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Abstract Automatic design of P systems is an attractive

research topic in the community of membrane computing.

Differing from the previous work that used evolutionary

algorithms to fulfill the task, this paper presents the design

of a (deterministic transition) P system (without input

membrane) of degree 1, capturing the value of an arbitrary

k-order (k� 2) polynomial p(n) by using a reasoning

method. Specifically, the values of p(n) corresponding to a

natural number t is equal to the multiplicity of a distin-

guished object of the system (the output object) in the

configuration at instant t. We also discuss the descriptive

computational resources required by the designed k-order

polynomial P system.

Keywords Membrane computing � P system � Automatic

design � Polynomial

1 Introduction

Since the area of membrane computing was initiated in

1998 (Păun 2000), the rapidly theoretical development with

respect to computing models and their computing power

and computational efficiency (Păun et al. 2010; Song et al.

2015; Zhang et al. 2014d) and various real-world appli-

cations (Zhang et al. 2014a, 2015; He et al. 2015) have

been reported. A P system for performing a specific task,

especially for solving an NP-hard (Pan et al. 2011), NP-

complete (Song et al. 2014; Liu et al. 2015) or PSPACE-

complete problem (Alhazov et al. 2003) or for controlling

robots (Wang et al. 2016), is carefully designed by experts

and cannot be automatically gained by using programs,

which may limit the application of P systems. How to

automatically design a P system by using programs,

namely, the programmability of a P system, is an attractive

research direction in the area of membrane computing

(Zhang et al. 2014c).

The automatic design of a P system is a very compli-

cated and challenging task. The related work in the liter-

ature focused on the use of evolutionary algorithms to

make a population of P systems evolve toward a successful

one (Zhang et al. 2014a). This work started with the

selection of an appropriate subset from a redundant set of

evolution rules to design a cell-like P system, where a

membrane structure and initial objects were pre-defined

and fixed in the process of design (Escuela and Gutiérrez-

Naranjo 2010; Huang et al. 2011; Tudose et al. 2011; Chen

et al. 2014; Zhang et al. 2014a). In Escuela and Gutiérrez-

Naranjo (2010), a genetic algorithm was used to design a P

system to calculate 42. In Huang et al. (2011), a binary

encoding technique was presented to denote an evolution

rule set of a P system and a quantum-inspired evolutionary

algorithm (QIEA) was used to make a population of P

systems evolve toward successful ones. This method suc-

cessfully solved the design of P systems to compute 42 and

n2 (for natural numbers n� 2). In Tudose et al. (2011), an

evaluation approach considering non-determinism and

halting penalty factors and a genetic algorithm with the
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binary encoding technique in Huang et al. (2011) were

introduced to design P systems for 42, n2 and the genera-

tion of language fa2nb3n jn[ 1g. In these studies mentioned

above, a specific redundant evolution rule set was designed

for a specific computational task. This was developed in

Zhang et al. (2014a), Chen et al. (2014) by applying one

pre-defined redundant evolution rule set to design multiple

different P systems, each of which executes a computation

task. In Chen et al. (2014), an automatic design method of

a cell-like P system framework for performing five basic

arithmetic operations (addition, subtraction, multiplication,

division and power) was presented. In Zhang et al. (2014a),

a common redundant set of evolution rules was applied to

design successful P systems for fulfilling eight computa-

tional tasks: 2ðn� 1Þ, 2n� 1, n2, 1
2
½nðn� 1Þ�, nðn� 1Þ,

ðn� 1Þ2 þ 2n þ 2, a2
n

b3
n

and 1
2
ð3n � 1Þ, (n[ 1 or 2). A

significant development in this topic is the work in Ou

et al. (2013) in which a cell-like halting P system for 42

was designed by tuning membrane structures, initial

objects and evolution rules. In this work, a genetic algo-

rithm with a binary encoding technique was discussed to

codify the membrane structure, initial objects and evolu-

tion rules of a P system. Following this work, an automatic

design method, Permutation Penalty Genetic Algorithm

(PPGA), for a deterministic and non-halting membrane

system by tuning membrane structures, initial objects and

evolution rules was proposed in Zhang et al. (2014c). The

main ideas of PPGA are the introduction of the permutation

encoding technique for a membrane system, a penalty

function evaluation approach for a candidate membrane

system and a genetic algorithm for making a population of

P systems evolve toward a successful one fulfilling a given

computational task. A cell-like membrane system for

computing the square of n2 (for natural numbers n� 1) was

successfully designed. In addition, the automatic design of

the minimal membrane systems with respect to their

membrane structures, alphabet, initial objects and evolu-

tion rules to fulfill the given task were also discussed in

Zhang et al. (2014c).

On the basis of the studies mentioned above, our aim is

to design a P system to compute a general polynomial. This

paper proposes a reasoning method to implement the

design of a simple (deterministic transition) P system

(without input membrane) of degree 1, capturing the value

of the k-order polynomial, and it also presents the

descriptive computational resources required by the

designed k-order polynomial P system. The reasoning

method is the use of the characteristics of P systems with a

membrane structure, initial objects and rules, and the

semantics of the P systems to provide a way to design the

required membrane systems. The introduced technique is

completely different from the previous work that used

evolutionary algorithms to design a P system.

The remainder of this paper is organized as follows:

Sect. 2 describes the polynomials we aim to design. In

Sect. 3, the two-, three- and k-order polynomial P systems

are designed. Section 4 discusses the descriptive compu-

tational resources that the two-, three- and k-order poly-

nomial P systems require. Section 5 concludes this work.

2 Polynomials computed by P systems

We start by defining what computing a k-order polynomial

means in the framework of deterministic transition P sys-

tem without input membrane.

Definition 1 Let p(n) be a polynomial whose coeficients

are natural numbers. We say that p(n) is computed by a

deterministic transition P system without input membrane

PpðnÞ ¼ ðC; l;M1; . . .;Mq;R1; . . .;Rq; ioutÞ, if the fol-

lowing holds:

– There exists a distinguished object (the output object),

o, in the working alphabet C.
– For each t 2 N, in the configuration Ct of PpðnÞ at

instant t, the multiplicity of object o in the output

membrane labelled by iout is p(t).

From the previous definition, if a deterministic transition P

system without input membrane computes a polynomial,

then the computation of that system is a non-halting

computation.

We try to find a minimum such P system computing a k-

order polynomial. Here the concept ‘‘minimum’’ refers to

the following constraints associated with P systems:

– The membrane structure has only one membrane.

– The evolution rules are non-cooperative.

– The number of objects and rules must be minimum.

3 Polynomial P systems design

3.1 Two-order polynomial P system design

In this section we present a (deterministic) transition P

system (without input membrane), PpðnÞ, of degree 1 that

computes the arbitrary polynomial with order 2,

pðnÞ ¼ a2 � n2 þ a1 � nþ a0, where a0; a1; a2 are natural

numbers, in the sense of Definition 1.

It is worth pointing out that pðnþ 1Þ ¼ pðnÞþ
2a2 � nþ a2 þ a1.
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For each symbol x, the expression x0 denotes the empty

multiset (or the empty string).

Associated with the polynomial pðnÞ ¼ a2 � n2þ
a1 � nþ a0, we consider the (deterministic) transition P

system (without input membrane) PpðnÞ ¼
ðC; l;M1;R1; ioutÞ of degree 1, defined as follows:

– C ¼ fb1; b2; og and the output object is o;

– l ¼ ½ �1;
– M1 ¼ foa0 b1g;
– R1 is the set of the following non-cooperative evolution

rules:

– r1 � b1 �! oa2þa1 b1 b2½ �1;
– r2 � ½ b2 �! o2a2 b2 �1.

– iout ¼ 1.

Let C ¼ ðC0; C1; C2; . . .; Ct; . . .Þ be the (unique) computation

of P. For each t 2 N and x 2 C, we denote by Ctð1Þ the

multiset over C associated with the membrane 1 in con-

figuration Ct.

Theorem 1 For every t 2 N we have Ctð1Þ ¼
fopðtÞ; b1; b2tg.

Proof Let us prove the result by induction on t.

For the base case, t ¼ 0, we note that

C0ð1Þ ¼ M1 ¼ oa0 b1f g ¼ opð0Þ; b1; b2
0

� �
.

Let us assume the result holds for t� 0, that is, let us

suppose that Ctð1Þ ¼ opðtÞ; b1; b2
t

� �
. In order to obtain

Ctþ1ð1Þ, we must apply the rules r1 and r2 to configuration

Ct. Then

Ctþ1ð1Þ ¼ opðtÞ; oa2þa1 ; b1; b2; o
2a2�t; b2

t
n o

¼ opðtÞþ2a2�tþa2þa1 ; b1; b2
ðtþ1Þ

n o

¼ opðtþ1Þ; b1; b2
ðtþ1Þ

n o

h

Hence, the result holds for t þ 1.

Corollary 1 For every t 2 N, in configuration Ct of PpðnÞ
at instant t, the multiplicity of object o in the membrane of

the system is p(t).

3.2 Three-order polynomial P system design

In this section we present a (deterministic) transition P

system (without input membrane), PpðnÞ, of degree 1 that

computes the arbitrary polynomial with order 3,

pðnÞ ¼ a3 � n3 þ a2 � n2 þ a1 � nþ a0;

where a0; a1; a2; a3 are natural numbers, in the sense of

Definition 1.

It is worth pointing out that pðnþ 1Þ ¼ pðnÞþ
3a3n

2 þ ð3a3 þ 2a2Þnþ a3 þ a2 þ a1.

Associated with the polynomial pðnÞ ¼ a3 � n3 þ a2 �
n2þ a1 � nþ a0, we consider the (deterministic) transition P

system (without input membrane), PpðnÞ ¼ ðC; l;M1;

R1; ioutÞ, of degree 1 defined as follows:

– C ¼ fb1; b2; b3; og and the output object is o;

– l ¼ ½ �1;
– M1 ¼ foa0 b1 g;
– R1 is the set of the following non-cooperative evolution

rules:

– r1 � ½ b1 �! oa3þa2þa1 b1 b2 b3 �1;
– r2 � ½ b2 �! o3a3þ2a2 b2 b3

2 �1;
– r3 � ½ b3 �! o3a3 b3 �1.

– iout ¼ 1.

Let C ¼ ðC0; C1; C2; . . .; Ct; . . .Þ be the (unique) computation

of P. For each t 2 N and x 2;C we denote by Ctð1Þ the

multiset over C associated with membrane 1 in configu-

ration Ct.

Theorem 2 For every t 2 N we have

Ctð1Þ ¼ fopðtÞ; b1; b2t; b3t
2g.

Proof Let us prove the result by induction on t. For the

base case, t ¼ 0, we note that

C0ð1Þ ¼ M1 ¼ foa0 b1g ¼ fopð0Þ; b1; b20; b30
2g:

Let us assume the result holds for t� 0, that is, let us

suppose that Ctð1Þ ¼ opðtÞ; b1; b2
t; b3

t2
n o

. In order to

obtain Ctþ1ð1Þ, we can apply the rules r1; r2 and r3 to

configuration Ct. Then

Ctþ1ð1Þ¼ opðtÞ; oa3þa2þa1 ; b1; b2; b3; o
ð3a3þ2a2Þ�t; b2

t; b3
2t; o3a3t

2

; b3
t2

n o

¼ opðtÞþ3a3t
2þð3a3þ2a2Þtþa3þa2þa1 ; b1; b2

tþ1; b3
t2þ2tþ1

n o

¼ opðtþ1Þ; b1; b2
tþ1; b3

ðtþ1Þ2
n o

h

Hence, the result holds for t þ 1.

Corollary 2 For every t 2 N, in configuration Ct of PpðnÞ
at instant t, the multiplicity of object o in the membrane of

the system is p(t).

3.3 k-order polynomial P system design

In this section we present a (deterministic) transition P

system (without input membrane), PpkðnÞ, of degree k� 1

that computes the arbitrary polynomial with order k,
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pkðnÞ ¼ ak � nk þ ak�1 � nk�1 þ . . .þ a1 � n1 þ a0 � n0,
where ak; ak�1; . . .; a1; a0 are natural numbers.

It is worth pointing out that the increment pkðnþ 1Þ �
pkðnÞ of polynomial pkðnÞ is:

k

1

� �
ak

� �
� nk�1 þ

k

2

� �
ak þ

k � 1

1

� �
ak�1

� �
� nk�2

þ
k

3

� �
ak þ

k � 1

2

� �
ak�1 þ

k � 2

1

� �
ak�2

� �
� nk�3

þ. . .
k

k � 1

� �
ak þ

k � 1

k � 2

� �
ak�1 þ . . .þ

3

2

� �
a3 þ

2

1

� �
a2

� �
� n1

þ
k

k

� �
ak þ

k � 1

k � 1

� �
ak�1 þ . . .þ

2

2

� �
a2 þ

1

1

� �
a1

� �
� n0

Let us denote:

– að0Þk ¼ k

k

� �
akþ

k�1

k�1

� �
ak�1þ . . .þ 2

2

� �
a2þ

1

1

� �
a1

– að1Þk ¼ k

k�1

� �
akþ

k�1

k�2

� �
ak�1þ...þ 3

2

� �
a3þ

2

1

� �
a2

– að2Þk ¼ k

k�2

� �
akþ

k�1

k�3

� �
ak�1þ...þ 4

2

� �
a4þ

3

1

� �
a3

– að3Þk ¼ k

k�3

� �
akþ

k�1

k�4

� �
ak�1þ...þ 5

2

� �
a5þ

4

1

� �
a4

...

– aðk�1Þ
k ¼ k

1

� �
ak

Then:

pkðnþ 1Þ � pkðnÞ ¼ að0Þk � n0 þ að1Þk � nþ að2Þk � n2 þ . . .þ aðk�1Þ
k � nk�1

Associated with polynomial pkðnÞ ¼ ak � nk þ ak�1 � nk�1 þ
. . .þ a1 � n1 þ a0 � n0 of order k, we consider the (deter-

ministic) transition P system (without input membrane)

PpkðnÞ ¼ ðC; l;M1;R1; ioutÞ of degree 1, defined as

follows:

– C ¼ fo; b1; b2; . . .; bkg and the output object is o;

– l ¼ ½ �1;
– M1 ¼ foa0 b1g;

– R1 is the set of the following non-cooperative evolution

rules:

– r1� b1�!oa
ð0Þ
k b

0

0

� �

1 b

1

0

� �

2 b

2

0

� �

3 b

3

0

� �

4 ...b

k�1

0

� �

k

2

64

3

75

1

;

– r2� b2�! oa
ð1Þ
k b

1

1

� �

2 b

2

1

� �

3 b

3

1

� �

4 . . .b

k�1

1

� �

k

2

64

3

75

1

;

– r3 � b3 �! oa
ð2Þ
k b

2

2

� �

3 b

3

2

� �

4 . . . b

k � 1

2

� �

k

2

64

3

75

1

;

– r4 � b4 �! oa
ð3Þ
k b

3

3

� �

4 . . . b

k � 1

3

� �

k

2

64

3

75

1

;

...

– rk � bk �! oa
ðk�1Þ
k b

k � 1

k � 1

� �

k

2

64

3

75

1

;

– iout ¼ 1.

Let C ¼ ðC0; C1; C2; . . .; Ct; . . .Þ be the (unique) computation

of P. For each t 2 N and x 2 C, we denote by Ctð1Þ the

multiset over C associated with the membrane 1 in con-

figuration Ct.

Theorem 3 For every t 2 N, we have Ctð1Þ ¼
opkðtÞ; b1; b2

t; . . .; bk
tk�1

n o
.

Proof Let us prove the result by induction on t.

For the base case, t ¼ 0, let us notice that C0ð1Þ ¼
M1 ¼ foa0 b1g ¼ opkð0Þ; b1; b

0
2; . . .; bk

0
� �

.

Let us assume the result holds for t� 0, that is, let us

suppose that

Ctð1Þ ¼ fopkðtÞ; b1; b2t; . . .; bkt
k�1g

In order to obtain Ctþ1ð1Þ, we must apply the rules r1; r2
and rk to configuration Ct. Then

Ctþ1ð1Þ ¼ opkðtÞ; oa
ð0Þ
k
það1Þ

k
�tþað2Þ

k
�t2þ���þaðk�1Þ

k
�tk�1

; b1; b2

1

0

� �
þ

1

1

� �
�t
; b3

2

0

� �
þ

2

1

� �
�tþ

2

2

� �
�t2

; . . .; bk

k � 1

0

� �
þ

k � 1

1

� �
�tþ���þ

k � 1

k � 1

� �
�tk�1

8
>><

>>:

9
>>=

>>;

¼ opkðtÞþað0Þ
k
það1Þ

k
�tþað2Þ

k
�t2þ���þaðk�1Þ

k
�tk�1

; b1; b2
ðtþ1Þ; b3

ðtþ1Þ2 ; . . .; bk
ðtþ1Þk�1

n o
¼ opkðtþ1Þ; b1; b2

ðtþ1Þ; b3
ðtþ1Þ2 ; . . .; bk

ðtþ1Þk�1
n o

h
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Hence, the result holds for t þ 1.

Corollary 3 For every t 2 N, in configuration Ct ofPpkðnÞ
at instant t, the multiplicity of object o in the membrane of

the system is pkðtÞ.

4 Descriptive computational resources

This section discusses the descriptive computational

resources required by the designed two-, three- and k–order

polynomial P systems. According to the design procedures

of two- and three-order polynomial P systems, the amount

of resources to build the designed P systems (of degree 1)

in both cases are 2 rules and 3 objects, 3 rules and 4

objects, respectively. In what follows, we discuss the

descriptive computational resources required by the

designed k–order polynomial P system PpkðnÞ of degree 1.

– The size of the working alphabet k þ 1.

– The initial number of objects: a0 þ 1.

– The number of rules: k.

– The sum of total length of rules:

– Objects in the left-hand side: k.

– Objects o in the right-hand side:

að0Þk þ að1Þk þ að2Þk þ . . .þ aðk�1Þ
k . That is, the total

number of objects o in the rules is:

ð2k � 1Þ � ak þ ð2k�1 � 1Þ � ak�1 þ . . .

þ ð22 � 1Þ � a2 þ ð21 � 1Þ � a1

– Objects bj (1� j� k) in the right-hand side:

j� 1

0

� �
þ

j� 1

1

� �
þ . . .þ

j� 1

j� 1

� �

Thus, the total number of such kind of objects in the

right hand side of the rules is:

Xj¼k

j¼1

j� 1

0

� �
þ

j� 1

1

� �
þ . . .þ

j� 1

j� 1

� �� �

¼
Xj¼k

j¼1

2j�1 ¼ 2k � 1

Therefore, the sum of total length of rules is LRðkÞ:

LRðkÞ ¼ k þ ð2k � 1Þ � ak þ ð2k�1 � 1Þ � ak�1

þ . . .þ ð22 � 1Þ � a2 þ ð21 � 1Þ � a1 þ 2k � 1

Hence, the total amount of descriptive computational

resources is exponential in the k–order polynomial.

We summarize the amount of resources to build the

designed P systems (of degree 1) as shown in Table 1,

where SWA, INO, NoR and SLR represent the size of the

working alphabet, the initial number of objects, the number

of rules and the sum of total length of rules, respectively. In

Table 1, the designed two-order polynomial P system

(Two-order, for short) is a2 � n2 þ a1 � nþ a0; the designed

three-order polynomial P system (Three-order, for short) is

a3 � n3 þ a2 � n2 þ a1 � nþ a0; the k-order polynomial P

system (k-order, for short) is ak � nk þ � � � þ a1 � nþ a0.

5 Conclusion

By analyzing the syntax and semantics of cell-like P sys-

tems, this study presented a reasoning method to design a

k-order (k� 2) polynomial P system. The significance of

this study is to provide an alternative approach to auto-

matically design a P system that can perform a given task,

which is different from the previous work on this topic. In

future work, on one hand, we really hope to extend this

method to design more variants of P systems for more

computational tasks; on the other hand, we will use

membrane-inspired evolutionary algorithms (Zhang et al.

2013, 2014a; Xiao et al. 2014) or optimization spiking

neural P systems (Zhang et al. 2014b) to implement the

automatic design of a P system for solving computational

hard problems. Our ambitious aim is to find a way to design

the minimal P system for a given task including definite

tasks such as the computation of polynomials and indefinite

tasks like practical applications such as membrane con-

trollers for mobile robots.
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