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Abstract: Rice is one of the most consumed staple foods around the world and its trade is highly
globalized. Increased environmental pollution generates a large amount of waste that, in many cases,
is discarded close to culture fields. Some species are able to bioaccumulate toxic substances, such
as metals, that could be transferred to the food chain. The main goal of this study was to evaluate
the content of metallic (Al, Cd, Pb, and Cr) and metalloid elements (As) in 14 of the most consumed
varieties of rice in Spain and their effects on human health. The samples were cooked, and human
digestion was simulated by using a standard in vitro digestion method. Metallic and metalloid
element levels were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-
OES), previous called microwave digestion. Both the human health risk index, Hazard Quotient,
and Lifetime Cancer Risk did not show toxic values in any case. Rice with a higher non-digestible
fraction showed a higher liberation of proteins and a lower glycemic index. There were no significant
differences in the concentrations of metallic and metalloid elements in cooked rice or in the digestible
fraction in all varieties analysed. However, Al concentrations were higher than other metals in all
varieties studied due to its global distribution. No relationship has been observed between the
digestibility of rice and the bioaccessibility of each metallic and metalloid element. All of the studied
rice varieties are healthy food products and its daily consumption is safe. The regular monitoring
of metals and As in rice consumed in Spain may contribute to improvements in the human health
risk evaluation.

Keywords: rice; heavy metal; ICP-OES; prebiotic; hazard quotient; lifetime cancer risk; bioaccumulation

1. Introduction

Due to globalization, food consumption is nowadays not limited to the production of
each country. Rather, the food consumed can come from any part of the world [1]. Thus,
rice consumed in Spain is not limited to that produced in the Albufera of Valencia, the
Ebro Delta, or the Marsh of Guadalquivir, as, in addition, a large quantity of rice from
abroad is consumed. In this sense, rice is considered a staple food for more than half of the
population worldwide as is, for many, their unique source of carbohydrates and proteins.
Rice is a product valuable not only for its energetic fuel (carbohydrates and proteins) but
also for its content of healthy molecules such as vitamin B1 (thiamine) and vitamin B6
(pyridoxine). In 2019, just over 496 million tons of rice were consumed worldwide [2].

Rice is grown under water-flooded conditions, and it is well known that metals and
some toxic substances may be taken up by roots and be accumulating in the grain. Metals
and metalloids are found naturally in the environment and/or as a result of human activi-
ties. Fossil fuel combustion, mining, industrial processing, and the overuse of chemicals
are among many sources that contribute to anthropogenic elemental disperse (Almutairi
et al., 2021, Regulatory Toxicology and Pharmacology [3]. Different works show that
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rice has a higher bio-accumulation capacity of metals and metalloids such as lead (Pb),
cadmium (Cd), and arsenic (As) from soils compared to other cereals [4]. Chronic exposure
to these metals and metalloids can generate serious health problems that comprise a wide
spectrum of diseases from allergies to cancer [5–8]. Long-term consumption of Cd could
induce renal failure, interference with the absorption of Ca, as well as the development of
some kinds of cancer [9]. Long-term consumption of As could be the cause of the onset of
various illnesses such as cancer, skin diseases, cardiovascular diseases, even some kinds of
diabetes [10–12]. Aluminium (Al) is a widely occurring element in the environment, and it
is the third most abundant element in the earth’s crust. Diet is the most important source
of Al exposure for non-occupational population. The WHO/FAO JECFA has re-evaluated
the safety of this element and lowered the provisional tolerable weekly intake (PTWI) by
sevenfold to 1 mg kg−1 body weight (bw) in 2007 because of the potential of Al to affect
the reproductive and developing nervous system in experimental animals [13,14]. Chronic
exposure to Pb has been associated with adverse effects in humans causing diseases such
as anemia, headaches, convulsions, muscle weakness, ataxia, tremors, and paralysis [15].
Pb and Al are neurotoxic agents, which may be bioaccumulated in the body, causing
serious damage in the central nervous system (CNS) such as the Alzheimer’s diseases,
as well as digestive diseases [16]. Exposure through ones diet to combinations of other
elements (Ba, Co, Cr, Cu, Hg, Mn, Ni, and Fe) bioaccumulated at low concentrations in
rice could also lead to the development of serious diseases [17]. Thus, Cr is an important
micronutrient, but it relates to several pathologies, including carcinogenicity. Cr (III) is the
essential element for metabolism of glucose, fat, and protein, but excessive ingestion could
endanger human health. Cr (VI) has been confirmed to be a carcinogenic substance, leading
to lung cancer and skin damage, causing intestinal diseases, poor blood, kidney disease,
and asthma [18]. Oral intake of Ni can induce allergic contact dermatitis in Ni-sensitive,
headaches, gastrointestinal and respiratory manifestations, lung fibrosis, cardiovascular
diseases, lung and nasal cancer, and epigenetic effects [15]. Therefore, analyzing metallic,
metalloids, and mineral elements concentration in the diet, and in specific types of food
such as in rice, is of major concern.

Spain consumed around 778,780 tons of rice in 2020, out of which 210,000 tons were
imported [19]. Burma, Thailand, Argentina, Pakistan, Guyana, Portugal, Cambodia, Italy,
France, and Uruguay were the main importing countries, with percentages of 43.19, 29.05,
27.91, 23.66, 20.27, 16.90, 13.47, 13.47, 9.5, 6.95, and 3.68%, respectively [20]. Most of these
countries are developing countries, which present high levels of environmental pollution.
Therefore, the concentration of metals and metalloids in rice grown in these countries
could be critical. There are several studies where the metallic composition of rice is studied
but to our knowledge none of them are focused on the metallic and metalloid elements’
bioaccessibility to these wide varieties of rice. Thus, the main goals of this study were to
investigate: (i) the compositional characterization of the main types of rice consumed in
Spain, (ii) analyses in vitro digestion and bioaccessibility of four metallic elements and
arsenic as a metalloid in rice; (iii) evaluate and compare the health risk associated to these
minerals in raw, cooked, and digested rice.

2. Materials and Methods
2.1. Reagents and Materials

All the solvents used, which were of analytical grade or higher, were obtained from
Panreac (Barcelona, Spain) or Sigma-Aldrich (Madrid, España). Type I water (>18 MΩ cm)
was obtained from a Milli-Q water purification system (Millipore, Bedford, MA, USA).
All materials used were made of plastic and cleaned by soaking in 20% (v/v) HNO3 sub-
boiling quality for 4 h, rinsing three times with type I water, according to EPA method
200.8 (EPA. 200) and drying in a laminar flow hood; using as blank 1% (v/v) HNO3. ICP
multielement calibration standard solution (26 elements in HNO3, 5%) was purchased in
Scharlau (Barcelona, Spain). The digestive enzymes, i.e., pepsin (porcine, 367 units per mg
solid, measured as TCA-soluble products using hemoglobin as a substrate) and pancreatin
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(porcine, 8 × USP specifications of amylase, lipase, and protease), were also purchased
from Sigma-Aldrich. Salts were purchased from Sigma-Aldrich.

2.2. Samples, Pretreatments and Treatment

Fourteen varieties corresponding to the most consumed varieties in Spain have been
used in this study. In total, 42 rice samples were prepared in this study (14 varieties ×
3 replicates). Rice origin is shown in Table 1.

Table 1. Rice samples from different origins.

Variety Origin

Hispamar Spain

Perlado Spain

Memby Argentine

Barone Greece

Jasmine Vietnam

Sona Masoori India

Sole Italy

Piñana Spain

Thaiperla Spain

Guadiamar Spain

Puntal Spain

Sendra Spain

Basmati India

Marisma Spain

As a pretreatment, to remove any possible foreign metallic and metalloid contamina-
tion in the rice, all samples of raw rice were washed with deionized distilled water before
cooking [21] and dried at 65 ◦C for 48 h. Washed rice was cooked in boiling water at a ratio
of 2:1 (v/v) for 15 min and cold down at room temperature. Cold cooked rice was then
dried at 65 ◦C for 48 h.

A sample of 2.5 g of each cooked rice was digested following the standard in vitro
digestion method described by Brodkorb et al. [22], simulating human digestion (stock
solutions used for simulated digestions are shown in Table 2). Briefly, the method consists
of an in vitro simulation of the digestion process, clearly differentiating oral, stomach, and
intestinal digestion in phases. Oral phase: the mastication simulation was carried out in a
ceramic mortar to avoid contamination from metallic elements. Simulated salivary fluid
(SSF) electrolyte stock solution (adjusted to pH 7) was added at a final ratio rice/SSF of
50:50 (w/v). Human salivary ∝-amylase (EC 3.2.1.1) and CaCl2 were added to obtain a final
concentration of 75 U (75 U mL−1) and 0.75 mM, respectively. Samples were incubated
in a shaker Max Q5000 (Thermo Fisher Scientific Inc., Waltham, MA, USA), at 37 ◦C and
95 rpm, for 2 min. Gastric phase: five parts of oral bolus were mixed with four parts of
simulated gastric fluid (SGF) stock electrolyte solution (adjusted to pH 3) to obtain a final
ratio food/SGF of 50:50 (v/v). Porcine pepsin (EC 3.4.23.1) and CaCl2 were added to achieve
2000 U mL−1 and 0.075 mM in the final digestion mixture, respectively. Samples were
incubated in a shaker Max Q5000 (Thermo Fisher Scientific Inc., Waltham, MA, USA), at
37 ◦C and 95 rpm, for 2 h. Intestinal phase: Five parts of gastric-chime was mixed with
four parts of simulated intestinal fluid (SIF) electrolyte stock solution to obtain (adjusted to
pH 7) a final ratio gastric-chime/SIF of 50:50 (v/v). CaCl2 was added to the gastric-chime
mixture, to reach a final concentration of 0.3 mM, followed by the addition of 0.25 mL
of a mixture of bile extract and pancreatin (trypsin activity 100 U mL−1). Samples were
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incubated in a shaker Max Q5000 (Thermo Fisher Scientific Inc., Waltham, MA, USA), at
37 ◦C and 100 rpm, for 2 h. After digestion, the digest was centrifuged at 30.000× g for 2 h,
obtaining an aqueous-micellar phase (digestible fraction) and a pellet (the non-digestible
fraction).

Table 2. Preparation of stock solutions of simulated digestion fluids. Final volume of 500 mL for each fluid.

SSF SGF SIF

pH7 pH3 pH7

Constituent Stock Concentration Volume of
Stock

Concentration
in SSF

Volume
of Stock

Concentration
in SSF

Volume of
Stock

Concentration
in SSF

g L−1 mol L−1 mL mmol L−1 mL mmol L−1 mL mmol L−1

KCl 37.3 0.5 15.1 15.1 6.9 6.9 6.8 6.8

KH2PO4 68 0.5 3.7 3.7 0.9 0.9 0.8 0.8

NaHCO3 84 1 6.8 13.6 12.5 25 42.5 85

NaCl 117 2 - - 11.8 47.2 9.6 38.4

MgCl2(H2O)6 30.5 0.15 0.5 0.15 0.4 0.1 1.1 0.33

(NH4)2CO3 48 0.5 0.06 0.06 0.5 0.5 - -

For pH adjustment

g L−1 mL mmol L−1 mL mmol L−1 mL mmol L−1

NaOH 1 - - - - - -

HCl 6 0.09 1.1 1.3 15.6 0.7 8.4

g L−1 mol L−1 mmol L−1 mmol L−1 mmol L−1

CaCl2(H2O)2 44.1 0.3 1.5 (0.75 *) 0.15 (0.075 *) 0.6 (0.3 *)

* in brackets the corresponding Ca2+ concentration in the final digestion mixture SSF: Simulated Salivary Fluid; SGF: Simulated Gastric
Fluid; SIF: Simulated Intestinal Fluid. Table adapted from Brodkord et al. (2019).

2.3. Bioaccessibility

The estimation of the fraction of an ingested biocomponent (metallic and metalloid
elements in our case) that becomes accessible for absorption through the epithelial layer of
the gastrointestinal tract (GIT) or bioaccessibility was estimated by Equation (1).

BioaccessibilityMetals =
mg metal in digestible fraction

mg metal in cooked rice
× 100 (1)

2.4. Physic-Chemical Characterization

Physic-chemical characterization was carried out in raw, cooked, and digested rice.
Moisture content was determinate by a gravimetric method; by drying samples at 100 ◦C
until constant weight (approximately 48 h). The total carbohydrates were determined
by AOAC 985.29 [23]. Crude proteins were determined by Kjendahl method [24] and fat
content was obtained by Soxhlet extraction method [25]. Ash content was determined by
gravimetric measurement of the residues of the samples after ignition in a muffle oven at
600 ◦C during 16 h.

2.5. Metal Determination
2.5.1. Sample Treatment

In total, 84 samples (14 varieties of cooked and 14 digested × 3 replicates) were
analyzed. One g of each sample was transferred to Teflon vessels (PTFE), which were
previously washed with an HNO3 solution and Milli-Q water. Next, 4 mL of 65% HNO3
were added and 2 mL H2O2 were added to the samples and the closed Teflon vessels were
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placed in a microwave digester system (Ethos One, Milestone) for digestion. Digestion
conditions were those described by Rubio-Armendariz et al. [26].

2.5.2. Analytical Method

Metallic and metalloid elements were determined by ICP-OES in a Spectro-Blue
(Spectro). The conditions of the method are summarized in Table 3. These parameters were
established and optimized for a liquid matrix previously by Gutierrez et al. [27].

Table 3. ICP conditions.

Flow Rate 1.00

Radio frequency power 1.350

Plasma argon flow rate (L min−1) 15

Auxiliar argon flow rate (L min−1) 0.50

Nebulization flow rate (L min−1) 0.60

Read delay/s 30

Integration time/s (min-max) 1–5

Replicate 3

Wavelengths (nm) Cd: 226.5, Pb: 220.3, Al: 237.7, As:228.0, Cr: 205.5

2.6. Calculations
2.6.1. Estimated Daily Intake of Metallic and Metalloid Elements

The estimated daily intake (EDI) of metallic and metalloid elements of rice consump-
tion was calculated according to Equation (2):

EDI =
(EF × ED × FIR × MC)

(BW × AT)
(2)

where, EDI corresponds to the estimated daily intake (mg/kg·d), EF is the exposure
frequency (365 d/year), ED is the exposition daily for an adult (54 years), FIR is the
food ingestion rate (7.67 g/person·d), MC indicates the metallic or metalloid element
concentration in rice (mg/g dry weight), BW is the mean body weight of an Spanish
consumer (68.5 kg) [24] and AT is adult time (d) of 54 years (54 years × 365 d) for non-
carcinogenic effects and 70 years (70 years × 365 d) to carcinogenic effects [28].

2.6.2. Non-Carcinogenic Risk Assessment

Non-carcinogenic risk was evaluated for Al, Cr, As, Cd and Pb through Target Hazard
Quotient (THQ) method described by Chien et al., [29]. Equation (3) is used to calculate
the THQ is shown below.

THQ =
EDI
Rfd

(3)

where, Rfd is the oral reference dose (mg/kg·d), and EDI, the estimated daily intake as is
described above. The Rfd of each metallic or metalloid element [30] is shown in Table 4.

The Total Target Hazard Quotient (TTHQ) was calculated using Equation (4), by
adding up the THQ of all metallic and metalloid elements. Values below 1 in THQ and
TTHQ indicate that the risk is acceptable for chronic systemic effects, and values above 1
show an unacceptable non-carcinogenic risk.

TTHQ = THQAl + THQCr + THQAs + THQCd + THQPb (4)
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Table 4. Oral reference value of metallic or metalloid element (mg/kg·d).

Al 0.0004

Cr 0.0030

As 0.0003

Cd 0.0010

Pb 0.0035

2.6.3. Carcinogenic Risk Assessment (CRA)

CRA was estimated for As, Cd, Cr and Pb, which allowed to obtain the incremental
lifetime cancer risk (ILCR), according to Equation (5), where CSF is the cancer slope factor,
which are indicated for each metallic and metalloid element in Table 5. Regarding to USEPA
criteria, a range from 10−6 to 10−4 is considered as a tolerable carcinogenic risk, and values
above 10−4 are regarded as intolerable to population [31].

ILCR = EDI × CSF (5)

Table 5. CSF to each metallic and metalloid element studied described USEPA’s guideline.

As 1.5000

Cd 0.3800

Cr 0.5000

Pb 0.0085

In both cases, the non-carcinogenic and carcinogenic health risk of digestible frac-
tions were estimated by subtracting the non-digestible fraction values from the cooked
rice values.

2.7. Statistical Analyses

The IBM SPSS statistic software has been used to statistical analysis. One-way variance
(ANOVA) was used to make statistic comparison between the concentration of each metallic
and metalloid element in both rice processed, cooked, and digested, with a t-test; p < 0.05
was considered significant. Kolmogorov-Smirnov was used to verify the normality and
Levene’s test to analyse the homogeneity of variance based on the mean.

3. Result and Discussion
3.1. Chemical Characterization of Raw Rice

The diversity of the geographical origins of rice consumed in Spain can play an
important role on its chemical composition, not only in the content of metallic or metalloid
elements, thus, the chemical composition of the 14 major varieties of rice consumed in
Spain was analyzed. Results for major components are shown in Table 6. In all varieties
the content of macro-components: carbohydrates, proteins, ash, and fats are within normal
range for rice, with no significant differences, and similar to that described by others [32].
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Table 6. Chemical composition of 14 major varieties of raw rice consumed in Spain.

Variety Moisture
(%)

Ash
(%)

Fat
(%)

Protein
(%)

Total Carbohydrates
(%)

Memby 14.17 ± 1.56 a 0.64 ± 0.03 d 0.62 ± 0.02 b 9.60 ± 1.33 a,b 75.04 ± 7.66 a

Basmati 12.61 ± 0.94 a 0.59 ± 0.06 c,d 0.50 ± 0.06 a,b 11.45 ± 2.34 a,b 74.86 ± 8.14 a

Barone 13.93 ± 1.52 a 0.44 ± 0.06 a,b,c,d 0.68 ± 0.08 b 15.09 ± 0.48 b 69.89 ± 5.28 a

Guadiamar 13.13 ± 2.14 a 0.39 ± 0.01 a,b,c 0.59 ± 0.03 b 9.71 ± 0.97 a,b 76.21 ± 8.29 a

Hispamar 12.94 ± 1.67 a 0.43 ± 0.03 a,b,c,d 0.67 ± 0.02 b 9.36 ± 2.03 a,b 76.64 ± 4.13 a

Sonamasoori 17.04 ± 1.63 a 0.30 ± 0.03 a,b 0.22 ± 0.02 a 10.26 ± 1.31 a,b 72.22 ± 4.66 a

Sole 13.56 ± 2.15 a 0.52 ± 0.03 b,c,d 0.64 ± 0.04 b 6.85 ± 0.95 a 78.49 ± 8.54 a

Marisma 11.64 ± 1.44 a 0.45 ± 0.02 a,b,c,d 0.72 ± 0.09 b 10.03 ± 1.63 a,b 77.20 ± 6.94 a

Perlado 10.71 ± 1.13 a 0.43 ± 0.03 a,b,c,d 0.68 ± 0.08 b 5.01 ± 0.21 a 82.17 ± 6.55 a

Piñana 10.87 ± 1.07 a 0.37 ± 0.04 a,b,c 0.64 ± 0.04 b 9.16 ± 1.82 a,b 79.03 ± 5.30 a

Puntal 12.46 ± 1.49 a 0.40 ± 0.05 a,b,c 0.56 ± 0.06 b 6.27 ± 0.75 a 80.37 ± 6.44 a

Sendra 10.95 ± 1.17 a 0.52 ± 0.03 b,c,d 0.61 ± 0.04 b 10.23 ± 1.15 a,b 77.74 ± 6.98 a

Thaiperla 13.65 ± 1.42 a 0.48 ± 0.04 a,b,c,d 0.54 ± 0.06 a,b 5.21 ± 0.29 a 80.17 ± 6.57 a

Jasmine 12.64 ± 1.63 a 0.26 ± 0.06 a 0.7 ± 0.09 b 9.82 ± 1.26 a,b 76.62 ± 6.26 a

Average value 12.62% ± 1.08 0.44 ± 0.3 0.60 ± 0.05 9.14 ± 1.18 76.90 ± 6.55

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).

3.2. Chemical Characterization of Cooked Rice

As rice is often eaten cooked, its physic-chemistry characterization was also carried
out. Results expressed on a dry weight basis are shown in Table 7. The main difference
between both forms, raw and cooked, is in the moisture content, for which significant
differences were found (average values: 12.62% ± 1.08 and 4.09% ± 0.52, respectively,
p < 0.001), understanding that this moisture is the capacity of rice to keep water after the
drying process. These differences may be due to gelatinization processes, which take place
during the cooking and cooling process [33]. The structure of the complex gel system
and its water retention capacity depend on intra- and inter-carbohydrate association by
hydrogen bonds or Van der Waals forces. Water is retained back stronger by starch in raw
rice due to its crystalline structure (granule), than in cooked rice with a gel structure (much
more compact). This is due to the process named syneresis, where water is wept, caused by
a prolonged cooling of cooked rice [34]. During the cooling process the amylose-amylose
and amylose-amylopectin hydrogen bonds give rise to squeezing out of the water between
these polymers. In relation to individual data, as shown in Figure 1 and Tables 6 and 7;
in raw rice moisture values ranges between 14.1% ± 1.5 and 10.8% ± 1.0 found in the
varieties Memby and Piñana, respectively, with an average moisture of 12.62% ± 1.08,
These results validate the ones previously described by Lim et al. in 2003 and Ozbekova in
2019 [35,36]. In cooked rice moisture is much lower, showing an average of 4.09% ± 0.52,
ranging between 5.2% ± 6.3 and 3.1% ± 4.2, found in the varieties Perlado and Thaiperla,
respectively. However, it has not been possible to find preceding works that measured
cooked rice moisture content by drying the rice before measuring. Indeed, values available
in bibliography appear to be between 100–120%, for example in this study carried out by
Wu et al. in 2017 [37].
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Table 7. Chemical composition of 14 major varieties of cooked rice consumed in Spain.

Variety Moisture
(%)

Ash
(%)

Fat
(%)

Protein
(%)

Total Carbohydrates
(%)

Memby 4.00 ± 0.35 a 0.74 ± 0.02 f 0.52 ± 0.03 a,b,c 10.66 ± 1.15 a,b 84.14 ± 4.56 a

Basmati 4.44 ± 0.24 a 0.54 ± 0.03 c,d,e 0.59 ± 0.04 b,c,d 12.31 ± 2.06 a,b 82.16 ± 6.34 a

Barone 4.14 ± 0.53 a 0.52 ± 0.05 b,c,d,e 0.62 ± 0.07 b,c,d 15.49 ± 1.41 b 79.27 ± 3.76 a

Guadiamar 3.57 ± 0.28 a 0.36 ± 0.02 a,b,c 0.49 ± 0.03 a,b,c 10.97 ± 1.35 a,b 84.68 ± 6.97 a

Hispamar 4.13 ± 0.45 a 0.65 ± 0.02 e,f 0.61 ± 0.03 b,c,d 10.98 ± 1.41 a,b 83.66 ± 8.75 a

Sonamasoori 4.37 ± 0.34 a 0.41 ± 0.03 a,b,c,d 0.31 ± 0.02 a 11.53 ± 1.13 a,b 83.45 ± 4.63 a

Sole 4.26 ± 0.47 a 0.55 ± 0.02,d,e 0.59 ± 0.05 b,c,d 7.25 ± 0.68 a 87.41 ± 8.12 a

Marisma 4.98 ± 0.55 a 0.51 ± 0.03 b,c,d,e 0.81 ± 0.07 d 10.74 ± 1.64 a,b 83.04 ± 4.21 a

Perlado 4.01 ± 0.63 a 0.34 ± 0.03 a,b 0.59 ± 0.06 b,c,d 11.98 ± 1.43 a,b 80.66 ± 8.75 a

Piñana 5.15 ± 0.61 a 0.32 ± 0.04 a 0.61 ± 0.03 b,c,d 9.56 ± 1.21 a,b 89.51 ± 3.91 a

Puntal 3.96 ± 0.45 a 0.43 ± 0.04 a,b,c,d 0.48 ± 0.04 a,b 7.87 ± 0.63 a 87.32 ± 5.25 a

Sendra 3.74 ± 0.36 a 0.62 ± 0.02 e 0.75 ± 0.03 c,d 11.46 ± 0.64 a,b 83.47 ± 7.15 a

Thaiperla 4.00 ± 0.29 a 0.41 ± 0.04 a,b,c,d 0.62 ± 0.05 b,c,d 6.59 ± 0.56 a 88.38 ± 6.55 a

Jasmine 3.00 ± 0.34 a 0.32 ± 0.05 a 0.64 ± 0.07 b,c,d 10.30 ± 1.67 a,b 85.74 ± 5.34 a

Average value 4.09% ± 0.52 0.48 ± 0.03 0.58 ± 0.04 10.33 ± 1.21 84.49 ± 6.02

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).
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differences by ANOVA test (p < 0.05). * indicates significant differences between raw and cooked rice.

The concentration of the main components (proteins, carbohydrates, etc.) are higher
in cooked rice than in raw rice, as a consequence of the significant differences in moisture
between them, as discussed above. However, all data obtained were similar to those
previously described by Vini et al. with a mean protein value of 7.25 ± 0.02%, and a mean
carbohydrates value of 76.44 ± 0.03% [38]. Indeed, the data are aligned with the results
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previously achieved by Yankah et al., with protein values of 7.89 ± 0.16% and carbohydrate
of 74.09 ± 0.41% [39].

3.3. Digestible and Non-Digestible Fractions

In vitro digestion of cooked rice was carried out by following a standard in vitro di-
gestion method previously described by Brodkorb et al. [22]. This method allows obtaining
two fractions: one digestible, available to be absorbed through the intestinal epithelium,
and a non-digestible fraction, which passes directly to the colon and can be used as pre-
biotic [40] and/or be eliminated. The digestion process in cooked rice was performed to
evaluate which proportion of its components is able to be assimilated and excreted.

As shown in Figure 2, the content of non-digestible and digestible fraction in cooked
rice shows significant differences. Non-digestible fraction ranged between 25.5% and 73.1%,
found in the varieties Thaiperla and Guadiamar, respectively, with an average value of
44.3% ± 12.9. These differences could be explained due to the presence of resistant starches
(non-hydrolysable starches and slow digestibility starches) mainly. The high content of
non-digestible and/or slow-digestibility components makes them good candidates for
diabetes and obesity treatments [41], due to their lower glycemic index and their possible
effect as prebiotics [42].
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Protein content in the digestible fraction was calculated as the difference between
total proteins in cooked rice (Table 7) and proteins in non-digestible fraction (Table 8).
These results show that protein content in cooked rice oscillated between 15.49% ± 1.4
and 6.59% ± 0.5 in Barone and Thaiperla varieties, respectively, with an average value
of 10.37% ± 2.2, which is similar to the mean values previously described by Rezvan
et al. (9.48 ± 0.04 and 8.87 ± 0.04%) in cooked Hashemi and Domsiyah varieties and the
9.74 ± 0.21% found in cooked MGS variety by Kulwa et al. [43,44]. While in the digestible
fraction, protein content has an average value of 8.15% ± 0.40, oscillating its values between
12.87% ± 1.73 and 4.57% ± 0.27 in Basmati and Jasmine varieties, respectively. This
difference could be due to different ways of protein storage in the grain. In rice, there
are two structures to store proteins, body proteins and vacuoles. These structures lend
different degrees of solubility of proteins [40] and both structures may be modified by the
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cooking process. That could explain the differences in the content of proteins between
digested and cooked rice.

Table 8. Percentage of protein in non-digestible and digestible fraction.

Variety Proteins Measured in
Non-Digestible Fraction (%)

Calculated Proteins in
Digestible Fraction (%)

Memby 8.88 ± 0.81 b,c,d,e 6.59 ± 0.62 a,b

Basmati 10.53 ± 1.34 d,e 12.87 ± 1.73 c

Barone 10.12 ± 1.23 c,d,e 6.44 ± 0.67 a,b

Guadiamar 10.29 ± 0.91 d,e 5.77 ± 1.09 a,b

Hispamar 8.87 ± 0.81 b,c,d,e 9.40 ± 1.10 a,b,c

Sona Masoori 6.17 ± 0.53 a,b,c,d 5.87 ± 0.82 a,b

Sole 4.17 ± 0.36 a 4.59 ± 0.37 a

Marisma 6.93 ± 0.54 a,b,c,d,e 9.19 ± 1.00 a,b,c

Perlado 6.74 ± 0.62 a,b,c,d 5.08 ± 0.40 a

Piñana 5.58 ± 0.58 a,b,c 9.99 ± 1.10 a,b,c

Puntal 6.42 ± 0.45 a,b,c,d,e 9.61 ± 1.34 a,b,c

Sendra 10.88 ± 1.34 12.75 ± 1.09 c

Thaiperla 5.44 ± 0.66 a,b,c 11.43 ± 1.34 b,c

Jasmine 4.20 ± 0.45 a,b 4.58 ± 0.27 a

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).

The estimation of the amount of assimilated protein in reference to consumed rice was
calculated from these results (see Figure 3). These data show that the average value of for
protein liberation is 4.84% ± 2.65 and that the highest and lower values (8.71 ± 0.51 and
1.65 ± 0.4 g/100 g of cooked rice) were observed for the varieties Basmati and Guadiamar,
respectively.

Foods 2021, 10, x FOR PEER REVIEW 10 of 17 
 

 

Thaiperla 5.44 ± 0.66 a,b,c 11.43 ± 1.34 b,c 
Jasmine 4.20 ± 0.45 a,b 4.58 ± 0.27 a 

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05). 

The estimation of the amount of assimilated protein in reference to consumed rice 
was calculated from these results (see Figure 3). These data show that the average value 
of for protein liberation is 4.84% ± 2.65 and that the highest and lower values (8.71 ± 0.51 
and 1.65 ± 0.4 g/100 g of cooked rice) were observed for the varieties Basmati and Gua-
diamar, respectively. 

 
Figure 3. Estimation of assimilated protein in cooked rice consumed (g/100 g). Different letters in 
the same row indicate significant differences by ANOVA test (p < 0.05). 

According to these results, it can be assumed that those varieties with a larger digest-
ible fraction provide a higher amount of protein. In addition, it seems reasonable to as-
sume that highly digestible varieties will present a greater release of metallic and metal-
loid elements than varieties with lower digestibility. To confirm this hypothesis, metallic 
elements and As content were analyzed in all the rice varieties studied in this work. 

3.4. Metalllic and Metalloid Content in Rice 
In addition to the differences found in the composition of macro-components (carbo-

hydrates, Proteins, etc.), the composition of micro-components, mainly metals, could also 
show significant differences. Therefore, our study was focused on the content of metallic 
and metalloid elements, analyzing them after being cooked and digested as an indirect 
measure of their bioaccessibility. Results are shown in Table 9A, B. The highest levels were 
those provided by Al in all the varieties, which is not surprising due to its global distribu-
tion [45]. Aluminum content ranged between 1.9 10−3 ng/g and 3.1 ng/g in Memby and 
Piñana varieties, respectively. The average value was of 2.5 ± 0.6 10−3 ng/g in cooked rice, 
which are similar values than those described by Zhao [32]. However, the values in the 
non-digestible fraction were lower, varying between 1.1 10−3 ng/g and 7.4 10−4 ng/g in Pi-
ñana and Basmati varieties, respectively, with an average value of 1.7 ± 0.6 10−3 ng/g. These 
data show that the amount of Al released is not the same in all varieties and that the degree 
of release depends on the type of matrix of each variety. The highest degree of Al release 
is observed for the Perlado variety (71.63% ± 8.21). Despite Al is considered as neurotoxic, 

Figure 3. Estimation of assimilated protein in cooked rice consumed (g/100 g). Different letters in
the same row indicate significant differences by ANOVA test (p < 0.05).



Foods 2021, 10, 2584 11 of 19

According to these results, it can be assumed that those varieties with a larger di-
gestible fraction provide a higher amount of protein. In addition, it seems reasonable to
assume that highly digestible varieties will present a greater release of metallic and metal-
loid elements than varieties with lower digestibility. To confirm this hypothesis, metallic
elements and As content were analyzed in all the rice varieties studied in this work.

3.4. Metalllic and Metalloid Content in Rice

In addition to the differences found in the composition of macro-components (carbo-
hydrates, Proteins, etc.), the composition of micro-components, mainly metals, could also
show significant differences. Therefore, our study was focused on the content of metallic
and metalloid elements, analyzing them after being cooked and digested as an indirect
measure of their bioaccessibility. Results are shown in Table 9A,B. The highest levels
were those provided by Al in all the varieties, which is not surprising due to its global
distribution [45]. Aluminum content ranged between 1.9 × 10−3 ng/g and 3.1 ng/g in
Memby and Piñana varieties, respectively. The average value was of 2.5 ± 0.6 × 10−3 ng/g
in cooked rice, which are similar values than those described by Zhao [32]. However, the
values in the non-digestible fraction were lower, varying between 1.1 × 10−3 ng/g and
7.4 × 10−4 ng/g in Piñana and Basmati varieties, respectively, with an average value of
1.7 ± 0.6 × 10−3 ng/g. These data show that the amount of Al released is not the same in all
varieties and that the degree of release depends on the type of matrix of each variety. The
highest degree of Al release is observed for the Perlado variety (71.63% ± 8.21). Despite Al
is considered as neurotoxic, related with neurodegenerative diseases such as Parkinson
and Alzheimer’s, its concentration in the digestible fraction was below the toxic threshold
fixed in 1 mg/person/week, 105 fold lower that the toxic threshold [46,47].

Predictably, the Cd, Pb, Cr, and As concentrations were found below toxic limits, 9,
9, 7 and 7 fold below than toxic threshold, respectively [48–51], including the As values
obtained in Basmati variety in cooked rice (increased 10 fold). Concentrations equal to the
Limit of Quantification (LOQ) were assumed for Cd, Pb, Cr, and As in the worst scenario.

Metallic elements bioaccessibility is shown in Table 10, depending on the digestibility
grade of each rice variety. The highest percentage of bioaccessibility has been found
for Al (87.6% ± 10.25) in Sona Masoori variety. In contrast, the lowest percentage of
bioaccessibility has been found for Cr (22.4% ± 2.5), also in the same variety. Even though
this is the lowest value, it is substantially higher than the ones found by other authors. For
instance, Kumari and Platel described a Cr bioaccessibility of 8 ± 0.17% [52].

The presence of metallic and metalloid elements after the digestion process could
be explained since they keep embedded into the non-digestible fraction as previously de-
scribed in rats by Rose et al. [53]. The presence or formation of resistant or low digestibility
starches may contribute to establishing a stronger metallic and metalloid element-retention
than might be expected to fast digestibility starches. Recent works demonstrated the capac-
ity of some modified starches to form metallic or metalloid elements-complexes [54], thus,
a lesser grade these modifications may occur spontaneously in rice, which could explain
the higher presence of these metallic and metalloid elements in the non-digestible fraction
of rice.
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Table 9. (A). Metallic and metalloid elements values in cooked rice; (B). Metallic and metalloid elements values in the digestible fraction of rice.

(A)

ng/g of Cooked Rice

Al Cd Cr Pb As

Barone 2.8 × 10−3 ± 3.1 × 10−4 b 1.8 × 10−5 ± 2.5 × 10−7 a 5.2 × 10−5 ± 6.8 × 10−7 c,d,e 1.8 × 10−5 ± 1.7 × 10−6 a 3.6 × 10−5 ± 3.5 × 10−6 a

Basmati 2.1 × 10−3 ± 2.5 × 10−4 a,b 1.8 × 10−5 ± 2.3 × 10−7 a 6.1 × 10−5 ± 4.9 × 10−6 d,e 1.8 × 10−5 ± 1.8 × 10−6 a 3.2 × 10−5 ± 1.0 × 10−6 b

Guadiamar 2.3 × 10−3 ± 2.2 × 10−4 a,b 1.8 × 10−5 ± 1.6 × 10−6 a 3.2 × 10−5 ± 4.8 × 10−7 b,c 1.8 × 10−5 ± 2.2 × 10−6 a 3.6 × 10−5 ± 3.2 × 10−6 a

Hispamar 2.2 × 10−3 ± 2.1 × 10−4 a,b 1.8 × 10−5 ± 1.8 × 10−6 a 2.1 × 10−5 ± 1.9 × 10−6 a,b 1.8 × 10−5 ± 2.7 × 10−6 a 3.6 × 10−5 ± 4.0 × 10−6 a

Jasmine 2.3 × 10−3 ± 2.3 × 10−5 a,b 1.8 × 10−5 ± 3.2 × 10−13 a 6.5 × 10−5 ± 6.5 × 10−8 e 1.8 × 10−5 ± 2.3 × 10−6 a 3.6 × 10−5 ± 5.8 × 10−6 a

Marisma 1.9 × 10−3 ± 2.3 × 10−5 a 1.8 × 10−5 ± 1.6 × 10−6 a 3. × 10−5 ± 4.3 × 10−7 b,c 1.8 × 10−5 ± 1.4 × 10−6 a 3.6 × 10−5 ± 3.5 × 10−6 a

Memby 1.9 × 10−3 ± 2.9 × 10−5 a 1.8 × 10−5 ± 2.0 × 10−6 a 8.7 × 10−6 ± 1.1 × 10−7 a 1.8 × 10−5 ± 2.7 × 10−7 a 3.6 × 10−5 ± 4.5 × 10−6 a

Perlado 2.6 × 10−3 ± 3.4 × 10−5 a,b 1.8 × 10−5 ± 2.9 × 10−6 a 1.6 × 10−4 ± 2.1 × 10−6 f 1.8 × 10−5 ± 1.6 × 10−6 a 3.6 × 10−5 ± 4.9 × 10−6 a

Piñana 2.3 × 10−3 ± 1.8 × 10−4 a,b 1.8 × 10−5 ± 1.8 × 10−6 a 4.7 × 10−5 ± 3.8 × 10−6 c,d,e 1.8 × 10−5 ± 1.8 × 10−8 a 3.6 × 10−5 ± 3.0 × 10−6 a

Puntal 3.1 × 10−3 ± 4.7 × 10−5 a 1.8 × 10−5 ± 2.3 × 10−6 a 6.3 × 10−5 ± 7.6 × 10−6 d,e 1.8 × 10−5 ± 2.2 × 10−7 a 3.6 × 10−5 ± 2.8 × 10−6 a

Sendra 2.5 × 10−3 ± 2.2 × 10−4 a,b 1.8 × 10−5 ± 2.4 × 10−6 a 6.0 × 10−5 ± 5.7 × 10−6 d,e 1.8 × 10−5 ± 2.3 × 10−7 a 3.6 × 10−5 ± 3.6 × 10−6 a

Sole 2.2 × 10−3 ± 2.2 × 10−6 a,b 1.8 × 10−5 ± 1.5 × 10−6 a 6.0 × 10−5 ± 5.6 × 10−6 d,e 1.8 × 10−5 ± 2.3 × 10−7 a 3.6 × 10−5 ± 5.8 × 10−6 a

Sona Masoori 2.3 × 10−3 ± 2.8 × 10−5 a,b 1.8 × 10−5 ± 1.4 × 10−6 a 6.7 × 10−5 ± 6.7 × 10−7 d,e 1.8 × 10−5 ± 1.4 × 10−6 a 3.6 × 10−5 ± 3.5 × 10−6 a

Thaiperla 2.4 × 10−3 ± 3.1 × 10−5 a,b 1.8 × 10−5 ± 1.8 × 10−6 a 4.3 × 10−5 ± 3.9 × 10−6 c,d 1.8 × 10−5 ± 2.7 × 10−7 a 3.6 × 10−5 ± 4.5 × 10−6 a
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Table 9. Cont.

(B)

ng/g of Digestible Fraction of Rice

Al Cd Cr Pb As

Barone 1.3 × 10−3 ± 1.7 × 10−9a,b,c,d 8.6 × 10−6 ± 1.0 × 10−7 b,c 1.8 × 10−5 ± 1.6 × 10−6 a 8.6 × 10−5 ± 7.8 × 10−7 a,b 1.7 × 10−5 ± 2.4 × 10−7 a

Basmati 2.2 × 10−3 ± 4.8 × 10−9 f 1.2 × 10−5 ± 1.8 × 10−7 d 1.8 × 10−5 ± 2.0 × 10−6 a 1.2 × 10−5 ± 1.2 × 10−6 b 2.4 × 10−5 ± 3.1 × 10−7 a

Guadiamar 1.2 × 10−3 ± 1.4 × 10−9 a,b,c 8.1 × 10−6 ± 1.1 × 10−7 b 1.8 × 10−5 ± 2.9 × 10−6 a 8.1 × 10−6 ± 6.6 × 10−14 a,b 1.6 × 10−5 ± 1.5 × 10−7 a

Hispamar 7.3 × 10−4 ± 5.3 × 10−10 a 5.1 × 10−6 ± 4.1 × 10−7 a 1.8 × 10−5 ± 1.8 × 10−6 a 5.1 × 10−6 ± 4.6 × 10−7 a 1.0 × 10−5 ± 9.8 × 10−7 a

Jasmine 1.4 × 10−3 ± 2.0 × 10−9 b,c,d,e 1.1 × 10−5 ± 1.7 × 10−7 c,d 1.8 × 10−5 ± 2.3 × 10−6 a 1.1 × 10−5 ± 1.2 × 10−6 b 2.2 × 10−5 ± 4.8 × 10−13 a

Marisma 1.3 × 10−3 ± 1.7 × 10−9 a,b,c,d 9.0 × 10−6 ± 8.0 × 10−7 b,c 1.8 × 10−5 ± 2.4 × 10−6 a 9.0 × 10−6 ± 1.4 × 10−6 a,b 1.8 × 10−5 ± 1.6 × 10−6 a

Memby 1.1 × 10−3 ± 1.2 × 10−4 a,b 8.7 × 10−6 ± 8.7 × 10−9 b,c 1.8 × 10−5 ± 1.5 × 10−6 a 8.7 × 10−6 ± 8.5 × 10−7 a,b 1.7 × 10−5 ± 1.9 × 10−6 a

Perlado 2.0 × 10−3 ± 2.4 × 10−4 e,f 1.1 × 10−5 ± 1.3 × 10−7 c,d 1.8 × 10−5 ± 1.4 × 10−6 a 1.1 × 10−5 ± 1.4 × 10−6 b 2.3 × 10−5 ± 3.7 × 10−6 a

Piñana 1.1 × 10−3 ± 1.0 × 10−4 a,b 7.9 × 10−6 ± 1.0 × 10−7 b 1.3 × 10−4 ± 1.2 × 10−6 b 7.9 × 10−6 ± 7.5 × 10−7 a,b 1.6 × 10−5 ± 1.6 × 10−6 a

Puntal 1.9 × 10−3 ± 1.9 × 10−5 d,e,f 1.3 × 10−5 ± 2.0 × 10−7 d 1.8 × 10−5 ± 2.0 × 10−6 a 1.3 × 10−5 ± 1.3 × 10−7 b 2.5 × 10−5 ± 3.2 × 10−6 a

Sendra 1.4 × 10−3 ± 1.4 × 10−6 b,c,d,e 1.2 × 10−5 ± 1.6 × 10−7 d 1.0 × 10−5 ± 2.9 × 10−6 a 1.2 × 10−5 ± 1.8 × 10−7 b 2.4 × 10−5 ± 3.2 × 10−6 a

Sole 1.6 × 10−3 ± 2.1 × 10−9 b,c,d,e,f 1.2 × 10−5 ± 9.6 × 10−7 d 1.8 × 10−5 ± 1.8 × 10−6 a 1.2 × 10−5 ± 1.3 × 10−7 b 1.8 × 10−3 ± 1.5 × 10−4 b

Sona Masoori 1.8 × 10−3 ± 2,0 × 10−4 c,d,e,f 1.3 × 10−5 ± 2.0 × 10−7 d 1.8 × 10−5 ± 2.3 × 10−6 a 1.3 × 10−5 ± 1.6 × 10−6 b 2.7 × 10−5 ± 2.1 × 10−6 a

Thaiperla 2.0 × 10−3 ± 2.4 × 10−4 e,f 8.7 × 10−6 ± 7.7 × 10−7 b,c 1.8 × 10−5 ± 2.4 × 10−6 a 8.7 × 10−6 ± 8.3 × 10−7 a,b 1.7 × 10−5 ± 1.7 × 10−6 a

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).
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Table 10. Percentage of metallic elements bioaccesibility (%).

Al Cd Cr Pb As

Barone 59.41 ± 4.23 b,c,d,e,f 47.99 ± 1.59 b,c 34.85 ± 1.33 b,c 47.90 ± 3.29 b,c 36.71 ± 2.61 a,b

Basmati 75.80 ± 3.05 e,f,g,h 67.73 ± 1.99 e 29.60 ± 1.93 a,b 67.71 ± 2.24 e 41.61 ± 4.25 a,b,c

Guadiamar 52.47 ± 2.54 b,c,d 45.12 ± 1.3 b,c 44.47 ± 2.52 c,d 45.12 ± 1.89 b 36.28 ± 4.1 a,b

Hispamar 28.43 ± 1.89 a 28.60 ± 1.89 a 76.95 ± 3.33 e 28.63 ± 1.87 a 50.16 ± 2.87 b,c,d

Jasmine 67.95 ± 4.81 c,d,e,f,g,h 59.97 ± 3.25 c,d,e 33.42 ± 1.98 a,b,c 59.97 ± 1.01 c,d,e 31.61 ± 2.98 a

Marisma 56.92 ± 4.01 b,c,d,e, 50.18 ± 2.87 b,c,d 49.93 ± 1.66 d 50.11 ± 3.99 b,c,d,e 66.20 ± 3.98 e

Memby 65.54 ± 6.10 b,c,d,e,f,g 48.41 ± 2.45 b,c,d 51.64 ± 2.36 d 48.42 ± 2.74 b,c 66.24 ± 1.88 e

Perlado 81.03 ± 4.54 g,h 63.43 ± 2.96 d,e 31.61 ± 2.98 a,b 63.44 ± 1.79 d,e 52.43 ± 2.54 c,d,e

Piñana 59.67 ± 1.89 b,c,d,e,f 43.19 ± 2.01 a,b 54.80 ± 1.89 d 43.96 ± 2.29 b 43.99 ± 2.01 a,b,c

Puntal 47.51 ± 1.99 a,b 69.80 ± 1.25 e 28.77 ± 0.98 a,b 69.81 ± 1.55 e 67.73 ± 1.99 e

Sendra 72.02 ± 4.66,d,e,f,g,h 66.25 ± 3.98 e 30.26 ± 1.57 a,b 66.20 ± 1.88 e 34.80 ± 1.33 a,b

Sole 78.46 ± 2.29 f,g,h 66.80 ± 1.96 e 37.42 ± 1.64,b.c 66.88 ± 3.57 e 59.94 ± 0.01 d,e

Sona Masoori 87.60 ± 2.12 h 74.41 ± 5.55 e 22.45 ± 0.01 a 74.45 ± 2.79 e 47.92 ± 1.59 b,c,d

Thaiperla 51.51 ± 2.22 b,c 48.20 ± 1.98 b,c,d 34.62 ± 0.99 b,c 48.23 ± 3.31 b,c 52.41 ± 2.54 c,d,e

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).

3.5. Metal Intake through Rice Consumption

The average intake of all metallic elements/person/d was estimated from the amount
of assimilated metallic elements calculated and the Spanish average rice consumption
(7.67 g/·person·d). It was calculated which percentage correspond of the oral reference
values of each metallic element, (2.41–8.54% in Al; 0.02–0.05% in Cd; 0.02–0.85% in Cr;
0.02–0.05% in Pb; 0.04–9.91% in As) (Table 11). All values obtained are far from the toxic
threshold to each metallic element.

Table 11. Percentage of assimilated metallic elements respect to toxic threshold (%).

Al Cd Cr Pb As

Barone 2.66 ± 0.19 a 0.03 ± 0.001 a,b 0.38 ± 0.0001 e 0.03 ± 0.001 b 0.07 ± 0.04 a

Basmati 5.39 ± 0.29 b,c 0.05 ± 0.001 c 0.33 ± 0.001 d 0.05 ± 0.002 d 9.91 ± 4.45,b

Guadiamar 2.70 ± 0.98 a 0.03 ± 0.0002 a,b 0.31 ± 0.02 c 0.03 ± 0.02 b 0.06 ± 0.03 a

Hispamar 2.41 ± 0.14 a 0.02 ± 0.01 a 0.02 ± 0.0001 a 0.02 ± 0.001 a 0.04 ± 0.03 a

Jasmine 6.84 ± 0.97c,d 0.04 ± 0.002 b,c 0.32 ± 0.02 c,d 0.04 ± 0.002 c, 0.08 ± 0.02 a

Marisma 3.70 ± 0.21 a,b,c,d 0.03 ± 0.001 a,b 0.38 ± 0.0003 e 0.03 ± 0.0001 b 0.07 ± 0.03 a

Memby 3.33 ± 0.16 a 0.03 ± 0.001 a,b 0.24 ± 0.001 b 0.03 ± 0.002 b 0.07 ± 0.02 a

Perlado 5.26 ± 0.40 b,c 0.04 ± 0.003 b,c 0.25 ± 0.03 b 0.04 ± 0.001c 0.09 ± 0.06 a

Piñana 2.85 ± 0.2 a 0.03 ± 0.002 a,b 0.31 ± 0.001 c 0.03 ± 0.002 b 0.06 ± 0.02 a

Puntal 5.67 ± 0.39 c 0.05 ± 0.003 c 0.83 ± 0.05 g 0.05 ± 0.002 d 0.10 ± 0.09 a

Sendra 5.32 ± 0.35 b,c 0.05 ± 0.004 c 0.32 ± 0.002 c,d 0.05 ± 0.001 d 0.09 ± 0.08 a

Sole 8.54 ± 0.65 d 0.05 ± 0.003 c 0.33 ± 0.002 d 0.05 ± 0.002 d 0.09 ± 0.08 a

Sona Masoori 7.01 ± 0.48 c,d 0.05 ± 0.002 c 0.40 ± 0.003 f 0.05 ± 0.01 d 0.10 ± 0.06 a

Thaiperla 3.58 ± 0.26 a,b 0.03 ± 0.002 a,b 0.24 ± 0.001 b 0.03 ± 0.001 b 0.07 ± 0.04 a

Different letters in the same row indicate significant differences by ANOVA test (p < 0.05).
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3.6. Human Health Risk Assessment

The human health risk assessment comprises the evaluation of non-carcinogenic and
carcinogenic health risks. To assess the level of concern arising from the ingestion of
metallic and metalloid elements in rice the THQ was evaluated. THQ is defined as a ratio
of exposition to toxic elements and the reference doses, which is the highest level before
the appearance of harmful effects. The THQ values for all the elements were below 1;
thus, it may be concluded that there is not potential non-carcinogenic health risk. Similar
results were previously obtained by Huang et al. [4], who observed the absence of health
risk (Cd, Pb, Hg, and As) through rice consumption. However, there are some studies
carried out in several countries that describe a THQ exceeding the threshold limit, as it
was reported by Hensawang et al. in 2017 in Thailand, Munish et al. in India and Tapos
et al. in Bangladesh [55–57]. Once THQ in the digestible fraction was estimated (Figure 4),
the highest value was observed in the Puntal variety (0.0045), and the lowest in the Barone
variety (0.001).
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In reference to the carcinogenic health risk, the ILCR (understood as the probability
of someone to develop cancer due to the exposure to a carcinogenic element) values
obtained in all digested rice were still far from those considered carcinogenic (<1 × 10−4)
as previously described by USEPA [53]. Most of the varieties of rice, in cooked digested
rice, showed similar ILCR values, being all of them around 10−8 (Figure 5). However,
there were two exceptions. The first one was the Basmati variety (cooked and digested),
whereby higher concentrations of As were detected in comparison to the rest of the varieties.
This may be explained by the higher contamination levels in India compared to the other
countries. Nonetheless, the Sona Masoori variety cultivated in India also showed lower
concentrations of As than the Basmati variety, and closer to the rest of the varieties studied.
This fact might be related with the non-homogeneous As content in the different cultivated
areas in India, since Zavala and Duxbury described that As content in rice depends on soil
composition [58]. The second one was the Piñana variety, which Cr levels in the digestible
fraction were higher than the rest of the elements [59]. The results of ILCR of each metallic
and metalloid element separately did not show any carcinogenic risk, as should be expected
for marketed rice. However, in order to have an overall assessment of the carcinogenic
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risk, combinations of different concentrations of metallic and metalloid elements below
threshold carcinogenic risk should be studied.
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4. Conclusions

In the present study, there were no significant differences in the metallic and metalloid
elements-concentration in rice between all the varieties analyzed, which demonstrates that
the monitorization of rice consumed carried out in Spain by companies and public health
agencies is vital in order to maintain these concentrations below metallic/metalloid-toxic
threshold. Moreover, rice with a higher non-digestible fraction showed a higher liberation
of proteins and a lower glycemic index. Both factors are features of healthy food. No
relationship has been observed between the digestibility of rice and the bioaccessibility of
each metallic and metalloid element. These data should be analysed carefully, as rice is
usually consumed as a side dish in developed countries and the presence of other foodstuffs
could contribute to increasing human health risk.
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