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Abstract
In this paper an order on the set of embedded coalitions is studied in detail. This allows
us to define new notions of superaddivity and convexity of games in partition function
form which are compared to other proposals in the literature. The main results are
two characterizations of convexity. The first one uses non-decreasing contributions to
coalitions of increasing size and can thus be considered parallel to the classic result
for cooperative games without externalities. The second one is based on the standard
convexity of associated games without externalities that we define using a partition of
the player set. Using the later result, we can conclude that some of the generalizations
of the Shapley value to games in partition function form lie within the cores of specific
classic games when the original game is convex.
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1 Introduction

Lately, the study of cooperative games with coalitional externalities has attracted the
attention of some important researchers (see Maskin 2016). The basic ingredients of
such games are coalitions of players embedded in a partition of the set of all players.
Then, a game with coalitional externalities, or game in partition function form (Thrall
and Lucas 1963), is a real valued function on the set of all such embedded coalitions
with the convention that the value attached to the empty embedded coalition is zero.
To date, most of the efforts have been devoted to the extensions of solution concepts
like the core or the Shapley value from classic games, or games in characteristic
function form, to games with externalities. In this paper we consider an order on the
set of embedded coalitions implicitly used by Bolger (1990), Hu and Yang (2010), and
Skibski et al. (2018) for different purposes. The study of the structure of this partially
ordered set allows us to derive some interesting game theoretical results.

When dealing with embedded coalitions one has to consider two types of objects,
namely subsets and partitions. Even if both objects have well known ordering rela-
tions that give rise to the Boolean algebra and the lattice of partitions, respectively, it
is not clear how embedded coalitions should be ordered. Indeed, several approaches
appeared in the literature. Myerson (1977) defined a value on partition function form
games based on an order over the set of embedded coalitions. This order was studied in
Grabisch (2010). Alonso-Meijide et al. (2019) proposed a value for partition function
form games based on an order on the set of embedded coalitions that has been intro-
duced and studied in Alonso-Meijide et al. (2017). In the present paper, we consider
another partial order that was first used by Bolger (1990) and, more recently, by Hu
and Yang (2010) and Skibski et al. (2018), but that has not been formally defined
and analyzed yet. The three partial orders agree in considering that if one embedded
coalition precedes another, then the coalition of the first should be contained in the
coalition of the second. The difference lies in how they deal with the partition side.
According to Grabisch (2010), the first partition should be finer than the second one
while Alonso-Meijide et al. (2017) consider that it should be coarser.1 In this paper, we
consider that the second partition equals the first one after removing the agents in the
second coalition. Then, this partial order can be considered a compromise between the
other two. However, it turns out that these posets are quite different because the new
one does not have a lattice structure. This order also provides an interpretation of how
the grand coalition is formed. Initially, there is a partition of agents. Then, an agent
leaves its group to form an active coalition2. Afterwards, another agent leaves its block
to join the active coalition, and so on till all agents have joined in the active coalition.
Our results are grounded in some properties of the structure of the poset of embedded
coalitions. We characterize the maximal lower bounds and minimal upper bounds of
two embedded coalitions, whenever they exist. We show that it is a graded poset and
count the number of elements at a given level. Finally, we provide an isomorphism
between the chains in our structure and the chains in the Boolean lattice. Based on this
isomorphism, we count the total number of chains and describe its Möbius function.

1 The precise definitions will soon follow.
2 We call active coalition to the coalition whose worth is being evaluated.
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Marginality and convexity in partition function… 101

The previous study leads us to introduce new notions of superadditivity and con-
vexity. We first relate them to alternative definitions that can be found in the literature.
Our superadditivity implies the one proposed by Maskin (2003) but, in contrast to the
later, it is a sufficient condition for the efficiency of the grand coalition. Our notion
of convexity is stronger than the ones introduced by Hafalir (2007) and Abe (2016),
and thus implies them. Our main results are two characterizations of convex games in
partition function form. The first is parallel to a well-known result for classic games.
A game is convex if and only if the contributions of players to embedded coalitions
of increasing size, with respect to our partial order, are non-decreasing. The second
characterization uses the standard convexity of certain games in characteristic func-
tion form associated with the game in partition function form. For each partition of
the set of agents we build a classic game assuming that an arbitrary coalition expects
the complement to be organized according to this partition. This association is very
similar to the one Bloch and van den Nouweland (2014) do using their exogenous
expectation formation rules.

The second characterization result allows us to obtain additional results about some
average Shapley values as defined in Macho-Stadler et al. (2007). More precisely,
when the game with externalities is convex, the value defined in Pham Do and Norde
(2007)3 belongs to the core of the associated game without externalities obtained from
the partition of singletons. Similar results are obtained for the values introduced by
McQuillin (2009) and Hu and Yang (2010).

The rest of the paper is organized as follows. Section 2 is devoted to preliminaries
and presents other partial orders on embedded coalitions introduced in the literature.
In Sect. 3 we present and study the structural properties of the new poset. Section 4
presents the results on superadditivity and convexity. Section 5 features some impli-
cations of our results for some average Shapley values.

2 Preliminaries

Let (A,≤) be a partially ordered finite set (in short, a poset). Let A ⊆ A and x ∈ A.
We say that x is a lower bound of A if and only if x ≤ y, for every y ∈ A.4 We say
that x is an upper bound of A if and only if y ≤ x , for every y ∈ A. We say that
x is a minimal (maximal) element of A if there is no y ∈ A\{x} such that y ≤ x
(x ≤ y). We say that x is the supremum of A, sup(A), if x is an upper bound of A
and x ≤ y for every upper bound y of A. We say that x is the infimum of A, in f (A),
if x is a lower bound of A and y ≤ x for every lower bound y of A. If there is an
element 1̂ ∈ A such that y ≤ 1̂ for every y ∈ A, we say that 1̂ is the top element
of A. Similarly, the bottom element 0̂ is an element of A such that 0̂ ≤ y for every
y ∈ A. We say that x is covered by y ∈ A\{x} or y covers x if x ≤ y and there is no
z ∈ A\{x, y} such that x ≤ z ≤ y. A (irreducible) chain C is a totally ordered subset
ofA, C = {x0, x1, . . . , xk} such that xl+1 covers xl , for every l = 0, . . . , k−1. (A,≤)

satisfies the Jordan-Dedekind condition if all chains between two elements have the

3 Named as externality-free value in de Clippel and Serrano (2008).
4 We denote: x = y if x ≤ y and y ≤ x ; x < y if x ≤ y, but x �= y.
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102 J. M. Alonso-Meijide et al.

same length. A rank function is a function ρ : A −→ N such that ρ(y) = ρ(x) + 1
for every x, y ∈ A where y covers x . If x, y ∈ A and x ≤ y, we denote by [x, y]A
the set of elements z ∈ A such that x ≤ z ≤ y. If no confusion arises, we may simply
write [x, y].

Let (A1,≤1), (A2,≤2) be two posets. An isomorphism φ is a bijective map φ :
A1 −→ A2 such that φ(x) ≤2 φ(y) if and only if x ≤1 y, for every x, y ∈ A1.

A finite lattice is a poset (A,≤) such that sup(A) ∈ A and in f (A) ∈ A, for every
A ⊆ A. Apart from the Boolean lattice of a finite set, denoted by (B(N ),⊆), we
need to recall some notions related to the partition lattice. Let N be a finite set with
cardinality |N | = n, and �(N ) be the family of partitions of the set N . Let S ⊆ N
and P ∈ �(N ). We denote by |P| the number of elements in P , and by P−S the
partition of N\S given by P−S = {T \S : T ∈ P}. Sometimes we will refer to
each element in P as a block. We denote by �S� the partition of S given by {S} and
by 	S
 the partition given by {{i} : i ∈ S}. Let 1 ≤ k ≤ n. The total number of
partitions of N with k elements is the Stirling number of second kind, that we denote
by Sn,k . The Bell number of n is the total number of partitions of a finite set N with
|N | = n, i.e., Bn = ∑n

k=1 Sn,k . A well-known partial order on�(N ) is the following.
Let P, Q ∈ �(N ).

P � Q if and only if for every S ∈ P there is some T ∈ Q such that S ⊆ T .

We denote this poset by (�(N ),�). It is well-known that (�(N ),�) is a lattice. If
P, Q ∈ �(N ), we denote by P

∧
Q the infimum of P and Q and by P

∨
Q the

supremum of P and Q, according to the partial order �.
An embedded coalition of N is a pair (S; P) with ∅ �= S ⊆ N and P a partition of

N\S, i.e., P ∈ �(N\S). If we have the embedded coalition (T ; Q)with T = N then,
Q = {∅} and we take |Q| = 0. For simplicity we denote by (S; N\S) the embedded
coalition (S; {N\S}), for every S ⊆ N . The set of embedded coalitions is denoted by
ECN . Several partial orders can be considered on the family of embedded coalitions
of a finite set N , ECN . One of them has been studied in Grabisch (2010) and it is
defined as follows: for every (S; P), (T ; Q) ∈ ECN ,

(S; P) 
0 (T ; Q) if and only if S ⊆ T and P ∪ �S� � Q ∪ �T �.

Alonso-Meijide et al. (2017) study a different partial order on ECN defined as

(S; P) 
1 (T ; Q) if and only if S ⊆ T and Q � P−T (1)

for every (S; P), (T ; Q) ∈ ECN . Both partial orders consider a fictitious bottom
element 0̂. Instead of that, here we consider empty embedded coalitions given by the
family F0(N ) = {(∅; P) : P ∈ �(N )}. We denote by FN = ECN ∪ F0(N ). Given
(S; P) ∈ FN , we will sometimes name the coalition S as the active coalition.

Let N be a finite set. A partition function form game (in short, a game) with player
set N is a function v : FN −→ R such that v(∅; P) = 0, for every (∅; P) ∈ F0(N ).
The family of all partition function form games with player set N will be denoted
by GN . A cooperative game in characteristic function form (in short, a classic game)
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Marginality and convexity in partition function… 103

Fig. 1 The partial order 
 on FN with |N | = 3

is a partition function form game v ∈ GN such that v(S; P) = v(S; Q) for every
(S; P), (S; Q) ∈ ECN . That is the worth of a coalition does not depend on how the
remaining players are organized and we can simply write v(S).

3 A new poset onFN

In this section we formulate and study the partial order that has been implicitly used
by Bolger (1990), Hu and Yang (2010), and Skibski et al. (2018), among others, to
describe intuitive properties of a value for games in partition function form. Let N be
a finite set. First, we formalize this partial order defined on FN .

Definition 3.1 The inclusion in FN , denoted by 
, is defined as follows:

(S; P) 
 (T ; Q) if and only if S ⊆ T and Q = P−T (2)

for every (S; P), (T ; Q) ∈ FN .5

Equation (2) implies a twofold relationship between the embedded coalitions (S; P)

and (T ; Q): on one hand all agents in S belong also to T and, on the other hand, the
partitions P ∈ �(N\S) and Q ∈ �(N\T ) must satisfy that agents outside T are
organized in the same way in both P and Q.

This binary relation defines a partial order on FN . The next example illustrates the
differences among the three partial orders defined above, 
0, 
1, and 
.

Example 3.1 Let us take N = {1, 2, 3}. Figure 1 depicts theHasse diagramcorrespond-
ing to (FN ,
).Notice that ({1}; �2, 3�) and ({1}; 	2, 3
) are not comparable according
to 
. Nevertheless, ({1}; �2, 3�) 
1 ({1}; 	2, 3
) and ({1}; 	2, 3
) 
0 ({1}; �2, 3�).

Figure 1 also illustrates the fact that there is no bottom element in (FN ,
), but
there is a top element (N ; ∅).

5 The strict inclusion in F .N is given by
(S; P) � (T ; Q) if and only if S ⊂ T and Q = P−T , for every (S; P), (T ; Q) ∈ FN .
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104 J. M. Alonso-Meijide et al.

In the rest of the sectionwe study someproperties of this poset that can be considered
technical results that will be used in the definitions and results of the rest of the paper.
We postpone their proofs to the “Appendix”.

We start studying (maximal) lower bounds of two embedded coalitions. Note that
this will allow us to identify what the intersection of two embedded coalitions means.
The role of these maximal lower bounds is parallel to the intersection in the Boolean
lattice. They represent the closest embedded coalitions from which we can reach the
initial ones. Example 3.2 shows that two elements in (FN ,
) may not have a lower
bound or that the lower bound may not be unique.

Example 3.2 Let N = {1, 2, 3}. Take (S; P), (T ; Q) ∈ FN defined as (S; P) =
({1}; �2, 3�), (T ; Q) = ({1}; 	2, 3
). It is easy to check using Fig. 1 that there is no
(L; M) ∈ FN such that (L; M) 
 (S; P) and (L; M) 
 (T ; Q). Then, the set of
lower bounds for {(S; P), (T ; Q)} is empty.

Take (R; H), (L; Z) ∈ FN given by (R; H) = ({1}; �2, 3�), (L; Z) =
({2, 3}; {1}). Then, from Fig. 1 it is easy to see that the set of maximal lower bounds
of (R; H) and (L; Z) is

{(∅; �1, 2, 3�), (∅; {{1}, �2, 3�})}.

Next, we characterize the set of maximal lower bounds of two elements ofFN . This
result will be critical to define what a convex game in partition function form means.

Proposition 3.1 Let (S; P), (T ; Q) ∈ FN with (S; P) �= (T ; Q).

1. If Q−S �= P−T , a lower bound of (S; P) and (T ; Q) does not exist.
2. If P−T = Q−S, then themaximal lower bounds of (S; P) and (T ; Q) are embedded

coalitions of the type (S ∩ T ; H) where H is such that R ∈ H if and only if

R ∈ M or R = �S′ ∪ T ′�

where M = (P ∪	S\T 
)∨
(Q∪	T \S
) and S′, T ′ ∈ M such that S′ ⊆ S\T and

T ′ ⊆ T \S.
This result shows that only those embedded coalitions that have the agents outside

the active coalition organized in the same way can be reached from a common embed-
ded coalition through the poset. Even when this holds, this embedded coalition might
not be unique. The next example illustrates this fact.

Example 3.3 Let N = {1, 2, 3, 4}. Take (S; P) = ({1, 2}; 	3, 4
) and (T ; Q) =
({3, 4}; 	1, 2
). It is clear that S ∩ T = ∅ and P−T = Q−S . According to Propo-
sition 3.1, M = 	1, 2, 3, 4
 and the set of lower bounds consists of

(∅; 	1, 2, 3, 4
), (∅; �1, 3�, 	2, 4
), (∅; �1, 4�, 	2, 3
)
(∅; �2, 3�, 	1, 4
), (∅; �2, 4�, 	1, 3
), (∅; �1, 3�, �2, 4�), (∅; �2, 3�, �1, 4�).

Notice that all of them are maximal lower bounds.
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Marginality and convexity in partition function… 105

In what follows, given a pair of embedded coalitions {(S; P), (T ; Q)} ⊆ FN , we
denote by (S; P) ∧ (T ; Q) its set of maximal lower bounds.

Next, we study (minimal) upper bounds of a set of two elements in FN . That is,
the closest embedded coalitions that can be reached from these two elements through
the poset. The example below illustrates the fact that the minimal upper bound might
not be unique.

Example 3.4 Take N = {1, 2, 3}, (S; P) = ({1}; 	2, 3
) and (T ; Q) = ({1}; �2, 3�).
From Fig. 1, it is derived that both ({1, 3}; {2}) and ({1, 2}; {3}) are minimal upper
bounds of (S; P) and (T ; Q).

The result below specifies the (minimal) upper bounds of a set of two embedded
coalitions. It is of paramount importance for the definitions of superadditivity and
convexity in Sect. 4 since it generalizes the union of coalitions in the Boolean lattice
to embedded coalitions. These minimal upper bounds are the closest ones that can be
reached from those embedded coalitions.

Proposition 3.2 Let (S; P), (T ; Q) ∈ FN with (S; P) �= (T ; Q).

1. (R; M ′) is an upper bound of {(S; P), (T ; Q)} if and only if R = S ∪ T ∪ L with
L ⊆ N\(S ∪ T ) and M ′ = P−(T∪L) = Q−(S∪L).

2. (R; M ′) is a minimal upper bound of {(S; P), (T ; Q)} if and only if R = S∪T ∪ L
with L ⊆ N\(S∪T ), M ′ = P−(T∪L) = Q−(S∪L) = M−L with M = P−T

∧
Q−S,

and for every L ′ ⊆ N\(S∪T )with P−(T∪L ′) = Q−(S∪L ′) = M−L ′ it holds L ⊆ L ′
or L ∩ L ′ = ∅.
Proposition 3.2 characterizes the embedded coalitions that can be reached from

two arbitrary embedded coalitions. The active part of such embedded coalitions must
guarantee that the structure of the remaining agents is the same according to P and
Q. There are cases where this cannot be achieved by just taking the union of S and T ,
as Example 3.5 illustrates.

Example 3.5 Let N = {1, 2, 3, 4, 5}. Take (S; P) = ({1}; {�2, 3, 4�, {5}}) and
(T ; Q) = ({3}; {�1, 2�, �4, 5�}). Then, S∪T = {1, 3},M = P−T

∧
Q−S = 	2, 4, 5


and

{L ⊆ N\(S ∪ T ) : P−(T∪L) = Q−(S∪L) = M−L} = {{4}, {4, 5}, {2, 4}, {2, 5}, {2, 4, 5}}.

As a consequence of that, the upper bounds of {(S; P), (T ; Q)} are

({1, 3, 4}; 	2, 5
), ({1, 3, 4, 5}; {2}), ({1, 2, 3, 4}; {5}), ({1, 2, 3, 5}; {4}), (N ; ∅).

Thus, the set of minimal upper bounds is given by

{({1, 3, 4}; 	2, 5
), ({1, 2, 3, 5}; {4})}.

Nevertheless, we can identify pairs of embedded coalitions that have a uniqueminimal
upper bound.
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106 J. M. Alonso-Meijide et al.

Corollary 3.1 Let (S; P), (T ; Q) ∈ FN such that P−T = Q−S. Then, {(S; P), (T ; Q)}
has a unique minimal upper bound, the supremum of {(S; P), (T ; Q)}, given by
sup{(S; P), (T ; Q)} = (S ∪ T ; P−T ).

In what follows, given a pair of embedded coalitions {(S; P), (T ; Q)} ⊆ FN , we
denote by (S; P) ∨ (T ; Q) its set of minimal upper bounds.

The next result describes howmany embedded coalitions are covered by a particular
element inFN .Note that thismaybe important to defineShapley like values identifying
the links in the poset as contributions.

Proposition 3.3 Let (S; P) ∈ FN .

1. If (S; P) �= (N ; ∅), then the number of elements inFN that cover (S; P) is |N\S|.
2. If S �= ∅, then the number of elements in FN covered by (S; P) is |S|(|P| + 1).

The result below identifies an isomorphism between the chains in our poset and
in the Boolean lattice that will allow us to determine the coefficients of an arbitrary
game with externalities in the basis of unanimity games with respect to the inclusion
relationship presented in Definition 3.1.

Proposition 3.4 Consider the partially ordered set (FN ,
).

1. For every (S; P), (T ; Q) ∈ FN such that (S; P) 
 (T ; Q), then [(S; P), (T ; Q)]
is isomorphic to [S, T ]B(N ).

2. (FN ,
) is graded.

3. Let 0 ≤ k ≤ n. Then, there are

(
n

k

)

Bn−k elements of FN of rank k with Bn−k the

Bell number of n − k.

From the above result, (FN ,
) has the Jordan-Dedekind property and the length of
any maximal chain is n. Next we obtain some results related to the number of chains
that again could play a role to introduce new Shapley like solutions.

Proposition 3.5 Let P ∈ �(N ), (∅; P), (T ; Q) ∈ FN with (∅; P) 
 (T ; Q).

1. The number of chains in [({i}; P−{i}), (T ; Q)] is (|T | − 1)!, for every i ∈ T .
2. The number of chains in [(∅; P), (T ; Q)] is |T |!.
3. The total number of chains in (FN ,
) is |N |!Bn, being Bn the Bell number of n.

To conclude the Section we will use the isomorphism presented in Proposition 3.4
to characterize the Möbius function of (FN ,
). Next, we recall the definition of the
Möbius function of a finite poset. Let (A,≤) be a finite poset. The Möbius function
of (A,≤), μ, is given by

μ(x, y) =
{
1 if x = y

−∑
x≤z<y μ(x, z) = −∑

x<z≤y μ(z, y) if x < y

for every x, y ∈ A with x ≤ y. The Möbius function of (B(N ),⊆) is given by
μ̂(S, T ) = (−1)|T |−|S|, for every S ⊆ T ⊆ N . Using Proposition 3.4 we obtain

μ((S; P), (T ; Q)) =
{

(−1)|T |−|S| if (S; P) 
 (T ; Q)

0 otherwise.
(3)
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Marginality and convexity in partition function… 107

Additionally, we can express any partition function form game v as a linear com-
bination of certain unanimity games as follows. Let (S; P) ∈ ECN . The unanimity
game of the embedded coalition (S; P) associated with the ordering 
 is defined by

u(S;P)(T ; Q) =
{
1 if (S; P) 
 (T ; Q)

0 otherwise

for every (T ; Q) ∈ FN . The family of unanimity gamesU = {
u(S;P) : (S; P) ∈ ECN

}

is a basis of the vector space GN . Then,

v =
∑

(S;P)∈ECN

δ(S;P)u(S;P)

for every partition function form game v. Using the Möbius function characterized in
Eq. (3), we can obtain an explicit expression of the coefficients of a game in the basis
U .
Proposition 3.6 Let v be a partition function form game and (S; P) ∈ ECN . Then,

δ(S;P) =
∑

(T ;Q)
(S;P)

(−1)|S|−|T |v(T ; Q).

4 Convex games with externalities

Superadditivity and convexity are twowell-known and interesting properties for games
in characteristic function. Nevertheless, their generalization to games in partition func-
tion form is not straightforward and one can find different proposals in the literature.
Thanks to the poset structure of (FN ,
) studied in the previous section it is quite
natural to introduce what it means for a game in partition function form to be superad-
ditive or convex. For instance, to define superadditivity we can just replace the union
of bare coalitions by the supremum of embedded coalitions whenever it exists.

Definition 4.1 Let v ∈ GN . We say that v is superadditive if and only if

v(S ∪ T ; P−T ) ≥ v(S; P) + v(T ; Q) (4)

for every (S; P), (T ; Q) ∈ FN such that S ∩ T = ∅ and P−T = Q−S .

Recall that for every (S; P), (T ; Q) ∈ FN such that P−T = Q−S there are maximal
lower bound. Moreover, if S ∩ T = ∅, then all of them are of the type (∅; H) for
some H ∈ �(N ) (see Proposition 3.1). Besides, there is sup{(S; P), (T ; Q)} =
(S ∪ T ; P−T ) (see Corollary 3.1). Even though we compare the worths of embedded
coalitions with different partitions, we require the organization of agents outside S∪T
to be the same.Next example shows a partition function formgame that is superadditive
but not a classic game.
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108 J. M. Alonso-Meijide et al.

Example 4.1 Let us take N = {1, 2, 3}. We consider v ∈ GN as follows:

v(N ; ∅) = 7, v({1}; �2, 3�) = 1, v({1}; 	2, 3
) = 0,
v({i}; P−{i}) = 2, for every i ∈ N\{1}, P ∈ �(N ), and
v({ j, k}; {i}) = 4, for every j, k ∈ N\{i}, j �= k, i ∈ N .

Maskin (2003) (see also Hafalir 2007) consider the following definition of superaddi-
tivity, that we callM-superadditivity. A game v ∈ GN isM-superadditive6 if and only
if

v(S ∪ T ; P) ≥ v(S; P ∪ �T �) + v(T ; P ∪ �S�) (5)

for every S, T ⊆ N such that S ∩ T = ∅ and P ∈ �(N\(S ∪ T )).
Notice that (S; P ∪�T �) and (T ; P ∪�S�) in Eq. (5) satisfy the conditions of Defi-

nition 4.1. In case of an M-superadditive game, only comparisons between embedded
coalitions with the same partition are taken into account. Then, if a partition function
form is superadditive in our sense, it is also M-superadditive. But both notions are not
equivalent. We see this by revisiting Example 1 in Hafalir (2007).

Example 4.2 ( Hafalir 2007) Let N = {1, 2, 3} and v ∈ GN defined by

v(N ; ∅) = 11,
v({i}; 	 j, k
) = 4, for every j, k ∈ N\{i}, j �= k, i ∈ N ,

v({ j, k}; {i}) = 9, for every j, k ∈ N\{i}, j �= k, i ∈ N , and
v({i}; � j, k�) = 1, for every j, k ∈ N\{i}, j �= k, i ∈ N .

This game is M-superadditive, but it is not superadditive according to Definition 4.1.
Take, for instance, the embedded coalitions (S; P) = ({1}; 	2, 3
) and (T ; Q) =
({2, 3}; {1}). Clearly, {1} ∩ {2, 3} = ∅ and P−T = Q−S . Besides,

v(S ∪ T ; ∅) = v(N ; ∅) = 11 < 4 + 9 = v(S; P) + v(T ; Q)

An interesting property for games in partition function form is efficiency. A game
v ∈ GN is efficient if for every P ∈ �(N ),

∑

S∈P

v(S; P−S) ≤ v(N ; ∅).

In general, an M-superadditive game is not efficient (see Example 4.2). Our notion of
superadditivity guarantees efficiency.

Proposition 4.1 Let v ∈ GN be a superadditive game. Then, v is efficient.

Proof Let v ∈ GN be a superadditive game. Let P = {S1, . . . , Sp} ∈ �(N ). Notice
that ∪p

k=1Sk = N and Sk ∩ Sl = ∅ for every k, l ∈ {1, . . . , p}, k �= l. If p = 1, the

6 Or superadditive in Maskin’s sense.
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result immediately follows. Let us assume that p > 1. Using that v is superadditive,
we have

p∑

k=1

v(Sk; P−Sk ) ≤ v(S1 ∪ S2; P−(S1∪S2)) +
p∑

k=3

v(Sk; P−Sk ) ≤ . . .

≤ v(∪p
k=1Sk; ∅) = v(N ; ∅).

��

The convexity or supermodularity property of a function on a poset is related to the
value of the function on the infimum and supremum of two elements in the poset. In
the literature there are several extensions of the classic convexity property to games in
partition function form. For instance, Hafalir (2007) provides the following definition
of convexity, that we named H-convexity. A game v ∈ GN is H-convex if and only if

v(S ∪ T ; P) + v(S ∩ T ; P ∪ �T \S� ∪ �S\T �)
≥ v(S; P ∪ �T \S�) + v(T ; P ∪ �S\T �)

for every S, T ⊆ N and P ∈ �(N\(S ∪ T )). Notice that for every S, T ⊆ N and
P ∈ �(N\(S ∪ T )), we have (P ∪ �T \S�)−T = P = (P ∪ �S\T �)−S . Moreover,

(P ∪ �T \S� ∪ 	S\T 
)
∨

(P ∪ �S\T � ∪ 	T \S
) = P ∪ �S\T � ∪ �T \S�.

Then, the set of maximal lower bounds of (S; P ∪�T \S�) and (T ; P ∪�S\T �), using
Proposition 3.1, is given by

{(S ∩ T ; P ∪ �S\T � ∪ �T \S�), (S ∩ T ; P ∪ �(S ∪ T )\(S ∩ T )�)}.

In the definition of an H-convex game, only one of the maximal lower bounds is used.
Convexity can be interpreted as a relation between the sum of values of two elements
with the sum of values of the closest common starting point (maximal lower bound)
and the closest common end point (minimal upper bound). With this idea in mind,
we extend the notion of convexity to the framework of partition function form games
using the poset (FN ,
).

Definition 4.2 Let v ∈ GN . We say that v is convex if and only if

v(S ∪ T ; P−T ) + v(S ∩ T ; M ′) ≥ v(S; P) + v(T ; Q) (6)

for every (S; P), (T ; Q) ∈ FN with P−T = Q−S and (S ∩ T ; M ′) a maximal lower
bound of {(S; P), (T ; Q)}.
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If v is convex according to Definition 4.2, then, for every (S; P), (T ; Q) ∈ FN with
P−T = Q−S

v(S ∪ T ; P−T ) + 1

|(S; P) ∧ (T ; Q)|
∑

(S∩T ;M ′)∈(S;P)∧(T ;Q)

v(S ∩ T ; M ′) ≥ v(S; P) + v(T ; Q)

where |(S; P) ∧ (T ; Q)| denotes the number of maximal lower bounds of (S; P) and
(T ; Q). Finally, it is enough to check Inequality (6) for an embedded coalition in

argmin
(S∩T ;M ′)∈(S;P)∧(T ;Q)

v
(
S ∩ T ; M ′) .

It is clear that if v ∈ GN is convex, then it is also superadditive. Besides, if a game is
convex according to Definition 4.2, it is also H-convex, while the reverse implication
does not hold in general as Example 4.3 shows.

Example 4.3 Let N = {1, 2, 3} and v ∈ GN defined as follows:

v({i}; � j, k�) = 1, v({i}; 	 j, k
) = 2, v({i, j}; {k}) = 4, v(N ; ∅) = 6.

Clearly, this game is superadditive according to Definition 4.1 and H-convex. Nev-
ertheless, it is not convex according to Definition 4.2. For instance, take (S; P) =
({1, 3}; {2}) and (T ; Q) = ({1, 2}; {3}). The set of maximal lower bounds is
{({1}; 	2, 3
), ({1}; �2, 3�)}. The notion of H-convexity only checks Eq. (6) for the
embedded coalition ({1}; 	2, 3
), while in our definition we use both lower bounds.
Taking ({1}; �2, 3�) we have

v(N ; ∅) + v({1}; �2, 3�) = 6 + 1 < 4 + 4 = v({1, 3}; {2}) + v({1, 2}; {3}).

Thus, this game is not convex according to Definition 4.2.
If we consider w ∈ GN defined as w(S; P) = v(S; P) if (S; P) �= (N ; ∅) and

w(N ; ∅) = 10, we obtain a convex game according to Definition 4.2.

Next, we present a characterization of convexity that is parallel to a well known result
for classic games. Roughly speaking, the agent’s contribution to an active coalition
grows as we move from it along a chain to the top element of the poset.

Theorem 4.1 Let v ∈ GN . The game v is convex if and only if for every i ∈ N and
(S; P) 
 (T ; Q) 
 (N\{i}; {i}) we have

v
(
T ∪ {i}; Q−{i}

) − v(T ; Q) ≥ v
(
S ∪ {i}; P−{i}

) − v(S; P). (7)

Proof Letv ∈ GN be a convexgame.Take i ∈ N and (S; P) 
 (T ; Q) 
 (N\{i}; {i}).
The elements

(
S ∪ {i}; P−{i}

)
and (T ; Q) satisfy the conditions in Definition 4.2

because P−(T∪{i}) = Q−{i}. This holds because (S; P) 
 (T ; Q) implies S ⊆ T
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and P−T = Q. Using Corollary 3.1, the supremum of
(
S ∪ {i}; P−{i}

)
and (T ; Q)

exists and it is given by
(
T ∪ {i}; Q−{i}

) = (
T ∪ {i}; P−(T∪{i})

)
. Notice that (S; P)

is a maximal lower bound of
{(
S ∪ {i}; P−{i}

)
, (T ; Q)

}
. Applying Inequality (6) to(

S ∪ {i}; P−{i}
)
, (T ; Q), and (S; P), we get

v
(
T ∪ {i}; Q−{i}

) + v(S; P) ≥ v
(
S ∪ {i}; P−{i}

) + v(T ; Q),

and Inequality (7) holds.
Now let us assume that v satisfies Inequality (7) for every i ∈ N and (S; P) 


(T ; Q) 
 (N\{i}; {i}). Let us take (S; P), (T ; Q) ∈ FN such that P−T = Q−S ,
M = (P ∪ 	S\T 
) ∨

(Q ∪ 	T \S
), and (S ∩ T ; M ′) be a maximal lower bound of
{(S; P), (T ; Q)}. We proceed by induction on |S\T |. If |S\T | = 0 then, S ⊆ T . Since
P−T = Q, we have (S; P) 
 (T ; Q). Then,

(
S ∩ T ; M ′) = (S; P), (S ∪ T ; P−T ) =

(T ; Q), and Inequality (6) holds. Let us assume that |S\T | = 1 and S\T = {i}. Then,
S∩T = S\{i}. Amaximal lower bound of (S; P) and (T ; Q) is

(
S\{i}; M ′) satisfying

R ∈ M ′ if and only if

R ∈ M or R = �S′ ∪ T ′� (8)

with S′, T ′ ∈ M , S′ ⊆ S\T , and T ′ ⊆ T \S. Let (
S\{i}; M ′) be a maximal lower

bound of (S; P) and (T ; Q). Then,
(
S\{i}; M ′) 
 (S; P) and P = M ′−S = M ′−{i}.

Besides,
(
S\{i}; M ′) 
 (T ; Q) 
 (N\{i}; {i}) which implies M ′−T = Q. Since

P−T = Q−S and the choice of i , we get P−(T∪{i}) = P−T = Q−S = Q−{i}. Applying
Inequality (7) to

(
S\{i}; M ′) and (T ; Q), we obtain

v(T ∪ i; P−(T∪{i})) − v(T ; Q) ≥ v(S; P) − v(S\{i}; M ′), or
v(S ∪ T ; P−T ) + v(S ∩ T ; M ′) ≥ v(S; P) + v(T ; Q),

and Inequality (6) holds.
Let us assume that the result holds for every (S; P), (T ; Q) ∈ FN with |S\T | ≤ k,

P−T = Q−S , and (S ∩ T ; M ′) a maximal lower bound of (S; P) and (T ; Q).
Now, take (S; P), (T ; Q) ∈ FN such that |S\T | = k + 1, P−T = Q−S ,
and (S ∩ T ; M ′) a maximal lower bound of (S; P) and (T ; Q). Let us take
i ∈ S\T and

(
T ∪ (S\{i}); Q−(S\{i})

)
. We can assume that

(
S ∩ T ; M ′) is not

covered by (S; P). Otherwise, |S\T | = 1 and we have just proved the result
for this situation. Take (S\{i}; M̂) such that (S\{i}; M̂) covers (S ∩ T ; M ′) and
(S ∩ T ; M ′) � (S\{i}; M̂) � (S; P). Since i ∈ S\T and (S ∩ T ; M ′) is a maximal
lower bound of {(S; P), (T ; Q)}, (S\{i}; M̂) does not precede (T ; Q). Nevertheless,(
S ∩ T ; M ′) 
 (

T ∪ (S\{i}); Q−(S\{i})
)
because S ∩ T ⊂ T ∪ (S\{i}), M ′−T = Q,

and M ′
−(T∪(S\{i})) = Q−(S\{i}). Besides,

(
S\{i}; M̂

)

 (

T ∪ (S\{i}); Q−(S\{i})
)

because S\{i} ⊆ T ∪ (S\{i}) and M̂−T = M ′
−(T∪(S\{i})) = Q−(S\{i}) as a conse-

quence of M ′
−(S\{i}) = M̂ and M ′

−(T∪(S\{i})) = Q−(S\{i}). Applying Inequality (7) to
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i ,
(
S\{i}; M̂

)
, and

(
T ∪ (S\{i}); Q−(S\{i})

)
, we obtain

v(T ∪ S; Q−S) − v
(
T ∪ (S\{i}); Q−(S\{i})

) ≥ v(S; P) − v
(
S\{i}; M̂

)
. (9)

Notice that |S\(T ∪ {i})| = k. We apply the induction hypothesis to
(
S\{i}; M̂

)
,

(T ; Q) and (S∩T ; M ′) because M̂−T = Q−(S\{i}) and (S∩T ; M ′) is also a maximal
lower bound of {(S\{i}; M̂), (T ; Q)}. Thus,

v
(
T ∪ (S\{i}); Q−(S\{i})

) + v(S ∩ T ; M ′) ≥ v(T ; Q) + v
(
S\{i}; M̂

)
. (10)

Finally, adding up Inequalities (9)-(10), we obtain Inequality (6), concluding the proof.
��

As our notion of convexity is different from H-convexity, so is Inequality (7) with
respect to the concept of weak convexity defined in Abe (2016). A game v ∈ GN is
weakly convex if for every S, T ⊆ N with |S\T | = |T \S| ≤ 1 and P ∈ �(N\(S∪T )),
it holds

v(S ∪ T ; P) + v(S ∩ T ; P ∪ �S\T � ∪ �T \S�)
≥ v(S; P ∪ �T \S�) + v(T ; P ∪ �S\T �).

Notice that this inequality is meaningful if |S\T | = |T \S| = 1, otherwise the inequal-
ity always holds. Then, if |S\T | = |T \S| = 1, there are i, j ∈ N such that i �= j ,
S = (T \{ j})∪{i} and T = (S\{i})∪{ j}. Taking (S\{i}; 	i, j
∪ P) and (T ; {i}∪ P),
we have (S\{i}; 	i, j
 ∪ P) 
 (T ; {i} ∪ P). Thus, if the game is convex we have

v(S ∪ T ; P) − v(T ; {i} ∪ P) ≥ v(S; { j} ∪ P) − v(S\{i}; 	i, j
 ∪ P),

whichmeans that the game isweakly convex. In the next examplewe revisit Example 5
introduced in Hafalir (2007) and used also in Abe (2016) (as Example 2.6) to show
that the reverse implication does not hold.

Example 4.4 Let N = {1, 2, 3, 4, 5} and the symmetric game v given by

v(N ; ∅) = 25, v(S; 	N\S
) = 18, for every S with |S| = 4,
v({i}; �N\{i}�) = 3, for every i ∈ N , v(S; �N\S�) = 17, for every S with |S| = 3,
v(S; �N\S�) = 6, for every S with |S| = 2, v(S; 	N\S
) = 12,
for every S with |S| = 3,
v({i}; �N\{i, j}� ∪ { j}) = 3, for every i, j ∈ N , i �= j,
v(S; �N\(S ∪ {i})� ∪ {i}) = 9, for every S with |S| = 2, i ∈ N\S,

v({i}; �T � ∪ �N\(T ∪ {i})�) = 8, for every T with |T | = 2, T ⊂ N\{i}, i ∈ N ,

v(S; 	N\S
) = 7, for every S with |S| = 2,
v({i}; �T � ∪ 	N\(T ∪ {i})
) = 3, for every T with |T | = 2, T ⊂ N\{i}, i ∈ N ,

v({i}; 	N\{i}
) = 3, for every i ∈ N .
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Abe (2016) shows that this game isweakly convex. Notice that it is not convex because

1 = 18 − 17 = v({1, 2, 3, 4}; {5}) − v({1, 2, 3}; �4, 5�)
< v({1, 2, 4}; 	3, 5
) − v({1, 2}; {3} ∪ �4, 5�) = 12 − 9 = 3.

In the remainder of this section, we present our second main result that relates our
notion of convexity for games in partition function form with the standard convexity
of certain classic games. Recall that a classic gamew is convex if and only if for every
i ∈ N and S ⊆ T ⊆ N\{i},

w(T ∪ {i}) − w(T ) ≥ w(S ∪ {i}) − w(S).

Given a game with externalities, v ∈ GN , and a partition of the set of agents,
P ∈ �(N ), the associated classic game, vP , is defined for every S ⊆ N by

vP (S) = v (S; P−S) .

That is, externalities are removed since every coalition expects the agents in the com-
plementary coalition to be organized according to the projection of P . This is very
similar to the characteristic function that Bloch and van den Nouweland (2014) asso-
ciate using a so-called P-exogenous rule. The difference is that they consider the
superadditive cover of vP .

The convexity of a game with externalities is characterized by the convexity of the
classic games associated with it for any possible partition of the set of agents.

Theorem 4.2 Let v ∈ GN . The game v is convex if and only if, for every P ∈ �(N ),
the classic game vP is convex.

Proof Let v ∈ GN . First, let us assume that v is convex. Let P ∈ �(N ) and consider
the classic game vP defined as follows: vP (S) = v(S; P−S), for every S ⊆ N .
Let i ∈ N and S ⊆ T ⊆ N\{i}. Take (S; P−S), (T ; P−T ) ∈ FN . It is clear that
(S; P−S) 
 (T ; P−T ) 
 (N\{i}; {i}). Since v is convex, using Inequality (7), we
have

v(T ∪ {i}; P−(T∪{i})) − v(T ; P−T ) ≥ v(S ∪ {i}; P−(S∪{i})) − v(S; P−S). (11)

Rewriting both sides of Inequality (11), we have

vP (T ∪ {i}) − vP (T ) ≥ vP (S ∪ {i}) − vP (S),

concluding that the classic game vP is convex.
Second, let us assume that for every P ∈ �(N ), the classic game vP is convex.

We check Inequality (7). Let i ∈ N and (S; P), (T ; Q) ∈ FN such that (S; P) 

(T ; Q) 
 (N\{i}; {i}). Let H ∈ �(N ) such that H−S = P7. Then, H−T = P−T = Q

7 Notice that we can take H = P ∪ �S�.
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because (S; P) 
 (T ; Q) and the choice of H . Take the classic game vH . Since vH

is a convex game, we get

vH (T ∪ {i}) − vH (T ) ≥ vH (S ∪ {i}) − vH (S).

Taking into account the definition of vH , and the fact that H−T = P−T = Q and
H−S = P , we have

v
(
T ∪ {i}; Q−{i}

) − v(T ; Q) ≥ v
(
S ∪ {i}; P−{i}

) − v(S; P),

concluding that v is convex. ��

5 Convexity and average values

The order analyzed in Sect. 3 induces a notion of marginality for games with exter-
nalities. Let i ∈ N and (S; P) ∈ FN with i /∈ S, the marginal contribution of agent i
to (S; P) is given by

v
(
S ∪ {i}; P−{i}

) − v(S; P),

that is, the change of v on two endpoints of a link in (FN ,
) that represents the
incorporation of agent i to the active coalition. This notion has already been introduced
in Bolger (1989) in order to characterize the value proposed therein. The marginal
contribution measures the surplus generated by an agent who moves from a non-
active block to the active block.When the non-active block is a singleton, the marginal
contribution is called intrinsicmarginal contribution by deClippel andSerrano (2008).
Bolger (1990) proposed a family of power indices for multicandidate voting games
using marginal contributions. Sánchez-Pérez (2016) also presented a family of values
for games in partition function form based on marginal contributions. This family
includes, among others, the values proposed in Pham Do and Norde (2007), which
coincideswith the externality free value (deClippel and Serrano 2008), and the average
value proposed in Macho-Stadler et al. (2007), but it does not include either the value
proposed in Myerson (1977) or the value given in Albizuri et al. (2005). Moreover,
marginal contributions are also used in the definition of what a null player is in a game
with externalities (see, for instance Sánchez-Pérez 2016).

In Theorem 4.1 we characterize convex games in terms of non-decreasing marginal
contributions with respect to the order defined in Sect. 3.Moreover, in Theorem 4.2 we
also characterize convex games through the convexity of some classic games. Many
extensions of the Shapley value to games with externalities in the literature are built
using an associated classic game. This is the case of the average values defined in
Macho-Stadler et al. (2007). Let α be a real-valued function defined on the familyFN

such that

∑

P∈�(N\S)

α(S; P) = 1, for every S ⊆ N .
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When the real number ofα(S; P) is non-negative it can be interpreted as the probability
that coalition S assigns to the rest of agents being organized according to P . Let v ∈ GN

be a game. The classic game associated with v with respect to α is defined by:

vα(S) =
∑

P∈�(N\S)

α(S; P)v(S; P).

An average value �α is given as �α(v) = Sh(vα), with Sh the Shapley value of a
classic game. Each function α provides an average value. Some examples of values in
this class are the ones proposed in de Clippel and Serrano (2008), McQuillin (2009),
and Hu and Yang (2010). In the context of classic games, the convexity property of
the game implies that the Shapley value belongs to the core. In this section we study
if the implication carries on to these average games using our definition of convexity
for partition function form games.

First, we analyze the externality free value (Pham Do and Norde 2007, de Clippel
and Serrano (2008)). It is defined as

�CS(v) = Sh(v	N
),

for every v ∈ GN . Using Theorem 4.2, if v is convex, then the classic game v	N
 is
also convex and �CS(v) belongs to the core of v	N
.

A counterpart of the externality free value is the McQuillin value ( McQuillin
(2009)), �MQ , defined as follows:

�MQ(v) = Sh(v�N�),

for every v ∈ GN . Using Theorem 4.2, if v is convex, then the classic game v�N� is
also convex and �MQ(v) belongs to the core of v�N�.

Finally, we consider the value defined and characterized in Hu and Yang (2010). It
is an extension of the Shapley value to games in partition function form. Let v ∈ GN

and i ∈ N . The Hu-Yang value is given by

�HY
i (N , v) =

∑

P∈�(N )

∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!|�(N )|

(
v(S ∪ {i}; P−(S∪{i})

) − v (S; P−S)) .

This value has several interpretations using the ordering studied in this paper. First, this
value weights agent i’s marginal contribution from (S; P−S) to

(
S ∪ {i}; P−(S∪{i})

)

by the proportion of chains that join (∅; P) and (N ; ∅) having the link from (S; P−S)

to (S ∪ {i}; P−(S∪{i})). Second, �HY can be seen as the average of the Shapley value
for classic games vP , for every P ∈ �(N ) or, equivalently, �HY is also the Shapley
value of the classic game defined by

vHY (S) = 1

|�(N )|
∑

P∈�(N )

vP (S).
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If v is convex, then vHY is also convex and �HY provides an element in the core of
vHY .

An open question is under which conditions the classic game vα is convex. This fact
will imply that the corresponding average value belongs to its core. It would also be
interesting to study what values in the family of Sánchez-Pérez (2016) can be obtained
applying the Shapley value to a classic game and studying its convex nature. There
are other values for partition function form games that do not belong to this class such
as Myerson (1977), Albizuri et al. (2005), Ju (2007), and Borm et al. (2015). It would
be worth studying the implications of convexity on them.
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Appendix

Proof of Proposition 3.1. Let (S; P), (T ; Q) ∈ FN with (S; P) �= (T ; Q) and define
M = (P ∪ 	S\T 
)∨

(Q ∪ 	T \S
).
1. Q−S �= P−T . Suppose that (L; H) ∈ FN is a lower bound of {(S; P), (T ; Q)}.

Then, (L; H) 
 (S; P) and (L; H) 
 (T ; Q). This implies that L ⊆ S ∩ T ,
H−S = P , and H−T = Q. Notice that

H−(S\L) = H−S = P = P−L and H−(T \L) = H−T = Q = Q−L .

Thus,

P−T = P−(T \L) = H−((S∪T )\L) = Q−(S\L) = Q−S,
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which is a contradiction.
2. P−T = Q−S . Take (L; H) with L = S ∩ T and H defined by R ∈ H if and only

if

R ∈ M or R = �S′ ∪ T ′� (12)

for some S′, T ′ ∈ M such that S′ ⊆ S\T and T ′ ⊆ T \S.
��

We shall prove that (L; H) 
 (S; P), and (L; H) 
 (T ; Q). Clearly L ⊆ S and
L ⊆ T . It remains to prove that H−S = P and H−T = Q. The following Claim will
be useful.

Claim A. Let N be a finite set, P, Q ∈ �(N ), S ⊆ N such that 	S
 ∈ Q. Then,
(P

∨
Q)−S = P−S

∨
Q−S .

Proof If S = N , the result immediately follows. Let us assume that S ⊂ N and take
L ∈ P

∨
Q. If L ∩ S = ∅, then L ∈ P−S

∨
Q−S . Let us assume that L ∩ S �= ∅. By

the choice of L , there are L1, . . . , Lk ∈ P such that L = ∪k
j=1L j with L j ∩ S �= ∅ for

some j ∈ {1, . . . , k}. Besides, there are L ′
1, . . . L

′
r ∈ Q with L ′

j ∩ S = ∅, for every
j = 1, . . . , r , such that L = (∪r

j=1L
′
j ) ∪ (	L ∩ S
). Then,

L\S = ∪r
j=1L

′
j = ∪k

j=1(L j\S)

and L\S ∈ P−S
∨

Q−S .
Now, take L ∈ P−S

∨
Q−S . There are L1, . . . , Lk ∈ P−S and L ′

1, . . . L
′
r ∈ Q−S

such that L = ∪k
j=1L j = ∪r

j=1L
′
j . Take R1, . . . , Rk ∈ P such that L j ⊆ R j , for

every j = 1, . . . , k and define R = ∪k
j=1R j . Thus,

R = ∪k
j=1R j = L ∪ (R ∩ S) = (∪r

j=1L
′
j ) ∪ (R ∩ S),

R\S = L , and R ∈ P
∨

Q. ��
We distinguish two cases. First, let us assume that H = M = (P ∪ 	S\T 
)∨

(Q ∪
	T \S
). Using Claim A and the fact that P−T = Q−S ,

M−S = M−(S\T ) = [(P ∪ 	S\T 
)
∨

(Q ∪ 	T \S
)]−(S\T )

= P
∨

(Q ∪ 	T \S
)−(S\T ) = P
∨

(Q−(S\T ) ∪ 	T \S
)
= P

∨
(Q−S ∪ 	T \S
) = P

∨
(P−T ∪ 	T \S
) = P.

In a similar way, we can prove that M−T = Q. Thus, we find out that (L; M) is a
lower bound of (S; P) and (T ; Q).

Second, let us assume that H �= M . Then, there is R ∈ H such that R /∈ M given
by R = �S′ ∪ T ′� for some S′, T ′ ∈ M such that S′ ⊆ S\T and T ′ ⊆ T \S. Take any
R ∈ H . If R ∈ M , then as before R\S ∈ P and \T ∈ Q. Otherwise R = �S′ ∪T ′� for
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some S′, T ′ ∈ M such that S′ ⊆ S\T and T ′ ⊆ T \S. Then, R\S = T ′ ∈ M−S = P
and R\T = S′ ∈ M−T = Q. Thus, we have proved that (L; H) is a lower bound of
(S; P) and (T ; Q).

Next, we prove that these lower bounds are maximal. Take (S ∩ T ; H) satisfying
the conditions of Eq. (12). If there is (U ;W ) ∈ FN such that (S∩T ; H) � (U ;W ) �
(S; P) and (S∩T ; H) � (U ;W ) � (T ; Q), then S∩T ⊂ U ⊂ S and S∩T ⊂ U ⊂ T
which is a contradiction. Then, (S ∩ T ; H) is a maximal lower bound.

It remains to check that these embedded coalitions are the unique maximal lower
bounds. Let us assume that (L; K ) is a maximal lower bound of (S; P) and (T ; Q).
It is clear that L = S ∩ T and K−S = P and K−T = Q. Take R ∈ K . We have
R\S ∈ K−S = P = M−S and R\T ∈ K−T = Q = M−T . We distinguish several
cases.

• R ∩ S = R ∩ T = ∅. Then, R = R\S = R\T ∈ K−S ∩ K−T . Since K−S = P ,
K−T = Q and the definition of M , we have R ∈ M .

• R ∩ S = ∅ but R ∩ T �= ∅. Then, R ∈ K−S = P = M−S , R\T ∈ Q = M−T ,
and R ∈ M . We can reason in a similar way if R ∩ S �= ∅ and R ∩ T = ∅.

• R∩ S �= ∅ and R∩T �= ∅. Then, R = (R\(S∪T ))∪ (R∩ (S\T ))∪ (R∩ (T \S))

and we have R\S = (R\(S ∪ T )) ∪ (R ∩ (T \S)) ∈ P = M−S , R\T = (R\(S ∪
T )) ∪ (R ∩ (S\T )) ∈ Q = M−T . If R\(S ∪ T ) = ∅, using the definition of M ,
we have R\S, R\T ∈ M and R = (R\S) ∪ (R\T ). If R\(S ∪ T ) �= ∅, by the
definition of M , we have R ∈ M .

Thus, any R ∈ K is of the type described in Eq. (12), concluding the proof. ��
Proof of Proposition 3.2. Let (S; P), (T ; Q) ∈ FN and M = P−T

∧
Q−S .

1. Let (R; M ′) ∈ FN be an upper bound of {(S; P), (T ; Q)}. Then, S ∪ T ⊆ R and
P−R = M ′ = Q−R . In other words, there is some L ⊆ N\(S ∪ T ) such that
R = S ∪ T ∪ L and P−R = P−(T∪L) = M ′ = Q−R = Q−(S∪L).
On the other hand, if R = S ∪ T ∪ L with L ⊆ N\(S ∪ T ) and M ′ = P−(T∪L ′) =
Q−(S∪L ′), clearly (S; P), (T ; Q) 
 (R; M ′), and (R; M ′) is an upper bound.

��
The following Claim will be useful to prove that these upper bounds are minimal.
Claim B. Let P, Q ∈ �(N ), and S ⊆ N . Then, P−S

∧
Q−S = (P

∧
Q)−S .

Proof Let P, Q ∈ �(N ) and S ⊆ N . Let R ∈ P and R̃ ∈ Q. Then, (R\S)∩ (R̃\S) ∈
P−S

∧
Q−S and (R\S) ∩ (R̃\S) = (R ∩ R̃)\S ∈ (P

∧
Q)−S . Let R ∈ (P

∧
Q)−S .

Then, there are R′ ∈ P and R̃ ∈ Q such that R = (R′ ∩ R̃)\S = (R′\S) ∩ (R̃\S) ∈
P−S

∧
Q−S . ��

2. Let (S∪T ∪L; M−L)with L ⊆ N\(S∪T ) such that P−(T∪L) = Q−(S∪L) = M−L

and for every L ′ ⊆ N\(S∪T )with P−(T∪L ′) = Q−(S∪L ′) = M−L ′ it holds L ⊆ L ′
or L ∩ L ′ = ∅. From Item 1 and Claim B, we have that (S ∪ T ∪ L; M−L) is an
upper bound of {(S; P), (T ; Q)}. It remains to check that there is no (R; H) ∈ FN

such that (S; P) � (R; H) � (S ∪ T ∪ L; M−L) and (T ; Q) � (R; H) �
(S ∪ T ∪ L; M−L). If L = ∅, it is clear that (S ∪ T ; M) is a minimal upper
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bound. Let us assume that L �= ∅ and that (S ∪ T ∪ L; M−L) is not a minimal
upper bound of {(S, P), (T ; Q)}. Then, R = S ∪ T ∪ L ′ ⊂ S ∪ T ∪ L , for some
∅ �= L ′ ⊆ N\(S ∪ T ) with P−(T∪L ′) = Q−(S∪L ′) = M−L ′ . Thus, L ′ ⊂ L , which
contradicts the choice of L .
It remains to check that there are no otherminimal upper bounds. Take L ⊆ N\(S∪
T ) such that (S ∪ T ∪ L; P−(T∪L)) is a minimal upper bound of {(S, P), (T ; Q)}.
Then, (S; P), (T ; Q) 
 (S∪T∪L; P−(T∪L)) andwehave P−(T∪L) = Q−(S∪L) =
M−L by Claim B. Let ∅ �= L ′ ⊆ N\(S ∪ T ) with P−(T∪L ′) = Q−(S∪L ′) = M−L ′ .
We consider two cases. If

(
S ∪ T ∪ L; P−(T∪L)

) 
 (
S ∪ T ∪ L ′; P−(T∪L ′)

)
,

then L ⊆ L ′. It remains to study the case in which
(
S ∪ T ∪ L; P−(T∪L)

)
and(

S ∪ T ∪ L ′; P−(T∪L ′)
)
are not comparable. Since both are upper bounds of

{(S; P), (T ; Q)}, we have P−(T∪L ′) = Q−(S∪L ′), S ∪ T ⊆ S ∪ T ∪ L , and
S ∪ T ⊆ S ∪ T ∪ L ′. Then, L and L ′ are not comparable. If L ∩ L ′ = ∅, we
are done. Let us assume that R = L ∩ L ′ �= ∅ and L\L ′ �= ∅. By Claim B,
P−(T∪R)

∧
Q−(S∪R) = M−R , then (S ∪ T ∪ R; M−R) is also an upper bound

of {(S; P), (T ; Q)}. But (S ∪ T ∪ R; M−R) �
(
S ∪ T ∪ L; P−(T∪L)

)
and then

(S∪T ∪L; P−(T∪L))would not be minimal. Summarizing, L ⊆ L ′ or L∩L ′ = ∅.
��

Proof of Corollary 3.1. Let (S; P), (T ; Q) ∈ FN such that P−T = Q−S . Then,
P−T

∧
Q−S = P−T = Q−S . It is clear that (S ∪ T ; P−T ) is an upper bound of

{(S; P), (T ; Q)}. Using Proposition 3.2, any upper bound is given by (S ∪ T ∪
L; P−(T∪L)) with L ⊆ N\(S ∪ T ), and P−(T∪L) = Q−(S∪L). If L �= ∅, we have
(S∪T ; P−T ) � (S∪T ∪L; P−(T∪L)) and (S∪T ∪L; P−(T∪L)) is not aminimal upper
bound. Thus, (S∪T ; P−T ) is the unique minimal upper bound of {(S; P), (T ; Q)}. ��
Proof of Proposition 3.3. Let (S; P) ∈ FN .

1. If (S; P) �= (N ; ∅). Then, for every i ∈ N\S, (S; P) 
 (
S ∪ {i}; P−{i}

)
and there

is no (L; H) ∈ FN such that (S; P) � (L; H) �
(
S ∪ {i}; P−{i}

)
.

2. Suppose that S �= ∅. For every i ∈ S and R ∈ P , we have (S\{i}; P−R∪{R∪{i}}) 

(S; P) and there is no (T ; Q) ∈ FN such that (S\{i}; P−R∪�R∪{i}�) � (T ; Q) �
(S; P). Additionally, for every i ∈ S, (S\{i}; P ∪ {i}) 
 (S; P) and there is no
(T ; Q) ∈ FN such that (S\{i}; P ∪ {i}) � (T ; Q) � (S; P). Notice that if
(S; P) = (N ; ∅), then |P| = 0 and (N ; ∅) covers |N | = n embedded coalitions.

��
Proof of Proposition 3.4. 1. Let (S; P), (T ; Q) ∈ FN such that (S; P) 
 (T ; Q).

Notice that S ⊆ T and Q = P−T . We define the mapping φ from [(S; P), (T ; Q)]
to [S, T ]B(N ) as follows: φ(L; P−L) = L for every (L; P−L) ∈ [(S; P), (T ; Q)].
It is clear that if (L; P−L), (L ′; P−L ′) ∈ [(S; P), (T ; Q)] with (L; P−L) 

(L ′; P−L ′) we have, in particular, L ⊆ L ′ and then, φ(L; P−L) ⊆ φ(L ′; P−L ′).
Take the mapping φ−1 from [S, T ]B(N ) to [(S; P), (T ; Q)] defined by φ−1(L) =
(L; P−L) for every L ∈ [S, T ]B(N ). φ and φ−1 are inverse maps and if L ⊆ L ′ we
have φ−1(L) 
 φ−1(L ′).

2. This follows immediately from the isomorphism above. Besides, the unique rank
function is given by ρ(S; P) = |S|, for every (S; P) ∈ FN .
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3. It follows directly from Item1, Item2, and the structure of each embedded coalition.
��

Proof of Proposition 3.5. Items 1 and 2 follow directly from the isomorphism presented
in Proposition 3.4.

Let us prove Item 3. Taking into account the first item, the total number of chains
in (FN ,
) from ({i}; H) to (N ; ∅) is (|N |−1)!, for every i ∈ N and H ∈ �(N\{i}).
Additionally, there are |H | + 1 elements of rank 1 linked to ({i}; H). Thus, the total
number of chains is

∑

i∈N

∑

H∈�(N\{i})
(|N | − 1)!(|H | + 1) = |N |!

∑

H∈�(N\{i})
(|H | + 1)

= |N |!
n−1∑

r=1

(r + 1)Sn−1,r = |N |!Bn,

using the generalized recurrence expression provided in Spivey (2008) applied to n−1
and 1. ��
Proof of Proposition 3.6. Let (S; P) ∈ ECN . We obtain the coefficient δ(S;P) through
the Möbius inversion formula as follows

δ(S;P) =
∑

(T ;Q)
(S;P)

μ((T ; Q), (S; P))v(T ; Q) =
∑

(T ;Q)
(S;P)

(−1)|S|−|T |v(T ; Q).

��
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