Sobolev spaces, such that the parameter possesses the correct
hysical unit, but these (semi-) norms are not accessible. Thus, the usual way in practice for proposing a computable
rad–div parameter consists in optimizing the derived error bound with respect to the order of convergence in space,
uch that the result is independent of inverse powers of the viscosity. Since the constant in (60) depends on µ and
−1, this approach gives µ ∼ 1 as asymptotic optimal choice for the grad–div stabilization parameter. In that case,

∞ 2
n order of convergence r is achieved for the L (L ) error of the velocity, see (61). For inf–sup stable spaces with
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the same polynomial degree, like the MINI element, Theorem 4.10 still holds, see [50, Remark 2]. In that case,
assuming for the pressure p ∈ H 2(Ω ), one can choose µ ∼ h to achieve a linear order of convergence for the
L∞(L2) error of the velocity.

Next, the same approach, namely the Galerkin finite element method with grad–div stabilization, will be
considered, but using the convective form of the nonlinear term instead of the divergence form. Arguing as in
(54) and (55) yields

1
2

d
dt

∥φh∥
2
0 + µ∥∇ · φh∥

2
0 ≤

⏐⏐((φh · ∇)sh, φh
)⏐⏐+ ⏐⏐((uh · ∇)φh, φh

)⏐⏐+ · · ·

≤ ∥∇sh∥L∞∥φh∥
2
0 +

⏐⏐((uh · ∇)φh, φh
)⏐⏐+ · · · . (63)

Now, the second term on the right-hand side does not vanish. To handle this term, integration by parts, Hölder’s
and Young’s inequality are used to obtain

|(uh · ∇φh, φh)| =
1
2
|((∇ · uh)φh, φh)|

≤
1
2
∥∇ · sh∥L∞∥φh∥

2
0 +

1
2
∥∇ · φh∥0∥φh∥L∞∥φh∥0

≤
µ

4
∥∇ · φh∥

2
0 +

(
1
2
∥∇ · sh∥L∞ +

1
4µ

∥φh∥
2
L∞

)
∥φh∥

2
0.

nserting this estimate in (63) leads to

1
2

d
dt

∥φh∥
2
0 +

3µ

4
∥∇ · φh∥

2
0 ≤

(
1
2
∥∇ · sh∥L∞ + ∥∇sh∥L∞ +

1
4µ

∥φh∥
2
L∞

)
∥φh∥

2
0 + · · · .

tilizing now the following threshold condition, whose validity will be discussed below,

∥φh∥0 ≤ Cthrh3/2, (64)

nd applying the inverse inequality (8) give

∥φh∥L∞ ≤ cinvh−d/2
∥φh∥0 ≤ cinvCthr = C,

o that ∥φh∥L∞ is bounded. For this result, the threshold condition (64) has to be proved. Assuming uh(0) = sh(0),
o that φh(0) = 0, a standard bootstrap argument can be applied for this purpose, see [68, Theorem 3.7]. Note that
he threshold condition (64) cannot be proved for low order elements such as the MINI element. Using uh(0) = sh(0)
nd applying the same analysis that proves Theorem 4.10 leads to ∥φh∥0 = O(hr ) for r ≥ 2. Finally, the triangle
nequality together with (33) shows that ∥u(t) − uh(t)∥0 = O(hr ), r ≥ 2, also in the case that the convective form
f the nonlinear term is used for the Galerkin method with grad–div stabilization.

xample 4.11 (Galerkin Method with grad–div Stabilization). The same setup as in Example 4.4 is considered, but
ow the Galerkin method with grad–div stabilization (59) is used. Since the Taylor–Hood pairs of finite element
paces P2/P1 and P3/P2 were utilized in the simulations, the asymptotic optimal choice of the grad–div stabilization
arameter is a constant independent of the mesh width. For the simulations, µ = 0.25 was chosen, which is the
ame choice as in [50].

Results for the convective form and the divergence form of the nonlinear term are presented in Figs. 10 and 11.
irst, comparing them with Figs. 6 and 7, the stabilizing effect of the grad–div method can be clearly recognized.
nd second, there are basically no differences between the results of both discretizations of the nonlinear term,
hich is in accordance with the analysis discussed in this section. For small viscosity coefficients and on coarse
eshes, the predicted second order error reduction for P2/P1 and third order error reduction for P3/P2 can be

bserved. □

In [69], the limit µ → ∞ is studied for Taylor–Hood pairs of spaces Pr/Pr−1. Assuming that for the given
esh the solution obtained with the Scott–Vogelius pair Pr/Pdisk

r−1 is unique, i.e., that the Scott–Vogelius pair is
iscretely inf–sup stable, then it is shown that the sequence of velocity solutions for the Taylor–Hood pair with
rad–div stabilization converges to the velocity solution of the Galerkin method for the Scott–Vogelius pair. Hence,

69] establishes a connection between the method of Section 4.2.1 and the grad–div stabilization.
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Fig. 10. Example 4.11 Galerkin method with grad–div stabilization for the Navier–Stokes equation, ν = 10−6, level 5, solution at t = 1.3409,
left: convective form of the convective term, right: divergence form of the convective term.

Fig. 11. Example 4.11 Galerkin method with grad–div stabilization, left: divergence form of the nonlinear term, right: convective form of
he nonlinear term.

In [70], a one-level LPS method is considered. For the finite element discretization, a pair of inf–sup stable spaces
ith spatial order r , r ≥ 2, is used, in which the velocity space Vh,r consists of continuous piecewise polynomials

nd the pressure space Qh,r−1 contains continuous or discontinuous piecewise polynomials.
For any K ∈ Th , let D(K ) be a finite-dimensional space and ΠK : L2(K ) → D(K ) be the local L2(K )

rojection into D(K ). The local fluctuation operator σ ∗
: L2(K ) → L2(K ) is given by σ ∗ v = v − Π v. The
h,K h,K K
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stabilization term Sh is defined by

Sh(vh, wh) =

∑
K∈Th

τK
(
σ ∗

h,K (∇vh), σ ∗

h,K (∇wh)
)

K for vh, wh ∈ Vh,r ,

here {τK } are user-chosen non-negative constants. Since the stabilization is a viscous term, the stabilization
arameters are viscosity coefficients from the dimensional point of view. Finally, it is set

τmin
h := min

K∈Th
τK , τmax

h := max
K∈Th

τK . (65)

he LPS method studied in [70] reads as follows: Find uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r−1 satisfying

(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) + Sh(vh, wh) − (∇ · vh, ph) = (f , vh) ∀ vh ∈ Vh,r ,

(∇ · uh, qh) = 0 ∀ qh ∈ Qh,r−1, (66)

here the nonlinear term is defined in (44).
Two interpolation operators are defined in [70], where the first one is used to bound the velocity error and the

econd one to bound the error in the pressure. The operator jh : V → Vh,r provides optimal approximation
properties and preserves the discrete divergence, i.e.,

(∇ · (v − jhv), qh) = 0 ∀ qh ∈ Qh,r−1, v ∈ V.

Let Cstab denote the following stability constant, see [70, (2.18)],

∥ jhv∥1,p ≤ Cstab∥v∥1,p, p ∈ [2, ∞], v ∈ W 1,p(Ω )d . (67)

he interpolation operator ih : L2(Ω ) → Qh,r−1 satisfies also optimal approximation properties, the stability
roperty

∥q − ihq∥0 ≤ Ci∥q∥0 ∀ q ∈ L2(Ω ), (68)

nd the property

(q − ihq, rh)K = 0 ∀ q ∈ L2(Ω ), rh ∈ D(K ), K ∈ Th . (69)

The following estimated is proved in [70, Lemma 3.3]. Let vh ∈ Vdiv
h , then

|(∇ · vh, φ · ξ )| ≤ Cd Sh(vh, vh)1/2
∥φ∥L∞∥ξ∥0, φ ∈ L∞(Ω )d , ξ ∈ L2(Ω )d , (70)

olds true where

Cd :=
Ci

√
d√

τmin
h

, (71)

with Ci being the constant in (68) and τmin
h is defined in (65). To prove (70), one uses that vh ∈ Vdiv

h and the
roperty (69) to get

(∇ · vh, φ · ξ ) = (∇ · vh, φ · ξ − ih(φ · ξ )) =

∑
K∈Th

(
σ ∗

h,K (∇ · vh), φ · ξ − ih(φ · ξ )
)

K .

stimate (70) follows now by bounding the norm of the divergence with the norm of the gradient and then applying
68).

The proof of the following theorem can be found in [70, Theorem 3.1].

heorem 4.12 (Error Estimate for the LPS Method with Stabilization for the Gradient). For T > 0, assume for
he solution of (5) sufficient regularity, let r ≥ 2, and let τK ∼ 1 for all K ∈ Th . Then, for the LPS approximation
efined in (66) with initial condition uh(0) = jhu0 the following bound holds

∥u(t) − uh(t)∥0 ≤ Mexp Mu,phr , 0 ≤ t ≤ T, (72)

here

Mexp := exp

(
Cstab∥u∥L1(W 1,∞) +

C2
stabC2

d diam(Ω )2
∥u∥

2
L2(W 1,∞)

2
+ 1

)
,
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and

Mu,p := C
(

T ∥∂t u∥
2
L2(Hr ) +

(
ν + τmax

h + T
(
∥u∥

2
L∞(L∞) + h2

∥u∥
2
L∞(W 1,∞)

))
∥u∥

2
L2(Hr+1) +

∥p∥
2
L2(Hr )

τmin
h

)1/2

,

with Cstab and Cd being the constants in (67) and (71), respectively.

Proof (Sketch). Considering only the important terms in the error equation for φh = uh − jhu yields

1
2

d
dt

∥φh∥
2
0 + ν∥∇φh∥

2
0 + Sh(φh, φh) ≤

⏐⏐−b(u, u, φh) + b(uh, uh, φh)
⏐⏐+ ⏐⏐(∇ · φh, p − ih p)

⏐⏐+ · · · .

To bound the last term, property (69), the Cauchy–Schwarz inequality, the definition of the stabilization term,
and the bound of the L2(Ω ) norm of the divergence by the same norm of the gradient are utilized

(∇ · φh, p − ih p) =

∑
K∈Th

(σ ∗

h,K (∇ · φh), p − ih p)K ≤

√
d√

τmin
h

∥p − ih p∥0Sh(φh, φh)1/2.

Denoting by η = u − jhu and using the skew-symmetric property (45), the difference of the nonlinear terms is
ecomposed as

b(u, u, φh) − b(uh, uh, φh) = b(η, u, φh) + b( jhu, η, φh) − b(φh, jhu, φh).

Applying the bound (46) and Young’s inequality gives for the first term

|b(η, u, φh)| ≤ 2T ∥η∥
2
0∥∇u∥

2
L∞ +

1
2

T ∥∇ · η∥
2
0∥u∥

2
L∞ +

1
4T

∥φh∥
2
0.

ith a similar bound as (46), one obtains for the second term

|b( jhu, η, φh)| ≤ 2T ∥∇η∥
2
0∥ jhu∥

2
L∞ +

1
2

T ∥∇ · jhu∥
2
L∞∥η∥

2
0 +

1
4T

∥φh∥
2
0.

or bounding the third term, one applies Hölder’s inequality to the definition (44) of the nonlinear term and uses
70) and Young’s inequality

|b(φh, jhu, φh)| ≤ ∥∇ jhu∥L∞∥φh∥
2
0 +

Cd

2
Sh(φh, φh)1/2

∥φh∥0∥ jhu∥L∞

≤
1
8

Sh(φh, φh) +

(
∥∇ jhu∥L∞ +

C2
d

2
∥ jhu∥

2
L∞

)
∥φh∥

2
0.

he first term is absorbed by the left-hand side and the second term is handled with Gronwall’s lemma. Notice that,
ince jhu is continuous, piecewise differentiable and vanishes on the boundary, for x ∈ Ω one can write

jhu(x) =

∫ 1

0
∇ jhu((1 − ξ )x0 + ξx) · (x − x0) dξ,

or an appropriate x0 ∈ ∂Ω , so that one deduces that ∥ jhu∥L∞ ≤ diam(Ω )∥∇ jhu∥L∞ .
Altogether, all important terms can be bounded without introducing inverse powers of the viscosity coefficient.

he order of the interpolation terms in the bounds leads to (72). □

xample 4.13 (Inf–sup Stable Pair of Finite Element Spaces with LPS Stabilization for the Velocity Gradient3).
n [70], finite element spaces that satisfy the assumption of the analysis are mentioned. On quadrilateral or
exahedral meshes, the combination of the mapped Qbubble

r /Pdisk
r−1 , r ≥ 2, spaces for velocity and pressure and

D(K ) = Pr−1(K ) are suitable. In mapped spaces, the basis functions and nodal functionals are defined on a reference
esh cell K̂ and the spaces on the actual mesh cells are obtained with the corresponding map. The velocity space

n the reference cell K̂ = [−1, 1]2 is given by

Qbubble
r (K̂ ) = Qr (K̂ ) + span

{
(1 − x̂2

1 )(1 − x̂2
2 )x̂r−1

i , i = 1, 2
}
.

3 We like to acknowledge Naveed Ahmed (Gulf University for Science and Technology, Kuwait City) for providing us the implementation
of this method.
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Table 3
Number of degrees of freedom (including Dirichlet nodes) for Example 4.13.

Qbubble
2 /Pdisk

1 Qbubble
3 /Pdisk

2

Level Velocity Pressure Velocity Pressure

1 114 24
2 226 48 402 96
3 834 192 1506 384
4 3202 768 5826 1536
5 12546 3072 22914 6144
6 49666 12288

Fig. 12. Example 4.13 LPS stabilization for the velocity gradient.

The same example as defined in Example 4.4 is considered. For defining the initial grid, level 1, the domain
Ω was decomposed into four squares, see Table 3 for information on the numbers of degrees of freedom. The
stabilization parameter was set to be τK = 0.1, which is the same value as used in [70]. The result of the numerical
simulations, presented in Fig. 12, confirms the prediction from Theorem 4.12. □

4.2.3. Non inf–sup stable pairs of finite element spaces
The use of non inf–sup stable pairs of finite element spaces is appealing from the implementation point of view,

since the same principal finite element spaces can be used for velocity and pressure, but it requires a stabilization of
the discrete continuity equation, a so-called pressure stabilization, for obtaining a well-posed problem. For a recent
survey of pressure stabilizations, for the model problem of the Stokes equations, it is referred to [71].

Non inf–sup stable finite element approximations to (5) are studied in [72] and several methods are analyzed.
In particular, the case already mentioned above that the polynomial spaces for the finite element velocity and
pressure are the same, apart of the boundary condition and the vector-valued character of the velocity space, is
considered. For the pressure stabilization, a local projection stabilization (LPS) is used that is the so-called term-
by-term stabilization introduced in [73]. Term-by-term stabilization is a special variant of LPS. It is defined just on
a single mesh and the projection-based stabilization of standard LPS methods is replaced by an interpolation-based
stabilization. The stability and weak convergence for a method, including LPS stabilization for the convective term
and for the pressure, in natural norms of the solution of the Navier–Stokes equations are proved in [74].

In [72], fully discrete approximations to (5) with the implicit Euler method in time are analyzed. Here, for
consistency of presentation, we introduce the methods for the continuous-in-time case. Clearly, the basic ideas of
the fully discrete error analysis from [72] can be carried over to the continuous-in-time case with the appropriate
changes.

The first method studied in [72] is an extension of the Galerkin method with grad–div stabilization to non
inf–sup stable elements. This method, which includes an LPS term for the pressure, reads as follows: Find
u : (0, T ] → V , p : (0, T ] → Q such that
h h,r h h,r
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(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) − (∇ · vh, ph) + µ(∇ · uh, ∇ · vh) = (f , vh) ∀ vh ∈ Vh,r ,

(∇ · uh, qh) + spres(ph, qh) = 0 ∀ qh ∈ Qh,r , (73)

where the nonlinear term is defined in (44), the LPS pressure stabilization is given by

spres(ph, qh) =

∑
K∈Th

τp,K (σ ∗

h (∇ ph), σ ∗

h (∇qh))K , (74)

µ and {τp,K } are the grad–div and pressure stabilization parameters, respectively, and σ ∗

h = Id − σ r−1
h is the

uctuation operator, where Id is the identity operator and σ r−1
h is a locally stable projection or interpolation operator

rom L2(Ω )d onto Yh,r−1. This operator can be chosen as the Bernardi–Girault [75] or the Scott–Zhang [76], [77,
4.8], interpolation operator. The spaces Yh,l are defined as follows:

Yh,l =
{
vh ∈ C0(Ω ) | vh |K ∈ Pl(K ), ∀ K ∈ Th

}
, l ≥ 1, Yh,l = (Yh,l)d ,

where Pl(K ) is the space of polynomials on K of degree less than or equal to l. The following approximation
property holds for the fluctuations

∥σ ∗

h (v)∥0 = ∥(Id − σ
j

h )(v)∥0 ≤ Chs
|v|s, 1 ≤ s ≤ j + 1. (75)

The physical unit of the pressure stabilization parameters is second, hence it is a time scale.
The proof of the following theorem can be obtained arguing as in [72, Theorem 3.5].

Theorem 4.14 (Non inf–sup Stable Pairs of Finite Element Spaces with grad–div Stabilization and LPS Pressure
Stabilization). Consider T > 0 and assume sufficient regularity for the solution of (5). Let r ≥ 2 and let

α1h2
K ≤ τp,K ≤ α2h2

K , (76)

for some positive constants α1, α2 independent of h and ν. Then, there exists a positive constant Mu,p depending
n ∥u0∥r and(∫ T

0

((
α2 + µ−1)

∥p(s)∥2
Hr /R + T ∥∂t u(s)∥2

r

+

(
ν + µ + α−1

1 + T |Ω |
4−d

d ∥u(s)∥2
2

)
∥u(s)∥2

r+1

)
ds
)1/2

uch that for t ∈ [0, T ] the following bound holds

∥u(t) − uh(t)∥0 ≤ Mu,p exp
(

L(T )
2

)
hr

+ Chr+1
∥u∥L∞(Hr+1), (77)

here L(T ) is

L(T ) = 1 + C
∫ T

0
|Ω |

4−d
2d

(
2 ∥u(s)∥3 + |Ω |

4−d
2d

∥u(s)∥2
2

2µ

)
ds.

Proof (Sketch). This sketch stresses only the main new aspect if non inf–sup stable pairs of finite element spaces
re studied instead of inf–sup stable pairs.

For the proof of Theorem 4.14, see [72, Theorem 3.5], one compares the approximation uh with ûh = Rhu ∈ Vh,r

atisfying

(u − ûh, vh) = 0, ∀ vh ∈ Yh,r−1. (78)

he interpolation operator Rhu exists and satisfies optimal approximation properties, see [73]. In the proof of
heorem 4.14, the nonlinear term is bounded as in (62) with sh replaced by ûh . In [72, (3.27), (3.28)] it is shown

hat ∥ûh∥L∞ and ∥∇ûh∥L∞ can be bounded in terms of ∥u∥2 and ∥u∥3, respectively, but with constants that are not
cale-invariant. Careful dimensional analysis shows that

∥û ∥ ∞ ≤ C |Ω |
4−d
2d ∥u∥ , ∥∇û ∥ ∞ ≤ C |Ω |

4−d
2d ∥u∥ .
h L 2 h L 3
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A new aspect for non inf–sup stable pairs of finite element spaces is that one cannot apply test functions that
are discretely divergence-free, since such finite element functions do not necessarily exist. Consequently, the error
equation contains a term that couples the discrete pressure ph , which does not appear in the error equation for
inf–sup stable pairs of finite element spaces like (38), and the divergence of the velocity test function. The finite
element pressure ph is compared with p̂h , which is defined as the Lagrange interpolant of the continuous pressure
p to which one subtracts its mean. Property (78) is required for bounding the term (∇ · ûh, λh), which appears in
he error equation, where λh = p̂h − ph . Using that u is divergence-free, integration by parts, the range of σ r−1

h ,
nd (78) yields

|(∇ · ûh, λh)| = |(∇ · (ûh − u), λh)| = |(ûh − u, ∇λh)| = |(ûh − u, σ ∗

h (∇λh))|.

rom this equation, one obtains with (76) and the approximation properties of ûh

|(∇ · ûh, λh)| ≤ Cα−1
1 h2r

∥u∥
2
r+1 +

1
4

spres(λh, λh),

such that the second term on the right-hand side can be absorbed into the left-hand side of the error equation. □

From the error bound (77), one observes the order of convergence r , r ≥ 2, for the L∞(L2) error of the
velocity. The error bound (77) is the analog to (61) for the Galerkin method with grad–div stabilization and inf–sup
stable elements. As for inf–sup stable pairs of finite element spaces, an asymptotic optimal choice of the grad–div
stabilization parameter with respect to the mesh width is µ ∼ 1, due to the appearance of both µ and µ−1 on
the right-hand side of (77). It is noted in [72] that under assuming additional regularity of the pressure, the choice
µ ∼ h is likewise asymptotically optimal.

From the point of view of the physical dimension, the parameters {τp,K } are time scales. Hence, the inverse of
α1 and α2 are viscosity parameters. In fact, for the steady-state Stokes equations with viscosity, the parameter for
LPS pressure stabilizations, and also several other pressure stabilizations, has the form Ch2

K /ν, e.g., compare the
review on pressure stabilizations [71]. But for these equations, one cannot derive robust error bounds, because the
dependency on inverse powers of the viscosity enters from estimating the pressure term. Inspecting the analysis
from [72], which leads to the robust estimate (77), shows that the choice τp,K = Ch2

K /ν does not enable to derive a
robust estimate since τp,K has to be bounded from above without having the factor ν available in the corresponding
expression.

Another method analyzed in [72] uses LPS stabilization of the velocity gradient in the discrete momentum
equation instead of grad–div stabilization: Find uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r such that

(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) − (∇ · vh, ph)

+

∑
K∈Th

τν,K
(
σ ∗

h (∇uh), σ ∗

h (∇vh)
)

K = (f , vh) ∀ vh ∈ Vh,r , (79)

(∇ · uh, qh) + spres(ph, qh) = 0 ∀ qh ∈ Qh,r ,

here the nonlinear term is defined in (44) and the LPS pressure term in (74). The LPS velocity term is a viscous
erm, hence the parameters {τν,K } represent viscosity parameters.

heorem 4.15 (Non inf–sup Stable Pairs of Finite Element Spaces with Velocity Gradient LPS Term). Let T > 0,
ssume that the solution of (5) is sufficiently smooth, let r ≥ 2, and let the stabilization parameters satisfy

α1h2
K ≤ τp,K ≤ α2h2

K , τ1 ≤ τν,K ≤ τ2, (80)

or some positive constants α1, α2, τ1, and τ2, independent of h. Then, there is a positive constant Mu,p, which
epends on ∥u0∥r and(∫ T

0

((
α2 + τ−1

1

)
∥p(s)∥2

Hr /R + T ∥∂t u(s)∥2
r +

(
ν + τ1 + T |Ω |

4−d
d ∥u(s)∥2

2

)
∥u(s)∥2

r+1

)
ds
)1/2

,

uch that for t ∈ [0, T ] the error bound

∥u(t) − uh(t)∥0 ≤ Mu,p exp
(

L(T )
)

hr
+ Chr+1

∥u∥L∞(Hr+1)
2
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holds, where L(T ) is given by

L(T ) = 1 + C
∫ T

0
|Ω |

4−d
2d

(
∥u(s)∥3 + |Ω |

4−d
2d

∥u(s)∥2
2

τ2

)
ds.

roof (Sketch). Again, the presentation will be restricted to the main issues in the proof of Theorem 4.15, see the
roof of [72, Theorem 4.5] for more details.

As in the proof of Theorem 4.14, uh will be compared with ûh satisfying (78). To bound error terms containing
the pressure appropriately, ph is compared with p̂h = Rh p, where p̂h satisfies a property analogous to (78) for
scalar functions

(p − p̂h, qh) = 0, ∀ qh ∈ Yh,r−1. (81)

Denote by φh = ûh − uh and by λh = p̂h − ph . The main step in the proof is the bound of the nonlinear
convective term in the error equation. It will be shown that this term can be bounded with a constant independent
of inverse powers of the viscosity using only the pressure stabilization. Arguing as in (46), the first step of bounding
the nonlinear term is

|b(uh, uh, φh) − b(ûh, ûh, φh)| ≤ ∥∇ûh∥L∞∥φh∥
2
0 +

1
2

((∇ · φh)ûh, φh).

For the second term on the right-hand side, the key observation is that it has a structure that appears in the discrete
continuity equation. A decomposition of this term will be applied that allows to utilize the error equation with
respect to the continuity equation, introducing in this way spres(·, ·). More precisely, the decomposition has the form

((∇ · φh)ûh, φh) =
(
∇ · φh, σ

r
h (ûh · φh)

)
+
(
∇ · φh, (I − σ r

h )(ûh · φh)
)
. (82)

or the first term on the right-hand side of (82), one can use
(
0, σ r

h (ûh · φh)
)

as test function in the error equation,
ince by the definition of the projection operator, it is an admissible choice. In this way, a link between the pressure
tabilization and the estimate of the nonlinear convective term is established(

∇ · φh, σ
r
h (ûh · φh)

)
= spres(ph, σ

r
h (ûh · φh)) + (∇ · ûh, σ

r
h (ûn+1

h · φh)). (83)

sing the approximation properties of ûh and the L2(Ω ) stability of the operator σ r
h , one obtains for the second

erm on the right-hand side of (83)

(∇ · ûh, σ
r
h (ûn+1

h · φh)) ≤ Ch2rτ2∥u∥
2
r+1 + Cτ−1

2 ∥ûh∥
2
L∞∥φh∥

2
0.

or the first term on the right-hand side of (83), one adds and subtracts p̂h in the first argument of spres(·, ·). Since
pres(·, ·) is a continuous, symmetric, positive semi-definite bilinear form, compare Assumptions A1 and A2 for a
ore general pressure stabilization, there holds in particular a Cauchy–Schwarz inequality. Utilizing this Cauchy–
chwarz inequality, the bound of the pressure stabilization parameters (80), the L2(Ω ) stability of σ r

h , the inverse
nequality (8), the approximation properties of p̂h , and the approximation properties (75) of the fluctuation operator
ives

spres(ph, σ
r
h (ûh · φh))

≤
1
4

spres( p̂h, p̂h) + 3spres(σ r
h (ûh · φh), σ r

h (ûh · φh)) +
1
8

spres(λh, λh)

≤ Cα2h2 (
∥σ ∗

h (∇(p − p̂h))∥2
0 + ∥σ ∗

h (∇ p)∥2
0 + ∥σ ∗

h (∇(σ r
h (ûh · φh)))∥2

0

)
+

1
8

spres(λh, λh)

≤ Cα2h2r
∥p∥

2
r + Cα2∥ûh∥

2
L∞∥φh∥

2
0 +

1
8

spres(λh, λh).

o conclude the estimate of the nonlinear term, one needs to bound the second term on the right-hand side of (82).
o this end, the following result from [78, Theorem 2.2] is applied: for v ∈ W 1,∞(Ω )d and vh ∈ Yh,r , it holds

∥(I − σ r
h )(v · vh)∥0 ≤ Ch∥∇v∥L∞∥vh∥0. (84)

Applying (84) to v = ûh and vh = φh together with the inverse inequality (8) yields( r )
∞ ∞

2
(∇ · φh), (I − σh )(ûh · φh) ≤ C∥∇ · φh∥0h∥∇ûh∥L ∥φh∥0 ≤ C∥∇ûh∥L ∥φh∥0.
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Collecting all estimates leads to⏐⏐b(uh, uh, φh) − b(ûh, ûh, φh)
⏐⏐ ≤ C

(
∥∇ûh∥∞ + (α2 + τ−1

2 )∥ûh∥
2
∞

)
∥φh∥

2
0.

+ Ch2r (α2∥p∥
2
r + τ2∥u∥

2
r+1

)
+

1
8

spres(λh, λh). (85)

he first term on the right-hand side is handled as in the previous theorems by applying Gronwall’s lemma, the
econd term becomes part of the error bound, and the last term is absorbed into the left-hand side of the error
quation. We want to emphasize that in the above proof, it is essential to have velocity and pressure finite element
paces containing polynomials of the same degree. This fact comes from the application of (84) to a function in
he velocity space (vh ∈ Yh,r ) together with the use of σ r

h (ûh · φh) as a test function for the pressure.
To finish with the sketch of the proof of Theorem 4.15, it shall be indicated in which step property (81) is

equired. Since there is no grad–div stabilization in the method, there is no direct control on the divergence of the
rror and, as a consequence, the following term, which appears in the error equation, cannot be bounded in the
ame way as in Theorem 4.14. Using the orthogonality property (81), ∥∇ · φh∥0,K ≤

√
d∥∇φh∥0,K , τν,K > τ1, and

the approximation properties of p̂h gives

(p − p̂h, ∇ · φh) = (p − p̂h, σ
∗

h (∇ · φh))

≤

⎛⎝∑
K∈Th

τ−1
ν,K ∥p − p̂h∥

2
0,K

⎞⎠1/2
√

d

⎛⎝∑
K∈Th

τν,K ∥σ ∗

h (∇φh)∥2
0,K

⎞⎠1/2

≤ Ch2rτ−1
1 ∥p∥

2
r +

1
4

∑
K∈Th

τν,K ∥σ ∗

h (∇φh)∥2
0,K . (86)

he second term on the right-hand side is now absorbed into the left-hand side of the error equation. □

Hence, also method (79) provides convergence of order r for the velocity in L∞(L2) with constants independent
f inverse powers of ν.

We like to mention that velocity fluctuations are also used to define turbulence models for the simulation of
ncompressible turbulent flows. In so-called three-scale algebraic VMS-multigrid methods, proposed in [79,80],
he deformation tensor of the velocity fluctuations is the main part of the turbulence model and in the three-scale
oarse space projection-based VMS method, proposed in [81], fluctuations of the deformation tensor are the main
art, e.g., see [82] for a survey of VMS methods. The parameter used in these methods depends typically on the
umerical solution and therefore it is nonlinear.

Inspecting the proof of Theorem 4.15, it can be observed that the LPS term with the velocity gradient can be
eplaced with a respective LPS term for the divergence∑

K∈Th

τµ,K
(
σ r

h (∇ · uh), σ r
h (∇ · vh)

)
K ,

ith τµ,K ∼ 1, and the same order of convergence as in Theorem 4.15 can be proved, compare [72, Theorem 4.6].
There is another LPS method for equal order pairs of finite element spaces for which a finite element error

nalysis can be found in the literature. This method includes term-by-term LPS stabilization for the convective
erm, the divergence and the pressure. However, the available error bound for this method is not robust. For this
eason, its discussion is postponed to Section 4.4.2.

It was already emphasized in the proof of Theorem 4.15 that the convective term in the error equation can be
ounded with a constant independent of inverse powers of the viscosity using only the pressure stabilization. Now,
he natural question is whether using only an appropriate pressure stabilization can lead to a method where error
ounds of this kind can be derived. This question is answered positively in [83]. While finishing the present review,
e became aware of Ref. [84], where equal order pairs of finite elements with symmetric pressure stabilization are

onsidered for discretizing the evolutionary Navier–Stokes equations. Robust error bounds of order r are proved for
he L∞(L2) error of the velocity. We found that essentially the same idea explained in the proof of Theorem 4.15
s applied to obtain the bounds in [84].

A fully discrete version of the following method with symmetric pressure stabilization, see Assumption A1

elow for justifying this notion, using the implicit Euler scheme, is studied in [83]: Find uh : (0, T ] → Vh,r ,
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ph : (0, T ] → Qh,r such that

(∂t uh, vh) + ν(∇uh, ∇vh) + b(uh, uh, vh) − (∇ · vh, ph) = (f , vh),
(∇ · uh, qh) + αspres(ph, qh) = 0, (87)

where the nonlinear term is defined in (44), α is a parameter whose units are time over length squared (i.e., the units
of the inverse of the kinematic viscosity) and the pressure stabilization term should satisfy a number of assumptions.

Remark 4.16 (Assumptions on the Pressure Stabilization Term).

A1 The pressure stabilization spres : Qh,r × Qh,r → R is a symmetric, positive semi-definite bilinear form.
A2 Continuity. For all qh ∈ Qh,r , it holds spres(qh, qh) ≤ C∥qh∥

2
0 with a constant C > 0 independent of h and ν.

A3 Weak consistency. There exists a projection Πh : Q → Qh,r such that

∥q − Πhq∥0 ≤ Chs
∥q∥s, q ∈ Q ∩ H s, 0 ≤ s ≤ r + 1,

and

spres(Πhq,Πhq)1/2
≤ Chs

∥q∥s, q ∈ Q ∩ H s, 1 ≤ s ≤ r.

Typically, Πh is the L2(Ω ) projection or some interpolant for non-smooth functions like the Scott–Zhang
interpolant.

A4 There is an interpolation operator Ir
h : V → Vh,r such that for 1 ≤ s ≤ r and for all v ∈ V and qh ∈ Qh,r

(∇ · (v − Ir
hv), qh) ≤ C

⎛⎝∑
K∈Th

h−2
K ∥v − Il

hv∥2
0,K + ∥v − Ir

hv∥2
1

⎞⎠ 1
2

spres(qh, qh)
1
2 ,

and

∥v − Ir
hv∥m ≤ Chs+1−m

|v|s+1 ∀ v ∈ H s(Ω )d ,

for m ∈ {0, 1}, 1 ≤ s ≤ r , with C > 0 independent of h and ν.

Assumptions A1–A4 are quite similar to those in [85], where finite element methods for the time-dependent
tokes equations are analyzed. Pressure stabilizations can be divided into two classes, e.g., see the survey
71]: residual-based stabilizations and stabilizations that use only the pressure. It turns out that practically all
tabilizations of the latter class satisfy Assumptions A1–A4: the stabilization of Brezzi and Pitkäranta [86], the

stabilization of Dohrmann and Bochev [87], the orthogonal subscale stabilization proposed in [88], the classical
LPS stabilization [89], the term by term local projection stabilization from [73], and the continuous interior penalty
(CIP) stabilization proposed in [85,90].

The following error estimate is derived in [83, Theorem 2].

Theorem 4.17 (Non inf–sup Stable Pairs of Finite Element Spaces with Symmetric Pressure Stabilization). Let,
or T > 0, the solution of (5) be sufficiently regular and let r ≥ 2. Let Assumptions A1–A4 for the pressure
tabilizations be satisfied, and let α ∼ 1. Then, there holds for t ∈ [0, T ] that

∥u(t) − uh(t)∥0 ≤ Mu,p exp
(

L(T )
2

)
hr

+ Chr+1
∥u∥L∞(Hr+1),

here Mu,p > 0 depends on(
∥u0∥

2
r +

∫ T

0

[
α ∥p(s)∥2

Hr /R + T ∥p(s)∥2
Hr+1/R + T ∥∂t u(s)∥2

r

+

(
ν + α−1

+ |Ω |
4−d

d ∥u(s)∥2
2

)
∥u(s)∥2

r+1

]
ds
)1/2

and L(T ) is defined by

L(T ) = 1 + C
∫ T

0
|Ω |

4−d
2d

(
∥u(s)∥3 + α |Ω |

4−d
2d ∥u(s)∥2

2

)
ds.
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Table 4
Numerical examples for the Navier–Stokes equations,
number of degrees of freedom (including Dirichlet
nodes) for non inf–sup stable pairs of finite element
spaces on triangular grids.

P2/P2

Level Velocity Pressure

3 290 145
4 1090 545
5 4226 2113
6 16642 8321
7 66050 33025

Proof (Sketch). For proving Theorem 4.17, uh is compared with sh defined as the velocity component of the pair
(sh, lh) ∈ (Vh,r , Qh,r ) solving

(∇sh, ∇vh) − α(lh, ∇ · vh) = (∇u, ∇vh) ∀ vh ∈ Vh,r ,

(∇ · sh, qh) + αspres(lh, qh) = 0 ∀ qh ∈ Qh,r .

A standard finite element error analysis shows that ∥sh − u∥0 + h∥∇(sh − u)∥0 + αhspres(lh, lh)1/2
≤ Chr+1

∥u∥r+1.
The finite element pressure solution ph is compared with p̂h = Πh p, where Πh is the projection in Assump-

ion A3. The same arguments as in the proof of Theorem 4.15 are applied to bound the nonlinear term. Estimating
he term (p − p̂h, ∇ · φh), with φh = sh − uh , is different than in (86) and it requires to increase the regularity
ssumptions on the pressure from H r (Ω ) to H r+1(Ω ), compared with Theorem 4.15. Integrating by parts yields

(p − p̂h, ∇ · φh) = −(∇(p − p̂h), φh) ≤ Ch2r T ∥p∥r+1 +
1
T

∥φh∥
2
0,

uch that the second term on the right-hand side can be handled with Gronwall’s lemma. □

Theorem 4.17 is formulated for quadratic and higher order finite elements. However, as stated in [83, Remark 3],
n analogous error bound can be proved also for linear elements. Concerning low order methods, in [91] a weakly
ivergence-free method using continuous linear elements for the velocity and piecewise constants for the pressure is
onsidered. A stabilization term for the pressure is added to the method that is enhanced with a discrete divergence-
ree convective field. A priori bounds of order h are obtained for the L∞(L2) error of the velocity with constants
ndependent of inverse powers of the viscosity.

xample 4.18 (Non inf–sup Stable Pairs of Finite Element Spaces). Numerical results for method (73) with grad–div
nd LPS pressure stabilization and for method (87) with only LPS pressure stabilization are presented in Fig. 13.
xactly the same problem and the same meshes are considered as in Example 4.4. Simulations were performed

or the P2/P2 pair of finite element spaces, see Table 4 for the corresponding numbers of degrees of freedom. For
ethod (73), the grad–div stabilization parameter was set to be µ = 0.1 and the pressure stabilization parameter to

e τp,K = 1.0. The pressure stabilization parameter in method (87) was chosen to be τp,K = 0.1.
The numerical results in Fig. 13 show for small viscosity coefficients and on coarse grids second order error

eduction for the velocity error in L∞(L2), as predicted by numerical analysis. If the spatial grids become sufficiently
ne with respect to the viscosity coefficient, an increase of the order can be observed in this example for both
ethods. □

.3. Methods of order r + 1/2 in L∞(L2)

This section surveys methods where the L∞(L2) error of the velocity can be proved to be of order r + 1/2 with
robust error bound. These methods are a special realization of the SUPG method, a CIP method, a modification

f the method with LPS stabilization of the velocity gradient (79), a similar method with a different type of LPS
tabilization, and a method based on H (div)-conforming discontinuous Galerkin elements. Except for the last one,

ll the methods are formulated for equal order pairs of finite element spaces.
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Fig. 13. Non inf–sup stable pair of finite element spaces, method (73) (left) and method (87) (right).

Since the SUPG or streamline diffusion method is one of the most popular finite element discretizations for
calar convection–diffusion equations, it is natural that it is utilized also in the context of the incompressible Navier–
tokes equations (5). In fact, probably the first paper that analyzes a finite element method for the time-dependent
avier–Stokes equations in the standard velocity–pressure formulation for high Reynolds number flows (small ν),

paper [13], uses the SUPG method as stabilization.
A main topic of the analysis of the SUPG method for scalar convection–diffusion equations presented in [24] is

the choice of the stabilization parameter. By construction, this parameter is a time scale, see Section 3.2. However,
the major difficulties of the numerical solution of these equations arise from very small spatial structures, the layers,
such that it seems to be reasonable that the stabilization parameter should depend on the local mesh width and not
on the length of the time step. The first numerical analysis for stabilization parameters depending on the mesh
width was provided in [24], e.g., by considering the continuous-in-time situation, where a time step is not present.
However, for the SUPG method in the framework of the incompressible Navier–Stokes equations, an analysis of the
continuous-in-time situation does not yet seem to be available, to the best of our knowledge. For this reason, unlike
to the other methods discussed in this paper, a fully discrete version of the SUPG stabilization will be discussed
here.

In [13], a SUPG method is analyzed for space–time finite elements, where velocity and pressure spaces consist
of continuous piecewise linear functions (P1) in space and discontinuous piecewise linear functions in time. To the
best of our knowledge, there seems to be no extension of this analysis available to higher order finite elements in
space. Hence, the presentation below will be restricted to this case. A main assumption of the analysis in [13] is
that ∆t ∼ h.

Since it suffices for the discussion of the estimate of the velocity error in L∞(L2) and it simplifies the presentation
considerably, the SUPG method will be considered here only in a form which was analyzed in [13] for |∇ · uh | ≥

> 0, where C is an arbitrary constant not depending on ν and the mesh width. Let 0 = t0 < t1 < · · · < t N
= T ,

enote by Ωn
= Ω × (tn−1, tn), Vn

h,1 = Vh,1 × P1(tn−1, tn), and Qn
h,1 = Qh,1 × P1(tn−1, tn). Then, the SUPG method

eads as follows: Find (uh, ph) ∈ Vn
h,1 × Qn

h,1 such that for n = 0, 1, . . . , N and all (vh, qh) ∈ Vn
h,1 × Qn

h,1

(∂t uh, vh)Ωn + aSUPG(uh; (uh, ph), (vh, qh)) + µ(∇ · uh, ∇ · vh)Ωn

+

∑
K∈Th

δK (∂t uh, ∂t vh + (uh · ∇)vh + ∇qh)K n + (un
h,+ − un

h,−, vn
h,+)

= (f , vh)Ωn +

∑
K∈Th

δK (f , ∂t vh + (uh · ∇)vh + ∇qh)K n , (88)
38



B. Garcı́a-Archilla, V. John and J. Novo Computer Methods in Applied Mechanics and Engineering 385 (2021) 114032

a

N
a

T
i
w
(

f

P

a
u

A

where K n
= K × (tn−1, tn),

aSUPG(wh; (uh, ph), (vh, qh))

= ν(∇uh, ∇vh)Ωn + ((wh · ∇)uh, vh)Ωn +
1
2

(∇ · wh, uh · vh)Ωn − (∇ · vh, ph)Ωn + (∇ · uh, qh)Ωn

+

∑
K∈Th

δK ((wh · ∇)uh + ∇ ph, ∂t vh + (wh · ∇)vh + ∇qh)K n ,

nd

vn
±

= lim
s→0±

v(tn
+ s), u0

−
= u0.

ote that in contrast to formulation (18) for the scalar equations, the temporal derivative of the velocity test function
ppears. The following error estimate is proved in [13].

heorem 4.19 (Error Estimate for the SUPG Method). Assume that the solution of the Navier–Stokes equations (5)
s sufficiently smooth for T > 0. Let δK = δ ∼ h, ∆t ∼ h, µ ∼ h, and ν ≤ h. Then, for sufficiently small mesh
idth h, there is a constant C that does not depend on h and ν such that the velocity solution of the SUPG method

88) satisfies

∥u(tn) − un
h∥0 ≤ Ch3/2 (89)

or all time instants tn , n = 0, . . . , N.

roof (Sketch). The error analysis in [13] is performed in the norm

|||(v, q)|||2Sn =
1
2

(
∥vn

−
∥

2
0 +

n−1∑
l=1

∥vl
+

− vl
−
∥

2
0 + ∥v0

+
∥

2
0

)
+ ν∥∇v∥2

0,Sn

+ δ∥∂t v + (uh · ∇)v + ∇q∥
2
0,Sn + µ∥∇ · v∥2

0,Sn , (90)

with Sn
= Ω × (0, tn). It is clear that the bound (89) is obtained as a consequence of bounding the error in the

norm (90).
First, a stability estimate for the discrete solution is proved in [13]. This estimate is derived in the usual way

by utilizing the discrete solution as test function. As final step, a discrete Gronwall inequality is applied, which
requires that the length of the time step, and since ∆t ∼ h is assumed, the mesh width, is sufficiently small.

The proof of the error bound starts with considering the error equation, which is obtained by subtracting the
discrete equation (88) from the continuous equation. Splitting the errors u − uh = (u − Ihu) − (Ihu − uh) = η − φh

nd p − ph = (p − Jh p) − (Jh p − ph) = (p − Jh p) − λh , where Ih and Jh are interpolation operators with the
sual interpolation properties, and rearranging terms of the error equation yields

|||(φh, λh)|||2Sn = (∂tη + (uh · ∇)η, φh)Sn + (∇ · η, λh)Sn +

n−1∑
l=0

∑
K∈Th

δν(∆η, ∂tφh + (uh · ∇)φh + ∇λh)K l + · · · .

pplying integration by parts gives

|||(φh, λh)|||2Sn = −(η, ∂tφh)Sn −

n−1∑
l=0

(ηl+1
−

, φl+1
h,−) − (ηl

+
, φl

h,+)

− (η, (uh · ∇)φh)Sn − (∇ · uh, η · φh)Sn − (η, ∇λh)Sn

+

n−1∑
l=0

∑
K∈T

δν(∆η, ∂tφh + (uh · ∇)φh + ∇λh)K l + · · · .
h
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Concentrating on some important terms, using the Cauchy–Schwarz inequality and Young’s inequality lead to

|||(φh, λh)|||2Sn ≤
2
δ
∥η∥

2
0,Sn +

δ

8
∥∂tφh + (uh · ∇)φh + ∇λh∥

2
0,Sn

+ 2δν2
n−1∑
l=0

∑
K∈Th

∥∆η∥
2
0,K l +

δ

8
∥∂tφh + (uh · ∇)φh + ∇λh∥

2
0,Sn + · · · . (91)

The second and fourth terms on the right-hand side of (91) are absorbed by the contribution of the SUPG term
on the left-hand side. Using the interpolation property of ∥η∥0,Sn and the choice of δ gives that the first term is of
order h3, with respect to the square of the error. The asymptotic of δ and the condition that ν ≤ h lead also for the
third term of (91) to third order.

There are even more terms leading to order 3/2, but in this sketch of the proof, it is concentrated to terms that
are related to the SUPG stabilization. The final step of the proof is again the application of a discrete Gronwall
lemma. □

An error analysis of the SUPG method applied to the non-conforming Crouzeix–Raviart finite element of lowest
order and combined with the backward Euler scheme as temporal discretization is presented in [92]. The SUPG
stabilization parameter depends on the length of the time step. Robust estimates are derived. For a certain relation
of the mesh width, the length of the time step, and a stabilization parameter for a velocity jump term, the velocity
error in L∞(L2) is proved to be of order 4/3.

The stabilization terms of the SUPG method are part of a two-scale residual-based variational multiscale (VMS)
method for the simulation of turbulent incompressible flows proposed in [14]. This VMS method possesses two more
stabilization terms. Recent studies of a two-dimensional flow at high Reynolds number and at three-dimensional
turbulent channel flows in [93,94] show that the results obtained with the SUPG method and the residual-based
VMS method are similarly accurate.

In [90], a CIP finite element method to approximate the solution of the Navier–Stokes equations (5) is considered.
Equal order approximations of the velocity and pressure (uh, ph), belonging to the spaces Vh,r and Qh,r , respectively,
are taken and the boundary conditions are weakly imposed in the method. Incompressibility, convective dominance,
and pressure are stabilized by adding the following stabilization terms to the Galerkin formulation:

j(uh, vh) :=

∑
K∈Th

∑
F∈∂K

∫
F

h2
F [|∇uh |]F : [|∇vh |]F ds,

juh (uh, vh) :=

∑
K∈Th

∑
F∈∂K

∫
F

h2
F |I 1

h uh · nF |
2

[|∇uh |]F : [|∇vh |]F ds, (92)

ι(ph, qh) =

∑
K∈Th

∑
F∈∂K

∫
F

h2
F [|∇ ph |]F · [|∇qh |]F ds,

where the same notations as for convection–diffusion equations are used. In addition, I 1
h uh denotes the interpolation

of uh onto the space Vh,1 of continuous piecewise linear polynomials.
The robust, with respect to ν, stability of the method relies on the fact that the stabilization terms (92) control

some interpolation errors of the streamline derivative, the divergence, and the pressure gradient. More precisely,
let rhv denote the Oswald quasi-interpolant, compare [90, Definition 1], then the following bounds hold for any
wh ∈ Vh,1, vh ∈ Vh,r , qh ∈ Qh,r , see [90, Lemma 3])

∥h1/2((wh · ∇)vh − rh((wh · ∇)vh))∥2
0 ≤ C1 jwh (vh, vh),

∥h1/2(∇ · vh − rh(∇ · vh))∥2
0 ≤ C2 j(vh, vh), (93)

∥h1/2(∇qh − rh(∇qh))∥2
0 ≤ C3ι(qh, qh),

where C1, C2, C3 are positive constants.4

4 We remark that the error analysis of the CIP method presented here follows closely [90], although, contrary to most methods in the
present paper, the analysis and the corresponding estimates are not necessarily dimensionally correct.
40
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Concerning the viscosity-independent control of the divergence, the following result is applied in the error
analysis of the method, see [90, Lemma 7],

C∥h1/2
∇ · uh∥

2
0 ≤ j(uh, uh) + ι(ph, ph) + ∥uh · n∥

2
0,∂Ω . (94)

Let Π r
h denote both, the L2(Ω ) orthogonal projection onto Vh,r and Qh,r , then the following bound, analogous to

(84), is also essential in the error analysis, see [90, Corollary 1] and [78, Theorem 2.2],

∥Π r
h (u · vh) − u · vh∥0 ≤ Ch∥∇u∥L∞∥vh∥0, ∀ u ∈ W 1,∞(Ω )d , vh ∈ Vh,r . (95)

In the following theorem, whose proof can be found in [90, Theorem 2, Corollary 3], the rate of convergence of
the velocity is stated.

Theorem 4.20 (Error Estimate for the CIP Method). Let the solution of (5) be sufficiently smooth and assume
ν < h. Then, the following bound holds for the velocity approximation uh of the CIP method with stabilization
terms (92)

∥u − uh∥L∞(L2) ≤ C(T, u, p)hr+1/2,

where C(T, u, p) does not depend on inverse powers of ν.

Proof (Sketch). For proving the statement of Theorem 4.20, uh is compared with Π r
h u and ph with Π r

h p. Denote
φh = Π r

h u − uh , η = u − Π r
h u, and λh = Π r

h p − ph . Some details concerning the bounds of the more involved
terms appearing in the error equation will be presented.

First, terms that come from a decomposition of the nonlinear terms in the error equations are considered. One of
them is (η, (uh ·∇)φh). Adding and subtracting I 1

h uh and using the orthogonality properties of the L2(Ω ) projection
ith respect to the range of rh yield

(η, (uh · ∇)φh) = (η, ((uh − I 1
h uh) · ∇)φh) + (η, (I 1

h uh · ∇)φh − rh(I 1
h uh · ∇φh)). (96)

or the first term on the right-hand side, one obtains after some manipulations, including inverse inequalities and
he L∞(Ω ) stability of the L2(Ω ) projection,

(η, ((uh − I 1
h uh) · ∇)φh) ≤ C∥∇u∥L∞

(
∥φh∥

2
0 + h−1/2

∥η∥
2
0

)
.

he second term on the right-hand side of (96) is a truncation error, even of higher order than 2r +1. For this term,
pplying (93), one can prove

(η, I 1
h uh · ∇φh − rh(I 1

h uh · ∇φh)) ≤ Cε−1
1 h−1

∥η∥
2
0 + ε1C1 juh (φh, φh),

here ε1 is any positive parameter. Note that the square root of the first term on the right-hand side is of order
+ 1/2.

For the term (∇ · uh, η · φh), appearing also in the error equation, the control of the divergence given by (94) is
pplied.

Bounding the term (∇ · uh, u · φh) covers three pages in the proof of [90, Theorem 2]. The first observation is
hat one can take vh = 0 and qh = Π r

h (u · φh) in the error equation, which gives

(∇ · uh,Π
r
h (u · φh)) =

(
uh · n,Π r

h (u · φh)
)
∂Ω

− ι(ph,Π
r
h (u · φh)).

hen, adding and subtracting Π r
h (u · φh) and using this equality yield

(∇ · uh, u · φh) = (∇ · uh, u · φh − Π r
h (u · φh)) +

(
uh · n,Π r

h (u · φh)
)
∂Ω

− ι(ph,Π
r
h (u · φh)).

After some work and with the help of (95), one finally arrives at

(∇ · uh, u · φh) ≤ Cε2
(
ι(Π r

h p,Π r
h p) + ι(λh, λh)

)
+ Cε−1

2 h∥∇u∥
2
L∞∥φh∥

2
0 + Cε−1

2 ∥u∥
2
L∞ j(φh, φh),

for any positive parameter ε2. Then, it can be observed that, apart from applying (95), the stabilization terms included
to achieve the control over the divergence and the gradient of the pressure are essential to finish the estimate of this

term.
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Finally, another term appearing in the error equation in the proof of [90, Theorem 2] can be bounded as follows∑
K∈Th

∑
F∈∂K

∫
∂ F

h2
F |I 1

h uh · nF |
2 [⏐⏐∇Π r

h u
⏐⏐]

F :
[⏐⏐∇φh

⏐⏐]
F ds

≤ ε3 juh (φh, φh) + Cε−1
3

(
h∥∇u∥

2
L∞∥φh∥

2
0 +

(
∥u∥

2
L∞ + h2

∥∇u∥
2
L∞

)
ι(Π r

h u,Π r
h u)

)
,

or any positive parameter ε3. In this inequality, one can observe the application of the stabilization term added to
ontrol the streamline derivative. □

Fully discretized schemes with a CIP method as stabilization are analyzed in [95] for the evolutionary Oseen
quations (29). Concretely, the implicit Euler scheme, BDF2, and a pressure-projection method based on the implicit
uler scheme are studied. Robust error estimates for the velocity error in L∞(L2) of order r + 1/2 are proved.

Method (79), which is of order r , see Theorem 4.15, can be modified such that the order of error reduction is
increased by 1/2 in the convection-dominated case. This modification consists simply in using different scalings of
the LPS stabilization parameters than for the method from Theorem 4.15. The analysis of the modified method
requires a little bit higher regularity assumptions on the solution of (5) than for the error bound presented in
Theorem 4.15. A fully discrete version of the modified method is analyzed in [72].

Theorem 4.21 (Non inf–sup Stable Pairs of Finite Element Spaces with Velocity Gradient LPS Term and Modified
Stabilization Parameters). Let T > 0, assume sufficient regularity of the solution of (5), and let r ≥ 2. Furthermore,

ssume that the LPS pressure stabilization parameters in method (79) satisfy

α1hK ≤ τp,K ≤ α2hK ,

nd the LPS velocity gradient stabilization parameters satisfy

β1hK ≤ τν,K ≤ β2hK , (97)

ith non-negative constants α1, α2, β1, and β2. Assume that ν ≤ ∥u∥L∞ h, and

8(1 + c2
s )∥ûn+1

h ∥
2
L∞

α1

β1
≤

1
16

, (98)

here cs is the stability constant of σ r−1
h in L2(Ω ). Then, there exists a positive constant Mu,p depending on ∥u0∥r h

nd ( ∫ T

0

( (
α2 + β−1

1

)
∥p(s)∥2

Hr+1/R + T h∥∂t u(s)∥2
r+1

+

(
∥u∥L∞(L∞) + |Ω |

4−d
d
(
β−1

1 ∥u(s)∥2
2 + T h∥u(s)∥2

3

) )
∥u(s)∥2

r+1

)
ds
)1/2

uch that for t ∈ [0, T ] the error estimate

∥u(t) − uh(t)∥0 ≤ Mu,p exp
(

L(T )
2

)
hr+1/2

+ Chr+1
∥u∥L∞(Hr+1),

olds with L(T )

L(T ) = 1 + C
∫ T

0
|Ω |

4−d
2d

(
∥u(s)∥3

(
1 + α2h |Ω |

4−d
2d ∥u(s)∥3

))
ds.

roof (Sketch). Very similar arguments can be applied as in the proof for the fully discrete scheme from
72, Theorem 6.1]. Here, only the main differences with respect to the proof of Theorem 4.15 will be mentioned,
hich allow to prove order r + 1/2 for the L∞(L2) error of the velocity. The same notations are used as in the

proof of Theorem 4.15.
The major new aspects occur in bounding the difference of the nonlinear terms arising in the error equation.

For the method from Theorem 4.15, this bound was presented in some detail in the sketch of the proof. One can
observe that only the LPS pressure stabilization was utilized for obtaining (85) but not the LPS velocity gradient
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Fig. 14. LPS stabilization of the velocity gradient with modified stabilization parameters.

stabilization. For the present method, the whole analysis for the difference of the nonlinear terms in [72] covers
more than four pages. This difference is decomposed into several terms. For one of them, one can derive the estimate⏐⏐b(uh, uh, φh) − b(ûh, ûh, φh)

⏐⏐
≤

(
1

4T
+ C

(
∥∇ûh∥L∞ + α2h∥ûh∥

2
W 1,∞

))
∥φh∥

2
0 +

1
8

spres(λh, λh) +
1
8

∑
K∈Th

τν,K ∥σ ∗

h (∇φh)∥2
0,K

+ Ch2r+1
(
α2∥p∥

2
r+1 + |Ω |

4−d
d
(
β−1

1 ∥u(s)∥2
2 + T h∥u(s)∥2

3

)
∥u∥

2
r+1

)
.

ote that the increased regularity for the pressure is needed at this step in order to gain half an order in the fourth
erm of the error bound. The second term of the bound contains the pressure stabilization and the third term the
elocity stabilization. The first term is handled as usual by applying a Gronwall lemma. Also for bounding another
erm of the decomposition of the difference of the nonlinear terms, one needs both stabilizations included in the

ethod to obtain

|b(u, u, φh) − b(ûh, ûh, φh)| ≤ C |Ω |
4−d

d
(
(β1h)−1

∥u(s)∥2
2 + T ∥u(s)∥2

3

)
∥u − ûh∥

2
0

+
1

4T
∥φh∥

2
0 +

1
4

∑
K∈Th

τν,K ∥σ ∗

h (∇φh)∥2
0,K .

The first term on the right-hand side of is of order O(h2r+1) under assumption (97) for the stabilization parameters
τν,K . The last term on the right-hand side shows that the stabilization of the velocity gradient is again utilized for
this estimate.

For bounding the truncation error, an increased regularity of the temporal derivative of the velocity is needed to
get ∥∂t u − ∂t ûh∥0 ≤ Chr+1

∥∂t u∥r+1.
Condition (98) is needed to bound the term 2spres(σ r

h (û · φh), σ r
h (û · φh)) which appears in the proof, and, in

articular, to absorb part of this bound in the left-hand side of the error equation. □

xample 4.22 (LPS Method with Velocity Gradient Fluctuations and Modified Stabilization Parameters). Again,
the same example and setup for the numerical studies are considered as in Example 4.4.

Numerical results are presented in Fig. 14. For the LPS method from Theorem 4.21, the P2/P2 pair of finite
element spaces was utilized as spatial discretization, see Table 2 for the corresponding numbers of degrees of
freedom. The parameters were chosen to be τp,K = 0.001hK for the pressure stabilization and τν,K = 0.01hK for
he velocity gradient stabilization. The linear systems of equations were solved iteratively with the flexible GMRES

ethod and a coupled multigrid preconditioner. It can be clearly seen from the results that the method behaves
obustly and that the order of reduction of the velocity error in L∞(L2) is 2.5. □

In [96], a different kind of LPS stabilization is analyzed using, as in [72], equal order conforming elements for
elocity and pressure. LPS stabilizations for the velocity gradient and for the pressure are added to the standard
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Galerkin formulation. The LPS stabilization utilizes a mesh of macro elements for the projection (two-level LPS
method). For this two-level method, the error bounds in [96] depend both on the cell diameters of the original
and the macro element meshes, which are assumed to be comparable. Following the error analysis in [96], one
can deduce that, chosen the stabilization parameters to be both of the size of a macro element cell, a rate of error
reduction of order r +1/2 for piecewise polynomials of degree r can be proved. The key points in the error analysis
are similar to those sketched in the proof of Theorem 4.21, with some differences corresponding to the different
kinds of LPS stabilization.5

The last method that will be discussed in this section is a H (div)-conforming discontinuous Galerkin method
ith upwind stabilization.6 An error analysis of this method for the semi-discrete time-dependent Navier–Stokes

quations is presented in [64]. The finite element velocity space Vh,r is the space of functions in H (div,Ω ) that
restricted to a mesh cell K ∈ Th belong to the space RTr (K ) (Raviart–Thomas) or B DMr (K ) (Brezzi–Douglas–
Marini), r ≥ 1. The corresponding pressure space, Qh,r̃ consists of discontinuous polynomials of degree r̃ = r or
˜ = r − 1, respectively. For these spaces, it holds ∇ · Vh,r ⊆ Qh,r̃ . Denote by ∇h the broken gradient, by Fh the
et of all facets, and by Fi

h and F∂
h the subsets of interior and boundary facets, respectively. The jump [[φ]]F of a

function φ and its average {φ}F across the interior facet F ∈ Fi
h are defined by

[[φ]]F = φ+
− φ−, {φ}F =

φ+
+ φ−

2
.

or the boundary facet F ∈ F∂
h , one sets

[[φ]]F = {φ}F = φ.

The method analyzed in [64] reads as follows: Find uh : (0, T ] → Vh,r , ph : (0, T ] → Qh,r̃ satisfying for all
(vh, qh) ∈ (Vh,r , Qh,r̃ )

(∂t uh, vh) + νah(uh, vh) + bh(vh, ph) − bh(uh, qh) + ch(uh, uh, vh) = (f , vh), (99)

with

ah(uh, vh) = (∇huh, ∇hvh) −

∑
F∈Fh

∫
F

[
({∇huh}F nK · [[vh]]F ) + ([[uh]]F · {∇hvh}F nK )

]
ds

+

∑
F∈Fh

∫
F

(
σ

hK
[[uh]]F · [[vh]]F

)
ds,

bh(uh, qh) = −(qh, ∇h · uh),

ch(uh, uh, vh) = ((uh · ∇h)uh, vh) −

∑
F∈Fi

h

∫
F

(uh · nK )[[uh]]F {vh}F ds

+

∑
F∈Fi

h

∫
K

1
2
|(uK · nK )|[[uh]]F [[vh]]F ds,

where σ is a positive parameter that has to be sufficiently large. The discretization of the viscous term is the standard
symmetric interior penalty form. In the discretization of the convective term, an upwind flux is utilized in the last
term.

The proof of the following theorem can be found in [64].

Theorem 4.23 (H (div)-conforming Discontinuous Galerkin Method with Upwind). Let T > 0, assume sufficient
regularity of the solution of (5), and assume ν < h. Then, the following bound holds for the velocity approximation

5 In [96], also the case of a one-level LPS method is considered, in which the projection is defined on the same mesh and the velocity
space has to contain appropriate bubble functions. However, the presented error analysis does not fit in this case. The reason is that the
application of [96, Lemma 2.4] requires to have equal velocity and pressures spaces. The same kind of argument was applied in the proof
of Theorem 4.15, see the comment after Eq. (85) about the application of (84), which is valid only in case of equal velocity and pressures
spaces. Eq. (84) is the analog to [96, (2.17), Lemma 2.4].

6 The presentation of this method follows closely [64] and it is, in contrast to most of the other methods in the present paper, not
necessarily dimensionally correct.
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w

uh computed with method (99)

∥u − uh∥L∞(L2) ≤ (E(u)F(u) + G(u))1/2hr+1/2,

here

E(u) = CeT +∥∇u∥L1(L∞) ,

F(u) = h∥∂t u∥
2
L2(Hr+1) +

(
T + (h + 1)∥u∥L1(W 1,∞)

)
∥u∥

2
L∞(Hr+1),

G(u) = C(h + T )∥u∥
2
L∞(Hr+1).

Proof (Sketch). For proving the statement of Theorem 4.23, the finite element velocity uh is compared with
the Raviart–Thomas interpolation IRTu ∈ Vh,r . Thanks to the orthogonality properties of the Raviart–Thomas
interpolation operator, the following bound can be obtained, see [64, Lemma 5.3],

((u · ∇h)eh, η) ≤ C∥∇u∥L∞

(
∥η∥

2
0 + ∥eh∥

2
0

)
, (100)

where eh = uh − IRTu and η = u − IRTu. More precisely, for the proof of (100) the mean value ⟨u⟩K of u at each
mesh cell K ∈ Th is added and subtracted to the velocity. The following bound holds

∥u − ⟨u⟩K ∥L∞(K ) ≤ ChK ∥∇u∥L∞(K ). (101)

Due to the properties of IRTu, one has for any K ∈ Th

((⟨u⟩K · ∇h)eh, η)K = 0.

Then, applying (101) and the inverse inequality (8) yields

((u · ∇h)eh, η) =

∑
K∈Th

∫
K

((u − ⟨u⟩K ) · ∇h)eh · η dx ≤ C∥∇u∥∞∥η∥0∥eh∥0,

from which (100) is reached by applying Young’s inequality.
For the estimation of the nonlinear term, (100) is used to achieve the following result, see [64, Lemma 5.4],

ch(u, u, eh) − ch(uh, uh, eh) ≤ C(1 + h−1)∥∇u∥L∞

(
∥η∥

2
0 + h2

∥∇hη∥
2
0

)
+ C∥∇u∥L∞∥eh∥

2
0. □

Numerical studies with a smooth solution presented in [64] used the BDM1/P0 pair of spaces. In the case of
small viscosity coefficients and coarse grids, orders of error reduction for the velocity error in L2(Ω ) at the final
time are reported that are larger than 1.5 but notably smaller than 2.

4.4. Methods with non-robust error analysis that behave numerically in a robust way

So far, only methods have been discussed for which robust finite element error estimates can be proved. However,
there are much more methods that behave in practice in a robust way, in particular, all methods which are utilized
for the simulation of incompressible turbulent flows. This section provides a brief survey on such methods for
which error estimates are available that are, however, not robust. Since there are no robust error estimates for these
methods, there is no analytic information on the order of error reduction with respect to the kinetic energy for high
Reynolds number flows simulated on coarse grids.

4.4.1. Large Eddy Simulation and other methods based on spatial averaging
Large Eddy Simulation (LES) is a widely used approach for simulating turbulent incompressible flows. LES

performs a scale separation in resolved (large) and unresolved (small, subgrid) scales by an averaging (filtering) in
space.

The simplest and one of the most popular LES models is the Smagorinsky model [97], which adds to the
momentum equation of the Navier–Stokes equations (5) the nonlinear viscous term(

CSδ
2
∥Du∥FDu,Dv

)
, (102)

where CS > 0 is a user-chosen constant, δ > 0 is the filter width, which is in practice connected to the local mesh
T
size, Du = (∇u + (∇u) )/2 is the velocity deformation tensor, and ∥ · ∥F denotes the Frobenius norm of a tensor.
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The continuous Smagorinsky model is mathematically well understood. Based on the property that the nonlinear
viscous operator is strongly monotone, it is shown in [98] that the variational form of the Smagorinsky model
admits a stable unique solution in two and three dimensions for arbitrarily long time intervals. Concerning the finite
element error analysis, [99] studies the error of the solution of a discrete Smagorinsky-type model to the solution
of the variational Smagorinsky model. The discrete model adds another viscous term of the form (ν0(δ)Du,Dv),
ν0(δ) > 0, to the Smagorinsky model. Then, a robust estimate for the velocity is derived, where the error bound
depends on inverse powers of ν0(δ). For sufficiently smooth solutions of the Smagorinsky model, also an estimate
for ν0(δ) = 0 is proved, where the error bounds, however, depend on inverse powers of δ. For constant δ, even for
small viscosity coefficients and on coarse grids, an optimal order of convergence of the velocity error in L∞(L2) to
the solution of the continuous Smagorinsky model is observed. In [100, Chapter 10], a Smagorinsky-type model is
studied, in which ∥Du∥F in (102) is replaced by ∥Du∥F , where u = g∗u is a filtered (smoothed) velocity field with
n appropriate filter g. In the finite element analysis, the error with respect to the solution of the Navier–Stokes
quations is considered and non-robust error estimates are derived, see [100, Thm. 10.3]. Recently, a robust estimate
f the error between the numerical solution with the Smagorinsky model and the solution of the Navier–Stokes
quations of order 3/2 was proved in [101] under the assumptions that Vh,r and Qh,l is an inf–sup stable pair of
paces with ∇ · Vh,r ⊆ Qh,l . For the Scott–Vogelius pair of spaces Pr/Pdisk

r−1 , r ≥ d, on barycentric-refined grids,
he reduction to rate 3/2 compared with the optimal order r + 1 is r + 1 − 3/2 = r − 1/2. In [101], it is referred to
lowest order pair that satisfies the assumptions, which is proposed in [102]. In this pair, the pressure is piecewise

onstant and for defining the velocity space, a barycentric refinement of the grid for the pressure is applied. Then,
he velocity space is piecewise linear on the barycentric-refined grid, i.e., in each mesh cell of the original grid
here are (d + 1)2 degrees of freedom of the velocity. In addition, some degrees of freedom correspond to normal
erivatives on facets. It turns out that it is not possible to impose Dirichlet conditions in the usual way, such that
he introduction of a penalty term for the tangential component is necessary.

A method that applies the spatial filtering as a post-processing step is studied in [103]. In the first step of this
ethod, an intermediate velocity field wh is computed with the Galerkin finite element method. Then, spatial filtering

s applied to wh via the discrete Stokes filter: Find Ghwh = wh ∈ Vh,r and rh ∈ Qh,l such that

δ2(∇wh, ∇vh) + (wh, vh) − (∇ · vh, rh) = (wh, vh) ∀ vh ∈ Vh,r ,

(∇ · wh, qh) = 0 ∀ qh ∈ Qh,l ,

where δ is again the filter width, which is a multiple (larger than or equal to 1) of the local mesh width. It is stated
in [103] that this step introduces often too much numerical viscosity. For this reason, an approximate discrete
deconvolution operator is applied, leading to Dhwh . A standard choice for approximate deconvolution operators is
the discrete van Cittert operator of order N , given by

Dhwh =

N∑
n=0

(Id − Gh)nwh .

In practice, usually N ∈ {0, 1, 2} is chosen. Finally, a relaxation step is applied to compute the velocity field for
the current time instant

uh = (1 − χ )wh + χ Dhwh, χ ∈ [0, 1].

he numerical analysis in [103] studies inf–sup stable pairs of finite element spaces. In the error analysis, instead
f the Stokes filter, the simpler differential filter

δ2(∇wh, ∇vh) + (wh, vh) = (wh, vh) ∀ vh ∈ Vh,r , (103)

s considered, to reduce technical details. For the velocity error in L∞(L2), a non-robust error bound of order r is
erived. Variants of the method from [103], e.g., with a nonlinear filter or without approximate deconvolution are
nalyzed in [104,105]. In these papers, the same principal result with respect to the velocity error in L∞(L2) is
roved as in [103].

.4.2. Variational multiscale methods
Variational Multiscale (VMS) methods for turbulent flow simulations are based on the variational form (5) of
he Navier–Stokes equations. The scale separation in resolved and unresolved scales is defined by projections into
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appropriate function spaces, which is an essential difference to LES. The basic principles of VMS methods, which
can be applied also to others than flow problems, are developed in [33,106]. There are quite different realizations of
these methods for incompressible flow problems, compare the recent reviews [82,107,108]. In particular, there are
VMS methods where the terms that model the impact of the unresolved scales on the resolved scales are derived
solely by mathematical arguments, like the residual-based VMS method from [14]. Other VMS methods employ a
second scale separation of the resolved scales and they utilize eddy viscosity models, like the Smagorinsky model.
It is well known that also LPS methods fit into the framework of VMS methods [109]. Because of the mainly
mathematically based derivation of VMS methods, there is the expectation that they are accessible to numerical
analysis.

Several papers analyze variants of the so-called three-scale projection-based VMS method from [81], which is
based on ideas from [110]. This method is designed for inf–sup stable pairs of finite element spaces. The finite
element momentum equation includes the additional term

(νT (Duh − GH ) ,Dvh) , (104)

with the turbulent viscosity νT ≥ 0 and the symmetric tensor-valued function GH is defined by the L2(Ω ) projection

(Duh − GH ,LH ) = 0 ∀ LH ∈ L H . (105)

The space L H contains symmetric tensor-valued functions, e.g., piecewise constant tensors on the given mesh. The
motivation behind this method consists in restricting the direct impact of the turbulent viscosity to the so-called large
resolved scales Duh − GH . A numerical example for a smooth solution in three dimensions and a small viscosity
coefficient is presented in [81] that shows that the projection-based VMS method is more accurate on coarse grids,
in particular with respect to the velocity error in L∞(L2), than the Smagorinsky model. In [111], the case that νT is
a positive constant is analyzed. Then, (104) and (105) can be reformulated to give the additional term of the form
of a LPS stabilization, compare (26),(

νT(Id − ΠL H )Duh, (Id − ΠL H )Dvh
)
,

in the momentum equation, where ΠL H is the L2(Ω ) projection on L H . Thus, the additional term has the same
principal form as the LPS term of the method from [70], which is discussed in some detail in Section 4.2.2. However,
the projection operators are different. Two estimates for velocity errors are presented in [111]. An additional
viscosity is defined, which is called multiscale viscosity in [112], and error bounds containing inverse powers
of the sum of ν and the multiscale viscosity are derived. However, the bounds are not robust. First, there are
still terms with inverse powers of ν and second, it cannot be excluded that the multiscale viscosity vanishes. The
analysis is extended to a projection-based VMS method with piecewise constant turbulent viscosity and grad–div
term in [112]. Convergence order r for the velocity error in L∞(L2) is proved. Thanks to the grad–div term, inverse
powers of ν do not appear in the error bound. However, there are inverse powers of the sum of ν and the multiscale
viscosity and again, one cannot exclude that in the worst case the multiscale viscosity vanishes. Altogether, the bound
derived in [112] can be considered to be almost robust. In [111,112], the continuous-in-time case is analyzed. Fully
discrete schemes, with piecewise constant νT and without grad–div stabilization are studied in [113,114]. In [113],
an uncoupled version of the projection-based VMS method is investigated, where the projection is computed in a
separate step, and in [114], an explicit treatment of the projection term is considered. Both papers do not take into
account the multiscale viscosity and non-robust bounds of order r for the velocity error in L∞(L2) are derived. A
numerical study from [113] for a smooth solution, ν = 2 · 10−3, and the Taylor–Hood pair P2/P1 shows that the
order of reduction of the velocity error in L∞(L2) on coarse grids is smaller than optimal.

As mentioned before, the so-called term-by-term stabilization method is a special variant of a LPS method. A
finite element error analysis of a method including term-by-term LPS stabilization is provided in [115]. It is for a
fully discrete scheme with the implicit Euler time stepping scheme, the IMEX discretization of the convective term,
and equal order pairs of finite element spaces. Term-by-term stabilizations for the convective term, the grad–div
term, and the pressure gradient are utilized. The velocity error in L∞(L2) is proved to be of order r . However, the

−1/2
error bound is not robust since the constant scales like ν .
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4.4.3. Other methods
The grad–div stabilization introduced in Section 4.2.2 results in a mutual coupling between all components of

the velocity. There are much more non-zero matrix entries than for other terms, e.g., the standard gradient form of
the viscous term or the convective, skew-symmetric, and divergence formulations of the convective term. In [116],
a sparse grad–div stabilization is proposed and analyzed that neglects several couplings of the standard grad–div
stabilization. The natural expectation is that the sparse approach possesses weaker stability properties than the
standard method. In [116], only the splitting error for a projection scheme is analyzed and the corresponding error
bound is not robust. Another method to facilitate the application of the grad–div stabilization in practice is proposed
in [117]. This modular method computes in the first step an intermediate solution (ûh, ph) by solving the Galerkin
discretization of the Navier–Stokes equations. In the second step, a kind of regularization of the intermediate velocity
field is applied, which is based on the grad–div operator. Several variants of this step are investigated in [117], where
the simplest one is the solution of the variational problem

µ∆t(∇ · uh, ∇ · vh) + (uh, vh) = (ûh, vh) ∀ vh ∈ Vh,r ,

with an appropriate stabilization parameter µ. For a fully discretized problem, a non-robust estimate for the velocity
error in L∞(L2) of order r is derived for different variants of the modular grad–div stabilization. An extension of
this idea to the BDF2 temporal discretization is studied in [118], where a non-robust velocity estimate in L∞(L2)
of order r is proved.

Inserting the differential filter (103) in the momentum equation gives the additional term (wh − wh, vh)/(∆t).
his term has in some sense a similar structure like (104): it is the difference of some term containing the finite
lement solution and a smoothed term with this solution, where smooth has to be understood in this context in the
ense of less oscillations or variations of values. Approaches of this kind has been explored also with respect to
he temporal evolution of the solution, leading to so-called temporal regularizations, which add, e.g., terms of the
orm

γ (u − u) or − γ∆ (u − u) (106)

to the momentum equation. If f and u are smooth and γ is sufficiently large, then both terms in (106) enforce
that u is also smooth. In temporal regularizations, u is chosen as the solution from a previous time instant, or a
combination of solutions from previous time instants, starting with an already smooth or smoothed initial condition.
In [119], a temporal regularization with

−γ h∆ (un+1 − un)

s analyzed for inf–sup stable pairs of finite element spaces. A non-robust bound of the velocity error in L∞(L2)
of order r is proved. A so-called stabilization of the curvature is considered in [120], which adds a temporal
regularization of the form

γ

ν
(−ν∆Un+1 + (un+1 · ∇)Un+1 + ∇ Pn+1)

with Un+1 = un+1 − 2un + un−1 and Pn+1 = pn+1 − 2pn + pn−1. It is shown in [120], for inf–sup stable pairs of
finite element spaces, that the velocity error in L∞(L2) is bounded of order r in a non-robust way.

5. Summary

In the convergence theory of finite element methods for evolutionary convection–diffusion equations and
incompressible Navier–Stokes equations, one can find two types of estimates: robust ones, where the constant in
the error bound does not depend on inverse powers of the diffusion or viscosity, and non-robust ones. The classical
convergence theory for the Galerkin discretization of the Navier–Stokes equations with inf–sup stable pairs of finite
element spaces predicts an optimal order of convergence for the velocity error in L∞(L2), and with that for the
kinetic energy, in a non-robust way. However, numerical simulations with non weakly divergence-free pairs of finite
element spaces reveal that in the situation of small viscosity coefficients and coarse grids, the solution obtained
with the Galerkin method is polluted with spurious oscillations, even if the analytic solution is smooth, compare
Example 4.4. This is not the case for methods for which robust estimates can be derived. For such methods, one
obtains meaningful numerical solutions in this situation and even a certain order of error reduction, which is the
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Table 5
Discretizations of the incompressible Navier–Stokes equations for which robust estimates for the velocity error in L∞(L2)
are proved.

Method Finite element Order Analysis Section

Galerkin inf–sup stable, EMAC form of
the nonlinear term

r − 1 [53] +
Theorem 4.1

Section 4.1.3

Galerkin inf–sup stable, weakly
divergence-free

r [57] Section 4.2.1

Galerkin H (div)-conforming, inf–sup
stable, weakly divergence-free

r [62,63] Section 4.2.1

grad–div stabilization inf–sup stable r [50] Section 4.2.2
LPS for velocity gradient inf–sup stable r [70] Section 4.2.2
grad–div stabilization, LPS for
pressure

non inf–sup stable r [72] Section 4.2.3

LPS for velocity gradient, LPS
for pressure

non inf–sup stable r [72] Section 4.2.3

symmetric pressure stabilization non inf–sup stable r [83,84] Section 4.2.3
SUPG P1/P1, space–time finite

elements
1.5 [13] Section 4.3

CIP non inf–sup stable r + 1/2 [90] Section 4.3
LPS for velocity gradient, LPS
for pressure, modified parameter
(two types of methods)

non inf–sup stable r + 1/2 [72,96] Section 4.3

H (div)-conforming DG with
upwind

inf–sup stable r + 1/2 [64] Section 4.3

notion used in this survey for the behavior of a method on coarse grids, can be observed. Thus, in the case of small
viscosity coefficients and coarse grids, only robust estimates provide useful information about the behavior of a
numerical method on coarse grids if the analytic solution is smooth. In this respect, robust error bounds can be
considered as the necessary condition (although perhaps not sufficient condition) for a good practical performance
in more realistic problems, where the solutions are unlikely to have bounded derivatives as ν → 0.

For scalar linear convection–diffusion equations, robust estimates of order r+1/2 can be proved for many popular
stabilized methods. Sometimes, there are restrictions in the analysis, e.g., that the coefficients of the equation do
not depend on time. There are special situations, like in Example 3.4 for the SUPG method and P1 finite elements,
where an optimal order of convergence can be observed in numerical simulations.

The situation is more complex for the incompressible Navier–Stokes equations due to the nonlinear convective
term and the interaction of velocity and pressure. Robust estimates could be proved so far only for methods whose
structure is relatively simple compared with methods that are actually used for turbulent flow simulations. These
more complicated methods might contain stabilization mechanisms already used in the simple methods, like the
grad–div and SUPG stabilizations in the residual-based VMS method. An overview of discretizations for which
robust estimates for the velocity error in L∞(L2) are known is provided in Table 5.

For the Galerkin method and inf–sup stable pairs of finite element spaces that are not weakly divergence-free,
only the EMAC form of the nonlinear term allows a robust estimate whose order is r − 1. The analysis carried
out in the present paper reveals how the different terms in the Navier–Stokes equations affect this order reduction.
In particular, the interaction between velocity and pressure is responsible for the order reduction to r − 1, unless
stabilization terms are added, while the nonlinear term is responsible for the lack of convergence, unless the EMAC
form is used or stabilization terms are added.

For other methods using inf–sup stable pairs of finite element spaces, robust estimates of order r for the
velocity error in L∞(L2) are proved. Note that for many pairs of such finite element spaces, the velocity space
contains piecewise polynomials of degree r and the pressure space of degree r − 1. From the point of view of
physical consistency (mass conservation, fundamental invariance property, pressure robustness), the use of weakly
divergence-free pairs is attractive. However, their implementation might be somewhat involved. The question about
the possibility of yielding r + 1/2 convergence for these methods adding some kind of stabilization remains open.
For non weakly divergence-free pairs, the use of the grad–div stabilization is an appealing approach, because grad–
div stabilization is easily to implement. Implementing the LPS method for the velocity gradient is certainly more
49



B. Garcı́a-Archilla, V. John and J. Novo Computer Methods in Applied Mechanics and Engineering 385 (2021) 114032

C
c

e

fi
p
p
L
e
t
e

N
a
o
m
t
s
f

w
r
r
m
c
g
t
e
o
p

i
f
p
s

D

h

A

B
M
f

involved. Altogether, the best order of convergence of the velocity error in L∞(L2) that could be proved so far
with a robust estimate for a method with inf–sup stable pairs of finite element spaces and using continuous velocity
elements is r . This is one order less than the best approximation error for the velocity with respect to L2(Ω )d .

onsequently, the convergence order of the finite element error with respect to the kinetic energy is reduced by one
ompared with the optimal order.

Concerning inf–sup stable pairs of finite element spaces with H (div)-conforming discontinuous velocity finite
lements, a robust estimate of order r + 1/2 could be proved for an upwind discretization of the convective term.

There is a larger variety of methods where robust error bounds have been proved for non inf–sup stable pairs of
nite element spaces. Such pairs are often so-called equal order pairs, where both the finite element velocity and
ressure consist of piecewise polynomials of degree r . The stabilization mechanisms that lead for inf–sup stable
airs to methods of order r give also methods of at least order r for equal order pairs. The parameter choice in the
PS method for the velocity gradient can be modified such that even order r +1/2 is reached, which can be proven
ven for two different types of LPS approaches. There are two more methods with this order, the CIP method and
he SUPG method, where for the latter only analysis for r = 1 is available. Thus, with equal order pairs of finite
lement spaces it is possible to achieve order r + 1/2 for the convergence of the velocity error in L∞(L2) with

robust error bounds, which is half an order less than the optimal order, and so it is the case of the kinetic energy.
By far most of the finite element error analysis that can be found in the literature is for H 1-conforming methods.

evertheless, the analysis is not complete, e.g., for the SUPG method only a special case is covered and there
re many methods, discussed in Section 4.4, where robust error bounds are not yet available. A generalization
f H (div)-conforming discontinuous methods are so-called hybrid or hybridizable discontinuous Galerkin (HDG)
ethods. Different formulations for such methods have been derived. However, a finite element analysis for the

ime-dependent Navier–Stokes equations does not seem to be available, although these methods are used for the
imulation of turbulent flows, e.g., in [121]. Numerical analysis of HDG methods for the Stokes equations can be
ound, e.g., in [61,122].

The state of the art is that there is no method for which robust estimates for the velocity error in L∞(L2), and
ith that for the error in the kinetic energy, of optimal order can be proved so far. This survey presented numerical

esults for several methods from Table 5 and all of them showed that the analytic prediction of the order of error
eduction is sharp. An optimal order could not be observed for any of these methods. We performed with these
ethods also simulations on a family of triangulations of Friedrichs–Keller type, like for the SUPG method for

onvection–diffusion equations in Fig. 4. For brevity, the results are not presented here. Even on these regular
rids, none of the methods showed optimal error reduction of the velocity error in L∞(L2). Thus, one can conclude
hat among the methods for which numerical studies are presented in this survey, there is no method with optimal
rror reduction, even in special situations like regular grids. In summary, whether or not there is a method with an
ptimal robust error bound for the velocity error in L∞(L2), perhaps at least in special situations, remains an open
roblem.

Another widely open problem is the question of local error estimates, that is, to obtain (robust) error bounds
n subsets of the domain away from layers. For time-dependent problems, only in [4,5] such estimates can be
ound, for the SUPG method applied to linear evolutionary convection–reaction–diffusion equations. Further open
roblems, like the analysis of the considered equations on anisotropic grids or numerical analysis for temporal or
patio-temporal averages of errors are already stated in [17].
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G.P. Galdi, Š. Nečasová (Eds.), Fluids Under Pressure, in: Adv. Math. Fluid Mech, Birkhäuser, 2020, pp. 483–573.

[72] Javier de Frutos, Bosco García-Archilla, Volker John, Julia Novo, Error analysis of non inf-sup stable discretizations of the
time-dependent Navier-Stokes equations with local projection stabilization, IMA J. Numer. Anal. 39 (4) (2019) 1747–1786.

[73] T. Chacón Rebollo, M. Gómez Mármol, V. Girault, I. Sánchez Muñoz, A high order term-by-term stabilization solver for incompressible
flow problems, IMA J. Numer. Anal. 33 (3) (2013) 974–1007.

[74] T. Chacón Rebollo, M. Gómez Mármol, M. Restelli, Numerical analysis of penalty stabilized finite element discretizations of evolution
Navier-Stokes equations, J. Sci. Comput. 63 (3) (2015) 885–912.

[75] C. Bernardi, V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (5)
(1998) 1893–1916.

[76] L. Ridgway Scott, Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp.
54 (190) (1990) 483–493.

[77] Susanne C. Brenner, L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, third ed., Texts in Applied Mathematics,
vol. 15, Springer, New York, 2008, p. xviii+397.

[78] Silvia Bertoluzza, The discrete commutator property of approximation spaces, C. R. Acad. Sci., Paris 329 (12) (1999) 1097–1102.
[79] Volker Gravemeier, Michael W. Gee, Wolfgang A. Wall, An algebraic variational multiscale-multigrid method based on plain

aggregation for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 198 (47–48) (2009) 3821–3835.
[80] Volker Gravemeier, Michael W. Gee, Martin Kronbichler, Wolfgang A. Wall, An algebraic variational multiscale-multigrid method for

large eddy simulation of turbulent flow, Comput. Methods Appl. Mech. Engrg. 199 (13–16) (2010) 853–864.
[81] Volker John, Songul Kaya, A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput. 26

(5) (2005) 1485–1503 (electronic).
[82] Naveed Ahmed, Tomás Chacón Rebollo, Volker John, Samuele Rubino, A review of variational multiscale methods for the simulation

of turbulent incompressible flows, Arch. Comput. Methods Eng. 24 (1) (2017) 115–164.
[83] Bosco García-Archilla, Volker John, Julia Novo, Symmetric pressure stabilization for equal-order finite element approximations to the

time-dependent Navier–Stokes equations, IMA J. Numer. Anal. 41 (2) (2021) 1093–1129.
[84] Gang Chen, Minfu Feng, Analysis of solving Galerkin finite element methods with symmetric pressure stabilization for the unsteady

Navier-Stokes equations using conforming equal order interpolation, Adv. Appl. Math. Mech. 9 (2) (2017) 362–377.
[85] Erik Burman, Miguel A. Fernández, Galerkin finite element methods with symmetric pressure stabilization for the transient stokes

equations: Stability and convergence analysis, SIAM J. Numer. Anal. 47 (1) (2008/09) 409–439.
[86] F. Brezzi, J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in: Efficient Solutions of Elliptic

Systems (Kiel, 1984), in: Notes Numer. Fluid Mech, vol. 10, Friedr. Vieweg, Braunschweig, 1984, pp. 11–19.
[87] Clark R. Dohrmann, Pavel B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure

projections, Internat. J. Numer. Methods Fluids 46 (2) (2004) 183–201.
[88] Ramon Codina, Jordi Blasco, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation,

Comput. Methods Appl. Mech. Engrg. 143 (3–4) (1997) 373–391.
[89] R. Becker, M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo

38 (4) (2001) 173–199.
[90] Erik Burman, Miguel A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier-stokes equations:

Space discretization and convergence, Numer. Math. 107 (1) (2007) 39–77.
[91] Alejandro Allendes, Gabriel Barrenechea, Julia Novo, A divergence-free low-order stabilized finite element method for the evolutionary

Navier-Stokes equations, SIAM J. Sci. Comput. (2021) in press.
[92] Gang Chen, Min-fu Feng, Yin-nian He, Finite difference streamline diffusion method using nonconforming space for incompressible

time-dependent Navier-Stokes equations, Appl. Math. Mech. (English Ed.) 34 (9) (2013) 1083–1096.
[93] Naveed Ahmed, Samuele Rubino, Numerical comparisons of finite element stabilized methods for a 2D vortex dynamics simulation

at high Reynolds number, Comput. Methods Appl. Mech. Engrg. 349 (2019) 191–212.
[94] Naveed Ahmed, Volker John, An assessment of two classes of variational multiscale methods for the simulation of incompressible
turbulent flows, Comput. Methods Appl. Mech. Engrg. 365 (2020) 112997.

53

http://refhub.elsevier.com/S0045-7825(21)00363-7/sb63
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb63
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb63
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb64
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb64
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb64
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb65
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb65
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb65
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb66
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb66
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb66
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb67
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb67
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb67
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb68
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb68
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb68
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb69
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb69
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb69
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb70
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb70
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb70
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb71
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb71
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb71
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb72
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb72
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb72
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb73
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb73
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb73
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb74
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb74
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb74
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb75
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb75
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb75
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb76
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb76
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb76
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb77
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb77
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb77
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb78
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb79
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb79
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb79
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb80
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb80
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb80
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb81
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb81
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb81
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb82
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb82
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb82
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb83
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb83
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb83
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb84
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb84
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb84
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb85
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb85
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb85
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb86
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb86
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb86
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb87
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb87
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb87
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb88
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb88
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb88
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb89
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb89
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb89
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb90
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb90
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb90
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb91
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb91
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb91
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb92
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb92
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb92
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb93
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb93
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb93
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb94
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb94
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb94


B. Garcı́a-Archilla, V. John and J. Novo Computer Methods in Applied Mechanics and Engineering 385 (2021) 114032
[95] Erik Burman, Alexandre Ern, Miguel A. Fernández, Fractional-step methods and finite elements with symmetric stabilization for the
transient Oseen problem, ESAIM Math. Model. Numer. Anal. 51 (2) (2017) 487–507.

[96] Gang Chen, Minfu Feng, Hong Zhou, Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds
number using equal order interpolation, Appl. Math. Comput. 243 (2014) 465–481.

[97] J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weather Rev. 91 (1963) 99–164.
[98] O.A. Ladyženskaja, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their

boundary value problems, Tr. Mat. Inst. Steklova 102 (1967) 85–104.
[99] V. John, W.J. Layton, Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal. 40 (3) (2002) 995–1020.

[100] Tomás Chacón Rebollo, Roger Lewandowski, Mathematical and numerical foundations of turbulence models and applications, in:
Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, New York, 2014, p. xviii+517.

[101] Erik Burman, Peter Hansbo, Mats G. Larson, Error estimates for the Smagorinsky turbulence model: Enhanced stability through scale
separation and numerical stabilization, 2021, arXiv:2102.00043v1.

[102] Snorre H. Christiansen, Kaibo Hu, Generalized finite element systems for smooth differential forms and Stokes’ problem, Numer.
Math. 140 (2) (2018) 327–371.

[103] Vincent J. Ervin, William J. Layton, Monika Neda, Numerical analysis of filter-based stabilization for evolution equations, SIAM J.
Numer. Anal. 50 (5) (2012) 2307–2335.

[104] William Layton, Leo G. Rebholz, Catalin Trenchea, Modular nonlinear filter stabilization of methods for higher Reynolds numbers
flow, J. Math. Fluid Mech. 14 (2) (2012) 325–354.

[105] William Layton, Nathaniel Mays, Monika Neda, Catalin Trenchea, Numerical analysis of modular regularization methods for the
BDF2 time discretization of the Navier-Stokes equations, ESAIM Math. Model. Numer. Anal. 48 (3) (2014) 765–793.

[106] Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model.
Numer. Anal. 33 (6) (1999) 1293–1316.

[107] Ramon Codina, Santiago Badia, Joan Baiges, Javier Principe, Variational multiscale methods in computational fluid dynamics, in: E.
Stein, R. Borst, T.J.R. Hughes (Eds.), Encyclopedia of Computational Mechanics, second ed., American Cancer Society, 2017, pp.
1–28.

[108] Ursula Rasthofer, Volker Gravemeier, Recent developments in variational multiscale methods for large-eddy simulation of turbulent
flow, Arch. Comput. Methods Eng. 25 (3) (2018) 647–690.

[109] M. Braack, E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method,
SIAM J. Numer. Anal. 43 (6) (2006) 2544–2566 (electronic).

[110] W. Layton, A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput. 133 (1) (2002) 147–157.
[111] Volker John, Songul Kaya, Finite element error analysis of a variational multiscale method for the Navier-Stokes equations, Adv.

Comput. Math. 28 (1) (2008) 43–61.
[112] Lars Röhe, Gert Lube, Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous

isotropic turbulence, Comput. Methods Appl. Mech. Engrg. 199 (37–40) (2010) 2331–2342.
[113] William Layton, Lars Röhe, Hoang Tran, Explicitly uncoupled VMS stabilization of fluid flow, Comput. Methods Appl. Mech. Engrg.

200 (45–46) (2011) 3183–3199.
[114] Li Shan, Yanren Hou, Haibiao Zheng, Variational multiscale method based on the Crank-Nicolson extrapolation scheme for the

non-stationary Navier-Stokes equations, Int. J. Comput. Math. 89 (16) (2012) 2198–2223.
[115] Naveed Ahmed, Tomás Chacón Rebollo, Volker John, Samuele Rubino, Analysis of a full space-time discretization of the navier-Stokes

equations by a local projection stabilization method, IMA J. Numer. Anal. 37 (3) (2017) 1437–1467.
[116] Abigail L. Bowers, Sabine Le Borne, Leo G. Rebholz, Error analysis and iterative solvers for Navier-Stokes projection methods with

standard and sparse grad-div stabilization, Comput. Methods Appl. Mech. Engrg. 275 (2014) 1–19.
[117] J.A. Fiordilino, W. Layton, Y. Rong, An efficient and modular grad-div stabilization, Comput. Methods Appl. Mech. Engrg. 335

(2018) 327–346.
[118] Y. Rong, J.A. Fiordilino, Numerical analysis of a BDF2 modular grad–div stabilization method for the Navier–Stokes equations, J.

Sci. Comput. 82 (3) (2020).
[119] Alexandr Labovsky, William J. Layton, Carolina C. Manica, Monika Neda, Leo G. Rebholz, The stabilized extrapolated trapezoidal

finite-element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 198 (9–12) (2009) 958–974.
[120] Nan Jiang, Muhammad Mohebujjaman, Leo G. Rebholz, Catalin Trenchea, An optimally accurate discrete regularization for second

order timestepping methods for Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 310 (2016) 388–405.
[121] Niklas Fehn, Martin Kronbichler, Christoph Lehrenfeld, Gert Lube, Philipp W. Schroeder, High-order DG solvers for underresolved

turbulent incompressible flows: A comparison of L2 and H (div) methods, Internat. J. Numer. Methods Fluids 91 (11) (2019) 533–556.
[122] Sander Rhebergen, Garth N. Wells, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations, SIAM

J. Numer. Anal. 55 (4) (2017) 1982–2003.
54

http://refhub.elsevier.com/S0045-7825(21)00363-7/sb95
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb95
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb95
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb96
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb96
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb96
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb97
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb98
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb98
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb98
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb99
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb100
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb100
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb100
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://arxiv.org/abs/2102.00043v1
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb102
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb102
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb102
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb103
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb103
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb103
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb104
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb104
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb104
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb105
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb105
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb105
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb106
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb106
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb106
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb107
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb107
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb107
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb107
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb107
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb108
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb108
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb108
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb109
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb109
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb109
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb110
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb111
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb111
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb111
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb112
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb112
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb112
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb113
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb113
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb113
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb114
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb114
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb114
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb115
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb115
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb115
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb116
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb116
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb116
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb117
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb117
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb117
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb118
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb118
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb118
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb119
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb119
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb119
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb120
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb120
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb120
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb121
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb121
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb121
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb122
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb122
http://refhub.elsevier.com/S0045-7825(21)00363-7/sb122

	On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows
	Introduction
	Weak formulations and notations
	Convection–diffusion–reaction equations
	The Galerkin method
	Stabilized methods of order r+1/2 in L(L2)
	The SUPG method
	Other stabilized methods


	The incompressible Navier–Stokes equations
	The Galerkin method
	Classical finite element convergence theory
	On the impact of the continuity equation
	On the impact of the discretization of the nonlinear term

	Methods of order r in L(L2)
	Inf–sup stable and weakly divergence-free pairs of finite element spaces
	Non weakly divergence-free inf–sup stable pairs of finite element spaces
	Non inf–sup stable pairs of finite element spaces

	Methods of order r+1/2 in L(L2)
	Methods with non-robust error analysis that behave numerically in a robust way
	Large Eddy Simulation and other methods based on spatial averaging
	Variational multiscale methods
	Other methods


	Summary
	Declaration of competing interest
	Acknowledgments
	References


