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University of Seville
{ptrinidad,aruiz} at us.es

Abstract

In the automated analysis feature models (AAFM), many
operations have been defined to extract relevant informa-
tion to be used on decision making. Most of the proposals
rely on logics to give solution to different operations. This
extraction of knowledge using logics is known as deductive
reasoning. One of the most useful operations are explana-
tions that provide the reasons why some other operations
find no solution. However, explanations does not use de-
ductive but abductive reasoning, a kind of reasoning that
allows to obtain conjectures why things happen. As a first
contribution we differentiate between deductive and abduc-
tive reasoning and show how this difference affect to AAFM.
Secondly, we broaden the concept of explanations relying
on abductive reasoning, applying them even when we ob-
tain a positive response from other operations. Lastly, we
propose a catalog of operations that use abduction to pro-
vide useful information.

1. Introduction

The automated analysis feature models (AAFM) intends
to extract relevant information to assist on decision making
and even to produce design models or code. The general
process that most of the works propose to deal with auto-
mated analysis is transforming a Feature Model(FM) into a
logic paradigm and solving declaratively the problem. We
have noticed that most of the proposed operations use de-
ductive reasoning techniques to extract such an information.
The way deductive reasoning works is obtaining objective
conclusions from its knowledge base (KB) making explicit
an implicit information.
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But in some situations, it may be interesting not only ob-
taining conclusions but knowing the reasons why that con-
clusion is inferred. For example, if we find an error in a
FM such as a dead feature we must be interested in the re-
lationships that make this error appearing. So we can use
this information to assist on error repairing. In case we are
searching for the cheapest product to be produced in a fam-
ily and we obtain a specific product, we may be searching
for the relationships and criteria that have been taken into
account. This transverse operation is commonly known in
FM analysis community as explanation and may be used in
conjunction with any deductive operation.

These two examples, remarks the automated analysis as
a two-step process, where an information is extracted from
a FM firstly by means of deductive reasoning, and just in
case we are interested in obtaining further information, we
may ask for the reasons why we have obtained such an in-
formation using abductive reasoning. As a first contribution
of this paper we remark this difference, distinguishing be-
tween two kinds of operations: deductive operations, that
use deductive reasoning to reach for a result; and explana-
tory or abductive operations, which use abductive reasoning
to explain a result obtained from a deductive operation (see
Figure 1). As a consequence, we have observed that most
of the proposed operations in automated analysis are de-
ductive operations, and abductive operations have only been
proposed to solve particular problems such as obtaining ex-
planations for void FMs and dead features. Therefore, and
as a second contribution, we propose a catalog of abductive
operations that broadens their field of action to be applied
to the results of any deductive operation.

One of the main contributions in [2] is proposing a gen-
eral transformation from a FM into many logic paradigm or
solver such as CSPs, SAT problems or BDDs, by means of
a formal description of the problem in the so called FAMA
Theoretical Framework. However, his proposal was cen-
tered in deductive reasoning and explanations were pro-
posed as an operation that did not fit into his deductive
framework so solving them was considered to be an open
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Figure 1. The Link between Deductive and
Abductive Reasoning

issue. Now we know that explanations may never fit into his
deductive framework as it is an abductive operation. How-
ever, we envision that we may follow the same structure
than Benavides’ FAMA Theoretical Framework for abduc-
tive operations so the problem may be represented in a the-
oretical level so several solvers and logic paradigms may
be used to solve them. Therefore, as a last contribution,
we envision how some of the current proposals in abductive
reasoning may fit into such a framework and which are the
solvers, techniques or algorithms that can be used to deal
with abductive operations.

This paper is structured as follows: In Section 2 we
briefly present a study of the works in the automated analy-
sis of FM from the point of view of deductive and abductive
reasoning. In Section 3, we introduce the concept of abduc-
tive reasoning more in depth, pointing out its relationship
with diagnosis problems. The catalog of abductive opera-
tions is presented in Section 4. We envision the future works
and research lines, exposing some conclusions in Section 5.

2 Background

2.1 Analysis of Feature Models

The automated analysis of FMs intends to extract rele-
vant information from FMs to assist decision making during
SPL development. To obtain such an information, many au-
thors have proposed different operations for products count-
ing, filtering, searching and error detecting that are summa-
rized in a survey in [4]. Most of the proposals rely on declar-
ative techniques and logics to extract information such as
Constraint Satisfaction Problems (CSP) [3], SAT solvers [7]
and Binary Decision Diagrams (BDD)[5].

In the works where logics are used to give a response
to those operations, they use a common way of reasoning
called deduction. Informally speaking, Deduction makes
explicit an implicit information in a theory. It means that the
only information that may be extracted from a model is the
one that is modeled, and what we are doing when reasoning
deductively about a FM is making explicit a hard-to-see in-
formation. For example, if we select feature A in the FM in
Figure 2, deductive reasoning may reach the conclusion that
feature C may not be selected. If we select features A and

C deduction is only able to determine that there is no possi-
ble configuration containing both features at the same time.
If we want to explain the reason why A and C are mutually
exclusive, deductive reasoning is not the right choice.

2.2 Explanations in Feature Models

The need of explanations were firstly detected by Kang
et al.[6] to determine the reasons why a FM is void. In this
work, Prolog was proposed to model and explaining void
FMs if it were the case. Batory proposed in [1] using Logic
Truth Maintenance Systems (LTMS) to explain why a con-
figuration is not valid. Sun et al. [10] use Alloy Analyzer,
a model checking tool based on first-order logic, to detect
the sources of void FMs. Wang et al.[14] propose using de-
scription logic and RACER tool to deal with dead features
and void FMs. Trinidad et al. describe in [13, 11] the er-
rors explanation problem in terms of theory of diagnosis[9],
dealing with different kinds of error. They propose a frame-
work where different implementations were accepted and
giving details about using constraint satisfaction optimiza-
tion problems (CSOP) to deal with them. White et al.[15]
proposed using CSOP to deal with invalid configurations.

Notice that the techniques proposed to search for expla-
nations are different from those proposed to deal with de-
ductive reasoning.

Moreover, most of the proposals that deal with explana-
tions focus on error analysis. We already presented in [11] a
framework to deal with errors relying in diagnostic reason-
ing which is a particular application of abductive reasoning
as we will remark in next Section.

2.3 Catalog of Deductive Operations

There are two main works [4, 2] that have summarized
the state of the art in the automated analysis of FMs. Both
of them present an exhaustive survey of the operations that
have been proposed in the most relevant works.

• Determining if a product, feature model or configura-
tion is valid.

• Counting and obtaining all the products.

• Calculating a feature commonality and variability and
determining the core and variant features.

• Filtering and searching for optimal products.

• Dead and false-optional features and wrong-
cardinalities detection.

• Explanations and error correction.

• Model transformations such as simplification and
merging.
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Figure 2. Difference between deductive and abductive reasoning in FM analysis

A more detailed list of deductive operations may be seen
in Table 1. All the above operations are deductive ones but
explanations and error correction which are abductive op-
erations. Properly speaking, model transformations are not
analysis operations as they change the FM so they will be
out of our scope. Next Sections we analyse the structure of
abductive reasoning and refine the explanation operation to
provide into a wider set of abductive operations.

3. Abductive Reasoning in a Nutshell

Most of the applications that use logics commonly use
deductive reasoning or deduction. In Deductive reasoning
we have a conception of our relevant world that is synthe-
sized within a Knowledge Base(KB). A KB is composed by
a set of facts that are accepted to be true. For example, a
FM will be the KB in automated analysis. The objective of
deduction is concluding a set of consequences from a KB.

In many contexts, the available information is incom-
plete or imprecise, normally due to the inability or diffi-
culty of explicitly capturing all the knowledge in a KB. In
classical logic, a proposition may be true or false. Any-
thing that is not known or may be inferred is considered
to be false in what is called the Closed World Assumption
(CWA)[8]. However, when incomplete knowledge appears,
we also consider a third state where a proposition is not
known to be true or false. Here is where default rules or
hypotheses appear. A hypothesis may be considered to be
true whenever we have no clue that it is false. However, it
makes that a conclusion that we infer from our KB based on
hypotheses must be invalidated when new knowledge con-
tradicting the hypothesis appears.

So we need a framework to represent an incomplete
knowledge, distinguishing between:

• Facts (F ): the knowledge that we certainly know to be
true. It is a set {f1, · · · , fn} of formulas that must be
consistent.

• Default Rules or Hypotheses (H): A set {h1, · · · , hm}
of formulas which subsets can be assumed to be true if
they are consistent together with the set of facts.

With this structure, for a set of facts and a set of hy-
pothesis, we may have different possible scenarios S each
of them taking into account a different and valid subset of
hypothesis (S ⊆ H) consistent with the facts F .

A way to exploit this framework is called abductive rea-
soning or simply abduction. The objective of abduction is
searching for the scenarios that may explain an observed
situation or behaviour in the world. An observed behaviour
or observation (obs) may be for example a measurement in
a physical system or a conclusion obtained using deductive
reasoning, and is described as a set of formulas. Rigorously
speaking, an scenario S is an explanation to an observation
obs iff

F ∪ S |= obs

F 6|= ¬S

3.1 Minimalistic Reasoning

From the above definition, we may obtain more than
one explanation to an observation so abduction is a non-
deterministic problem. In most of the cases, we need a cri-
terion to choose the most suitable explanation and minimal-
istic reasoning may help on this issue.

Minimalistic reasoning relies on the principle that we
normally we are not interested in all the explanations but
in the best explanation. To determine the best explanation,
we may apply different criteria, but the most typical one
is taking the succinctest explanation in what is commonly
known as the Occam’s razor principle or parsimony law.

Here is where the concept of minimal explanation imple-
ments the parsimony law. An explanation E is minimal iff
for no subset E′ ⊂ E, E′ is an explanation. Therefore, in
a problem we will obtain two explanations for an observa-
tion {h1, h2} and {h3} if neither {h1} nor {h2} are able to



explain the observation. It means that {h1, h2, h3} may be
an explanation but it is removed for the sake of simplicity.
A similar but not equivalent criterion to be considered will
be choosing the explanations is taking the smallest explana-
tions in terms of the number of hypotheses that are consid-
ered. Following this criterion, {h1, h2} will be removed as
an observation since its size is bigger than {h3}.

3.2 Diagnosis

A diagnosis problem is one of the main applications of
abductive reasoning. Its objective is determining the com-
ponents that are failing in a system. Diagnosis is widely
applied to determine the components that are failing in a
circuit and diagnosing diseases in patients from their symp-
tom. To deal with diagnosis problems, one of the most com-
mon frameworks is Reiter’s Theory of diagnosis[9]. Reiter
describes a system in terms of the expected behaviour of
its components and how they are linked. Optionally, a de-
scription of how a component may fail may be introduced in
what is called a fault model. Errors are detected by means of
observations to the system behaviour and comparing them
to its expected behaviour. If expected and real behaviours
are different, an error is detected. In other terms, let us rep-
resent a system as a set of formulas F and let an observation
obs be another set of formulas. An error is detected iff:

F ∪ obs |= ⊥, or F 6|= obs

Therefore, error may be detected using deductive reason-
ing, as we are searching for consequences of adding obs to
our knowledge. If we intend to go further and explain the
reasons why errors happen we face up an abduction prob-
lem. As we may observe below, diagnosis problems per-
fectly fit into the abductive reasoning structure, since:

• The set of facts is the description of the system be-
haviour, describing both normal and abnormal be-
haviour of components.

• The set of hypotheses is composed by formulas that
represent the normal and abnormal behaviour of each
component.

• Observations are provided to obtain explanations to the
errors that have been previously detected using deduc-
tion.

Therefore, using abductive reasoning we obtain a set of
minimal explanations, where an explanation for an error is
a list of components that are failing and a list of those that
must behave correctly.

Summarizing, a diagnosis problem is an abduction prob-
lem where the only available hypothesis are those indicating
the normal or abnormal behaviour of components.

3.3 Abduction, Deduction and Auto-
mated Analysis

Many operations have been proposed for the AAFM.
Most of them are deductive operations since their objec-
tive is obtaining conclusions from a logic representation of
a FM. However, there is a set of explanatory operations that
have been solved using abductive reasoning techniques. As
far as we are concerned, there has been no effort to remark
this difference. So it is our intention to shed light on the
difference between abductive and deductive reasoning so it
could be applied in automated analysis.

Figure 3 summarizes our conception of the automated
analysis when deductive and abductive operations are dis-
tinguished. In deductive operations, we are able to obtain
conclusions (or the absence of them) from a FM logical
representation that allows deductive reasoning. For abduc-
tive operations, we are interested in obtaining explanations
from the results or conclusions obtained from a deductive
operation. In this case, FMs are represented using logics
that distinguish between facts and hypotheses. Deductive
and abductive operations use different solvers or reasoners,
choosing the most suitable for each kind of operation to be
performed.

Next Section, we propose a catalog of abductive opera-
tions, and as we will expose later in Section 5, it will be a
task of our future work to explain in details the translation
of FMs to abductive logics and the solution using different
techniques or solvers.

4. Operations Catalog

We present a catalog of operations for the abductive rea-
soning on FMs. These operations are executed just after a
deductive operation. The catalog we present here is inspired
by Benavides’ [2] catalog of operations. We have selected
its deductive operations and some others that have been
proposed lately. For each deductive operation, we propose
”‘why?”’ and ”‘why not?”’ abductive questions. ”‘Why?”’
questions are asked when a deductive operation has a solu-
tion. ”‘Why not?”’ questions intend to find an answer for
a deductive operation that has no solution. Small examples
are provided to illustrate their usage.

4.1 Why? questions

A ”‘Why?”’ question intends to explain the result ob-
tained from a deductive operation. It is important to remark
that in this case, deductive reasoning is able to obtain a re-
sult, but we would also like to know the reason why that
result is inferred. We have found four relevant questions of
this kind:



Deductive Reasoning Conclusion

Solver

CSP SAT BDD …

Deductive Operations

#Prod

Core

Filter

#Prod

Var

…

Translator
Logic

Logic

FeatureModel

Abductive Reasoning

Solver

Explanations

CSOP LTMS SMV …

Abductive Operations

Why not?Why?

Translator
Logic

Figure 3. Relating abductive and deductive reasoning to automated analysis of FMs

Root

A C

R1 R2

D E F

<1..1>R3

�

(a) Operation 1 Example

Root

A B C

R1

R4

R2 R3

�

(b) Operation 2 Example

Figure 4. Example Feature Models

Operation 1. Why is it a variant feature? This operation
is executed to extend the information obtained from
the ”‘retrieving the variant features”’ deductive oper-
ation. In this scenario, we want to obtain the relation-
ship/s that are becoming a feature variant. Considering
the example in Figure 4(a), if we want to determine
the relationships that make feature D being variant we
have to obtain a justification that concludes that we are
able to remove that feature in a configuration. For the
example, we will obtain {R2} and {R3} as two expla-
nations to our question.

Operation 2. Why is it a core feature? The deductive
operation ”‘Retrieving the core features”’ lists the
features that appear in every product or core features.
This operation provides the relationships that makes

one of those features belong to the core. Considering
the example in Figure 4(b), all the features in the FM
are core features. We expect C to be a variant feature
since it is linked to the root by an optional relationship.
”‘Why is it a core feature?”’ operation will highlight
R4 and R1 relationships as a justification for C being
a core feature.

We have seen how this operation and the previous one
are applied to obtain more information from core and
variant features. We must notice that we may also use
both of them when we calculate the commonality or
variability of a feature. A feature which commonality
is 1 is a core feature; if its commonality is not 1 it is
a variant feature. Therefore, we may use operation 1
and 2 for these cases.

Operation 3. Why is a partial configuration valid? A
partial configuration in a FM is a list of selected
and removed features. A complete configuration
is a particular case of partial configuration where
each feature in the FM is selected or removed. The
deductive operation ”‘Determining if a configuration
is valid”’ infers whether it is possible to select and
remove the features in a partial configuration. If a
positive response is obtained, we may want to know
the relationships that make the partial configuration
possible. Let us take the FM in Figure 5 as an example,
where the list of selected features is {Root,A, C, E}
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and {D} the list of removed features. The result of the
abductive operation ”‘Why is a partial configuration
valid?”’ will return {R1, R3, R4, R5} as the set of
relationships that affect those features.

Operation 4. Why is a product optimal for a criteria?
Finding a product that optimizes a criteria is the objec-
tive of the deductive operation ”‘Optimizing”’. This
operation is commonly used when extra-functional
information is attached to a FM in the so-called
extended FMs[3]. In some situations we may be
interested in knowing the relationships that have
been taken into account to reach a solution. In
the example in Figure 4.1, {Root, C, E} features
form the product that is found to be the cheapest
product in the family. The abductive operation ”‘Why
is a product optimal for a criteria?”’ will obtain
{R2, R3, costRoot, costC , costE} as the relationships
that make this product optimal. This operation may
be seen as a particular case of Operation 3 where
the configuration is obtained from an optimization
process.

4.2 Why not? questions

Many deductive operations may obtain no solution or a
negative response when inconsistencies are found. In the
abductive operations that we analyse next, their objective
is obtaining further information about the relationships that
are making a deductive operation impossible to obtain a so-
lution. As we intend to find the components (relationships
in our case) that explain a failure or inconsistent situation,
these operations fit into the diagnosis problem, so their re-
sults may be used to repair a FM or a configuration.

Operation 5. Why is a feature model not valid? A void
FM is the one where it is not possible to derive any
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product. A FM is valid if it defines at least one prod-
uct, i.e. it is not void. Void FMs are produced due to
contradicting relationships. The deductive operation
”‘Determining if a FM is void”’ tries to find a valid
product to demonstrate that a FM is valid. In case
it finds no product, the FM is determined to be void
and we need to extract information about the relation-
ships that make the FM be void or not valid. ”‘Why
is a feature model not valid?”’ operation obtains one
or more explanations for a void FM, i.e. sets of re-
lationships that prevent the selection of a product. In
the example in Figure 7(a), three explanations are ob-
tained: {R1},{R3} and {R4}. This information may
be used by a feature modeler to correct the FM by re-
laxing or removing one or more of those relationships.

Operation 6. Why is a product not valid? Whenever the
deductive operation ”‘Determining if a product is
valid”’ detects an invalid product selection, it is
mandatory to obtain further information about the re-
lationships that are making the product impossible to
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derive. This operation will be useful when we want to
check for a FM to include a set of well-known prod-
ucts. In the example in Figure 7(b), we want the FM
to define the product {A, B,C, E} (remaining features
are supposed to be removed). Deductive operation de-
tects this product as invalid and ”‘Why is a product
not valid”’ explains this unexpected result by detect-
ing {R4, R6} as the relationships that are causing it.

Operation 7. Why is a partial configuration not valid?
Whenever ”‘Detecting if a configuration is valid”’
detects an invalid configuration, and we know that the
configuration must be possible, we may be interested
in knowing the relationships that are making it impos-
sible. Taking the FM in Figure 7(b) as example and
partial configuration {C, D}, we obtain relationships
{R5} and {R7} as explanations. From this point of
view, we may consider previous operation as a partic-
ular case of this one, as a product may be considered
as a partial configuration. Another approach to this
question would be obtaining the features that must
be removed from a configuration if we consider that
the FM is correct. In this case, this operation would
conclude that feature {C} or {D} must be removed
from the configuration to obtain a valid one.

Operation 8. Why is a feature not selectable (dead feature)?
A dead feature is the one that despite of appearing
in a FM it cannot be selected for any product. The
deductive operation ”‘Dead features detection”’
obtains a list of the dead features in a FM. This
operation detects the relationships that are making a
dead feature, assisting on the correction of the FM.
Taking the FM in Figure 8(a) as example, {F} is
obtained as the only dead feature in the model. The
explanations that we obtain are {R1}, {R3} and
{R4}, one of which must be removed or changed at
least to correct the dead feature.

Operation 9. Why is a feature a false-optional? A false-
optional (a.k.a. full-mandatory) feature is the one that

has an implicit mandatory relationship with its parent
feature despite of being linked by an optional relation-
ship. The declarative operation ”‘False-optional fea-
tures detection”’ obtains a list of this kind of features.
This abductive operation obtains explanations to repair
such an error. In Figure 8(a) example, {C, D} features
are false-optional, obtaining {R1} and {R4} as expla-
nations.

Operation 10. Why is a cardinality not selectable (wrong cardinality)?
Set-relationships use cardinalities to define the number
of child features that may be selected whenever its
parent feature is. When a cardinal is never used in
any product, we are taking about a wrong cardinality.
Although this operation is not theoretically described,
it is supported by FAMA Framework [12] which im-
plements a deductive operation ”‘wrong-cardinalities
detection”’. Taking Figure 8(b) example, we may
notice that it is impossible to select 3 child features
since A and C exclude themselves so R1 has a
wrong cardinality. This operation will provide two
explanations {R1} and {R2} since to correct the error
we may remove the cardinality or the ”‘excludes”’
relationship.

Operation 11. Why is there no product following a criteria?
When ”‘filtering”’ or ”‘optimizing”’ deductive oper-
ations are unable to find any product, this operation
helps on finding the reasons why there is no solution.
In the example in Figure 4.1, if we want to find a
product which costs less than 4, ”‘filtering”’ will
obtain no product at all. This operation will provide
explanations such as {costroot} and {costE} since
they increase the total cost of a product in 2.

4.3 Summary

We present the relations among abductive and deductive
operations in Table 1. The list of deductive operations is
mainly inspired in [2] and [4] and extended with error anal-
ysis operations[11] and configuration operations[15].

In this table, N/A is used to represent those operations
that do not fit into abductive reasoning. In this category we
place ”‘determining if two FMs are equivalent”’ as it is an
operation that compares two FMs and both deductive and
abductive reasoning frameworks are only able to deal with
just one FM. Corrective explanations are also out of our
scope although they are closely connected to explanations.
Corrective explanations may be considered as two-step op-
erations where an error is explained firstly and corrected
secondly. We are able to provide explanations via abductive
reasoning, but suggesting corrections is not so trivial and
will be an aim of our future work.



Deductive Operation Abductive Operations
Why? operation Why not? operation

Determining if a product is valid N/S Op.6
Determining if a FM is void N/S Op.5
Obtaining all the products N/S Op.7
Determining if two FMs are equivalent N/A N/A
Retrieving the core features Op.2 Op.1
Retrieving the variant features Op.1 Op.2
Calculating the number of products N/S Op.5
Calculating variability Op.1 or Op.2 Op.8
Calculating commonality Op.1 or Op.2 Op.8
Filtering a set of products N/S Op.6,7,11
Optimizing Op.4 Op.11
Dead features detection N/S Op.8
Proving Explanations1 Op.1-4 Op.5-11
Providing Corrective Explanations N/S N/A
False-optional features detection N/S Op.9
Wrong-cardinalities detection N/S Op.10
Determining if a configuration is valid Op.3 Op.7
1All the operations described in the table provide explanations for different contexts

Table 1. Relation between deductive and abductive operations

N/S is used to remark the operations that could be per-
formed but will have no sense from the point of view of the
automated analysis. For example, we are not interested in
determining why a FM describes 20 products. However we
must be interested in knowing why there a FM describes no
product.

5. Conclusions and Future Work

In this work, we have presented our conception of
AAFM from the point of view of the kind of reasoning
needed to solve the different analysis operations. We have
presented a new catalog of operations that rely on abductive
reasoning and some of which have already been dealt with
in some previous works, but the remaining operations are
new. As a first step in our roadmap of integrating abduc-
tion in AAFM it is our intention to open a debate where the
proposed catalogue of abductive operations is extended or
reduced.

Once we have obtained a stable catalogue, we envision
that we need two main pieces to complete the puzzle of ab-
ductive reasoning:

1. A translation from FMs to non monotonic logics, i.e.
logics that are able to represent incomplete knowledge.

2. A solver-independent solution to all the abductive op-
erations so that different solvers can be used to execute
these operations.

We will implement the solutions to these operations into
FAMA Framework [12]. Currently FAMA Framework sup-
ports explanations for operations 7 to 10 by means of CSOP
that you may download at fter obtaining these results, we
will design benchmarks to analysing the solvers that per-
form better for each abductive operation.
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